xref: /linux-6.15/include/linux/bpf_verifier.h (revision 151f4e2b)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  */
7 #ifndef _LINUX_BPF_VERIFIER_H
8 #define _LINUX_BPF_VERIFIER_H 1
9 
10 #include <linux/bpf.h> /* for enum bpf_reg_type */
11 #include <linux/filter.h> /* for MAX_BPF_STACK */
12 #include <linux/tnum.h>
13 
14 /* Maximum variable offset umax_value permitted when resolving memory accesses.
15  * In practice this is far bigger than any realistic pointer offset; this limit
16  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
17  */
18 #define BPF_MAX_VAR_OFF	(1 << 29)
19 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
20  * that converting umax_value to int cannot overflow.
21  */
22 #define BPF_MAX_VAR_SIZ	(1 << 29)
23 
24 /* Liveness marks, used for registers and spilled-regs (in stack slots).
25  * Read marks propagate upwards until they find a write mark; they record that
26  * "one of this state's descendants read this reg" (and therefore the reg is
27  * relevant for states_equal() checks).
28  * Write marks collect downwards and do not propagate; they record that "the
29  * straight-line code that reached this state (from its parent) wrote this reg"
30  * (and therefore that reads propagated from this state or its descendants
31  * should not propagate to its parent).
32  * A state with a write mark can receive read marks; it just won't propagate
33  * them to its parent, since the write mark is a property, not of the state,
34  * but of the link between it and its parent.  See mark_reg_read() and
35  * mark_stack_slot_read() in kernel/bpf/verifier.c.
36  */
37 enum bpf_reg_liveness {
38 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 	REG_LIVE_READ, /* reg was read, so we're sensitive to initial value */
40 	REG_LIVE_WRITTEN, /* reg was written first, screening off later reads */
41 	REG_LIVE_DONE = 4, /* liveness won't be updating this register anymore */
42 };
43 
44 struct bpf_reg_state {
45 	/* Ordering of fields matters.  See states_equal() */
46 	enum bpf_reg_type type;
47 	union {
48 		/* valid when type == PTR_TO_PACKET */
49 		u16 range;
50 
51 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
52 		 *   PTR_TO_MAP_VALUE_OR_NULL
53 		 */
54 		struct bpf_map *map_ptr;
55 
56 		/* Max size from any of the above. */
57 		unsigned long raw;
58 	};
59 	/* Fixed part of pointer offset, pointer types only */
60 	s32 off;
61 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
62 	 * offset, so they can share range knowledge.
63 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
64 	 * came from, when one is tested for != NULL.
65 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
66 	 * same reference to the socket, to determine proper reference freeing.
67 	 */
68 	u32 id;
69 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
70 	 * from a pointer-cast helper, bpf_sk_fullsock() and
71 	 * bpf_tcp_sock().
72 	 *
73 	 * Consider the following where "sk" is a reference counted
74 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
75 	 *
76 	 * 1: sk = bpf_sk_lookup_tcp();
77 	 * 2: if (!sk) { return 0; }
78 	 * 3: fullsock = bpf_sk_fullsock(sk);
79 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
80 	 * 5: tp = bpf_tcp_sock(fullsock);
81 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
82 	 * 7: bpf_sk_release(sk);
83 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
84 	 *
85 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
86 	 * "tp" ptr should be invalidated also.  In order to do that,
87 	 * the reg holding "fullsock" and "sk" need to remember
88 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
89 	 * such that the verifier can reset all regs which have
90 	 * ref_obj_id matching the sk_reg->id.
91 	 *
92 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
93 	 * sk_reg->id will stay as NULL-marking purpose only.
94 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
95 	 *
96 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
97 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
98 	 *
99 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
100 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
101 	 * which is the same as sk_reg->ref_obj_id.
102 	 *
103 	 * From the verifier perspective, if sk, fullsock and tp
104 	 * are not NULL, they are the same ptr with different
105 	 * reg->type.  In particular, bpf_sk_release(tp) is also
106 	 * allowed and has the same effect as bpf_sk_release(sk).
107 	 */
108 	u32 ref_obj_id;
109 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
110 	 * the actual value.
111 	 * For pointer types, this represents the variable part of the offset
112 	 * from the pointed-to object, and is shared with all bpf_reg_states
113 	 * with the same id as us.
114 	 */
115 	struct tnum var_off;
116 	/* Used to determine if any memory access using this register will
117 	 * result in a bad access.
118 	 * These refer to the same value as var_off, not necessarily the actual
119 	 * contents of the register.
120 	 */
121 	s64 smin_value; /* minimum possible (s64)value */
122 	s64 smax_value; /* maximum possible (s64)value */
123 	u64 umin_value; /* minimum possible (u64)value */
124 	u64 umax_value; /* maximum possible (u64)value */
125 	/* parentage chain for liveness checking */
126 	struct bpf_reg_state *parent;
127 	/* Inside the callee two registers can be both PTR_TO_STACK like
128 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
129 	 * while another to the caller's stack. To differentiate them 'frameno'
130 	 * is used which is an index in bpf_verifier_state->frame[] array
131 	 * pointing to bpf_func_state.
132 	 */
133 	u32 frameno;
134 	enum bpf_reg_liveness live;
135 };
136 
137 enum bpf_stack_slot_type {
138 	STACK_INVALID,    /* nothing was stored in this stack slot */
139 	STACK_SPILL,      /* register spilled into stack */
140 	STACK_MISC,	  /* BPF program wrote some data into this slot */
141 	STACK_ZERO,	  /* BPF program wrote constant zero */
142 };
143 
144 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
145 
146 struct bpf_stack_state {
147 	struct bpf_reg_state spilled_ptr;
148 	u8 slot_type[BPF_REG_SIZE];
149 };
150 
151 struct bpf_reference_state {
152 	/* Track each reference created with a unique id, even if the same
153 	 * instruction creates the reference multiple times (eg, via CALL).
154 	 */
155 	int id;
156 	/* Instruction where the allocation of this reference occurred. This
157 	 * is used purely to inform the user of a reference leak.
158 	 */
159 	int insn_idx;
160 };
161 
162 /* state of the program:
163  * type of all registers and stack info
164  */
165 struct bpf_func_state {
166 	struct bpf_reg_state regs[MAX_BPF_REG];
167 	/* index of call instruction that called into this func */
168 	int callsite;
169 	/* stack frame number of this function state from pov of
170 	 * enclosing bpf_verifier_state.
171 	 * 0 = main function, 1 = first callee.
172 	 */
173 	u32 frameno;
174 	/* subprog number == index within subprog_stack_depth
175 	 * zero == main subprog
176 	 */
177 	u32 subprogno;
178 
179 	/* The following fields should be last. See copy_func_state() */
180 	int acquired_refs;
181 	struct bpf_reference_state *refs;
182 	int allocated_stack;
183 	struct bpf_stack_state *stack;
184 };
185 
186 #define MAX_CALL_FRAMES 8
187 struct bpf_verifier_state {
188 	/* call stack tracking */
189 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
190 	u32 curframe;
191 	u32 active_spin_lock;
192 	bool speculative;
193 };
194 
195 #define bpf_get_spilled_reg(slot, frame)				\
196 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
197 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
198 	 ? &frame->stack[slot].spilled_ptr : NULL)
199 
200 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
201 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
202 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
203 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
204 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
205 
206 /* linked list of verifier states used to prune search */
207 struct bpf_verifier_state_list {
208 	struct bpf_verifier_state state;
209 	struct bpf_verifier_state_list *next;
210 	int miss_cnt, hit_cnt;
211 };
212 
213 /* Possible states for alu_state member. */
214 #define BPF_ALU_SANITIZE_SRC		1U
215 #define BPF_ALU_SANITIZE_DST		2U
216 #define BPF_ALU_NEG_VALUE		(1U << 2)
217 #define BPF_ALU_NON_POINTER		(1U << 3)
218 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
219 					 BPF_ALU_SANITIZE_DST)
220 
221 struct bpf_insn_aux_data {
222 	union {
223 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
224 		unsigned long map_state;	/* pointer/poison value for maps */
225 		s32 call_imm;			/* saved imm field of call insn */
226 		u32 alu_limit;			/* limit for add/sub register with pointer */
227 		struct {
228 			u32 map_index;		/* index into used_maps[] */
229 			u32 map_off;		/* offset from value base address */
230 		};
231 	};
232 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
233 	int sanitize_stack_off; /* stack slot to be cleared */
234 	bool seen; /* this insn was processed by the verifier */
235 	u8 alu_state; /* used in combination with alu_limit */
236 	unsigned int orig_idx; /* original instruction index */
237 };
238 
239 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
240 
241 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
242 
243 struct bpf_verifier_log {
244 	u32 level;
245 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
246 	char __user *ubuf;
247 	u32 len_used;
248 	u32 len_total;
249 };
250 
251 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
252 {
253 	return log->len_used >= log->len_total - 1;
254 }
255 
256 #define BPF_LOG_LEVEL1	1
257 #define BPF_LOG_LEVEL2	2
258 #define BPF_LOG_STATS	4
259 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
260 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS)
261 
262 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
263 {
264 	return log->level && log->ubuf && !bpf_verifier_log_full(log);
265 }
266 
267 #define BPF_MAX_SUBPROGS 256
268 
269 struct bpf_subprog_info {
270 	u32 start; /* insn idx of function entry point */
271 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
272 	u16 stack_depth; /* max. stack depth used by this function */
273 };
274 
275 /* single container for all structs
276  * one verifier_env per bpf_check() call
277  */
278 struct bpf_verifier_env {
279 	u32 insn_idx;
280 	u32 prev_insn_idx;
281 	struct bpf_prog *prog;		/* eBPF program being verified */
282 	const struct bpf_verifier_ops *ops;
283 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
284 	int stack_size;			/* number of states to be processed */
285 	bool strict_alignment;		/* perform strict pointer alignment checks */
286 	struct bpf_verifier_state *cur_state; /* current verifier state */
287 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
288 	struct bpf_verifier_state_list *free_list;
289 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
290 	u32 used_map_cnt;		/* number of used maps */
291 	u32 id_gen;			/* used to generate unique reg IDs */
292 	bool allow_ptr_leaks;
293 	bool seen_direct_write;
294 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
295 	const struct bpf_line_info *prev_linfo;
296 	struct bpf_verifier_log log;
297 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
298 	struct {
299 		int *insn_state;
300 		int *insn_stack;
301 		int cur_stack;
302 	} cfg;
303 	u32 subprog_cnt;
304 	/* number of instructions analyzed by the verifier */
305 	u32 insn_processed;
306 	/* total verification time */
307 	u64 verification_time;
308 	/* maximum number of verifier states kept in 'branching' instructions */
309 	u32 max_states_per_insn;
310 	/* total number of allocated verifier states */
311 	u32 total_states;
312 	/* some states are freed during program analysis.
313 	 * this is peak number of states. this number dominates kernel
314 	 * memory consumption during verification
315 	 */
316 	u32 peak_states;
317 	/* longest register parentage chain walked for liveness marking */
318 	u32 longest_mark_read_walk;
319 };
320 
321 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
322 				      const char *fmt, va_list args);
323 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
324 					   const char *fmt, ...);
325 
326 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
327 {
328 	struct bpf_verifier_state *cur = env->cur_state;
329 
330 	return cur->frame[cur->curframe];
331 }
332 
333 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
334 {
335 	return cur_func(env)->regs;
336 }
337 
338 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
339 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
340 				 int insn_idx, int prev_insn_idx);
341 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
342 void
343 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
344 			      struct bpf_insn *insn);
345 void
346 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
347 
348 #endif /* _LINUX_BPF_VERIFIER_H */
349