xref: /linux-6.15/include/linux/bpf_verifier.h (revision 0da4cebe)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 /* size of type_str_buf in bpf_verifier. */
22 #define TYPE_STR_BUF_LEN 128
23 
24 /* Liveness marks, used for registers and spilled-regs (in stack slots).
25  * Read marks propagate upwards until they find a write mark; they record that
26  * "one of this state's descendants read this reg" (and therefore the reg is
27  * relevant for states_equal() checks).
28  * Write marks collect downwards and do not propagate; they record that "the
29  * straight-line code that reached this state (from its parent) wrote this reg"
30  * (and therefore that reads propagated from this state or its descendants
31  * should not propagate to its parent).
32  * A state with a write mark can receive read marks; it just won't propagate
33  * them to its parent, since the write mark is a property, not of the state,
34  * but of the link between it and its parent.  See mark_reg_read() and
35  * mark_stack_slot_read() in kernel/bpf/verifier.c.
36  */
37 enum bpf_reg_liveness {
38 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
39 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
40 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
41 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
42 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
43 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
44 };
45 
46 /* For every reg representing a map value or allocated object pointer,
47  * we consider the tuple of (ptr, id) for them to be unique in verifier
48  * context and conside them to not alias each other for the purposes of
49  * tracking lock state.
50  */
51 struct bpf_active_lock {
52 	/* This can either be reg->map_ptr or reg->btf. If ptr is NULL,
53 	 * there's no active lock held, and other fields have no
54 	 * meaning. If non-NULL, it indicates that a lock is held and
55 	 * id member has the reg->id of the register which can be >= 0.
56 	 */
57 	void *ptr;
58 	/* This will be reg->id */
59 	u32 id;
60 };
61 
62 #define ITER_PREFIX "bpf_iter_"
63 
64 enum bpf_iter_state {
65 	BPF_ITER_STATE_INVALID, /* for non-first slot */
66 	BPF_ITER_STATE_ACTIVE,
67 	BPF_ITER_STATE_DRAINED,
68 };
69 
70 struct bpf_reg_state {
71 	/* Ordering of fields matters.  See states_equal() */
72 	enum bpf_reg_type type;
73 	/* Fixed part of pointer offset, pointer types only */
74 	s32 off;
75 	union {
76 		/* valid when type == PTR_TO_PACKET */
77 		int range;
78 
79 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
80 		 *   PTR_TO_MAP_VALUE_OR_NULL
81 		 */
82 		struct {
83 			struct bpf_map *map_ptr;
84 			/* To distinguish map lookups from outer map
85 			 * the map_uid is non-zero for registers
86 			 * pointing to inner maps.
87 			 */
88 			u32 map_uid;
89 		};
90 
91 		/* for PTR_TO_BTF_ID */
92 		struct {
93 			struct btf *btf;
94 			u32 btf_id;
95 		};
96 
97 		struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
98 			u32 mem_size;
99 			u32 dynptr_id; /* for dynptr slices */
100 		};
101 
102 		/* For dynptr stack slots */
103 		struct {
104 			enum bpf_dynptr_type type;
105 			/* A dynptr is 16 bytes so it takes up 2 stack slots.
106 			 * We need to track which slot is the first slot
107 			 * to protect against cases where the user may try to
108 			 * pass in an address starting at the second slot of the
109 			 * dynptr.
110 			 */
111 			bool first_slot;
112 		} dynptr;
113 
114 		/* For bpf_iter stack slots */
115 		struct {
116 			/* BTF container and BTF type ID describing
117 			 * struct bpf_iter_<type> of an iterator state
118 			 */
119 			struct btf *btf;
120 			u32 btf_id;
121 			/* packing following two fields to fit iter state into 16 bytes */
122 			enum bpf_iter_state state:2;
123 			int depth:30;
124 		} iter;
125 
126 		/* Max size from any of the above. */
127 		struct {
128 			unsigned long raw1;
129 			unsigned long raw2;
130 		} raw;
131 
132 		u32 subprogno; /* for PTR_TO_FUNC */
133 	};
134 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
135 	 * the actual value.
136 	 * For pointer types, this represents the variable part of the offset
137 	 * from the pointed-to object, and is shared with all bpf_reg_states
138 	 * with the same id as us.
139 	 */
140 	struct tnum var_off;
141 	/* Used to determine if any memory access using this register will
142 	 * result in a bad access.
143 	 * These refer to the same value as var_off, not necessarily the actual
144 	 * contents of the register.
145 	 */
146 	s64 smin_value; /* minimum possible (s64)value */
147 	s64 smax_value; /* maximum possible (s64)value */
148 	u64 umin_value; /* minimum possible (u64)value */
149 	u64 umax_value; /* maximum possible (u64)value */
150 	s32 s32_min_value; /* minimum possible (s32)value */
151 	s32 s32_max_value; /* maximum possible (s32)value */
152 	u32 u32_min_value; /* minimum possible (u32)value */
153 	u32 u32_max_value; /* maximum possible (u32)value */
154 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
155 	 * offset, so they can share range knowledge.
156 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
157 	 * came from, when one is tested for != NULL.
158 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
159 	 * for the purpose of tracking that it's freed.
160 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
161 	 * same reference to the socket, to determine proper reference freeing.
162 	 * For stack slots that are dynptrs, this is used to track references to
163 	 * the dynptr to determine proper reference freeing.
164 	 * Similarly to dynptrs, we use ID to track "belonging" of a reference
165 	 * to a specific instance of bpf_iter.
166 	 */
167 	u32 id;
168 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
169 	 * from a pointer-cast helper, bpf_sk_fullsock() and
170 	 * bpf_tcp_sock().
171 	 *
172 	 * Consider the following where "sk" is a reference counted
173 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
174 	 *
175 	 * 1: sk = bpf_sk_lookup_tcp();
176 	 * 2: if (!sk) { return 0; }
177 	 * 3: fullsock = bpf_sk_fullsock(sk);
178 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
179 	 * 5: tp = bpf_tcp_sock(fullsock);
180 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
181 	 * 7: bpf_sk_release(sk);
182 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
183 	 *
184 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
185 	 * "tp" ptr should be invalidated also.  In order to do that,
186 	 * the reg holding "fullsock" and "sk" need to remember
187 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
188 	 * such that the verifier can reset all regs which have
189 	 * ref_obj_id matching the sk_reg->id.
190 	 *
191 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
192 	 * sk_reg->id will stay as NULL-marking purpose only.
193 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
194 	 *
195 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
196 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
197 	 *
198 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
199 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
200 	 * which is the same as sk_reg->ref_obj_id.
201 	 *
202 	 * From the verifier perspective, if sk, fullsock and tp
203 	 * are not NULL, they are the same ptr with different
204 	 * reg->type.  In particular, bpf_sk_release(tp) is also
205 	 * allowed and has the same effect as bpf_sk_release(sk).
206 	 */
207 	u32 ref_obj_id;
208 	/* parentage chain for liveness checking */
209 	struct bpf_reg_state *parent;
210 	/* Inside the callee two registers can be both PTR_TO_STACK like
211 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
212 	 * while another to the caller's stack. To differentiate them 'frameno'
213 	 * is used which is an index in bpf_verifier_state->frame[] array
214 	 * pointing to bpf_func_state.
215 	 */
216 	u32 frameno;
217 	/* Tracks subreg definition. The stored value is the insn_idx of the
218 	 * writing insn. This is safe because subreg_def is used before any insn
219 	 * patching which only happens after main verification finished.
220 	 */
221 	s32 subreg_def;
222 	enum bpf_reg_liveness live;
223 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
224 	bool precise;
225 };
226 
227 enum bpf_stack_slot_type {
228 	STACK_INVALID,    /* nothing was stored in this stack slot */
229 	STACK_SPILL,      /* register spilled into stack */
230 	STACK_MISC,	  /* BPF program wrote some data into this slot */
231 	STACK_ZERO,	  /* BPF program wrote constant zero */
232 	/* A dynptr is stored in this stack slot. The type of dynptr
233 	 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
234 	 */
235 	STACK_DYNPTR,
236 	STACK_ITER,
237 };
238 
239 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
240 
241 #define BPF_DYNPTR_SIZE		sizeof(struct bpf_dynptr_kern)
242 #define BPF_DYNPTR_NR_SLOTS		(BPF_DYNPTR_SIZE / BPF_REG_SIZE)
243 
244 struct bpf_stack_state {
245 	struct bpf_reg_state spilled_ptr;
246 	u8 slot_type[BPF_REG_SIZE];
247 };
248 
249 struct bpf_reference_state {
250 	/* Track each reference created with a unique id, even if the same
251 	 * instruction creates the reference multiple times (eg, via CALL).
252 	 */
253 	int id;
254 	/* Instruction where the allocation of this reference occurred. This
255 	 * is used purely to inform the user of a reference leak.
256 	 */
257 	int insn_idx;
258 	/* There can be a case like:
259 	 * main (frame 0)
260 	 *  cb (frame 1)
261 	 *   func (frame 3)
262 	 *    cb (frame 4)
263 	 * Hence for frame 4, if callback_ref just stored boolean, it would be
264 	 * impossible to distinguish nested callback refs. Hence store the
265 	 * frameno and compare that to callback_ref in check_reference_leak when
266 	 * exiting a callback function.
267 	 */
268 	int callback_ref;
269 };
270 
271 /* state of the program:
272  * type of all registers and stack info
273  */
274 struct bpf_func_state {
275 	struct bpf_reg_state regs[MAX_BPF_REG];
276 	/* index of call instruction that called into this func */
277 	int callsite;
278 	/* stack frame number of this function state from pov of
279 	 * enclosing bpf_verifier_state.
280 	 * 0 = main function, 1 = first callee.
281 	 */
282 	u32 frameno;
283 	/* subprog number == index within subprog_info
284 	 * zero == main subprog
285 	 */
286 	u32 subprogno;
287 	/* Every bpf_timer_start will increment async_entry_cnt.
288 	 * It's used to distinguish:
289 	 * void foo(void) { for(;;); }
290 	 * void foo(void) { bpf_timer_set_callback(,foo); }
291 	 */
292 	u32 async_entry_cnt;
293 	bool in_callback_fn;
294 	struct tnum callback_ret_range;
295 	bool in_async_callback_fn;
296 
297 	/* The following fields should be last. See copy_func_state() */
298 	int acquired_refs;
299 	struct bpf_reference_state *refs;
300 	int allocated_stack;
301 	struct bpf_stack_state *stack;
302 };
303 
304 struct bpf_idx_pair {
305 	u32 prev_idx;
306 	u32 idx;
307 };
308 
309 struct bpf_id_pair {
310 	u32 old;
311 	u32 cur;
312 };
313 
314 #define MAX_CALL_FRAMES 8
315 /* Maximum number of register states that can exist at once */
316 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
317 struct bpf_verifier_state {
318 	/* call stack tracking */
319 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
320 	struct bpf_verifier_state *parent;
321 	/*
322 	 * 'branches' field is the number of branches left to explore:
323 	 * 0 - all possible paths from this state reached bpf_exit or
324 	 * were safely pruned
325 	 * 1 - at least one path is being explored.
326 	 * This state hasn't reached bpf_exit
327 	 * 2 - at least two paths are being explored.
328 	 * This state is an immediate parent of two children.
329 	 * One is fallthrough branch with branches==1 and another
330 	 * state is pushed into stack (to be explored later) also with
331 	 * branches==1. The parent of this state has branches==1.
332 	 * The verifier state tree connected via 'parent' pointer looks like:
333 	 * 1
334 	 * 1
335 	 * 2 -> 1 (first 'if' pushed into stack)
336 	 * 1
337 	 * 2 -> 1 (second 'if' pushed into stack)
338 	 * 1
339 	 * 1
340 	 * 1 bpf_exit.
341 	 *
342 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
343 	 * and the verifier state tree will look:
344 	 * 1
345 	 * 1
346 	 * 2 -> 1 (first 'if' pushed into stack)
347 	 * 1
348 	 * 1 -> 1 (second 'if' pushed into stack)
349 	 * 0
350 	 * 0
351 	 * 0 bpf_exit.
352 	 * After pop_stack() the do_check() will resume at second 'if'.
353 	 *
354 	 * If is_state_visited() sees a state with branches > 0 it means
355 	 * there is a loop. If such state is exactly equal to the current state
356 	 * it's an infinite loop. Note states_equal() checks for states
357 	 * equivalency, so two states being 'states_equal' does not mean
358 	 * infinite loop. The exact comparison is provided by
359 	 * states_maybe_looping() function. It's a stronger pre-check and
360 	 * much faster than states_equal().
361 	 *
362 	 * This algorithm may not find all possible infinite loops or
363 	 * loop iteration count may be too high.
364 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
365 	 */
366 	u32 branches;
367 	u32 insn_idx;
368 	u32 curframe;
369 
370 	struct bpf_active_lock active_lock;
371 	bool speculative;
372 	bool active_rcu_lock;
373 
374 	/* first and last insn idx of this verifier state */
375 	u32 first_insn_idx;
376 	u32 last_insn_idx;
377 	/* jmp history recorded from first to last.
378 	 * backtracking is using it to go from last to first.
379 	 * For most states jmp_history_cnt is [0-3].
380 	 * For loops can go up to ~40.
381 	 */
382 	struct bpf_idx_pair *jmp_history;
383 	u32 jmp_history_cnt;
384 };
385 
386 #define bpf_get_spilled_reg(slot, frame)				\
387 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
388 	  (frame->stack[slot].slot_type[0] == STACK_SPILL))		\
389 	 ? &frame->stack[slot].spilled_ptr : NULL)
390 
391 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
392 #define bpf_for_each_spilled_reg(iter, frame, reg)			\
393 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame);		\
394 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
395 	     iter++, reg = bpf_get_spilled_reg(iter, frame))
396 
397 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
398 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr)   \
399 	({                                                               \
400 		struct bpf_verifier_state *___vstate = __vst;            \
401 		int ___i, ___j;                                          \
402 		for (___i = 0; ___i <= ___vstate->curframe; ___i++) {    \
403 			struct bpf_reg_state *___regs;                   \
404 			__state = ___vstate->frame[___i];                \
405 			___regs = __state->regs;                         \
406 			for (___j = 0; ___j < MAX_BPF_REG; ___j++) {     \
407 				__reg = &___regs[___j];                  \
408 				(void)(__expr);                          \
409 			}                                                \
410 			bpf_for_each_spilled_reg(___j, __state, __reg) { \
411 				if (!__reg)                              \
412 					continue;                        \
413 				(void)(__expr);                          \
414 			}                                                \
415 		}                                                        \
416 	})
417 
418 /* linked list of verifier states used to prune search */
419 struct bpf_verifier_state_list {
420 	struct bpf_verifier_state state;
421 	struct bpf_verifier_state_list *next;
422 	int miss_cnt, hit_cnt;
423 };
424 
425 struct bpf_loop_inline_state {
426 	unsigned int initialized:1; /* set to true upon first entry */
427 	unsigned int fit_for_inline:1; /* true if callback function is the same
428 					* at each call and flags are always zero
429 					*/
430 	u32 callback_subprogno; /* valid when fit_for_inline is true */
431 };
432 
433 /* Possible states for alu_state member. */
434 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
435 #define BPF_ALU_SANITIZE_DST		(1U << 1)
436 #define BPF_ALU_NEG_VALUE		(1U << 2)
437 #define BPF_ALU_NON_POINTER		(1U << 3)
438 #define BPF_ALU_IMMEDIATE		(1U << 4)
439 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
440 					 BPF_ALU_SANITIZE_DST)
441 
442 struct bpf_insn_aux_data {
443 	union {
444 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
445 		unsigned long map_ptr_state;	/* pointer/poison value for maps */
446 		s32 call_imm;			/* saved imm field of call insn */
447 		u32 alu_limit;			/* limit for add/sub register with pointer */
448 		struct {
449 			u32 map_index;		/* index into used_maps[] */
450 			u32 map_off;		/* offset from value base address */
451 		};
452 		struct {
453 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
454 			union {
455 				struct {
456 					struct btf *btf;
457 					u32 btf_id;	/* btf_id for struct typed var */
458 				};
459 				u32 mem_size;	/* mem_size for non-struct typed var */
460 			};
461 		} btf_var;
462 		/* if instruction is a call to bpf_loop this field tracks
463 		 * the state of the relevant registers to make decision about inlining
464 		 */
465 		struct bpf_loop_inline_state loop_inline_state;
466 	};
467 	union {
468 		/* remember the size of type passed to bpf_obj_new to rewrite R1 */
469 		u64 obj_new_size;
470 		/* remember the offset of node field within type to rewrite */
471 		u64 insert_off;
472 	};
473 	struct btf_struct_meta *kptr_struct_meta;
474 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
475 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
476 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
477 	bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
478 	bool zext_dst; /* this insn zero extends dst reg */
479 	bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
480 	bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
481 	u8 alu_state; /* used in combination with alu_limit */
482 
483 	/* below fields are initialized once */
484 	unsigned int orig_idx; /* original instruction index */
485 	bool jmp_point;
486 	bool prune_point;
487 	/* ensure we check state equivalence and save state checkpoint and
488 	 * this instruction, regardless of any heuristics
489 	 */
490 	bool force_checkpoint;
491 };
492 
493 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
494 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
495 
496 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
497 
498 struct bpf_verifier_log {
499 	/* Logical start and end positions of a "log window" of the verifier log.
500 	 * start_pos == 0 means we haven't truncated anything.
501 	 * Once truncation starts to happen, start_pos + len_total == end_pos,
502 	 * except during log reset situations, in which (end_pos - start_pos)
503 	 * might get smaller than len_total (see bpf_vlog_reset()).
504 	 * Generally, (end_pos - start_pos) gives number of useful data in
505 	 * user log buffer.
506 	 */
507 	u64 start_pos;
508 	u64 end_pos;
509 	char __user *ubuf;
510 	u32 level;
511 	u32 len_total;
512 	u32 len_max;
513 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
514 };
515 
516 #define BPF_LOG_LEVEL1	1
517 #define BPF_LOG_LEVEL2	2
518 #define BPF_LOG_STATS	4
519 #define BPF_LOG_FIXED	8
520 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
521 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
522 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
523 #define BPF_LOG_MIN_ALIGNMENT 8U
524 #define BPF_LOG_ALIGNMENT 40U
525 
526 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
527 {
528 	return log && log->level;
529 }
530 
531 #define BPF_MAX_SUBPROGS 256
532 
533 struct bpf_subprog_info {
534 	/* 'start' has to be the first field otherwise find_subprog() won't work */
535 	u32 start; /* insn idx of function entry point */
536 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
537 	u16 stack_depth; /* max. stack depth used by this function */
538 	bool has_tail_call;
539 	bool tail_call_reachable;
540 	bool has_ld_abs;
541 	bool is_async_cb;
542 };
543 
544 /* single container for all structs
545  * one verifier_env per bpf_check() call
546  */
547 struct bpf_verifier_env {
548 	u32 insn_idx;
549 	u32 prev_insn_idx;
550 	struct bpf_prog *prog;		/* eBPF program being verified */
551 	const struct bpf_verifier_ops *ops;
552 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
553 	int stack_size;			/* number of states to be processed */
554 	bool strict_alignment;		/* perform strict pointer alignment checks */
555 	bool test_state_freq;		/* test verifier with different pruning frequency */
556 	struct bpf_verifier_state *cur_state; /* current verifier state */
557 	struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
558 	struct bpf_verifier_state_list *free_list;
559 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
560 	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
561 	u32 used_map_cnt;		/* number of used maps */
562 	u32 used_btf_cnt;		/* number of used BTF objects */
563 	u32 id_gen;			/* used to generate unique reg IDs */
564 	bool explore_alu_limits;
565 	bool allow_ptr_leaks;
566 	bool allow_uninit_stack;
567 	bool bpf_capable;
568 	bool bypass_spec_v1;
569 	bool bypass_spec_v4;
570 	bool seen_direct_write;
571 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
572 	const struct bpf_line_info *prev_linfo;
573 	struct bpf_verifier_log log;
574 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
575 	struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
576 	struct {
577 		int *insn_state;
578 		int *insn_stack;
579 		int cur_stack;
580 	} cfg;
581 	u32 pass_cnt; /* number of times do_check() was called */
582 	u32 subprog_cnt;
583 	/* number of instructions analyzed by the verifier */
584 	u32 prev_insn_processed, insn_processed;
585 	/* number of jmps, calls, exits analyzed so far */
586 	u32 prev_jmps_processed, jmps_processed;
587 	/* total verification time */
588 	u64 verification_time;
589 	/* maximum number of verifier states kept in 'branching' instructions */
590 	u32 max_states_per_insn;
591 	/* total number of allocated verifier states */
592 	u32 total_states;
593 	/* some states are freed during program analysis.
594 	 * this is peak number of states. this number dominates kernel
595 	 * memory consumption during verification
596 	 */
597 	u32 peak_states;
598 	/* longest register parentage chain walked for liveness marking */
599 	u32 longest_mark_read_walk;
600 	bpfptr_t fd_array;
601 
602 	/* bit mask to keep track of whether a register has been accessed
603 	 * since the last time the function state was printed
604 	 */
605 	u32 scratched_regs;
606 	/* Same as scratched_regs but for stack slots */
607 	u64 scratched_stack_slots;
608 	u64 prev_log_pos, prev_insn_print_pos;
609 	/* buffer used in reg_type_str() to generate reg_type string */
610 	char type_str_buf[TYPE_STR_BUF_LEN];
611 };
612 
613 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
614 				      const char *fmt, va_list args);
615 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
616 					   const char *fmt, ...);
617 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
618 			    const char *fmt, ...);
619 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
620 		  char __user *log_buf, u32 log_size);
621 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
622 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
623 
624 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
625 {
626 	struct bpf_verifier_state *cur = env->cur_state;
627 
628 	return cur->frame[cur->curframe];
629 }
630 
631 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
632 {
633 	return cur_func(env)->regs;
634 }
635 
636 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
637 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
638 				 int insn_idx, int prev_insn_idx);
639 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
640 void
641 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
642 			      struct bpf_insn *insn);
643 void
644 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
645 
646 int check_ptr_off_reg(struct bpf_verifier_env *env,
647 		      const struct bpf_reg_state *reg, int regno);
648 int check_func_arg_reg_off(struct bpf_verifier_env *env,
649 			   const struct bpf_reg_state *reg, int regno,
650 			   enum bpf_arg_type arg_type);
651 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
652 		   u32 regno, u32 mem_size);
653 
654 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
655 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
656 					     struct btf *btf, u32 btf_id)
657 {
658 	if (tgt_prog)
659 		return ((u64)tgt_prog->aux->id << 32) | btf_id;
660 	else
661 		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
662 }
663 
664 /* unpack the IDs from the key as constructed above */
665 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
666 {
667 	if (obj_id)
668 		*obj_id = key >> 32;
669 	if (btf_id)
670 		*btf_id = key & 0x7FFFFFFF;
671 }
672 
673 int bpf_check_attach_target(struct bpf_verifier_log *log,
674 			    const struct bpf_prog *prog,
675 			    const struct bpf_prog *tgt_prog,
676 			    u32 btf_id,
677 			    struct bpf_attach_target_info *tgt_info);
678 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
679 
680 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
681 
682 #define BPF_BASE_TYPE_MASK	GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
683 
684 /* extract base type from bpf_{arg, return, reg}_type. */
685 static inline u32 base_type(u32 type)
686 {
687 	return type & BPF_BASE_TYPE_MASK;
688 }
689 
690 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
691 static inline u32 type_flag(u32 type)
692 {
693 	return type & ~BPF_BASE_TYPE_MASK;
694 }
695 
696 /* only use after check_attach_btf_id() */
697 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
698 {
699 	return prog->type == BPF_PROG_TYPE_EXT ?
700 		prog->aux->dst_prog->type : prog->type;
701 }
702 
703 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
704 {
705 	switch (resolve_prog_type(prog)) {
706 	case BPF_PROG_TYPE_TRACING:
707 		return prog->expected_attach_type != BPF_TRACE_ITER;
708 	case BPF_PROG_TYPE_STRUCT_OPS:
709 	case BPF_PROG_TYPE_LSM:
710 		return false;
711 	default:
712 		return true;
713 	}
714 }
715 
716 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED)
717 
718 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
719 {
720 	return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
721 }
722 
723 #endif /* _LINUX_BPF_VERIFIER_H */
724