1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_VERIFIER_H 5 #define _LINUX_BPF_VERIFIER_H 1 6 7 #include <linux/bpf.h> /* for enum bpf_reg_type */ 8 #include <linux/btf.h> /* for struct btf and btf_id() */ 9 #include <linux/filter.h> /* for MAX_BPF_STACK */ 10 #include <linux/tnum.h> 11 12 /* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16 #define BPF_MAX_VAR_OFF (1 << 29) 17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20 #define BPF_MAX_VAR_SIZ (1 << 29) 21 /* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25 #define TMP_STR_BUF_LEN 320 26 27 /* Liveness marks, used for registers and spilled-regs (in stack slots). 28 * Read marks propagate upwards until they find a write mark; they record that 29 * "one of this state's descendants read this reg" (and therefore the reg is 30 * relevant for states_equal() checks). 31 * Write marks collect downwards and do not propagate; they record that "the 32 * straight-line code that reached this state (from its parent) wrote this reg" 33 * (and therefore that reads propagated from this state or its descendants 34 * should not propagate to its parent). 35 * A state with a write mark can receive read marks; it just won't propagate 36 * them to its parent, since the write mark is a property, not of the state, 37 * but of the link between it and its parent. See mark_reg_read() and 38 * mark_stack_slot_read() in kernel/bpf/verifier.c. 39 */ 40 enum bpf_reg_liveness { 41 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 42 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 43 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 44 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 45 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 46 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 47 }; 48 49 /* For every reg representing a map value or allocated object pointer, 50 * we consider the tuple of (ptr, id) for them to be unique in verifier 51 * context and conside them to not alias each other for the purposes of 52 * tracking lock state. 53 */ 54 struct bpf_active_lock { 55 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL, 56 * there's no active lock held, and other fields have no 57 * meaning. If non-NULL, it indicates that a lock is held and 58 * id member has the reg->id of the register which can be >= 0. 59 */ 60 void *ptr; 61 /* This will be reg->id */ 62 u32 id; 63 }; 64 65 #define ITER_PREFIX "bpf_iter_" 66 67 enum bpf_iter_state { 68 BPF_ITER_STATE_INVALID, /* for non-first slot */ 69 BPF_ITER_STATE_ACTIVE, 70 BPF_ITER_STATE_DRAINED, 71 }; 72 73 struct bpf_reg_state { 74 /* Ordering of fields matters. See states_equal() */ 75 enum bpf_reg_type type; 76 /* Fixed part of pointer offset, pointer types only */ 77 s32 off; 78 union { 79 /* valid when type == PTR_TO_PACKET */ 80 int range; 81 82 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 83 * PTR_TO_MAP_VALUE_OR_NULL 84 */ 85 struct { 86 struct bpf_map *map_ptr; 87 /* To distinguish map lookups from outer map 88 * the map_uid is non-zero for registers 89 * pointing to inner maps. 90 */ 91 u32 map_uid; 92 }; 93 94 /* for PTR_TO_BTF_ID */ 95 struct { 96 struct btf *btf; 97 u32 btf_id; 98 }; 99 100 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 101 u32 mem_size; 102 u32 dynptr_id; /* for dynptr slices */ 103 }; 104 105 /* For dynptr stack slots */ 106 struct { 107 enum bpf_dynptr_type type; 108 /* A dynptr is 16 bytes so it takes up 2 stack slots. 109 * We need to track which slot is the first slot 110 * to protect against cases where the user may try to 111 * pass in an address starting at the second slot of the 112 * dynptr. 113 */ 114 bool first_slot; 115 } dynptr; 116 117 /* For bpf_iter stack slots */ 118 struct { 119 /* BTF container and BTF type ID describing 120 * struct bpf_iter_<type> of an iterator state 121 */ 122 struct btf *btf; 123 u32 btf_id; 124 /* packing following two fields to fit iter state into 16 bytes */ 125 enum bpf_iter_state state:2; 126 int depth:30; 127 } iter; 128 129 /* Max size from any of the above. */ 130 struct { 131 unsigned long raw1; 132 unsigned long raw2; 133 } raw; 134 135 u32 subprogno; /* for PTR_TO_FUNC */ 136 }; 137 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 138 * the actual value. 139 * For pointer types, this represents the variable part of the offset 140 * from the pointed-to object, and is shared with all bpf_reg_states 141 * with the same id as us. 142 */ 143 struct tnum var_off; 144 /* Used to determine if any memory access using this register will 145 * result in a bad access. 146 * These refer to the same value as var_off, not necessarily the actual 147 * contents of the register. 148 */ 149 s64 smin_value; /* minimum possible (s64)value */ 150 s64 smax_value; /* maximum possible (s64)value */ 151 u64 umin_value; /* minimum possible (u64)value */ 152 u64 umax_value; /* maximum possible (u64)value */ 153 s32 s32_min_value; /* minimum possible (s32)value */ 154 s32 s32_max_value; /* maximum possible (s32)value */ 155 u32 u32_min_value; /* minimum possible (u32)value */ 156 u32 u32_max_value; /* maximum possible (u32)value */ 157 /* For PTR_TO_PACKET, used to find other pointers with the same variable 158 * offset, so they can share range knowledge. 159 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 160 * came from, when one is tested for != NULL. 161 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 162 * for the purpose of tracking that it's freed. 163 * For PTR_TO_SOCKET this is used to share which pointers retain the 164 * same reference to the socket, to determine proper reference freeing. 165 * For stack slots that are dynptrs, this is used to track references to 166 * the dynptr to determine proper reference freeing. 167 * Similarly to dynptrs, we use ID to track "belonging" of a reference 168 * to a specific instance of bpf_iter. 169 */ 170 u32 id; 171 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 172 * from a pointer-cast helper, bpf_sk_fullsock() and 173 * bpf_tcp_sock(). 174 * 175 * Consider the following where "sk" is a reference counted 176 * pointer returned from "sk = bpf_sk_lookup_tcp();": 177 * 178 * 1: sk = bpf_sk_lookup_tcp(); 179 * 2: if (!sk) { return 0; } 180 * 3: fullsock = bpf_sk_fullsock(sk); 181 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 182 * 5: tp = bpf_tcp_sock(fullsock); 183 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 184 * 7: bpf_sk_release(sk); 185 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 186 * 187 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 188 * "tp" ptr should be invalidated also. In order to do that, 189 * the reg holding "fullsock" and "sk" need to remember 190 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 191 * such that the verifier can reset all regs which have 192 * ref_obj_id matching the sk_reg->id. 193 * 194 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 195 * sk_reg->id will stay as NULL-marking purpose only. 196 * After NULL-marking is done, sk_reg->id can be reset to 0. 197 * 198 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 199 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 200 * 201 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 202 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 203 * which is the same as sk_reg->ref_obj_id. 204 * 205 * From the verifier perspective, if sk, fullsock and tp 206 * are not NULL, they are the same ptr with different 207 * reg->type. In particular, bpf_sk_release(tp) is also 208 * allowed and has the same effect as bpf_sk_release(sk). 209 */ 210 u32 ref_obj_id; 211 /* parentage chain for liveness checking */ 212 struct bpf_reg_state *parent; 213 /* Inside the callee two registers can be both PTR_TO_STACK like 214 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 215 * while another to the caller's stack. To differentiate them 'frameno' 216 * is used which is an index in bpf_verifier_state->frame[] array 217 * pointing to bpf_func_state. 218 */ 219 u32 frameno; 220 /* Tracks subreg definition. The stored value is the insn_idx of the 221 * writing insn. This is safe because subreg_def is used before any insn 222 * patching which only happens after main verification finished. 223 */ 224 s32 subreg_def; 225 enum bpf_reg_liveness live; 226 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 227 bool precise; 228 }; 229 230 enum bpf_stack_slot_type { 231 STACK_INVALID, /* nothing was stored in this stack slot */ 232 STACK_SPILL, /* register spilled into stack */ 233 STACK_MISC, /* BPF program wrote some data into this slot */ 234 STACK_ZERO, /* BPF program wrote constant zero */ 235 /* A dynptr is stored in this stack slot. The type of dynptr 236 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 237 */ 238 STACK_DYNPTR, 239 STACK_ITER, 240 }; 241 242 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 243 244 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 245 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 246 (1 << BPF_REG_5)) 247 248 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 249 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 250 251 struct bpf_stack_state { 252 struct bpf_reg_state spilled_ptr; 253 u8 slot_type[BPF_REG_SIZE]; 254 }; 255 256 struct bpf_reference_state { 257 /* Track each reference created with a unique id, even if the same 258 * instruction creates the reference multiple times (eg, via CALL). 259 */ 260 int id; 261 /* Instruction where the allocation of this reference occurred. This 262 * is used purely to inform the user of a reference leak. 263 */ 264 int insn_idx; 265 /* There can be a case like: 266 * main (frame 0) 267 * cb (frame 1) 268 * func (frame 3) 269 * cb (frame 4) 270 * Hence for frame 4, if callback_ref just stored boolean, it would be 271 * impossible to distinguish nested callback refs. Hence store the 272 * frameno and compare that to callback_ref in check_reference_leak when 273 * exiting a callback function. 274 */ 275 int callback_ref; 276 }; 277 278 /* state of the program: 279 * type of all registers and stack info 280 */ 281 struct bpf_func_state { 282 struct bpf_reg_state regs[MAX_BPF_REG]; 283 /* index of call instruction that called into this func */ 284 int callsite; 285 /* stack frame number of this function state from pov of 286 * enclosing bpf_verifier_state. 287 * 0 = main function, 1 = first callee. 288 */ 289 u32 frameno; 290 /* subprog number == index within subprog_info 291 * zero == main subprog 292 */ 293 u32 subprogno; 294 /* Every bpf_timer_start will increment async_entry_cnt. 295 * It's used to distinguish: 296 * void foo(void) { for(;;); } 297 * void foo(void) { bpf_timer_set_callback(,foo); } 298 */ 299 u32 async_entry_cnt; 300 bool in_callback_fn; 301 struct tnum callback_ret_range; 302 bool in_async_callback_fn; 303 bool in_exception_callback_fn; 304 /* For callback calling functions that limit number of possible 305 * callback executions (e.g. bpf_loop) keeps track of current 306 * simulated iteration number. 307 * Value in frame N refers to number of times callback with frame 308 * N+1 was simulated, e.g. for the following call: 309 * 310 * bpf_loop(..., fn, ...); | suppose current frame is N 311 * | fn would be simulated in frame N+1 312 * | number of simulations is tracked in frame N 313 */ 314 u32 callback_depth; 315 316 /* The following fields should be last. See copy_func_state() */ 317 int acquired_refs; 318 struct bpf_reference_state *refs; 319 int allocated_stack; 320 struct bpf_stack_state *stack; 321 }; 322 323 struct bpf_idx_pair { 324 u32 prev_idx; 325 u32 idx; 326 }; 327 328 #define MAX_CALL_FRAMES 8 329 /* Maximum number of register states that can exist at once */ 330 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 331 struct bpf_verifier_state { 332 /* call stack tracking */ 333 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 334 struct bpf_verifier_state *parent; 335 /* 336 * 'branches' field is the number of branches left to explore: 337 * 0 - all possible paths from this state reached bpf_exit or 338 * were safely pruned 339 * 1 - at least one path is being explored. 340 * This state hasn't reached bpf_exit 341 * 2 - at least two paths are being explored. 342 * This state is an immediate parent of two children. 343 * One is fallthrough branch with branches==1 and another 344 * state is pushed into stack (to be explored later) also with 345 * branches==1. The parent of this state has branches==1. 346 * The verifier state tree connected via 'parent' pointer looks like: 347 * 1 348 * 1 349 * 2 -> 1 (first 'if' pushed into stack) 350 * 1 351 * 2 -> 1 (second 'if' pushed into stack) 352 * 1 353 * 1 354 * 1 bpf_exit. 355 * 356 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 357 * and the verifier state tree will look: 358 * 1 359 * 1 360 * 2 -> 1 (first 'if' pushed into stack) 361 * 1 362 * 1 -> 1 (second 'if' pushed into stack) 363 * 0 364 * 0 365 * 0 bpf_exit. 366 * After pop_stack() the do_check() will resume at second 'if'. 367 * 368 * If is_state_visited() sees a state with branches > 0 it means 369 * there is a loop. If such state is exactly equal to the current state 370 * it's an infinite loop. Note states_equal() checks for states 371 * equivalency, so two states being 'states_equal' does not mean 372 * infinite loop. The exact comparison is provided by 373 * states_maybe_looping() function. It's a stronger pre-check and 374 * much faster than states_equal(). 375 * 376 * This algorithm may not find all possible infinite loops or 377 * loop iteration count may be too high. 378 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 379 */ 380 u32 branches; 381 u32 insn_idx; 382 u32 curframe; 383 384 struct bpf_active_lock active_lock; 385 bool speculative; 386 bool active_rcu_lock; 387 /* If this state was ever pointed-to by other state's loop_entry field 388 * this flag would be set to true. Used to avoid freeing such states 389 * while they are still in use. 390 */ 391 bool used_as_loop_entry; 392 393 /* first and last insn idx of this verifier state */ 394 u32 first_insn_idx; 395 u32 last_insn_idx; 396 /* If this state is a part of states loop this field points to some 397 * parent of this state such that: 398 * - it is also a member of the same states loop; 399 * - DFS states traversal starting from initial state visits loop_entry 400 * state before this state. 401 * Used to compute topmost loop entry for state loops. 402 * State loops might appear because of open coded iterators logic. 403 * See get_loop_entry() for more information. 404 */ 405 struct bpf_verifier_state *loop_entry; 406 /* jmp history recorded from first to last. 407 * backtracking is using it to go from last to first. 408 * For most states jmp_history_cnt is [0-3]. 409 * For loops can go up to ~40. 410 */ 411 struct bpf_idx_pair *jmp_history; 412 u32 jmp_history_cnt; 413 u32 dfs_depth; 414 u32 callback_unroll_depth; 415 }; 416 417 #define bpf_get_spilled_reg(slot, frame, mask) \ 418 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 419 ((1 << frame->stack[slot].slot_type[0]) & (mask))) \ 420 ? &frame->stack[slot].spilled_ptr : NULL) 421 422 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 423 #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 424 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 425 iter < frame->allocated_stack / BPF_REG_SIZE; \ 426 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 427 428 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 429 ({ \ 430 struct bpf_verifier_state *___vstate = __vst; \ 431 int ___i, ___j; \ 432 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 433 struct bpf_reg_state *___regs; \ 434 __state = ___vstate->frame[___i]; \ 435 ___regs = __state->regs; \ 436 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 437 __reg = &___regs[___j]; \ 438 (void)(__expr); \ 439 } \ 440 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 441 if (!__reg) \ 442 continue; \ 443 (void)(__expr); \ 444 } \ 445 } \ 446 }) 447 448 /* Invoke __expr over regsiters in __vst, setting __state and __reg */ 449 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 450 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 451 452 /* linked list of verifier states used to prune search */ 453 struct bpf_verifier_state_list { 454 struct bpf_verifier_state state; 455 struct bpf_verifier_state_list *next; 456 int miss_cnt, hit_cnt; 457 }; 458 459 struct bpf_loop_inline_state { 460 unsigned int initialized:1; /* set to true upon first entry */ 461 unsigned int fit_for_inline:1; /* true if callback function is the same 462 * at each call and flags are always zero 463 */ 464 u32 callback_subprogno; /* valid when fit_for_inline is true */ 465 }; 466 467 /* Possible states for alu_state member. */ 468 #define BPF_ALU_SANITIZE_SRC (1U << 0) 469 #define BPF_ALU_SANITIZE_DST (1U << 1) 470 #define BPF_ALU_NEG_VALUE (1U << 2) 471 #define BPF_ALU_NON_POINTER (1U << 3) 472 #define BPF_ALU_IMMEDIATE (1U << 4) 473 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 474 BPF_ALU_SANITIZE_DST) 475 476 struct bpf_insn_aux_data { 477 union { 478 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 479 unsigned long map_ptr_state; /* pointer/poison value for maps */ 480 s32 call_imm; /* saved imm field of call insn */ 481 u32 alu_limit; /* limit for add/sub register with pointer */ 482 struct { 483 u32 map_index; /* index into used_maps[] */ 484 u32 map_off; /* offset from value base address */ 485 }; 486 struct { 487 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 488 union { 489 struct { 490 struct btf *btf; 491 u32 btf_id; /* btf_id for struct typed var */ 492 }; 493 u32 mem_size; /* mem_size for non-struct typed var */ 494 }; 495 } btf_var; 496 /* if instruction is a call to bpf_loop this field tracks 497 * the state of the relevant registers to make decision about inlining 498 */ 499 struct bpf_loop_inline_state loop_inline_state; 500 }; 501 union { 502 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 503 u64 obj_new_size; 504 /* remember the offset of node field within type to rewrite */ 505 u64 insert_off; 506 }; 507 struct btf_struct_meta *kptr_struct_meta; 508 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 509 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 510 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 511 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 512 bool zext_dst; /* this insn zero extends dst reg */ 513 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 514 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 515 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 516 u8 alu_state; /* used in combination with alu_limit */ 517 518 /* below fields are initialized once */ 519 unsigned int orig_idx; /* original instruction index */ 520 bool jmp_point; 521 bool prune_point; 522 /* ensure we check state equivalence and save state checkpoint and 523 * this instruction, regardless of any heuristics 524 */ 525 bool force_checkpoint; 526 /* true if instruction is a call to a helper function that 527 * accepts callback function as a parameter. 528 */ 529 bool calls_callback; 530 }; 531 532 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 533 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 534 535 #define BPF_VERIFIER_TMP_LOG_SIZE 1024 536 537 struct bpf_verifier_log { 538 /* Logical start and end positions of a "log window" of the verifier log. 539 * start_pos == 0 means we haven't truncated anything. 540 * Once truncation starts to happen, start_pos + len_total == end_pos, 541 * except during log reset situations, in which (end_pos - start_pos) 542 * might get smaller than len_total (see bpf_vlog_reset()). 543 * Generally, (end_pos - start_pos) gives number of useful data in 544 * user log buffer. 545 */ 546 u64 start_pos; 547 u64 end_pos; 548 char __user *ubuf; 549 u32 level; 550 u32 len_total; 551 u32 len_max; 552 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 553 }; 554 555 #define BPF_LOG_LEVEL1 1 556 #define BPF_LOG_LEVEL2 2 557 #define BPF_LOG_STATS 4 558 #define BPF_LOG_FIXED 8 559 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 560 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 561 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 562 #define BPF_LOG_MIN_ALIGNMENT 8U 563 #define BPF_LOG_ALIGNMENT 40U 564 565 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 566 { 567 return log && log->level; 568 } 569 570 #define BPF_MAX_SUBPROGS 256 571 572 struct bpf_subprog_info { 573 /* 'start' has to be the first field otherwise find_subprog() won't work */ 574 u32 start; /* insn idx of function entry point */ 575 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 576 u16 stack_depth; /* max. stack depth used by this function */ 577 bool has_tail_call; 578 bool tail_call_reachable; 579 bool has_ld_abs; 580 bool is_cb; 581 bool is_async_cb; 582 bool is_exception_cb; 583 }; 584 585 struct bpf_verifier_env; 586 587 struct backtrack_state { 588 struct bpf_verifier_env *env; 589 u32 frame; 590 u32 reg_masks[MAX_CALL_FRAMES]; 591 u64 stack_masks[MAX_CALL_FRAMES]; 592 }; 593 594 struct bpf_id_pair { 595 u32 old; 596 u32 cur; 597 }; 598 599 struct bpf_idmap { 600 u32 tmp_id_gen; 601 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 602 }; 603 604 struct bpf_idset { 605 u32 count; 606 u32 ids[BPF_ID_MAP_SIZE]; 607 }; 608 609 /* single container for all structs 610 * one verifier_env per bpf_check() call 611 */ 612 struct bpf_verifier_env { 613 u32 insn_idx; 614 u32 prev_insn_idx; 615 struct bpf_prog *prog; /* eBPF program being verified */ 616 const struct bpf_verifier_ops *ops; 617 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 618 int stack_size; /* number of states to be processed */ 619 bool strict_alignment; /* perform strict pointer alignment checks */ 620 bool test_state_freq; /* test verifier with different pruning frequency */ 621 bool test_reg_invariants; /* fail verification on register invariants violations */ 622 struct bpf_verifier_state *cur_state; /* current verifier state */ 623 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 624 struct bpf_verifier_state_list *free_list; 625 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 626 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 627 u32 used_map_cnt; /* number of used maps */ 628 u32 used_btf_cnt; /* number of used BTF objects */ 629 u32 id_gen; /* used to generate unique reg IDs */ 630 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 631 int exception_callback_subprog; 632 bool explore_alu_limits; 633 bool allow_ptr_leaks; 634 bool allow_uninit_stack; 635 bool bpf_capable; 636 bool bypass_spec_v1; 637 bool bypass_spec_v4; 638 bool seen_direct_write; 639 bool seen_exception; 640 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 641 const struct bpf_line_info *prev_linfo; 642 struct bpf_verifier_log log; 643 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 644 union { 645 struct bpf_idmap idmap_scratch; 646 struct bpf_idset idset_scratch; 647 }; 648 struct { 649 int *insn_state; 650 int *insn_stack; 651 int cur_stack; 652 } cfg; 653 struct backtrack_state bt; 654 u32 pass_cnt; /* number of times do_check() was called */ 655 u32 subprog_cnt; 656 /* number of instructions analyzed by the verifier */ 657 u32 prev_insn_processed, insn_processed; 658 /* number of jmps, calls, exits analyzed so far */ 659 u32 prev_jmps_processed, jmps_processed; 660 /* total verification time */ 661 u64 verification_time; 662 /* maximum number of verifier states kept in 'branching' instructions */ 663 u32 max_states_per_insn; 664 /* total number of allocated verifier states */ 665 u32 total_states; 666 /* some states are freed during program analysis. 667 * this is peak number of states. this number dominates kernel 668 * memory consumption during verification 669 */ 670 u32 peak_states; 671 /* longest register parentage chain walked for liveness marking */ 672 u32 longest_mark_read_walk; 673 bpfptr_t fd_array; 674 675 /* bit mask to keep track of whether a register has been accessed 676 * since the last time the function state was printed 677 */ 678 u32 scratched_regs; 679 /* Same as scratched_regs but for stack slots */ 680 u64 scratched_stack_slots; 681 u64 prev_log_pos, prev_insn_print_pos; 682 /* buffer used to generate temporary string representations, 683 * e.g., in reg_type_str() to generate reg_type string 684 */ 685 char tmp_str_buf[TMP_STR_BUF_LEN]; 686 }; 687 688 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 689 const char *fmt, va_list args); 690 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 691 const char *fmt, ...); 692 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 693 const char *fmt, ...); 694 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 695 char __user *log_buf, u32 log_size); 696 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 697 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 698 699 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 700 u32 insn_off, 701 const char *prefix_fmt, ...); 702 703 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 704 { 705 struct bpf_verifier_state *cur = env->cur_state; 706 707 return cur->frame[cur->curframe]; 708 } 709 710 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 711 { 712 return cur_func(env)->regs; 713 } 714 715 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 716 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 717 int insn_idx, int prev_insn_idx); 718 int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 719 void 720 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 721 struct bpf_insn *insn); 722 void 723 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 724 725 int check_ptr_off_reg(struct bpf_verifier_env *env, 726 const struct bpf_reg_state *reg, int regno); 727 int check_func_arg_reg_off(struct bpf_verifier_env *env, 728 const struct bpf_reg_state *reg, int regno, 729 enum bpf_arg_type arg_type); 730 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 731 u32 regno, u32 mem_size); 732 733 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 734 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 735 struct btf *btf, u32 btf_id) 736 { 737 if (tgt_prog) 738 return ((u64)tgt_prog->aux->id << 32) | btf_id; 739 else 740 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 741 } 742 743 /* unpack the IDs from the key as constructed above */ 744 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 745 { 746 if (obj_id) 747 *obj_id = key >> 32; 748 if (btf_id) 749 *btf_id = key & 0x7FFFFFFF; 750 } 751 752 int bpf_check_attach_target(struct bpf_verifier_log *log, 753 const struct bpf_prog *prog, 754 const struct bpf_prog *tgt_prog, 755 u32 btf_id, 756 struct bpf_attach_target_info *tgt_info); 757 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 758 759 int mark_chain_precision(struct bpf_verifier_env *env, int regno); 760 761 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 762 763 /* extract base type from bpf_{arg, return, reg}_type. */ 764 static inline u32 base_type(u32 type) 765 { 766 return type & BPF_BASE_TYPE_MASK; 767 } 768 769 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 770 static inline u32 type_flag(u32 type) 771 { 772 return type & ~BPF_BASE_TYPE_MASK; 773 } 774 775 /* only use after check_attach_btf_id() */ 776 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 777 { 778 return prog->type == BPF_PROG_TYPE_EXT ? 779 prog->aux->dst_prog->type : prog->type; 780 } 781 782 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 783 { 784 switch (resolve_prog_type(prog)) { 785 case BPF_PROG_TYPE_TRACING: 786 return prog->expected_attach_type != BPF_TRACE_ITER; 787 case BPF_PROG_TYPE_STRUCT_OPS: 788 case BPF_PROG_TYPE_LSM: 789 return false; 790 default: 791 return true; 792 } 793 } 794 795 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 796 797 static inline bool bpf_type_has_unsafe_modifiers(u32 type) 798 { 799 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 800 } 801 802 static inline bool type_is_ptr_alloc_obj(u32 type) 803 { 804 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 805 } 806 807 static inline bool type_is_non_owning_ref(u32 type) 808 { 809 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 810 } 811 812 static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 813 { 814 type = base_type(type); 815 return type == PTR_TO_PACKET || 816 type == PTR_TO_PACKET_META; 817 } 818 819 static inline bool type_is_sk_pointer(enum bpf_reg_type type) 820 { 821 return type == PTR_TO_SOCKET || 822 type == PTR_TO_SOCK_COMMON || 823 type == PTR_TO_TCP_SOCK || 824 type == PTR_TO_XDP_SOCK; 825 } 826 827 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 828 { 829 env->scratched_regs |= 1U << regno; 830 } 831 832 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 833 { 834 env->scratched_stack_slots |= 1ULL << spi; 835 } 836 837 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 838 { 839 return (env->scratched_regs >> regno) & 1; 840 } 841 842 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 843 { 844 return (env->scratched_stack_slots >> regno) & 1; 845 } 846 847 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 848 { 849 return env->scratched_regs || env->scratched_stack_slots; 850 } 851 852 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 853 { 854 env->scratched_regs = 0U; 855 env->scratched_stack_slots = 0ULL; 856 } 857 858 /* Used for printing the entire verifier state. */ 859 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 860 { 861 env->scratched_regs = ~0U; 862 env->scratched_stack_slots = ~0ULL; 863 } 864 865 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 866 const char *dynptr_type_str(enum bpf_dynptr_type type); 867 const char *iter_type_str(const struct btf *btf, u32 btf_id); 868 const char *iter_state_str(enum bpf_iter_state state); 869 870 void print_verifier_state(struct bpf_verifier_env *env, 871 const struct bpf_func_state *state, bool print_all); 872 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_func_state *state); 873 874 #endif /* _LINUX_BPF_VERIFIER_H */ 875