1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_VERIFIER_H 5 #define _LINUX_BPF_VERIFIER_H 1 6 7 #include <linux/bpf.h> /* for enum bpf_reg_type */ 8 #include <linux/btf.h> /* for struct btf and btf_id() */ 9 #include <linux/filter.h> /* for MAX_BPF_STACK */ 10 #include <linux/tnum.h> 11 12 /* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16 #define BPF_MAX_VAR_OFF (1 << 29) 17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20 #define BPF_MAX_VAR_SIZ (1 << 29) 21 /* size of tmp_str_buf in bpf_verifier. 22 * we need at least 306 bytes to fit full stack mask representation 23 * (in the "-8,-16,...,-512" form) 24 */ 25 #define TMP_STR_BUF_LEN 320 26 /* Patch buffer size */ 27 #define INSN_BUF_SIZE 32 28 29 /* Liveness marks, used for registers and spilled-regs (in stack slots). 30 * Read marks propagate upwards until they find a write mark; they record that 31 * "one of this state's descendants read this reg" (and therefore the reg is 32 * relevant for states_equal() checks). 33 * Write marks collect downwards and do not propagate; they record that "the 34 * straight-line code that reached this state (from its parent) wrote this reg" 35 * (and therefore that reads propagated from this state or its descendants 36 * should not propagate to its parent). 37 * A state with a write mark can receive read marks; it just won't propagate 38 * them to its parent, since the write mark is a property, not of the state, 39 * but of the link between it and its parent. See mark_reg_read() and 40 * mark_stack_slot_read() in kernel/bpf/verifier.c. 41 */ 42 enum bpf_reg_liveness { 43 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 44 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 45 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 46 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 47 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 48 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 49 }; 50 51 #define ITER_PREFIX "bpf_iter_" 52 53 enum bpf_iter_state { 54 BPF_ITER_STATE_INVALID, /* for non-first slot */ 55 BPF_ITER_STATE_ACTIVE, 56 BPF_ITER_STATE_DRAINED, 57 }; 58 59 struct bpf_reg_state { 60 /* Ordering of fields matters. See states_equal() */ 61 enum bpf_reg_type type; 62 /* 63 * Fixed part of pointer offset, pointer types only. 64 * Or constant delta between "linked" scalars with the same ID. 65 */ 66 s32 off; 67 union { 68 /* valid when type == PTR_TO_PACKET */ 69 int range; 70 71 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 72 * PTR_TO_MAP_VALUE_OR_NULL 73 */ 74 struct { 75 struct bpf_map *map_ptr; 76 /* To distinguish map lookups from outer map 77 * the map_uid is non-zero for registers 78 * pointing to inner maps. 79 */ 80 u32 map_uid; 81 }; 82 83 /* for PTR_TO_BTF_ID */ 84 struct { 85 struct btf *btf; 86 u32 btf_id; 87 }; 88 89 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 90 u32 mem_size; 91 u32 dynptr_id; /* for dynptr slices */ 92 }; 93 94 /* For dynptr stack slots */ 95 struct { 96 enum bpf_dynptr_type type; 97 /* A dynptr is 16 bytes so it takes up 2 stack slots. 98 * We need to track which slot is the first slot 99 * to protect against cases where the user may try to 100 * pass in an address starting at the second slot of the 101 * dynptr. 102 */ 103 bool first_slot; 104 } dynptr; 105 106 /* For bpf_iter stack slots */ 107 struct { 108 /* BTF container and BTF type ID describing 109 * struct bpf_iter_<type> of an iterator state 110 */ 111 struct btf *btf; 112 u32 btf_id; 113 /* packing following two fields to fit iter state into 16 bytes */ 114 enum bpf_iter_state state:2; 115 int depth:30; 116 } iter; 117 118 /* For irq stack slots */ 119 struct { 120 enum { 121 IRQ_NATIVE_KFUNC, 122 IRQ_LOCK_KFUNC, 123 } kfunc_class; 124 } irq; 125 126 /* Max size from any of the above. */ 127 struct { 128 unsigned long raw1; 129 unsigned long raw2; 130 } raw; 131 132 u32 subprogno; /* for PTR_TO_FUNC */ 133 }; 134 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 135 * the actual value. 136 * For pointer types, this represents the variable part of the offset 137 * from the pointed-to object, and is shared with all bpf_reg_states 138 * with the same id as us. 139 */ 140 struct tnum var_off; 141 /* Used to determine if any memory access using this register will 142 * result in a bad access. 143 * These refer to the same value as var_off, not necessarily the actual 144 * contents of the register. 145 */ 146 s64 smin_value; /* minimum possible (s64)value */ 147 s64 smax_value; /* maximum possible (s64)value */ 148 u64 umin_value; /* minimum possible (u64)value */ 149 u64 umax_value; /* maximum possible (u64)value */ 150 s32 s32_min_value; /* minimum possible (s32)value */ 151 s32 s32_max_value; /* maximum possible (s32)value */ 152 u32 u32_min_value; /* minimum possible (u32)value */ 153 u32 u32_max_value; /* maximum possible (u32)value */ 154 /* For PTR_TO_PACKET, used to find other pointers with the same variable 155 * offset, so they can share range knowledge. 156 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 157 * came from, when one is tested for != NULL. 158 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 159 * for the purpose of tracking that it's freed. 160 * For PTR_TO_SOCKET this is used to share which pointers retain the 161 * same reference to the socket, to determine proper reference freeing. 162 * For stack slots that are dynptrs, this is used to track references to 163 * the dynptr to determine proper reference freeing. 164 * Similarly to dynptrs, we use ID to track "belonging" of a reference 165 * to a specific instance of bpf_iter. 166 */ 167 /* 168 * Upper bit of ID is used to remember relationship between "linked" 169 * registers. Example: 170 * r1 = r2; both will have r1->id == r2->id == N 171 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10 172 */ 173 #define BPF_ADD_CONST (1U << 31) 174 u32 id; 175 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 176 * from a pointer-cast helper, bpf_sk_fullsock() and 177 * bpf_tcp_sock(). 178 * 179 * Consider the following where "sk" is a reference counted 180 * pointer returned from "sk = bpf_sk_lookup_tcp();": 181 * 182 * 1: sk = bpf_sk_lookup_tcp(); 183 * 2: if (!sk) { return 0; } 184 * 3: fullsock = bpf_sk_fullsock(sk); 185 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 186 * 5: tp = bpf_tcp_sock(fullsock); 187 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 188 * 7: bpf_sk_release(sk); 189 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 190 * 191 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 192 * "tp" ptr should be invalidated also. In order to do that, 193 * the reg holding "fullsock" and "sk" need to remember 194 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 195 * such that the verifier can reset all regs which have 196 * ref_obj_id matching the sk_reg->id. 197 * 198 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 199 * sk_reg->id will stay as NULL-marking purpose only. 200 * After NULL-marking is done, sk_reg->id can be reset to 0. 201 * 202 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 203 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 204 * 205 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 206 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 207 * which is the same as sk_reg->ref_obj_id. 208 * 209 * From the verifier perspective, if sk, fullsock and tp 210 * are not NULL, they are the same ptr with different 211 * reg->type. In particular, bpf_sk_release(tp) is also 212 * allowed and has the same effect as bpf_sk_release(sk). 213 */ 214 u32 ref_obj_id; 215 /* parentage chain for liveness checking */ 216 struct bpf_reg_state *parent; 217 /* Inside the callee two registers can be both PTR_TO_STACK like 218 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 219 * while another to the caller's stack. To differentiate them 'frameno' 220 * is used which is an index in bpf_verifier_state->frame[] array 221 * pointing to bpf_func_state. 222 */ 223 u32 frameno; 224 /* Tracks subreg definition. The stored value is the insn_idx of the 225 * writing insn. This is safe because subreg_def is used before any insn 226 * patching which only happens after main verification finished. 227 */ 228 s32 subreg_def; 229 enum bpf_reg_liveness live; 230 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 231 bool precise; 232 }; 233 234 enum bpf_stack_slot_type { 235 STACK_INVALID, /* nothing was stored in this stack slot */ 236 STACK_SPILL, /* register spilled into stack */ 237 STACK_MISC, /* BPF program wrote some data into this slot */ 238 STACK_ZERO, /* BPF program wrote constant zero */ 239 /* A dynptr is stored in this stack slot. The type of dynptr 240 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 241 */ 242 STACK_DYNPTR, 243 STACK_ITER, 244 STACK_IRQ_FLAG, 245 }; 246 247 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 248 249 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \ 250 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \ 251 (1 << BPF_REG_5)) 252 253 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 254 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 255 256 struct bpf_stack_state { 257 struct bpf_reg_state spilled_ptr; 258 u8 slot_type[BPF_REG_SIZE]; 259 }; 260 261 struct bpf_reference_state { 262 /* Each reference object has a type. Ensure REF_TYPE_PTR is zero to 263 * default to pointer reference on zero initialization of a state. 264 */ 265 enum ref_state_type { 266 REF_TYPE_PTR = (1 << 1), 267 REF_TYPE_IRQ = (1 << 2), 268 REF_TYPE_LOCK = (1 << 3), 269 REF_TYPE_RES_LOCK = (1 << 4), 270 REF_TYPE_RES_LOCK_IRQ = (1 << 5), 271 REF_TYPE_LOCK_MASK = REF_TYPE_LOCK | REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ, 272 } type; 273 /* Track each reference created with a unique id, even if the same 274 * instruction creates the reference multiple times (eg, via CALL). 275 */ 276 int id; 277 /* Instruction where the allocation of this reference occurred. This 278 * is used purely to inform the user of a reference leak. 279 */ 280 int insn_idx; 281 /* Use to keep track of the source object of a lock, to ensure 282 * it matches on unlock. 283 */ 284 void *ptr; 285 }; 286 287 struct bpf_retval_range { 288 s32 minval; 289 s32 maxval; 290 }; 291 292 /* state of the program: 293 * type of all registers and stack info 294 */ 295 struct bpf_func_state { 296 struct bpf_reg_state regs[MAX_BPF_REG]; 297 /* index of call instruction that called into this func */ 298 int callsite; 299 /* stack frame number of this function state from pov of 300 * enclosing bpf_verifier_state. 301 * 0 = main function, 1 = first callee. 302 */ 303 u32 frameno; 304 /* subprog number == index within subprog_info 305 * zero == main subprog 306 */ 307 u32 subprogno; 308 /* Every bpf_timer_start will increment async_entry_cnt. 309 * It's used to distinguish: 310 * void foo(void) { for(;;); } 311 * void foo(void) { bpf_timer_set_callback(,foo); } 312 */ 313 u32 async_entry_cnt; 314 struct bpf_retval_range callback_ret_range; 315 bool in_callback_fn; 316 bool in_async_callback_fn; 317 bool in_exception_callback_fn; 318 /* For callback calling functions that limit number of possible 319 * callback executions (e.g. bpf_loop) keeps track of current 320 * simulated iteration number. 321 * Value in frame N refers to number of times callback with frame 322 * N+1 was simulated, e.g. for the following call: 323 * 324 * bpf_loop(..., fn, ...); | suppose current frame is N 325 * | fn would be simulated in frame N+1 326 * | number of simulations is tracked in frame N 327 */ 328 u32 callback_depth; 329 330 /* The following fields should be last. See copy_func_state() */ 331 /* The state of the stack. Each element of the array describes BPF_REG_SIZE 332 * (i.e. 8) bytes worth of stack memory. 333 * stack[0] represents bytes [*(r10-8)..*(r10-1)] 334 * stack[1] represents bytes [*(r10-16)..*(r10-9)] 335 * ... 336 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)] 337 */ 338 struct bpf_stack_state *stack; 339 /* Size of the current stack, in bytes. The stack state is tracked below, in 340 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE. 341 */ 342 int allocated_stack; 343 }; 344 345 #define MAX_CALL_FRAMES 8 346 347 /* instruction history flags, used in bpf_insn_hist_entry.flags field */ 348 enum { 349 /* instruction references stack slot through PTR_TO_STACK register; 350 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8) 351 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512, 352 * 8 bytes per slot, so slot index (spi) is [0, 63]) 353 */ 354 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */ 355 356 INSN_F_SPI_MASK = 0x3f, /* 6 bits */ 357 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */ 358 359 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */ 360 }; 361 362 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES); 363 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8); 364 365 struct bpf_insn_hist_entry { 366 u32 idx; 367 /* insn idx can't be bigger than 1 million */ 368 u32 prev_idx : 22; 369 /* special flags, e.g., whether insn is doing register stack spill/load */ 370 u32 flags : 10; 371 /* additional registers that need precision tracking when this 372 * jump is backtracked, vector of six 10-bit records 373 */ 374 u64 linked_regs; 375 }; 376 377 /* Maximum number of register states that can exist at once */ 378 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 379 struct bpf_verifier_state { 380 /* call stack tracking */ 381 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 382 struct bpf_verifier_state *parent; 383 /* Acquired reference states */ 384 struct bpf_reference_state *refs; 385 /* 386 * 'branches' field is the number of branches left to explore: 387 * 0 - all possible paths from this state reached bpf_exit or 388 * were safely pruned 389 * 1 - at least one path is being explored. 390 * This state hasn't reached bpf_exit 391 * 2 - at least two paths are being explored. 392 * This state is an immediate parent of two children. 393 * One is fallthrough branch with branches==1 and another 394 * state is pushed into stack (to be explored later) also with 395 * branches==1. The parent of this state has branches==1. 396 * The verifier state tree connected via 'parent' pointer looks like: 397 * 1 398 * 1 399 * 2 -> 1 (first 'if' pushed into stack) 400 * 1 401 * 2 -> 1 (second 'if' pushed into stack) 402 * 1 403 * 1 404 * 1 bpf_exit. 405 * 406 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 407 * and the verifier state tree will look: 408 * 1 409 * 1 410 * 2 -> 1 (first 'if' pushed into stack) 411 * 1 412 * 1 -> 1 (second 'if' pushed into stack) 413 * 0 414 * 0 415 * 0 bpf_exit. 416 * After pop_stack() the do_check() will resume at second 'if'. 417 * 418 * If is_state_visited() sees a state with branches > 0 it means 419 * there is a loop. If such state is exactly equal to the current state 420 * it's an infinite loop. Note states_equal() checks for states 421 * equivalency, so two states being 'states_equal' does not mean 422 * infinite loop. The exact comparison is provided by 423 * states_maybe_looping() function. It's a stronger pre-check and 424 * much faster than states_equal(). 425 * 426 * This algorithm may not find all possible infinite loops or 427 * loop iteration count may be too high. 428 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 429 */ 430 u32 branches; 431 u32 insn_idx; 432 u32 curframe; 433 434 u32 acquired_refs; 435 u32 active_locks; 436 u32 active_preempt_locks; 437 u32 active_irq_id; 438 u32 active_lock_id; 439 void *active_lock_ptr; 440 bool active_rcu_lock; 441 442 bool speculative; 443 bool in_sleepable; 444 445 /* first and last insn idx of this verifier state */ 446 u32 first_insn_idx; 447 u32 last_insn_idx; 448 /* If this state is a part of states loop this field points to some 449 * parent of this state such that: 450 * - it is also a member of the same states loop; 451 * - DFS states traversal starting from initial state visits loop_entry 452 * state before this state. 453 * Used to compute topmost loop entry for state loops. 454 * State loops might appear because of open coded iterators logic. 455 * See get_loop_entry() for more information. 456 */ 457 struct bpf_verifier_state *loop_entry; 458 /* Sub-range of env->insn_hist[] corresponding to this state's 459 * instruction history. 460 * Backtracking is using it to go from last to first. 461 * For most states instruction history is short, 0-3 instructions. 462 * For loops can go up to ~40. 463 */ 464 u32 insn_hist_start; 465 u32 insn_hist_end; 466 u32 dfs_depth; 467 u32 callback_unroll_depth; 468 u32 may_goto_depth; 469 /* If this state was ever pointed-to by other state's loop_entry field 470 * this flag would be set to true. Used to avoid freeing such states 471 * while they are still in use. 472 */ 473 u32 used_as_loop_entry; 474 }; 475 476 #define bpf_get_spilled_reg(slot, frame, mask) \ 477 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 478 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \ 479 ? &frame->stack[slot].spilled_ptr : NULL) 480 481 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 482 #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \ 483 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \ 484 iter < frame->allocated_stack / BPF_REG_SIZE; \ 485 iter++, reg = bpf_get_spilled_reg(iter, frame, mask)) 486 487 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \ 488 ({ \ 489 struct bpf_verifier_state *___vstate = __vst; \ 490 int ___i, ___j; \ 491 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 492 struct bpf_reg_state *___regs; \ 493 __state = ___vstate->frame[___i]; \ 494 ___regs = __state->regs; \ 495 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 496 __reg = &___regs[___j]; \ 497 (void)(__expr); \ 498 } \ 499 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \ 500 if (!__reg) \ 501 continue; \ 502 (void)(__expr); \ 503 } \ 504 } \ 505 }) 506 507 /* Invoke __expr over regsiters in __vst, setting __state and __reg */ 508 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 509 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr) 510 511 /* linked list of verifier states used to prune search */ 512 struct bpf_verifier_state_list { 513 struct bpf_verifier_state state; 514 struct list_head node; 515 u32 miss_cnt; 516 u32 hit_cnt:31; 517 u32 in_free_list:1; 518 }; 519 520 struct bpf_loop_inline_state { 521 unsigned int initialized:1; /* set to true upon first entry */ 522 unsigned int fit_for_inline:1; /* true if callback function is the same 523 * at each call and flags are always zero 524 */ 525 u32 callback_subprogno; /* valid when fit_for_inline is true */ 526 }; 527 528 /* pointer and state for maps */ 529 struct bpf_map_ptr_state { 530 struct bpf_map *map_ptr; 531 bool poison; 532 bool unpriv; 533 }; 534 535 /* Possible states for alu_state member. */ 536 #define BPF_ALU_SANITIZE_SRC (1U << 0) 537 #define BPF_ALU_SANITIZE_DST (1U << 1) 538 #define BPF_ALU_NEG_VALUE (1U << 2) 539 #define BPF_ALU_NON_POINTER (1U << 3) 540 #define BPF_ALU_IMMEDIATE (1U << 4) 541 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 542 BPF_ALU_SANITIZE_DST) 543 544 struct bpf_insn_aux_data { 545 union { 546 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 547 struct bpf_map_ptr_state map_ptr_state; 548 s32 call_imm; /* saved imm field of call insn */ 549 u32 alu_limit; /* limit for add/sub register with pointer */ 550 struct { 551 u32 map_index; /* index into used_maps[] */ 552 u32 map_off; /* offset from value base address */ 553 }; 554 struct { 555 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 556 union { 557 struct { 558 struct btf *btf; 559 u32 btf_id; /* btf_id for struct typed var */ 560 }; 561 u32 mem_size; /* mem_size for non-struct typed var */ 562 }; 563 } btf_var; 564 /* if instruction is a call to bpf_loop this field tracks 565 * the state of the relevant registers to make decision about inlining 566 */ 567 struct bpf_loop_inline_state loop_inline_state; 568 }; 569 union { 570 /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 571 u64 obj_new_size; 572 /* remember the offset of node field within type to rewrite */ 573 u64 insert_off; 574 }; 575 struct btf_struct_meta *kptr_struct_meta; 576 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 577 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 578 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 579 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 580 bool zext_dst; /* this insn zero extends dst reg */ 581 bool needs_zext; /* alu op needs to clear upper bits */ 582 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 583 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */ 584 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */ 585 u8 alu_state; /* used in combination with alu_limit */ 586 /* true if STX or LDX instruction is a part of a spill/fill 587 * pattern for a bpf_fastcall call. 588 */ 589 u8 fastcall_pattern:1; 590 /* for CALL instructions, a number of spill/fill pairs in the 591 * bpf_fastcall pattern. 592 */ 593 u8 fastcall_spills_num:3; 594 595 /* below fields are initialized once */ 596 unsigned int orig_idx; /* original instruction index */ 597 bool jmp_point; 598 bool prune_point; 599 /* ensure we check state equivalence and save state checkpoint and 600 * this instruction, regardless of any heuristics 601 */ 602 bool force_checkpoint; 603 /* true if instruction is a call to a helper function that 604 * accepts callback function as a parameter. 605 */ 606 bool calls_callback; 607 /* registers alive before this instruction. */ 608 u16 live_regs_before; 609 }; 610 611 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 612 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 613 614 #define BPF_VERIFIER_TMP_LOG_SIZE 1024 615 616 struct bpf_verifier_log { 617 /* Logical start and end positions of a "log window" of the verifier log. 618 * start_pos == 0 means we haven't truncated anything. 619 * Once truncation starts to happen, start_pos + len_total == end_pos, 620 * except during log reset situations, in which (end_pos - start_pos) 621 * might get smaller than len_total (see bpf_vlog_reset()). 622 * Generally, (end_pos - start_pos) gives number of useful data in 623 * user log buffer. 624 */ 625 u64 start_pos; 626 u64 end_pos; 627 char __user *ubuf; 628 u32 level; 629 u32 len_total; 630 u32 len_max; 631 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 632 }; 633 634 #define BPF_LOG_LEVEL1 1 635 #define BPF_LOG_LEVEL2 2 636 #define BPF_LOG_STATS 4 637 #define BPF_LOG_FIXED 8 638 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 639 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED) 640 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 641 #define BPF_LOG_MIN_ALIGNMENT 8U 642 #define BPF_LOG_ALIGNMENT 40U 643 644 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 645 { 646 return log && log->level; 647 } 648 649 #define BPF_MAX_SUBPROGS 256 650 651 struct bpf_subprog_arg_info { 652 enum bpf_arg_type arg_type; 653 union { 654 u32 mem_size; 655 u32 btf_id; 656 }; 657 }; 658 659 enum priv_stack_mode { 660 PRIV_STACK_UNKNOWN, 661 NO_PRIV_STACK, 662 PRIV_STACK_ADAPTIVE, 663 }; 664 665 struct bpf_subprog_info { 666 /* 'start' has to be the first field otherwise find_subprog() won't work */ 667 u32 start; /* insn idx of function entry point */ 668 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 669 u16 stack_depth; /* max. stack depth used by this function */ 670 u16 stack_extra; 671 /* offsets in range [stack_depth .. fastcall_stack_off) 672 * are used for bpf_fastcall spills and fills. 673 */ 674 s16 fastcall_stack_off; 675 bool has_tail_call: 1; 676 bool tail_call_reachable: 1; 677 bool has_ld_abs: 1; 678 bool is_cb: 1; 679 bool is_async_cb: 1; 680 bool is_exception_cb: 1; 681 bool args_cached: 1; 682 /* true if bpf_fastcall stack region is used by functions that can't be inlined */ 683 bool keep_fastcall_stack: 1; 684 bool changes_pkt_data: 1; 685 bool might_sleep: 1; 686 687 enum priv_stack_mode priv_stack_mode; 688 u8 arg_cnt; 689 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS]; 690 }; 691 692 struct bpf_verifier_env; 693 694 struct backtrack_state { 695 struct bpf_verifier_env *env; 696 u32 frame; 697 u32 reg_masks[MAX_CALL_FRAMES]; 698 u64 stack_masks[MAX_CALL_FRAMES]; 699 }; 700 701 struct bpf_id_pair { 702 u32 old; 703 u32 cur; 704 }; 705 706 struct bpf_idmap { 707 u32 tmp_id_gen; 708 struct bpf_id_pair map[BPF_ID_MAP_SIZE]; 709 }; 710 711 struct bpf_idset { 712 u32 count; 713 u32 ids[BPF_ID_MAP_SIZE]; 714 }; 715 716 /* single container for all structs 717 * one verifier_env per bpf_check() call 718 */ 719 struct bpf_verifier_env { 720 u32 insn_idx; 721 u32 prev_insn_idx; 722 struct bpf_prog *prog; /* eBPF program being verified */ 723 const struct bpf_verifier_ops *ops; 724 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */ 725 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 726 int stack_size; /* number of states to be processed */ 727 bool strict_alignment; /* perform strict pointer alignment checks */ 728 bool test_state_freq; /* test verifier with different pruning frequency */ 729 bool test_reg_invariants; /* fail verification on register invariants violations */ 730 struct bpf_verifier_state *cur_state; /* current verifier state */ 731 /* Search pruning optimization, array of list_heads for 732 * lists of struct bpf_verifier_state_list. 733 */ 734 struct list_head *explored_states; 735 struct list_head free_list; /* list of struct bpf_verifier_state_list */ 736 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 737 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 738 u32 used_map_cnt; /* number of used maps */ 739 u32 used_btf_cnt; /* number of used BTF objects */ 740 u32 id_gen; /* used to generate unique reg IDs */ 741 u32 hidden_subprog_cnt; /* number of hidden subprogs */ 742 int exception_callback_subprog; 743 bool explore_alu_limits; 744 bool allow_ptr_leaks; 745 /* Allow access to uninitialized stack memory. Writes with fixed offset are 746 * always allowed, so this refers to reads (with fixed or variable offset), 747 * to writes with variable offset and to indirect (helper) accesses. 748 */ 749 bool allow_uninit_stack; 750 bool bpf_capable; 751 bool bypass_spec_v1; 752 bool bypass_spec_v4; 753 bool seen_direct_write; 754 bool seen_exception; 755 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 756 const struct bpf_line_info *prev_linfo; 757 struct bpf_verifier_log log; 758 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */ 759 union { 760 struct bpf_idmap idmap_scratch; 761 struct bpf_idset idset_scratch; 762 }; 763 struct { 764 int *insn_state; 765 int *insn_stack; 766 /* vector of instruction indexes sorted in post-order */ 767 int *insn_postorder; 768 int cur_stack; 769 /* current position in the insn_postorder vector */ 770 int cur_postorder; 771 } cfg; 772 struct backtrack_state bt; 773 struct bpf_insn_hist_entry *insn_hist; 774 struct bpf_insn_hist_entry *cur_hist_ent; 775 u32 insn_hist_cap; 776 u32 pass_cnt; /* number of times do_check() was called */ 777 u32 subprog_cnt; 778 /* number of instructions analyzed by the verifier */ 779 u32 prev_insn_processed, insn_processed; 780 /* number of jmps, calls, exits analyzed so far */ 781 u32 prev_jmps_processed, jmps_processed; 782 /* total verification time */ 783 u64 verification_time; 784 /* maximum number of verifier states kept in 'branching' instructions */ 785 u32 max_states_per_insn; 786 /* total number of allocated verifier states */ 787 u32 total_states; 788 /* some states are freed during program analysis. 789 * this is peak number of states. this number dominates kernel 790 * memory consumption during verification 791 */ 792 u32 peak_states; 793 /* longest register parentage chain walked for liveness marking */ 794 u32 longest_mark_read_walk; 795 u32 free_list_size; 796 u32 explored_states_size; 797 bpfptr_t fd_array; 798 799 /* bit mask to keep track of whether a register has been accessed 800 * since the last time the function state was printed 801 */ 802 u32 scratched_regs; 803 /* Same as scratched_regs but for stack slots */ 804 u64 scratched_stack_slots; 805 u64 prev_log_pos, prev_insn_print_pos; 806 /* buffer used to temporary hold constants as scalar registers */ 807 struct bpf_reg_state fake_reg[2]; 808 /* buffer used to generate temporary string representations, 809 * e.g., in reg_type_str() to generate reg_type string 810 */ 811 char tmp_str_buf[TMP_STR_BUF_LEN]; 812 struct bpf_insn insn_buf[INSN_BUF_SIZE]; 813 struct bpf_insn epilogue_buf[INSN_BUF_SIZE]; 814 }; 815 816 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog) 817 { 818 return &env->prog->aux->func_info_aux[subprog]; 819 } 820 821 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog) 822 { 823 return &env->subprog_info[subprog]; 824 } 825 826 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 827 const char *fmt, va_list args); 828 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 829 const char *fmt, ...); 830 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 831 const char *fmt, ...); 832 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level, 833 char __user *log_buf, u32 log_size); 834 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos); 835 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual); 836 837 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env, 838 u32 insn_off, 839 const char *prefix_fmt, ...); 840 841 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 842 { 843 struct bpf_verifier_state *cur = env->cur_state; 844 845 return cur->frame[cur->curframe]; 846 } 847 848 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 849 { 850 return cur_func(env)->regs; 851 } 852 853 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 854 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 855 int insn_idx, int prev_insn_idx); 856 int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 857 void 858 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 859 struct bpf_insn *insn); 860 void 861 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 862 863 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 864 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 865 struct btf *btf, u32 btf_id) 866 { 867 if (tgt_prog) 868 return ((u64)tgt_prog->aux->id << 32) | btf_id; 869 else 870 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 871 } 872 873 /* unpack the IDs from the key as constructed above */ 874 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 875 { 876 if (obj_id) 877 *obj_id = key >> 32; 878 if (btf_id) 879 *btf_id = key & 0x7FFFFFFF; 880 } 881 882 int bpf_check_attach_target(struct bpf_verifier_log *log, 883 const struct bpf_prog *prog, 884 const struct bpf_prog *tgt_prog, 885 u32 btf_id, 886 struct bpf_attach_target_info *tgt_info); 887 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 888 889 int mark_chain_precision(struct bpf_verifier_env *env, int regno); 890 891 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 892 893 /* extract base type from bpf_{arg, return, reg}_type. */ 894 static inline u32 base_type(u32 type) 895 { 896 return type & BPF_BASE_TYPE_MASK; 897 } 898 899 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 900 static inline u32 type_flag(u32 type) 901 { 902 return type & ~BPF_BASE_TYPE_MASK; 903 } 904 905 /* only use after check_attach_btf_id() */ 906 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 907 { 908 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ? 909 prog->aux->saved_dst_prog_type : prog->type; 910 } 911 912 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 913 { 914 switch (resolve_prog_type(prog)) { 915 case BPF_PROG_TYPE_TRACING: 916 return prog->expected_attach_type != BPF_TRACE_ITER; 917 case BPF_PROG_TYPE_STRUCT_OPS: 918 return prog->aux->jits_use_priv_stack; 919 case BPF_PROG_TYPE_LSM: 920 return false; 921 default: 922 return true; 923 } 924 } 925 926 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF) 927 928 static inline bool bpf_type_has_unsafe_modifiers(u32 type) 929 { 930 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 931 } 932 933 static inline bool type_is_ptr_alloc_obj(u32 type) 934 { 935 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 936 } 937 938 static inline bool type_is_non_owning_ref(u32 type) 939 { 940 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 941 } 942 943 static inline bool type_is_pkt_pointer(enum bpf_reg_type type) 944 { 945 type = base_type(type); 946 return type == PTR_TO_PACKET || 947 type == PTR_TO_PACKET_META; 948 } 949 950 static inline bool type_is_sk_pointer(enum bpf_reg_type type) 951 { 952 return type == PTR_TO_SOCKET || 953 type == PTR_TO_SOCK_COMMON || 954 type == PTR_TO_TCP_SOCK || 955 type == PTR_TO_XDP_SOCK; 956 } 957 958 static inline bool type_may_be_null(u32 type) 959 { 960 return type & PTR_MAYBE_NULL; 961 } 962 963 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 964 { 965 env->scratched_regs |= 1U << regno; 966 } 967 968 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 969 { 970 env->scratched_stack_slots |= 1ULL << spi; 971 } 972 973 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 974 { 975 return (env->scratched_regs >> regno) & 1; 976 } 977 978 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 979 { 980 return (env->scratched_stack_slots >> regno) & 1; 981 } 982 983 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env) 984 { 985 return env->scratched_regs || env->scratched_stack_slots; 986 } 987 988 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env) 989 { 990 env->scratched_regs = 0U; 991 env->scratched_stack_slots = 0ULL; 992 } 993 994 /* Used for printing the entire verifier state. */ 995 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env) 996 { 997 env->scratched_regs = ~0U; 998 env->scratched_stack_slots = ~0ULL; 999 } 1000 1001 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size) 1002 { 1003 #ifdef __BIG_ENDIAN 1004 off -= spill_size - fill_size; 1005 #endif 1006 1007 return !(off % BPF_REG_SIZE); 1008 } 1009 1010 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type); 1011 const char *dynptr_type_str(enum bpf_dynptr_type type); 1012 const char *iter_type_str(const struct btf *btf, u32 btf_id); 1013 const char *iter_state_str(enum bpf_iter_state state); 1014 1015 void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, 1016 u32 frameno, bool print_all); 1017 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate, 1018 u32 frameno); 1019 1020 #endif /* _LINUX_BPF_VERIFIER_H */ 1021