xref: /linux-6.15/include/linux/bpf.h (revision f8e80fc4)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54 
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
59 extern bool bpf_global_ma_set;
60 
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 					struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 				   const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 	const struct seq_operations *seq_ops;
69 	bpf_iter_init_seq_priv_t init_seq_private;
70 	bpf_iter_fini_seq_priv_t fini_seq_private;
71 	u32 seq_priv_size;
72 };
73 
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 	/* funcs callable from userspace (via syscall) */
77 	int (*map_alloc_check)(union bpf_attr *attr);
78 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 	void (*map_release)(struct bpf_map *map, struct file *map_file);
80 	void (*map_free)(struct bpf_map *map);
81 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 	void (*map_release_uref)(struct bpf_map *map);
83 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 				union bpf_attr __user *uattr);
86 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 					  void *value, u64 flags);
88 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 					   const union bpf_attr *attr,
90 					   union bpf_attr __user *uattr);
91 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 				const union bpf_attr *attr,
93 				union bpf_attr __user *uattr);
94 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 				union bpf_attr __user *uattr);
96 
97 	/* funcs callable from userspace and from eBPF programs */
98 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 	long (*map_delete_elem)(struct bpf_map *map, void *key);
101 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 	long (*map_pop_elem)(struct bpf_map *map, void *value);
103 	long (*map_peek_elem)(struct bpf_map *map, void *value);
104 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105 
106 	/* funcs called by prog_array and perf_event_array map */
107 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 				int fd);
109 	void (*map_fd_put_ptr)(void *ptr);
110 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 				  struct seq_file *m);
114 	int (*map_check_btf)(const struct bpf_map *map,
115 			     const struct btf *btf,
116 			     const struct btf_type *key_type,
117 			     const struct btf_type *value_type);
118 
119 	/* Prog poke tracking helpers. */
120 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 			     struct bpf_prog *new);
124 
125 	/* Direct value access helpers. */
126 	int (*map_direct_value_addr)(const struct bpf_map *map,
127 				     u64 *imm, u32 off);
128 	int (*map_direct_value_meta)(const struct bpf_map *map,
129 				     u64 imm, u32 *off);
130 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 			     struct poll_table_struct *pts);
133 
134 	/* Functions called by bpf_local_storage maps */
135 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 					void *owner, u32 size);
137 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 					   void *owner, u32 size);
139 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140 
141 	/* Misc helpers.*/
142 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143 
144 	/* map_meta_equal must be implemented for maps that can be
145 	 * used as an inner map.  It is a runtime check to ensure
146 	 * an inner map can be inserted to an outer map.
147 	 *
148 	 * Some properties of the inner map has been used during the
149 	 * verification time.  When inserting an inner map at the runtime,
150 	 * map_meta_equal has to ensure the inserting map has the same
151 	 * properties that the verifier has used earlier.
152 	 */
153 	bool (*map_meta_equal)(const struct bpf_map *meta0,
154 			       const struct bpf_map *meta1);
155 
156 
157 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 					      struct bpf_func_state *caller,
159 					      struct bpf_func_state *callee);
160 	long (*map_for_each_callback)(struct bpf_map *map,
161 				     bpf_callback_t callback_fn,
162 				     void *callback_ctx, u64 flags);
163 
164 	u64 (*map_mem_usage)(const struct bpf_map *map);
165 
166 	/* BTF id of struct allocated by map_alloc */
167 	int *map_btf_id;
168 
169 	/* bpf_iter info used to open a seq_file */
170 	const struct bpf_iter_seq_info *iter_seq_info;
171 };
172 
173 enum {
174 	/* Support at most 10 fields in a BTF type */
175 	BTF_FIELDS_MAX	   = 10,
176 };
177 
178 enum btf_field_type {
179 	BPF_SPIN_LOCK  = (1 << 0),
180 	BPF_TIMER      = (1 << 1),
181 	BPF_KPTR_UNREF = (1 << 2),
182 	BPF_KPTR_REF   = (1 << 3),
183 	BPF_KPTR_PERCPU = (1 << 4),
184 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
185 	BPF_LIST_HEAD  = (1 << 5),
186 	BPF_LIST_NODE  = (1 << 6),
187 	BPF_RB_ROOT    = (1 << 7),
188 	BPF_RB_NODE    = (1 << 8),
189 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
190 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
191 	BPF_REFCOUNT   = (1 << 9),
192 };
193 
194 typedef void (*btf_dtor_kfunc_t)(void *);
195 
196 struct btf_field_kptr {
197 	struct btf *btf;
198 	struct module *module;
199 	/* dtor used if btf_is_kernel(btf), otherwise the type is
200 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
201 	 */
202 	btf_dtor_kfunc_t dtor;
203 	u32 btf_id;
204 };
205 
206 struct btf_field_graph_root {
207 	struct btf *btf;
208 	u32 value_btf_id;
209 	u32 node_offset;
210 	struct btf_record *value_rec;
211 };
212 
213 struct btf_field {
214 	u32 offset;
215 	u32 size;
216 	enum btf_field_type type;
217 	union {
218 		struct btf_field_kptr kptr;
219 		struct btf_field_graph_root graph_root;
220 	};
221 };
222 
223 struct btf_record {
224 	u32 cnt;
225 	u32 field_mask;
226 	int spin_lock_off;
227 	int timer_off;
228 	int refcount_off;
229 	struct btf_field fields[];
230 };
231 
232 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
233 struct bpf_rb_node_kern {
234 	struct rb_node rb_node;
235 	void *owner;
236 } __attribute__((aligned(8)));
237 
238 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
239 struct bpf_list_node_kern {
240 	struct list_head list_head;
241 	void *owner;
242 } __attribute__((aligned(8)));
243 
244 struct bpf_map {
245 	/* The first two cachelines with read-mostly members of which some
246 	 * are also accessed in fast-path (e.g. ops, max_entries).
247 	 */
248 	const struct bpf_map_ops *ops ____cacheline_aligned;
249 	struct bpf_map *inner_map_meta;
250 #ifdef CONFIG_SECURITY
251 	void *security;
252 #endif
253 	enum bpf_map_type map_type;
254 	u32 key_size;
255 	u32 value_size;
256 	u32 max_entries;
257 	u64 map_extra; /* any per-map-type extra fields */
258 	u32 map_flags;
259 	u32 id;
260 	struct btf_record *record;
261 	int numa_node;
262 	u32 btf_key_type_id;
263 	u32 btf_value_type_id;
264 	u32 btf_vmlinux_value_type_id;
265 	struct btf *btf;
266 #ifdef CONFIG_MEMCG_KMEM
267 	struct obj_cgroup *objcg;
268 #endif
269 	char name[BPF_OBJ_NAME_LEN];
270 	/* The 3rd and 4th cacheline with misc members to avoid false sharing
271 	 * particularly with refcounting.
272 	 */
273 	atomic64_t refcnt ____cacheline_aligned;
274 	atomic64_t usercnt;
275 	struct work_struct work;
276 	struct mutex freeze_mutex;
277 	atomic64_t writecnt;
278 	/* 'Ownership' of program-containing map is claimed by the first program
279 	 * that is going to use this map or by the first program which FD is
280 	 * stored in the map to make sure that all callers and callees have the
281 	 * same prog type, JITed flag and xdp_has_frags flag.
282 	 */
283 	struct {
284 		spinlock_t lock;
285 		enum bpf_prog_type type;
286 		bool jited;
287 		bool xdp_has_frags;
288 	} owner;
289 	bool bypass_spec_v1;
290 	bool frozen; /* write-once; write-protected by freeze_mutex */
291 	s64 __percpu *elem_count;
292 };
293 
294 static inline const char *btf_field_type_name(enum btf_field_type type)
295 {
296 	switch (type) {
297 	case BPF_SPIN_LOCK:
298 		return "bpf_spin_lock";
299 	case BPF_TIMER:
300 		return "bpf_timer";
301 	case BPF_KPTR_UNREF:
302 	case BPF_KPTR_REF:
303 		return "kptr";
304 	case BPF_KPTR_PERCPU:
305 		return "percpu_kptr";
306 	case BPF_LIST_HEAD:
307 		return "bpf_list_head";
308 	case BPF_LIST_NODE:
309 		return "bpf_list_node";
310 	case BPF_RB_ROOT:
311 		return "bpf_rb_root";
312 	case BPF_RB_NODE:
313 		return "bpf_rb_node";
314 	case BPF_REFCOUNT:
315 		return "bpf_refcount";
316 	default:
317 		WARN_ON_ONCE(1);
318 		return "unknown";
319 	}
320 }
321 
322 static inline u32 btf_field_type_size(enum btf_field_type type)
323 {
324 	switch (type) {
325 	case BPF_SPIN_LOCK:
326 		return sizeof(struct bpf_spin_lock);
327 	case BPF_TIMER:
328 		return sizeof(struct bpf_timer);
329 	case BPF_KPTR_UNREF:
330 	case BPF_KPTR_REF:
331 	case BPF_KPTR_PERCPU:
332 		return sizeof(u64);
333 	case BPF_LIST_HEAD:
334 		return sizeof(struct bpf_list_head);
335 	case BPF_LIST_NODE:
336 		return sizeof(struct bpf_list_node);
337 	case BPF_RB_ROOT:
338 		return sizeof(struct bpf_rb_root);
339 	case BPF_RB_NODE:
340 		return sizeof(struct bpf_rb_node);
341 	case BPF_REFCOUNT:
342 		return sizeof(struct bpf_refcount);
343 	default:
344 		WARN_ON_ONCE(1);
345 		return 0;
346 	}
347 }
348 
349 static inline u32 btf_field_type_align(enum btf_field_type type)
350 {
351 	switch (type) {
352 	case BPF_SPIN_LOCK:
353 		return __alignof__(struct bpf_spin_lock);
354 	case BPF_TIMER:
355 		return __alignof__(struct bpf_timer);
356 	case BPF_KPTR_UNREF:
357 	case BPF_KPTR_REF:
358 	case BPF_KPTR_PERCPU:
359 		return __alignof__(u64);
360 	case BPF_LIST_HEAD:
361 		return __alignof__(struct bpf_list_head);
362 	case BPF_LIST_NODE:
363 		return __alignof__(struct bpf_list_node);
364 	case BPF_RB_ROOT:
365 		return __alignof__(struct bpf_rb_root);
366 	case BPF_RB_NODE:
367 		return __alignof__(struct bpf_rb_node);
368 	case BPF_REFCOUNT:
369 		return __alignof__(struct bpf_refcount);
370 	default:
371 		WARN_ON_ONCE(1);
372 		return 0;
373 	}
374 }
375 
376 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
377 {
378 	memset(addr, 0, field->size);
379 
380 	switch (field->type) {
381 	case BPF_REFCOUNT:
382 		refcount_set((refcount_t *)addr, 1);
383 		break;
384 	case BPF_RB_NODE:
385 		RB_CLEAR_NODE((struct rb_node *)addr);
386 		break;
387 	case BPF_LIST_HEAD:
388 	case BPF_LIST_NODE:
389 		INIT_LIST_HEAD((struct list_head *)addr);
390 		break;
391 	case BPF_RB_ROOT:
392 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
393 	case BPF_SPIN_LOCK:
394 	case BPF_TIMER:
395 	case BPF_KPTR_UNREF:
396 	case BPF_KPTR_REF:
397 	case BPF_KPTR_PERCPU:
398 		break;
399 	default:
400 		WARN_ON_ONCE(1);
401 		return;
402 	}
403 }
404 
405 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
406 {
407 	if (IS_ERR_OR_NULL(rec))
408 		return false;
409 	return rec->field_mask & type;
410 }
411 
412 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
413 {
414 	int i;
415 
416 	if (IS_ERR_OR_NULL(rec))
417 		return;
418 	for (i = 0; i < rec->cnt; i++)
419 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
420 }
421 
422 /* 'dst' must be a temporary buffer and should not point to memory that is being
423  * used in parallel by a bpf program or bpf syscall, otherwise the access from
424  * the bpf program or bpf syscall may be corrupted by the reinitialization,
425  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
426  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
427  * program or bpf syscall.
428  */
429 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
430 {
431 	bpf_obj_init(map->record, dst);
432 }
433 
434 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
435  * forced to use 'long' read/writes to try to atomically copy long counters.
436  * Best-effort only.  No barriers here, since it _will_ race with concurrent
437  * updates from BPF programs. Called from bpf syscall and mostly used with
438  * size 8 or 16 bytes, so ask compiler to inline it.
439  */
440 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
441 {
442 	const long *lsrc = src;
443 	long *ldst = dst;
444 
445 	size /= sizeof(long);
446 	while (size--)
447 		data_race(*ldst++ = *lsrc++);
448 }
449 
450 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
451 static inline void bpf_obj_memcpy(struct btf_record *rec,
452 				  void *dst, void *src, u32 size,
453 				  bool long_memcpy)
454 {
455 	u32 curr_off = 0;
456 	int i;
457 
458 	if (IS_ERR_OR_NULL(rec)) {
459 		if (long_memcpy)
460 			bpf_long_memcpy(dst, src, round_up(size, 8));
461 		else
462 			memcpy(dst, src, size);
463 		return;
464 	}
465 
466 	for (i = 0; i < rec->cnt; i++) {
467 		u32 next_off = rec->fields[i].offset;
468 		u32 sz = next_off - curr_off;
469 
470 		memcpy(dst + curr_off, src + curr_off, sz);
471 		curr_off += rec->fields[i].size + sz;
472 	}
473 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
474 }
475 
476 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
477 {
478 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
479 }
480 
481 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
482 {
483 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
484 }
485 
486 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
487 {
488 	u32 curr_off = 0;
489 	int i;
490 
491 	if (IS_ERR_OR_NULL(rec)) {
492 		memset(dst, 0, size);
493 		return;
494 	}
495 
496 	for (i = 0; i < rec->cnt; i++) {
497 		u32 next_off = rec->fields[i].offset;
498 		u32 sz = next_off - curr_off;
499 
500 		memset(dst + curr_off, 0, sz);
501 		curr_off += rec->fields[i].size + sz;
502 	}
503 	memset(dst + curr_off, 0, size - curr_off);
504 }
505 
506 static inline void zero_map_value(struct bpf_map *map, void *dst)
507 {
508 	bpf_obj_memzero(map->record, dst, map->value_size);
509 }
510 
511 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
512 			   bool lock_src);
513 void bpf_timer_cancel_and_free(void *timer);
514 void bpf_list_head_free(const struct btf_field *field, void *list_head,
515 			struct bpf_spin_lock *spin_lock);
516 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
517 		      struct bpf_spin_lock *spin_lock);
518 
519 
520 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
521 
522 struct bpf_offload_dev;
523 struct bpf_offloaded_map;
524 
525 struct bpf_map_dev_ops {
526 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
527 				void *key, void *next_key);
528 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
529 			       void *key, void *value);
530 	int (*map_update_elem)(struct bpf_offloaded_map *map,
531 			       void *key, void *value, u64 flags);
532 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
533 };
534 
535 struct bpf_offloaded_map {
536 	struct bpf_map map;
537 	struct net_device *netdev;
538 	const struct bpf_map_dev_ops *dev_ops;
539 	void *dev_priv;
540 	struct list_head offloads;
541 };
542 
543 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
544 {
545 	return container_of(map, struct bpf_offloaded_map, map);
546 }
547 
548 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
549 {
550 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
551 }
552 
553 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
554 {
555 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
556 		map->ops->map_seq_show_elem;
557 }
558 
559 int map_check_no_btf(const struct bpf_map *map,
560 		     const struct btf *btf,
561 		     const struct btf_type *key_type,
562 		     const struct btf_type *value_type);
563 
564 bool bpf_map_meta_equal(const struct bpf_map *meta0,
565 			const struct bpf_map *meta1);
566 
567 extern const struct bpf_map_ops bpf_map_offload_ops;
568 
569 /* bpf_type_flag contains a set of flags that are applicable to the values of
570  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
571  * or a memory is read-only. We classify types into two categories: base types
572  * and extended types. Extended types are base types combined with a type flag.
573  *
574  * Currently there are no more than 32 base types in arg_type, ret_type and
575  * reg_types.
576  */
577 #define BPF_BASE_TYPE_BITS	8
578 
579 enum bpf_type_flag {
580 	/* PTR may be NULL. */
581 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
582 
583 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
584 	 * compatible with both mutable and immutable memory.
585 	 */
586 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
587 
588 	/* MEM points to BPF ring buffer reservation. */
589 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
590 
591 	/* MEM is in user address space. */
592 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
593 
594 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
595 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
596 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
597 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
598 	 * to the specified cpu.
599 	 */
600 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
601 
602 	/* Indicates that the argument will be released. */
603 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
604 
605 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
606 	 * unreferenced and referenced kptr loaded from map value using a load
607 	 * instruction, so that they can only be dereferenced but not escape the
608 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
609 	 * kfunc or bpf helpers).
610 	 */
611 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
612 
613 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
614 
615 	/* DYNPTR points to memory local to the bpf program. */
616 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
617 
618 	/* DYNPTR points to a kernel-produced ringbuf record. */
619 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
620 
621 	/* Size is known at compile time. */
622 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
623 
624 	/* MEM is of an allocated object of type in program BTF. This is used to
625 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
626 	 */
627 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
628 
629 	/* PTR was passed from the kernel in a trusted context, and may be
630 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
631 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
632 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
633 	 * without invoking bpf_kptr_xchg(). What we really need to know is
634 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
635 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
636 	 * helpers, they do not cover all possible instances of unsafe
637 	 * pointers. For example, a pointer that was obtained from walking a
638 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
639 	 * fact that it may be NULL, invalid, etc. This is due to backwards
640 	 * compatibility requirements, as this was the behavior that was first
641 	 * introduced when kptrs were added. The behavior is now considered
642 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
643 	 *
644 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
645 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
646 	 * For example, pointers passed to tracepoint arguments are considered
647 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
648 	 * callbacks. As alluded to above, pointers that are obtained from
649 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
650 	 * struct task_struct *task is PTR_TRUSTED, then accessing
651 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
652 	 * in a BPF register. Similarly, pointers passed to certain programs
653 	 * types such as kretprobes are not guaranteed to be valid, as they may
654 	 * for example contain an object that was recently freed.
655 	 */
656 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
657 
658 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
659 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
660 
661 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
662 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
663 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
664 	 */
665 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
666 
667 	/* DYNPTR points to sk_buff */
668 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
669 
670 	/* DYNPTR points to xdp_buff */
671 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
672 
673 	__BPF_TYPE_FLAG_MAX,
674 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
675 };
676 
677 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
678 				 | DYNPTR_TYPE_XDP)
679 
680 /* Max number of base types. */
681 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
682 
683 /* Max number of all types. */
684 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
685 
686 /* function argument constraints */
687 enum bpf_arg_type {
688 	ARG_DONTCARE = 0,	/* unused argument in helper function */
689 
690 	/* the following constraints used to prototype
691 	 * bpf_map_lookup/update/delete_elem() functions
692 	 */
693 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
694 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
695 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
696 
697 	/* Used to prototype bpf_memcmp() and other functions that access data
698 	 * on eBPF program stack
699 	 */
700 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
701 
702 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
703 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
704 
705 	ARG_PTR_TO_CTX,		/* pointer to context */
706 	ARG_ANYTHING,		/* any (initialized) argument is ok */
707 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
708 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
709 	ARG_PTR_TO_INT,		/* pointer to int */
710 	ARG_PTR_TO_LONG,	/* pointer to long */
711 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
712 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
713 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
714 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
715 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
716 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
717 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
718 	ARG_PTR_TO_STACK,	/* pointer to stack */
719 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
720 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
721 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
722 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
723 	__BPF_ARG_TYPE_MAX,
724 
725 	/* Extended arg_types. */
726 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
727 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
728 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
729 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
730 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
731 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
732 	/* pointer to memory does not need to be initialized, helper function must fill
733 	 * all bytes or clear them in error case.
734 	 */
735 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
736 	/* Pointer to valid memory of size known at compile time. */
737 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
738 
739 	/* This must be the last entry. Its purpose is to ensure the enum is
740 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
741 	 */
742 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
743 };
744 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
745 
746 /* type of values returned from helper functions */
747 enum bpf_return_type {
748 	RET_INTEGER,			/* function returns integer */
749 	RET_VOID,			/* function doesn't return anything */
750 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
751 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
752 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
753 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
754 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
755 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
756 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
757 	__BPF_RET_TYPE_MAX,
758 
759 	/* Extended ret_types. */
760 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
761 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
762 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
763 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
764 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
765 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
766 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
767 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
768 
769 	/* This must be the last entry. Its purpose is to ensure the enum is
770 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
771 	 */
772 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
773 };
774 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
775 
776 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
777  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
778  * instructions after verifying
779  */
780 struct bpf_func_proto {
781 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
782 	bool gpl_only;
783 	bool pkt_access;
784 	bool might_sleep;
785 	enum bpf_return_type ret_type;
786 	union {
787 		struct {
788 			enum bpf_arg_type arg1_type;
789 			enum bpf_arg_type arg2_type;
790 			enum bpf_arg_type arg3_type;
791 			enum bpf_arg_type arg4_type;
792 			enum bpf_arg_type arg5_type;
793 		};
794 		enum bpf_arg_type arg_type[5];
795 	};
796 	union {
797 		struct {
798 			u32 *arg1_btf_id;
799 			u32 *arg2_btf_id;
800 			u32 *arg3_btf_id;
801 			u32 *arg4_btf_id;
802 			u32 *arg5_btf_id;
803 		};
804 		u32 *arg_btf_id[5];
805 		struct {
806 			size_t arg1_size;
807 			size_t arg2_size;
808 			size_t arg3_size;
809 			size_t arg4_size;
810 			size_t arg5_size;
811 		};
812 		size_t arg_size[5];
813 	};
814 	int *ret_btf_id; /* return value btf_id */
815 	bool (*allowed)(const struct bpf_prog *prog);
816 };
817 
818 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
819  * the first argument to eBPF programs.
820  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
821  */
822 struct bpf_context;
823 
824 enum bpf_access_type {
825 	BPF_READ = 1,
826 	BPF_WRITE = 2
827 };
828 
829 /* types of values stored in eBPF registers */
830 /* Pointer types represent:
831  * pointer
832  * pointer + imm
833  * pointer + (u16) var
834  * pointer + (u16) var + imm
835  * if (range > 0) then [ptr, ptr + range - off) is safe to access
836  * if (id > 0) means that some 'var' was added
837  * if (off > 0) means that 'imm' was added
838  */
839 enum bpf_reg_type {
840 	NOT_INIT = 0,		 /* nothing was written into register */
841 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
842 	PTR_TO_CTX,		 /* reg points to bpf_context */
843 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
844 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
845 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
846 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
847 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
848 	PTR_TO_PACKET,		 /* reg points to skb->data */
849 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
850 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
851 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
852 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
853 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
854 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
855 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
856 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
857 	 * to be null checked by the BPF program. This does not imply the
858 	 * pointer is _not_ null and in practice this can easily be a null
859 	 * pointer when reading pointer chains. The assumption is program
860 	 * context will handle null pointer dereference typically via fault
861 	 * handling. The verifier must keep this in mind and can make no
862 	 * assumptions about null or non-null when doing branch analysis.
863 	 * Further, when passed into helpers the helpers can not, without
864 	 * additional context, assume the value is non-null.
865 	 */
866 	PTR_TO_BTF_ID,
867 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
868 	 * been checked for null. Used primarily to inform the verifier
869 	 * an explicit null check is required for this struct.
870 	 */
871 	PTR_TO_MEM,		 /* reg points to valid memory region */
872 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
873 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
874 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
875 	__BPF_REG_TYPE_MAX,
876 
877 	/* Extended reg_types. */
878 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
879 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
880 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
881 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
882 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
883 
884 	/* This must be the last entry. Its purpose is to ensure the enum is
885 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
886 	 */
887 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
888 };
889 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
890 
891 /* The information passed from prog-specific *_is_valid_access
892  * back to the verifier.
893  */
894 struct bpf_insn_access_aux {
895 	enum bpf_reg_type reg_type;
896 	union {
897 		int ctx_field_size;
898 		struct {
899 			struct btf *btf;
900 			u32 btf_id;
901 		};
902 	};
903 	struct bpf_verifier_log *log; /* for verbose logs */
904 };
905 
906 static inline void
907 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
908 {
909 	aux->ctx_field_size = size;
910 }
911 
912 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
913 {
914 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
915 }
916 
917 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
918 {
919 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
920 }
921 
922 struct bpf_prog_ops {
923 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
924 			union bpf_attr __user *uattr);
925 };
926 
927 struct bpf_reg_state;
928 struct bpf_verifier_ops {
929 	/* return eBPF function prototype for verification */
930 	const struct bpf_func_proto *
931 	(*get_func_proto)(enum bpf_func_id func_id,
932 			  const struct bpf_prog *prog);
933 
934 	/* return true if 'size' wide access at offset 'off' within bpf_context
935 	 * with 'type' (read or write) is allowed
936 	 */
937 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
938 				const struct bpf_prog *prog,
939 				struct bpf_insn_access_aux *info);
940 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
941 			    const struct bpf_prog *prog);
942 	int (*gen_ld_abs)(const struct bpf_insn *orig,
943 			  struct bpf_insn *insn_buf);
944 	u32 (*convert_ctx_access)(enum bpf_access_type type,
945 				  const struct bpf_insn *src,
946 				  struct bpf_insn *dst,
947 				  struct bpf_prog *prog, u32 *target_size);
948 	int (*btf_struct_access)(struct bpf_verifier_log *log,
949 				 const struct bpf_reg_state *reg,
950 				 int off, int size);
951 };
952 
953 struct bpf_prog_offload_ops {
954 	/* verifier basic callbacks */
955 	int (*insn_hook)(struct bpf_verifier_env *env,
956 			 int insn_idx, int prev_insn_idx);
957 	int (*finalize)(struct bpf_verifier_env *env);
958 	/* verifier optimization callbacks (called after .finalize) */
959 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
960 			    struct bpf_insn *insn);
961 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
962 	/* program management callbacks */
963 	int (*prepare)(struct bpf_prog *prog);
964 	int (*translate)(struct bpf_prog *prog);
965 	void (*destroy)(struct bpf_prog *prog);
966 };
967 
968 struct bpf_prog_offload {
969 	struct bpf_prog		*prog;
970 	struct net_device	*netdev;
971 	struct bpf_offload_dev	*offdev;
972 	void			*dev_priv;
973 	struct list_head	offloads;
974 	bool			dev_state;
975 	bool			opt_failed;
976 	void			*jited_image;
977 	u32			jited_len;
978 };
979 
980 enum bpf_cgroup_storage_type {
981 	BPF_CGROUP_STORAGE_SHARED,
982 	BPF_CGROUP_STORAGE_PERCPU,
983 	__BPF_CGROUP_STORAGE_MAX
984 };
985 
986 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
987 
988 /* The longest tracepoint has 12 args.
989  * See include/trace/bpf_probe.h
990  */
991 #define MAX_BPF_FUNC_ARGS 12
992 
993 /* The maximum number of arguments passed through registers
994  * a single function may have.
995  */
996 #define MAX_BPF_FUNC_REG_ARGS 5
997 
998 /* The argument is a structure. */
999 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1000 
1001 /* The argument is signed. */
1002 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1003 
1004 struct btf_func_model {
1005 	u8 ret_size;
1006 	u8 ret_flags;
1007 	u8 nr_args;
1008 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1009 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1010 };
1011 
1012 /* Restore arguments before returning from trampoline to let original function
1013  * continue executing. This flag is used for fentry progs when there are no
1014  * fexit progs.
1015  */
1016 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1017 /* Call original function after fentry progs, but before fexit progs.
1018  * Makes sense for fentry/fexit, normal calls and indirect calls.
1019  */
1020 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1021 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1022  * programs only. Should not be used with normal calls and indirect calls.
1023  */
1024 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1025 /* Store IP address of the caller on the trampoline stack,
1026  * so it's available for trampoline's programs.
1027  */
1028 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1029 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1030 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1031 
1032 /* Get original function from stack instead of from provided direct address.
1033  * Makes sense for trampolines with fexit or fmod_ret programs.
1034  */
1035 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1036 
1037 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1038  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1039  */
1040 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1041 
1042 /* Indicate that current trampoline is in a tail call context. Then, it has to
1043  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1044  */
1045 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1046 
1047 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1048  * bytes on x86.
1049  */
1050 enum {
1051 #if defined(__s390x__)
1052 	BPF_MAX_TRAMP_LINKS = 27,
1053 #else
1054 	BPF_MAX_TRAMP_LINKS = 38,
1055 #endif
1056 };
1057 
1058 struct bpf_tramp_links {
1059 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1060 	int nr_links;
1061 };
1062 
1063 struct bpf_tramp_run_ctx;
1064 
1065 /* Different use cases for BPF trampoline:
1066  * 1. replace nop at the function entry (kprobe equivalent)
1067  *    flags = BPF_TRAMP_F_RESTORE_REGS
1068  *    fentry = a set of programs to run before returning from trampoline
1069  *
1070  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1071  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1072  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1073  *    fentry = a set of program to run before calling original function
1074  *    fexit = a set of program to run after original function
1075  *
1076  * 3. replace direct call instruction anywhere in the function body
1077  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1078  *    With flags = 0
1079  *      fentry = a set of programs to run before returning from trampoline
1080  *    With flags = BPF_TRAMP_F_CALL_ORIG
1081  *      orig_call = original callback addr or direct function addr
1082  *      fentry = a set of program to run before calling original function
1083  *      fexit = a set of program to run after original function
1084  */
1085 struct bpf_tramp_image;
1086 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1087 				const struct btf_func_model *m, u32 flags,
1088 				struct bpf_tramp_links *tlinks,
1089 				void *orig_call);
1090 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1091 					     struct bpf_tramp_run_ctx *run_ctx);
1092 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1093 					     struct bpf_tramp_run_ctx *run_ctx);
1094 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1095 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1096 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1097 				      struct bpf_tramp_run_ctx *run_ctx);
1098 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1099 				      struct bpf_tramp_run_ctx *run_ctx);
1100 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1101 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1102 
1103 struct bpf_ksym {
1104 	unsigned long		 start;
1105 	unsigned long		 end;
1106 	char			 name[KSYM_NAME_LEN];
1107 	struct list_head	 lnode;
1108 	struct latch_tree_node	 tnode;
1109 	bool			 prog;
1110 };
1111 
1112 enum bpf_tramp_prog_type {
1113 	BPF_TRAMP_FENTRY,
1114 	BPF_TRAMP_FEXIT,
1115 	BPF_TRAMP_MODIFY_RETURN,
1116 	BPF_TRAMP_MAX,
1117 	BPF_TRAMP_REPLACE, /* more than MAX */
1118 };
1119 
1120 struct bpf_tramp_image {
1121 	void *image;
1122 	struct bpf_ksym ksym;
1123 	struct percpu_ref pcref;
1124 	void *ip_after_call;
1125 	void *ip_epilogue;
1126 	union {
1127 		struct rcu_head rcu;
1128 		struct work_struct work;
1129 	};
1130 };
1131 
1132 struct bpf_trampoline {
1133 	/* hlist for trampoline_table */
1134 	struct hlist_node hlist;
1135 	struct ftrace_ops *fops;
1136 	/* serializes access to fields of this trampoline */
1137 	struct mutex mutex;
1138 	refcount_t refcnt;
1139 	u32 flags;
1140 	u64 key;
1141 	struct {
1142 		struct btf_func_model model;
1143 		void *addr;
1144 		bool ftrace_managed;
1145 	} func;
1146 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1147 	 * program by replacing one of its functions. func.addr is the address
1148 	 * of the function it replaced.
1149 	 */
1150 	struct bpf_prog *extension_prog;
1151 	/* list of BPF programs using this trampoline */
1152 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1153 	/* Number of attached programs. A counter per kind. */
1154 	int progs_cnt[BPF_TRAMP_MAX];
1155 	/* Executable image of trampoline */
1156 	struct bpf_tramp_image *cur_image;
1157 	struct module *mod;
1158 };
1159 
1160 struct bpf_attach_target_info {
1161 	struct btf_func_model fmodel;
1162 	long tgt_addr;
1163 	struct module *tgt_mod;
1164 	const char *tgt_name;
1165 	const struct btf_type *tgt_type;
1166 };
1167 
1168 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1169 
1170 struct bpf_dispatcher_prog {
1171 	struct bpf_prog *prog;
1172 	refcount_t users;
1173 };
1174 
1175 struct bpf_dispatcher {
1176 	/* dispatcher mutex */
1177 	struct mutex mutex;
1178 	void *func;
1179 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1180 	int num_progs;
1181 	void *image;
1182 	void *rw_image;
1183 	u32 image_off;
1184 	struct bpf_ksym ksym;
1185 #ifdef CONFIG_HAVE_STATIC_CALL
1186 	struct static_call_key *sc_key;
1187 	void *sc_tramp;
1188 #endif
1189 };
1190 
1191 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1192 	const void *ctx,
1193 	const struct bpf_insn *insnsi,
1194 	bpf_func_t bpf_func)
1195 {
1196 	return bpf_func(ctx, insnsi);
1197 }
1198 
1199 /* the implementation of the opaque uapi struct bpf_dynptr */
1200 struct bpf_dynptr_kern {
1201 	void *data;
1202 	/* Size represents the number of usable bytes of dynptr data.
1203 	 * If for example the offset is at 4 for a local dynptr whose data is
1204 	 * of type u64, the number of usable bytes is 4.
1205 	 *
1206 	 * The upper 8 bits are reserved. It is as follows:
1207 	 * Bits 0 - 23 = size
1208 	 * Bits 24 - 30 = dynptr type
1209 	 * Bit 31 = whether dynptr is read-only
1210 	 */
1211 	u32 size;
1212 	u32 offset;
1213 } __aligned(8);
1214 
1215 enum bpf_dynptr_type {
1216 	BPF_DYNPTR_TYPE_INVALID,
1217 	/* Points to memory that is local to the bpf program */
1218 	BPF_DYNPTR_TYPE_LOCAL,
1219 	/* Underlying data is a ringbuf record */
1220 	BPF_DYNPTR_TYPE_RINGBUF,
1221 	/* Underlying data is a sk_buff */
1222 	BPF_DYNPTR_TYPE_SKB,
1223 	/* Underlying data is a xdp_buff */
1224 	BPF_DYNPTR_TYPE_XDP,
1225 };
1226 
1227 int bpf_dynptr_check_size(u32 size);
1228 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1229 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1230 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1231 
1232 #ifdef CONFIG_BPF_JIT
1233 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1234 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1235 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1236 					  struct bpf_attach_target_info *tgt_info);
1237 void bpf_trampoline_put(struct bpf_trampoline *tr);
1238 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1239 
1240 /*
1241  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1242  * indirection with a direct call to the bpf program. If the architecture does
1243  * not have STATIC_CALL, avoid a double-indirection.
1244  */
1245 #ifdef CONFIG_HAVE_STATIC_CALL
1246 
1247 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1248 	.sc_key = &STATIC_CALL_KEY(_name),			\
1249 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1250 
1251 #define __BPF_DISPATCHER_SC(name)				\
1252 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1253 
1254 #define __BPF_DISPATCHER_CALL(name)				\
1255 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1256 
1257 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1258 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1259 
1260 #else
1261 #define __BPF_DISPATCHER_SC_INIT(name)
1262 #define __BPF_DISPATCHER_SC(name)
1263 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1264 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1265 #endif
1266 
1267 #define BPF_DISPATCHER_INIT(_name) {				\
1268 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1269 	.func = &_name##_func,					\
1270 	.progs = {},						\
1271 	.num_progs = 0,						\
1272 	.image = NULL,						\
1273 	.image_off = 0,						\
1274 	.ksym = {						\
1275 		.name  = #_name,				\
1276 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1277 	},							\
1278 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1279 }
1280 
1281 #define DEFINE_BPF_DISPATCHER(name)					\
1282 	__BPF_DISPATCHER_SC(name);					\
1283 	noinline __nocfi unsigned int bpf_dispatcher_##name##_func(	\
1284 		const void *ctx,					\
1285 		const struct bpf_insn *insnsi,				\
1286 		bpf_func_t bpf_func)					\
1287 	{								\
1288 		return __BPF_DISPATCHER_CALL(name);			\
1289 	}								\
1290 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1291 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1292 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1293 
1294 #define DECLARE_BPF_DISPATCHER(name)					\
1295 	unsigned int bpf_dispatcher_##name##_func(			\
1296 		const void *ctx,					\
1297 		const struct bpf_insn *insnsi,				\
1298 		bpf_func_t bpf_func);					\
1299 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1300 
1301 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1302 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1303 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1304 				struct bpf_prog *to);
1305 /* Called only from JIT-enabled code, so there's no need for stubs. */
1306 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1307 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1308 void bpf_ksym_add(struct bpf_ksym *ksym);
1309 void bpf_ksym_del(struct bpf_ksym *ksym);
1310 int bpf_jit_charge_modmem(u32 size);
1311 void bpf_jit_uncharge_modmem(u32 size);
1312 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1313 #else
1314 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1315 					   struct bpf_trampoline *tr)
1316 {
1317 	return -ENOTSUPP;
1318 }
1319 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1320 					     struct bpf_trampoline *tr)
1321 {
1322 	return -ENOTSUPP;
1323 }
1324 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1325 							struct bpf_attach_target_info *tgt_info)
1326 {
1327 	return NULL;
1328 }
1329 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1330 #define DEFINE_BPF_DISPATCHER(name)
1331 #define DECLARE_BPF_DISPATCHER(name)
1332 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1333 #define BPF_DISPATCHER_PTR(name) NULL
1334 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1335 					      struct bpf_prog *from,
1336 					      struct bpf_prog *to) {}
1337 static inline bool is_bpf_image_address(unsigned long address)
1338 {
1339 	return false;
1340 }
1341 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1342 {
1343 	return false;
1344 }
1345 #endif
1346 
1347 struct bpf_func_info_aux {
1348 	u16 linkage;
1349 	bool unreliable;
1350 };
1351 
1352 enum bpf_jit_poke_reason {
1353 	BPF_POKE_REASON_TAIL_CALL,
1354 };
1355 
1356 /* Descriptor of pokes pointing /into/ the JITed image. */
1357 struct bpf_jit_poke_descriptor {
1358 	void *tailcall_target;
1359 	void *tailcall_bypass;
1360 	void *bypass_addr;
1361 	void *aux;
1362 	union {
1363 		struct {
1364 			struct bpf_map *map;
1365 			u32 key;
1366 		} tail_call;
1367 	};
1368 	bool tailcall_target_stable;
1369 	u8 adj_off;
1370 	u16 reason;
1371 	u32 insn_idx;
1372 };
1373 
1374 /* reg_type info for ctx arguments */
1375 struct bpf_ctx_arg_aux {
1376 	u32 offset;
1377 	enum bpf_reg_type reg_type;
1378 	u32 btf_id;
1379 };
1380 
1381 struct btf_mod_pair {
1382 	struct btf *btf;
1383 	struct module *module;
1384 };
1385 
1386 struct bpf_kfunc_desc_tab;
1387 
1388 struct bpf_prog_aux {
1389 	atomic64_t refcnt;
1390 	u32 used_map_cnt;
1391 	u32 used_btf_cnt;
1392 	u32 max_ctx_offset;
1393 	u32 max_pkt_offset;
1394 	u32 max_tp_access;
1395 	u32 stack_depth;
1396 	u32 id;
1397 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1398 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1399 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1400 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1401 	u32 ctx_arg_info_size;
1402 	u32 max_rdonly_access;
1403 	u32 max_rdwr_access;
1404 	struct btf *attach_btf;
1405 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1406 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1407 	struct bpf_prog *dst_prog;
1408 	struct bpf_trampoline *dst_trampoline;
1409 	enum bpf_prog_type saved_dst_prog_type;
1410 	enum bpf_attach_type saved_dst_attach_type;
1411 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1412 	bool dev_bound; /* Program is bound to the netdev. */
1413 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1414 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1415 	bool func_proto_unreliable;
1416 	bool sleepable;
1417 	bool tail_call_reachable;
1418 	bool xdp_has_frags;
1419 	bool exception_cb;
1420 	bool exception_boundary;
1421 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1422 	const struct btf_type *attach_func_proto;
1423 	/* function name for valid attach_btf_id */
1424 	const char *attach_func_name;
1425 	struct bpf_prog **func;
1426 	void *jit_data; /* JIT specific data. arch dependent */
1427 	struct bpf_jit_poke_descriptor *poke_tab;
1428 	struct bpf_kfunc_desc_tab *kfunc_tab;
1429 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1430 	u32 size_poke_tab;
1431 	struct bpf_ksym ksym;
1432 	const struct bpf_prog_ops *ops;
1433 	struct bpf_map **used_maps;
1434 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1435 	struct btf_mod_pair *used_btfs;
1436 	struct bpf_prog *prog;
1437 	struct user_struct *user;
1438 	u64 load_time; /* ns since boottime */
1439 	u32 verified_insns;
1440 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1441 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1442 	char name[BPF_OBJ_NAME_LEN];
1443 	unsigned int (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp);
1444 #ifdef CONFIG_SECURITY
1445 	void *security;
1446 #endif
1447 	struct bpf_prog_offload *offload;
1448 	struct btf *btf;
1449 	struct bpf_func_info *func_info;
1450 	struct bpf_func_info_aux *func_info_aux;
1451 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1452 	 * has the xlated insn offset.
1453 	 * Both the main and sub prog share the same linfo.
1454 	 * The subprog can access its first linfo by
1455 	 * using the linfo_idx.
1456 	 */
1457 	struct bpf_line_info *linfo;
1458 	/* jited_linfo is the jited addr of the linfo.  It has a
1459 	 * one to one mapping to linfo:
1460 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1461 	 * Both the main and sub prog share the same jited_linfo.
1462 	 * The subprog can access its first jited_linfo by
1463 	 * using the linfo_idx.
1464 	 */
1465 	void **jited_linfo;
1466 	u32 func_info_cnt;
1467 	u32 nr_linfo;
1468 	/* subprog can use linfo_idx to access its first linfo and
1469 	 * jited_linfo.
1470 	 * main prog always has linfo_idx == 0
1471 	 */
1472 	u32 linfo_idx;
1473 	struct module *mod;
1474 	u32 num_exentries;
1475 	struct exception_table_entry *extable;
1476 	union {
1477 		struct work_struct work;
1478 		struct rcu_head	rcu;
1479 	};
1480 };
1481 
1482 struct bpf_prog {
1483 	u16			pages;		/* Number of allocated pages */
1484 	u16			jited:1,	/* Is our filter JIT'ed? */
1485 				jit_requested:1,/* archs need to JIT the prog */
1486 				gpl_compatible:1, /* Is filter GPL compatible? */
1487 				cb_access:1,	/* Is control block accessed? */
1488 				dst_needed:1,	/* Do we need dst entry? */
1489 				blinding_requested:1, /* needs constant blinding */
1490 				blinded:1,	/* Was blinded */
1491 				is_func:1,	/* program is a bpf function */
1492 				kprobe_override:1, /* Do we override a kprobe? */
1493 				has_callchain_buf:1, /* callchain buffer allocated? */
1494 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1495 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1496 				call_get_func_ip:1, /* Do we call get_func_ip() */
1497 				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1498 	enum bpf_prog_type	type;		/* Type of BPF program */
1499 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1500 	u32			len;		/* Number of filter blocks */
1501 	u32			jited_len;	/* Size of jited insns in bytes */
1502 	u8			tag[BPF_TAG_SIZE];
1503 	struct bpf_prog_stats __percpu *stats;
1504 	int __percpu		*active;
1505 	unsigned int		(*bpf_func)(const void *ctx,
1506 					    const struct bpf_insn *insn);
1507 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1508 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1509 	/* Instructions for interpreter */
1510 	union {
1511 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1512 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1513 	};
1514 };
1515 
1516 struct bpf_array_aux {
1517 	/* Programs with direct jumps into programs part of this array. */
1518 	struct list_head poke_progs;
1519 	struct bpf_map *map;
1520 	struct mutex poke_mutex;
1521 	struct work_struct work;
1522 };
1523 
1524 struct bpf_link {
1525 	atomic64_t refcnt;
1526 	u32 id;
1527 	enum bpf_link_type type;
1528 	const struct bpf_link_ops *ops;
1529 	struct bpf_prog *prog;
1530 	struct work_struct work;
1531 };
1532 
1533 struct bpf_link_ops {
1534 	void (*release)(struct bpf_link *link);
1535 	void (*dealloc)(struct bpf_link *link);
1536 	int (*detach)(struct bpf_link *link);
1537 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1538 			   struct bpf_prog *old_prog);
1539 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1540 	int (*fill_link_info)(const struct bpf_link *link,
1541 			      struct bpf_link_info *info);
1542 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1543 			  struct bpf_map *old_map);
1544 };
1545 
1546 struct bpf_tramp_link {
1547 	struct bpf_link link;
1548 	struct hlist_node tramp_hlist;
1549 	u64 cookie;
1550 };
1551 
1552 struct bpf_shim_tramp_link {
1553 	struct bpf_tramp_link link;
1554 	struct bpf_trampoline *trampoline;
1555 };
1556 
1557 struct bpf_tracing_link {
1558 	struct bpf_tramp_link link;
1559 	enum bpf_attach_type attach_type;
1560 	struct bpf_trampoline *trampoline;
1561 	struct bpf_prog *tgt_prog;
1562 };
1563 
1564 struct bpf_link_primer {
1565 	struct bpf_link *link;
1566 	struct file *file;
1567 	int fd;
1568 	u32 id;
1569 };
1570 
1571 struct bpf_struct_ops_value;
1572 struct btf_member;
1573 
1574 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1575 /**
1576  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1577  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1578  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1579  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1580  *		  when determining whether the struct_ops progs in the
1581  *		  struct_ops map are valid.
1582  * @init: A callback that is invoked a single time, and before any other
1583  *	  callback, to initialize the structure. A nonzero return value means
1584  *	  the subsystem could not be initialized.
1585  * @check_member: When defined, a callback invoked by the verifier to allow
1586  *		  the subsystem to determine if an entry in the struct_ops map
1587  *		  is valid. A nonzero return value means that the map is
1588  *		  invalid and should be rejected by the verifier.
1589  * @init_member: A callback that is invoked for each member of the struct_ops
1590  *		 map to allow the subsystem to initialize the member. A nonzero
1591  *		 value means the member could not be initialized. This callback
1592  *		 is exclusive with the @type, @type_id, @value_type, and
1593  *		 @value_id fields.
1594  * @reg: A callback that is invoked when the struct_ops map has been
1595  *	 initialized and is being attached to. Zero means the struct_ops map
1596  *	 has been successfully registered and is live. A nonzero return value
1597  *	 means the struct_ops map could not be registered.
1598  * @unreg: A callback that is invoked when the struct_ops map should be
1599  *	   unregistered.
1600  * @update: A callback that is invoked when the live struct_ops map is being
1601  *	    updated to contain new values. This callback is only invoked when
1602  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1603  *	    it is assumed that the struct_ops map cannot be updated.
1604  * @validate: A callback that is invoked after all of the members have been
1605  *	      initialized. This callback should perform static checks on the
1606  *	      map, meaning that it should either fail or succeed
1607  *	      deterministically. A struct_ops map that has been validated may
1608  *	      not necessarily succeed in being registered if the call to @reg
1609  *	      fails. For example, a valid struct_ops map may be loaded, but
1610  *	      then fail to be registered due to there being another active
1611  *	      struct_ops map on the system in the subsystem already. For this
1612  *	      reason, if this callback is not defined, the check is skipped as
1613  *	      the struct_ops map will have final verification performed in
1614  *	      @reg.
1615  * @type: BTF type.
1616  * @value_type: Value type.
1617  * @name: The name of the struct bpf_struct_ops object.
1618  * @func_models: Func models
1619  * @type_id: BTF type id.
1620  * @value_id: BTF value id.
1621  */
1622 struct bpf_struct_ops {
1623 	const struct bpf_verifier_ops *verifier_ops;
1624 	int (*init)(struct btf *btf);
1625 	int (*check_member)(const struct btf_type *t,
1626 			    const struct btf_member *member,
1627 			    const struct bpf_prog *prog);
1628 	int (*init_member)(const struct btf_type *t,
1629 			   const struct btf_member *member,
1630 			   void *kdata, const void *udata);
1631 	int (*reg)(void *kdata);
1632 	void (*unreg)(void *kdata);
1633 	int (*update)(void *kdata, void *old_kdata);
1634 	int (*validate)(void *kdata);
1635 	const struct btf_type *type;
1636 	const struct btf_type *value_type;
1637 	const char *name;
1638 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1639 	u32 type_id;
1640 	u32 value_id;
1641 };
1642 
1643 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1644 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1645 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1646 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1647 bool bpf_struct_ops_get(const void *kdata);
1648 void bpf_struct_ops_put(const void *kdata);
1649 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1650 				       void *value);
1651 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1652 				      struct bpf_tramp_link *link,
1653 				      const struct btf_func_model *model,
1654 				      void *image, void *image_end);
1655 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1656 {
1657 	if (owner == BPF_MODULE_OWNER)
1658 		return bpf_struct_ops_get(data);
1659 	else
1660 		return try_module_get(owner);
1661 }
1662 static inline void bpf_module_put(const void *data, struct module *owner)
1663 {
1664 	if (owner == BPF_MODULE_OWNER)
1665 		bpf_struct_ops_put(data);
1666 	else
1667 		module_put(owner);
1668 }
1669 int bpf_struct_ops_link_create(union bpf_attr *attr);
1670 
1671 #ifdef CONFIG_NET
1672 /* Define it here to avoid the use of forward declaration */
1673 struct bpf_dummy_ops_state {
1674 	int val;
1675 };
1676 
1677 struct bpf_dummy_ops {
1678 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1679 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1680 		      char a3, unsigned long a4);
1681 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1682 };
1683 
1684 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1685 			    union bpf_attr __user *uattr);
1686 #endif
1687 #else
1688 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1689 {
1690 	return NULL;
1691 }
1692 static inline void bpf_struct_ops_init(struct btf *btf,
1693 				       struct bpf_verifier_log *log)
1694 {
1695 }
1696 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1697 {
1698 	return try_module_get(owner);
1699 }
1700 static inline void bpf_module_put(const void *data, struct module *owner)
1701 {
1702 	module_put(owner);
1703 }
1704 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1705 						     void *key,
1706 						     void *value)
1707 {
1708 	return -EINVAL;
1709 }
1710 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1711 {
1712 	return -EOPNOTSUPP;
1713 }
1714 
1715 #endif
1716 
1717 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1718 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1719 				    int cgroup_atype);
1720 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1721 #else
1722 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1723 						  int cgroup_atype)
1724 {
1725 	return -EOPNOTSUPP;
1726 }
1727 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1728 {
1729 }
1730 #endif
1731 
1732 struct bpf_array {
1733 	struct bpf_map map;
1734 	u32 elem_size;
1735 	u32 index_mask;
1736 	struct bpf_array_aux *aux;
1737 	union {
1738 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1739 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1740 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1741 	};
1742 };
1743 
1744 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1745 #define MAX_TAIL_CALL_CNT 33
1746 
1747 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1748  * It's enum to expose it (and thus make it discoverable) through BTF.
1749  */
1750 enum {
1751 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1752 };
1753 
1754 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1755 				 BPF_F_RDONLY_PROG |	\
1756 				 BPF_F_WRONLY |		\
1757 				 BPF_F_WRONLY_PROG)
1758 
1759 #define BPF_MAP_CAN_READ	BIT(0)
1760 #define BPF_MAP_CAN_WRITE	BIT(1)
1761 
1762 /* Maximum number of user-producer ring buffer samples that can be drained in
1763  * a call to bpf_user_ringbuf_drain().
1764  */
1765 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1766 
1767 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1768 {
1769 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1770 
1771 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1772 	 * not possible.
1773 	 */
1774 	if (access_flags & BPF_F_RDONLY_PROG)
1775 		return BPF_MAP_CAN_READ;
1776 	else if (access_flags & BPF_F_WRONLY_PROG)
1777 		return BPF_MAP_CAN_WRITE;
1778 	else
1779 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1780 }
1781 
1782 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1783 {
1784 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1785 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1786 }
1787 
1788 struct bpf_event_entry {
1789 	struct perf_event *event;
1790 	struct file *perf_file;
1791 	struct file *map_file;
1792 	struct rcu_head rcu;
1793 };
1794 
1795 static inline bool map_type_contains_progs(struct bpf_map *map)
1796 {
1797 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1798 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1799 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1800 }
1801 
1802 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1803 int bpf_prog_calc_tag(struct bpf_prog *fp);
1804 
1805 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1806 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1807 
1808 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1809 					unsigned long off, unsigned long len);
1810 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1811 					const struct bpf_insn *src,
1812 					struct bpf_insn *dst,
1813 					struct bpf_prog *prog,
1814 					u32 *target_size);
1815 
1816 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1817 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1818 
1819 /* an array of programs to be executed under rcu_lock.
1820  *
1821  * Typical usage:
1822  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1823  *
1824  * the structure returned by bpf_prog_array_alloc() should be populated
1825  * with program pointers and the last pointer must be NULL.
1826  * The user has to keep refcnt on the program and make sure the program
1827  * is removed from the array before bpf_prog_put().
1828  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1829  * since other cpus are walking the array of pointers in parallel.
1830  */
1831 struct bpf_prog_array_item {
1832 	struct bpf_prog *prog;
1833 	union {
1834 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1835 		u64 bpf_cookie;
1836 	};
1837 };
1838 
1839 struct bpf_prog_array {
1840 	struct rcu_head rcu;
1841 	struct bpf_prog_array_item items[];
1842 };
1843 
1844 struct bpf_empty_prog_array {
1845 	struct bpf_prog_array hdr;
1846 	struct bpf_prog *null_prog;
1847 };
1848 
1849 /* to avoid allocating empty bpf_prog_array for cgroups that
1850  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1851  * It will not be modified the caller of bpf_prog_array_alloc()
1852  * (since caller requested prog_cnt == 0)
1853  * that pointer should be 'freed' by bpf_prog_array_free()
1854  */
1855 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1856 
1857 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1858 void bpf_prog_array_free(struct bpf_prog_array *progs);
1859 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1860 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1861 int bpf_prog_array_length(struct bpf_prog_array *progs);
1862 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1863 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1864 				__u32 __user *prog_ids, u32 cnt);
1865 
1866 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1867 				struct bpf_prog *old_prog);
1868 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1869 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1870 			     struct bpf_prog *prog);
1871 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1872 			     u32 *prog_ids, u32 request_cnt,
1873 			     u32 *prog_cnt);
1874 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1875 			struct bpf_prog *exclude_prog,
1876 			struct bpf_prog *include_prog,
1877 			u64 bpf_cookie,
1878 			struct bpf_prog_array **new_array);
1879 
1880 struct bpf_run_ctx {};
1881 
1882 struct bpf_cg_run_ctx {
1883 	struct bpf_run_ctx run_ctx;
1884 	const struct bpf_prog_array_item *prog_item;
1885 	int retval;
1886 };
1887 
1888 struct bpf_trace_run_ctx {
1889 	struct bpf_run_ctx run_ctx;
1890 	u64 bpf_cookie;
1891 	bool is_uprobe;
1892 };
1893 
1894 struct bpf_tramp_run_ctx {
1895 	struct bpf_run_ctx run_ctx;
1896 	u64 bpf_cookie;
1897 	struct bpf_run_ctx *saved_run_ctx;
1898 };
1899 
1900 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1901 {
1902 	struct bpf_run_ctx *old_ctx = NULL;
1903 
1904 #ifdef CONFIG_BPF_SYSCALL
1905 	old_ctx = current->bpf_ctx;
1906 	current->bpf_ctx = new_ctx;
1907 #endif
1908 	return old_ctx;
1909 }
1910 
1911 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1912 {
1913 #ifdef CONFIG_BPF_SYSCALL
1914 	current->bpf_ctx = old_ctx;
1915 #endif
1916 }
1917 
1918 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1919 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
1920 /* BPF program asks to set CN on the packet. */
1921 #define BPF_RET_SET_CN						(1 << 0)
1922 
1923 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1924 
1925 static __always_inline u32
1926 bpf_prog_run_array(const struct bpf_prog_array *array,
1927 		   const void *ctx, bpf_prog_run_fn run_prog)
1928 {
1929 	const struct bpf_prog_array_item *item;
1930 	const struct bpf_prog *prog;
1931 	struct bpf_run_ctx *old_run_ctx;
1932 	struct bpf_trace_run_ctx run_ctx;
1933 	u32 ret = 1;
1934 
1935 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1936 
1937 	if (unlikely(!array))
1938 		return ret;
1939 
1940 	run_ctx.is_uprobe = false;
1941 
1942 	migrate_disable();
1943 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1944 	item = &array->items[0];
1945 	while ((prog = READ_ONCE(item->prog))) {
1946 		run_ctx.bpf_cookie = item->bpf_cookie;
1947 		ret &= run_prog(prog, ctx);
1948 		item++;
1949 	}
1950 	bpf_reset_run_ctx(old_run_ctx);
1951 	migrate_enable();
1952 	return ret;
1953 }
1954 
1955 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1956  *
1957  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1958  * overall. As a result, we must use the bpf_prog_array_free_sleepable
1959  * in order to use the tasks_trace rcu grace period.
1960  *
1961  * When a non-sleepable program is inside the array, we take the rcu read
1962  * section and disable preemption for that program alone, so it can access
1963  * rcu-protected dynamically sized maps.
1964  */
1965 static __always_inline u32
1966 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
1967 			  const void *ctx, bpf_prog_run_fn run_prog)
1968 {
1969 	const struct bpf_prog_array_item *item;
1970 	const struct bpf_prog *prog;
1971 	const struct bpf_prog_array *array;
1972 	struct bpf_run_ctx *old_run_ctx;
1973 	struct bpf_trace_run_ctx run_ctx;
1974 	u32 ret = 1;
1975 
1976 	might_fault();
1977 
1978 	rcu_read_lock_trace();
1979 	migrate_disable();
1980 
1981 	run_ctx.is_uprobe = true;
1982 
1983 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1984 	if (unlikely(!array))
1985 		goto out;
1986 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1987 	item = &array->items[0];
1988 	while ((prog = READ_ONCE(item->prog))) {
1989 		if (!prog->aux->sleepable)
1990 			rcu_read_lock();
1991 
1992 		run_ctx.bpf_cookie = item->bpf_cookie;
1993 		ret &= run_prog(prog, ctx);
1994 		item++;
1995 
1996 		if (!prog->aux->sleepable)
1997 			rcu_read_unlock();
1998 	}
1999 	bpf_reset_run_ctx(old_run_ctx);
2000 out:
2001 	migrate_enable();
2002 	rcu_read_unlock_trace();
2003 	return ret;
2004 }
2005 
2006 #ifdef CONFIG_BPF_SYSCALL
2007 DECLARE_PER_CPU(int, bpf_prog_active);
2008 extern struct mutex bpf_stats_enabled_mutex;
2009 
2010 /*
2011  * Block execution of BPF programs attached to instrumentation (perf,
2012  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2013  * these events can happen inside a region which holds a map bucket lock
2014  * and can deadlock on it.
2015  */
2016 static inline void bpf_disable_instrumentation(void)
2017 {
2018 	migrate_disable();
2019 	this_cpu_inc(bpf_prog_active);
2020 }
2021 
2022 static inline void bpf_enable_instrumentation(void)
2023 {
2024 	this_cpu_dec(bpf_prog_active);
2025 	migrate_enable();
2026 }
2027 
2028 extern const struct file_operations bpf_map_fops;
2029 extern const struct file_operations bpf_prog_fops;
2030 extern const struct file_operations bpf_iter_fops;
2031 
2032 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2033 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2034 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2035 #define BPF_MAP_TYPE(_id, _ops) \
2036 	extern const struct bpf_map_ops _ops;
2037 #define BPF_LINK_TYPE(_id, _name)
2038 #include <linux/bpf_types.h>
2039 #undef BPF_PROG_TYPE
2040 #undef BPF_MAP_TYPE
2041 #undef BPF_LINK_TYPE
2042 
2043 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2044 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2045 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2046 
2047 struct bpf_prog *bpf_prog_get(u32 ufd);
2048 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2049 				       bool attach_drv);
2050 void bpf_prog_add(struct bpf_prog *prog, int i);
2051 void bpf_prog_sub(struct bpf_prog *prog, int i);
2052 void bpf_prog_inc(struct bpf_prog *prog);
2053 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2054 void bpf_prog_put(struct bpf_prog *prog);
2055 
2056 void bpf_prog_free_id(struct bpf_prog *prog);
2057 void bpf_map_free_id(struct bpf_map *map);
2058 
2059 struct btf_field *btf_record_find(const struct btf_record *rec,
2060 				  u32 offset, u32 field_mask);
2061 void btf_record_free(struct btf_record *rec);
2062 void bpf_map_free_record(struct bpf_map *map);
2063 struct btf_record *btf_record_dup(const struct btf_record *rec);
2064 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2065 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2066 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2067 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2068 
2069 struct bpf_map *bpf_map_get(u32 ufd);
2070 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2071 struct bpf_map *__bpf_map_get(struct fd f);
2072 void bpf_map_inc(struct bpf_map *map);
2073 void bpf_map_inc_with_uref(struct bpf_map *map);
2074 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2075 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2076 void bpf_map_put_with_uref(struct bpf_map *map);
2077 void bpf_map_put(struct bpf_map *map);
2078 void *bpf_map_area_alloc(u64 size, int numa_node);
2079 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2080 void bpf_map_area_free(void *base);
2081 bool bpf_map_write_active(const struct bpf_map *map);
2082 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2083 int  generic_map_lookup_batch(struct bpf_map *map,
2084 			      const union bpf_attr *attr,
2085 			      union bpf_attr __user *uattr);
2086 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2087 			      const union bpf_attr *attr,
2088 			      union bpf_attr __user *uattr);
2089 int  generic_map_delete_batch(struct bpf_map *map,
2090 			      const union bpf_attr *attr,
2091 			      union bpf_attr __user *uattr);
2092 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2093 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2094 
2095 #ifdef CONFIG_MEMCG_KMEM
2096 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2097 			   int node);
2098 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2099 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2100 		       gfp_t flags);
2101 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2102 				    size_t align, gfp_t flags);
2103 #else
2104 static inline void *
2105 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2106 		     int node)
2107 {
2108 	return kmalloc_node(size, flags, node);
2109 }
2110 
2111 static inline void *
2112 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2113 {
2114 	return kzalloc(size, flags);
2115 }
2116 
2117 static inline void *
2118 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2119 {
2120 	return kvcalloc(n, size, flags);
2121 }
2122 
2123 static inline void __percpu *
2124 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2125 		     gfp_t flags)
2126 {
2127 	return __alloc_percpu_gfp(size, align, flags);
2128 }
2129 #endif
2130 
2131 static inline int
2132 bpf_map_init_elem_count(struct bpf_map *map)
2133 {
2134 	size_t size = sizeof(*map->elem_count), align = size;
2135 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2136 
2137 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2138 	if (!map->elem_count)
2139 		return -ENOMEM;
2140 
2141 	return 0;
2142 }
2143 
2144 static inline void
2145 bpf_map_free_elem_count(struct bpf_map *map)
2146 {
2147 	free_percpu(map->elem_count);
2148 }
2149 
2150 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2151 {
2152 	this_cpu_inc(*map->elem_count);
2153 }
2154 
2155 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2156 {
2157 	this_cpu_dec(*map->elem_count);
2158 }
2159 
2160 extern int sysctl_unprivileged_bpf_disabled;
2161 
2162 static inline bool bpf_allow_ptr_leaks(void)
2163 {
2164 	return perfmon_capable();
2165 }
2166 
2167 static inline bool bpf_allow_uninit_stack(void)
2168 {
2169 	return perfmon_capable();
2170 }
2171 
2172 static inline bool bpf_bypass_spec_v1(void)
2173 {
2174 	return cpu_mitigations_off() || perfmon_capable();
2175 }
2176 
2177 static inline bool bpf_bypass_spec_v4(void)
2178 {
2179 	return cpu_mitigations_off() || perfmon_capable();
2180 }
2181 
2182 int bpf_map_new_fd(struct bpf_map *map, int flags);
2183 int bpf_prog_new_fd(struct bpf_prog *prog);
2184 
2185 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2186 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2187 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2188 int bpf_link_settle(struct bpf_link_primer *primer);
2189 void bpf_link_cleanup(struct bpf_link_primer *primer);
2190 void bpf_link_inc(struct bpf_link *link);
2191 void bpf_link_put(struct bpf_link *link);
2192 int bpf_link_new_fd(struct bpf_link *link);
2193 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2194 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2195 
2196 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2197 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2198 
2199 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2200 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2201 	extern int bpf_iter_ ## target(args);			\
2202 	int __init bpf_iter_ ## target(args) { return 0; }
2203 
2204 /*
2205  * The task type of iterators.
2206  *
2207  * For BPF task iterators, they can be parameterized with various
2208  * parameters to visit only some of tasks.
2209  *
2210  * BPF_TASK_ITER_ALL (default)
2211  *	Iterate over resources of every task.
2212  *
2213  * BPF_TASK_ITER_TID
2214  *	Iterate over resources of a task/tid.
2215  *
2216  * BPF_TASK_ITER_TGID
2217  *	Iterate over resources of every task of a process / task group.
2218  */
2219 enum bpf_iter_task_type {
2220 	BPF_TASK_ITER_ALL = 0,
2221 	BPF_TASK_ITER_TID,
2222 	BPF_TASK_ITER_TGID,
2223 };
2224 
2225 struct bpf_iter_aux_info {
2226 	/* for map_elem iter */
2227 	struct bpf_map *map;
2228 
2229 	/* for cgroup iter */
2230 	struct {
2231 		struct cgroup *start; /* starting cgroup */
2232 		enum bpf_cgroup_iter_order order;
2233 	} cgroup;
2234 	struct {
2235 		enum bpf_iter_task_type	type;
2236 		u32 pid;
2237 	} task;
2238 };
2239 
2240 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2241 					union bpf_iter_link_info *linfo,
2242 					struct bpf_iter_aux_info *aux);
2243 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2244 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2245 					struct seq_file *seq);
2246 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2247 					 struct bpf_link_info *info);
2248 typedef const struct bpf_func_proto *
2249 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2250 			     const struct bpf_prog *prog);
2251 
2252 enum bpf_iter_feature {
2253 	BPF_ITER_RESCHED	= BIT(0),
2254 };
2255 
2256 #define BPF_ITER_CTX_ARG_MAX 2
2257 struct bpf_iter_reg {
2258 	const char *target;
2259 	bpf_iter_attach_target_t attach_target;
2260 	bpf_iter_detach_target_t detach_target;
2261 	bpf_iter_show_fdinfo_t show_fdinfo;
2262 	bpf_iter_fill_link_info_t fill_link_info;
2263 	bpf_iter_get_func_proto_t get_func_proto;
2264 	u32 ctx_arg_info_size;
2265 	u32 feature;
2266 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2267 	const struct bpf_iter_seq_info *seq_info;
2268 };
2269 
2270 struct bpf_iter_meta {
2271 	__bpf_md_ptr(struct seq_file *, seq);
2272 	u64 session_id;
2273 	u64 seq_num;
2274 };
2275 
2276 struct bpf_iter__bpf_map_elem {
2277 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2278 	__bpf_md_ptr(struct bpf_map *, map);
2279 	__bpf_md_ptr(void *, key);
2280 	__bpf_md_ptr(void *, value);
2281 };
2282 
2283 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2284 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2285 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2286 const struct bpf_func_proto *
2287 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2288 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2289 int bpf_iter_new_fd(struct bpf_link *link);
2290 bool bpf_link_is_iter(struct bpf_link *link);
2291 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2292 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2293 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2294 			      struct seq_file *seq);
2295 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2296 				struct bpf_link_info *info);
2297 
2298 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2299 				   struct bpf_func_state *caller,
2300 				   struct bpf_func_state *callee);
2301 
2302 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2303 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2304 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2305 			   u64 flags);
2306 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2307 			    u64 flags);
2308 
2309 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2310 
2311 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2312 				 void *key, void *value, u64 map_flags);
2313 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2314 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2315 				void *key, void *value, u64 map_flags);
2316 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2317 
2318 int bpf_get_file_flag(int flags);
2319 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2320 			     size_t actual_size);
2321 
2322 /* verify correctness of eBPF program */
2323 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2324 
2325 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2326 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2327 #endif
2328 
2329 struct btf *bpf_get_btf_vmlinux(void);
2330 
2331 /* Map specifics */
2332 struct xdp_frame;
2333 struct sk_buff;
2334 struct bpf_dtab_netdev;
2335 struct bpf_cpu_map_entry;
2336 
2337 void __dev_flush(void);
2338 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2339 		    struct net_device *dev_rx);
2340 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2341 		    struct net_device *dev_rx);
2342 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2343 			  struct bpf_map *map, bool exclude_ingress);
2344 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2345 			     struct bpf_prog *xdp_prog);
2346 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2347 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2348 			   bool exclude_ingress);
2349 
2350 void __cpu_map_flush(void);
2351 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2352 		    struct net_device *dev_rx);
2353 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2354 			     struct sk_buff *skb);
2355 
2356 /* Return map's numa specified by userspace */
2357 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2358 {
2359 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2360 		attr->numa_node : NUMA_NO_NODE;
2361 }
2362 
2363 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2364 int array_map_alloc_check(union bpf_attr *attr);
2365 
2366 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2367 			  union bpf_attr __user *uattr);
2368 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2369 			  union bpf_attr __user *uattr);
2370 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2371 			      const union bpf_attr *kattr,
2372 			      union bpf_attr __user *uattr);
2373 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2374 				     const union bpf_attr *kattr,
2375 				     union bpf_attr __user *uattr);
2376 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2377 			     const union bpf_attr *kattr,
2378 			     union bpf_attr __user *uattr);
2379 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2380 				const union bpf_attr *kattr,
2381 				union bpf_attr __user *uattr);
2382 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2383 			 const union bpf_attr *kattr,
2384 			 union bpf_attr __user *uattr);
2385 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2386 		    const struct bpf_prog *prog,
2387 		    struct bpf_insn_access_aux *info);
2388 
2389 static inline bool bpf_tracing_ctx_access(int off, int size,
2390 					  enum bpf_access_type type)
2391 {
2392 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2393 		return false;
2394 	if (type != BPF_READ)
2395 		return false;
2396 	if (off % size != 0)
2397 		return false;
2398 	return true;
2399 }
2400 
2401 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2402 					      enum bpf_access_type type,
2403 					      const struct bpf_prog *prog,
2404 					      struct bpf_insn_access_aux *info)
2405 {
2406 	if (!bpf_tracing_ctx_access(off, size, type))
2407 		return false;
2408 	return btf_ctx_access(off, size, type, prog, info);
2409 }
2410 
2411 int btf_struct_access(struct bpf_verifier_log *log,
2412 		      const struct bpf_reg_state *reg,
2413 		      int off, int size, enum bpf_access_type atype,
2414 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2415 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2416 			  const struct btf *btf, u32 id, int off,
2417 			  const struct btf *need_btf, u32 need_type_id,
2418 			  bool strict);
2419 
2420 int btf_distill_func_proto(struct bpf_verifier_log *log,
2421 			   struct btf *btf,
2422 			   const struct btf_type *func_proto,
2423 			   const char *func_name,
2424 			   struct btf_func_model *m);
2425 
2426 struct bpf_reg_state;
2427 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2428 				struct bpf_reg_state *regs);
2429 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2430 			   struct bpf_reg_state *regs);
2431 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2432 			  struct bpf_reg_state *reg, bool is_ex_cb);
2433 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2434 			 struct btf *btf, const struct btf_type *t);
2435 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2436 				    int comp_idx, const char *tag_key);
2437 
2438 struct bpf_prog *bpf_prog_by_id(u32 id);
2439 struct bpf_link *bpf_link_by_id(u32 id);
2440 
2441 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2442 void bpf_task_storage_free(struct task_struct *task);
2443 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2444 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2445 const struct btf_func_model *
2446 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2447 			 const struct bpf_insn *insn);
2448 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2449 		       u16 btf_fd_idx, u8 **func_addr);
2450 
2451 struct bpf_core_ctx {
2452 	struct bpf_verifier_log *log;
2453 	const struct btf *btf;
2454 };
2455 
2456 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2457 				const struct bpf_reg_state *reg,
2458 				const char *field_name, u32 btf_id, const char *suffix);
2459 
2460 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2461 			       const struct btf *reg_btf, u32 reg_id,
2462 			       const struct btf *arg_btf, u32 arg_id);
2463 
2464 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2465 		   int relo_idx, void *insn);
2466 
2467 static inline bool unprivileged_ebpf_enabled(void)
2468 {
2469 	return !sysctl_unprivileged_bpf_disabled;
2470 }
2471 
2472 /* Not all bpf prog type has the bpf_ctx.
2473  * For the bpf prog type that has initialized the bpf_ctx,
2474  * this function can be used to decide if a kernel function
2475  * is called by a bpf program.
2476  */
2477 static inline bool has_current_bpf_ctx(void)
2478 {
2479 	return !!current->bpf_ctx;
2480 }
2481 
2482 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2483 
2484 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2485 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2486 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2487 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2488 
2489 bool dev_check_flush(void);
2490 bool cpu_map_check_flush(void);
2491 #else /* !CONFIG_BPF_SYSCALL */
2492 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2493 {
2494 	return ERR_PTR(-EOPNOTSUPP);
2495 }
2496 
2497 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2498 						     enum bpf_prog_type type,
2499 						     bool attach_drv)
2500 {
2501 	return ERR_PTR(-EOPNOTSUPP);
2502 }
2503 
2504 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2505 {
2506 }
2507 
2508 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2509 {
2510 }
2511 
2512 static inline void bpf_prog_put(struct bpf_prog *prog)
2513 {
2514 }
2515 
2516 static inline void bpf_prog_inc(struct bpf_prog *prog)
2517 {
2518 }
2519 
2520 static inline struct bpf_prog *__must_check
2521 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2522 {
2523 	return ERR_PTR(-EOPNOTSUPP);
2524 }
2525 
2526 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2527 				 const struct bpf_link_ops *ops,
2528 				 struct bpf_prog *prog)
2529 {
2530 }
2531 
2532 static inline int bpf_link_prime(struct bpf_link *link,
2533 				 struct bpf_link_primer *primer)
2534 {
2535 	return -EOPNOTSUPP;
2536 }
2537 
2538 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2539 {
2540 	return -EOPNOTSUPP;
2541 }
2542 
2543 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2544 {
2545 }
2546 
2547 static inline void bpf_link_inc(struct bpf_link *link)
2548 {
2549 }
2550 
2551 static inline void bpf_link_put(struct bpf_link *link)
2552 {
2553 }
2554 
2555 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2556 {
2557 	return -EOPNOTSUPP;
2558 }
2559 
2560 static inline void __dev_flush(void)
2561 {
2562 }
2563 
2564 struct xdp_frame;
2565 struct bpf_dtab_netdev;
2566 struct bpf_cpu_map_entry;
2567 
2568 static inline
2569 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2570 		    struct net_device *dev_rx)
2571 {
2572 	return 0;
2573 }
2574 
2575 static inline
2576 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2577 		    struct net_device *dev_rx)
2578 {
2579 	return 0;
2580 }
2581 
2582 static inline
2583 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2584 			  struct bpf_map *map, bool exclude_ingress)
2585 {
2586 	return 0;
2587 }
2588 
2589 struct sk_buff;
2590 
2591 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2592 					   struct sk_buff *skb,
2593 					   struct bpf_prog *xdp_prog)
2594 {
2595 	return 0;
2596 }
2597 
2598 static inline
2599 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2600 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2601 			   bool exclude_ingress)
2602 {
2603 	return 0;
2604 }
2605 
2606 static inline void __cpu_map_flush(void)
2607 {
2608 }
2609 
2610 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2611 				  struct xdp_frame *xdpf,
2612 				  struct net_device *dev_rx)
2613 {
2614 	return 0;
2615 }
2616 
2617 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2618 					   struct sk_buff *skb)
2619 {
2620 	return -EOPNOTSUPP;
2621 }
2622 
2623 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2624 				enum bpf_prog_type type)
2625 {
2626 	return ERR_PTR(-EOPNOTSUPP);
2627 }
2628 
2629 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2630 					const union bpf_attr *kattr,
2631 					union bpf_attr __user *uattr)
2632 {
2633 	return -ENOTSUPP;
2634 }
2635 
2636 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2637 					const union bpf_attr *kattr,
2638 					union bpf_attr __user *uattr)
2639 {
2640 	return -ENOTSUPP;
2641 }
2642 
2643 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2644 					    const union bpf_attr *kattr,
2645 					    union bpf_attr __user *uattr)
2646 {
2647 	return -ENOTSUPP;
2648 }
2649 
2650 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2651 						   const union bpf_attr *kattr,
2652 						   union bpf_attr __user *uattr)
2653 {
2654 	return -ENOTSUPP;
2655 }
2656 
2657 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2658 					      const union bpf_attr *kattr,
2659 					      union bpf_attr __user *uattr)
2660 {
2661 	return -ENOTSUPP;
2662 }
2663 
2664 static inline void bpf_map_put(struct bpf_map *map)
2665 {
2666 }
2667 
2668 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2669 {
2670 	return ERR_PTR(-ENOTSUPP);
2671 }
2672 
2673 static inline int btf_struct_access(struct bpf_verifier_log *log,
2674 				    const struct bpf_reg_state *reg,
2675 				    int off, int size, enum bpf_access_type atype,
2676 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2677 				    const char **field_name)
2678 {
2679 	return -EACCES;
2680 }
2681 
2682 static inline const struct bpf_func_proto *
2683 bpf_base_func_proto(enum bpf_func_id func_id)
2684 {
2685 	return NULL;
2686 }
2687 
2688 static inline void bpf_task_storage_free(struct task_struct *task)
2689 {
2690 }
2691 
2692 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2693 {
2694 	return false;
2695 }
2696 
2697 static inline const struct btf_func_model *
2698 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2699 			 const struct bpf_insn *insn)
2700 {
2701 	return NULL;
2702 }
2703 
2704 static inline int
2705 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2706 		   u16 btf_fd_idx, u8 **func_addr)
2707 {
2708 	return -ENOTSUPP;
2709 }
2710 
2711 static inline bool unprivileged_ebpf_enabled(void)
2712 {
2713 	return false;
2714 }
2715 
2716 static inline bool has_current_bpf_ctx(void)
2717 {
2718 	return false;
2719 }
2720 
2721 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2722 {
2723 }
2724 
2725 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2726 {
2727 }
2728 
2729 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2730 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2731 {
2732 }
2733 
2734 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2735 {
2736 }
2737 
2738 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2739 {
2740 }
2741 #endif /* CONFIG_BPF_SYSCALL */
2742 
2743 static __always_inline int
2744 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2745 {
2746 	int ret = -EFAULT;
2747 
2748 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2749 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2750 	if (unlikely(ret < 0))
2751 		memset(dst, 0, size);
2752 	return ret;
2753 }
2754 
2755 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2756 			  struct btf_mod_pair *used_btfs, u32 len);
2757 
2758 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2759 						 enum bpf_prog_type type)
2760 {
2761 	return bpf_prog_get_type_dev(ufd, type, false);
2762 }
2763 
2764 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2765 			  struct bpf_map **used_maps, u32 len);
2766 
2767 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2768 
2769 int bpf_prog_offload_compile(struct bpf_prog *prog);
2770 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2771 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2772 			       struct bpf_prog *prog);
2773 
2774 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2775 
2776 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2777 int bpf_map_offload_update_elem(struct bpf_map *map,
2778 				void *key, void *value, u64 flags);
2779 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2780 int bpf_map_offload_get_next_key(struct bpf_map *map,
2781 				 void *key, void *next_key);
2782 
2783 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2784 
2785 struct bpf_offload_dev *
2786 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2787 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2788 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2789 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2790 				    struct net_device *netdev);
2791 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2792 				       struct net_device *netdev);
2793 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2794 
2795 void unpriv_ebpf_notify(int new_state);
2796 
2797 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2798 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2799 			      struct bpf_prog_aux *prog_aux);
2800 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2801 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2802 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2803 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2804 
2805 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2806 {
2807 	return aux->dev_bound;
2808 }
2809 
2810 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2811 {
2812 	return aux->offload_requested;
2813 }
2814 
2815 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2816 
2817 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2818 {
2819 	return unlikely(map->ops == &bpf_map_offload_ops);
2820 }
2821 
2822 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2823 void bpf_map_offload_map_free(struct bpf_map *map);
2824 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2825 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2826 			      const union bpf_attr *kattr,
2827 			      union bpf_attr __user *uattr);
2828 
2829 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2830 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2831 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2832 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2833 			    union bpf_attr __user *uattr);
2834 
2835 void sock_map_unhash(struct sock *sk);
2836 void sock_map_destroy(struct sock *sk);
2837 void sock_map_close(struct sock *sk, long timeout);
2838 #else
2839 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2840 					    struct bpf_prog_aux *prog_aux)
2841 {
2842 	return -EOPNOTSUPP;
2843 }
2844 
2845 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2846 						u32 func_id)
2847 {
2848 	return NULL;
2849 }
2850 
2851 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2852 					  union bpf_attr *attr)
2853 {
2854 	return -EOPNOTSUPP;
2855 }
2856 
2857 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2858 					     struct bpf_prog *old_prog)
2859 {
2860 	return -EOPNOTSUPP;
2861 }
2862 
2863 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2864 {
2865 }
2866 
2867 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2868 {
2869 	return false;
2870 }
2871 
2872 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2873 {
2874 	return false;
2875 }
2876 
2877 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2878 {
2879 	return false;
2880 }
2881 
2882 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2883 {
2884 	return false;
2885 }
2886 
2887 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2888 {
2889 	return ERR_PTR(-EOPNOTSUPP);
2890 }
2891 
2892 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2893 {
2894 }
2895 
2896 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2897 {
2898 	return 0;
2899 }
2900 
2901 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2902 					    const union bpf_attr *kattr,
2903 					    union bpf_attr __user *uattr)
2904 {
2905 	return -ENOTSUPP;
2906 }
2907 
2908 #ifdef CONFIG_BPF_SYSCALL
2909 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2910 				       struct bpf_prog *prog)
2911 {
2912 	return -EINVAL;
2913 }
2914 
2915 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2916 				       enum bpf_prog_type ptype)
2917 {
2918 	return -EOPNOTSUPP;
2919 }
2920 
2921 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2922 					   u64 flags)
2923 {
2924 	return -EOPNOTSUPP;
2925 }
2926 
2927 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2928 					  union bpf_attr __user *uattr)
2929 {
2930 	return -EINVAL;
2931 }
2932 #endif /* CONFIG_BPF_SYSCALL */
2933 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2934 
2935 static __always_inline void
2936 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
2937 {
2938 	const struct bpf_prog_array_item *item;
2939 	struct bpf_prog *prog;
2940 
2941 	if (unlikely(!array))
2942 		return;
2943 
2944 	item = &array->items[0];
2945 	while ((prog = READ_ONCE(item->prog))) {
2946 		bpf_prog_inc_misses_counter(prog);
2947 		item++;
2948 	}
2949 }
2950 
2951 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2952 void bpf_sk_reuseport_detach(struct sock *sk);
2953 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2954 				       void *value);
2955 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2956 				       void *value, u64 map_flags);
2957 #else
2958 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2959 {
2960 }
2961 
2962 #ifdef CONFIG_BPF_SYSCALL
2963 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2964 						     void *key, void *value)
2965 {
2966 	return -EOPNOTSUPP;
2967 }
2968 
2969 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2970 						     void *key, void *value,
2971 						     u64 map_flags)
2972 {
2973 	return -EOPNOTSUPP;
2974 }
2975 #endif /* CONFIG_BPF_SYSCALL */
2976 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2977 
2978 /* verifier prototypes for helper functions called from eBPF programs */
2979 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2980 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2981 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2982 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2983 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2984 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2985 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2986 
2987 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2988 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2989 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2990 extern const struct bpf_func_proto bpf_tail_call_proto;
2991 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2992 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2993 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2994 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2995 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2996 extern const struct bpf_func_proto bpf_get_current_comm_proto;
2997 extern const struct bpf_func_proto bpf_get_stackid_proto;
2998 extern const struct bpf_func_proto bpf_get_stack_proto;
2999 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3000 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3001 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3002 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3003 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3004 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3005 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3006 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3007 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3008 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3009 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3010 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3011 extern const struct bpf_func_proto bpf_spin_lock_proto;
3012 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3013 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3014 extern const struct bpf_func_proto bpf_strtol_proto;
3015 extern const struct bpf_func_proto bpf_strtoul_proto;
3016 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3017 extern const struct bpf_func_proto bpf_jiffies64_proto;
3018 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3019 extern const struct bpf_func_proto bpf_event_output_data_proto;
3020 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3021 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3022 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3023 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3024 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3025 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3026 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3027 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3028 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3029 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3030 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3031 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3032 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3033 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3034 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3035 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3036 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3037 extern const struct bpf_func_proto bpf_snprintf_proto;
3038 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3039 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3040 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3041 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3042 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3043 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3044 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3045 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3046 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3047 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3048 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3049 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3050 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3051 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3052 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3053 extern const struct bpf_func_proto bpf_find_vma_proto;
3054 extern const struct bpf_func_proto bpf_loop_proto;
3055 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3056 extern const struct bpf_func_proto bpf_set_retval_proto;
3057 extern const struct bpf_func_proto bpf_get_retval_proto;
3058 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3059 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3060 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3061 
3062 const struct bpf_func_proto *tracing_prog_func_proto(
3063   enum bpf_func_id func_id, const struct bpf_prog *prog);
3064 
3065 /* Shared helpers among cBPF and eBPF. */
3066 void bpf_user_rnd_init_once(void);
3067 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3068 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3069 
3070 #if defined(CONFIG_NET)
3071 bool bpf_sock_common_is_valid_access(int off, int size,
3072 				     enum bpf_access_type type,
3073 				     struct bpf_insn_access_aux *info);
3074 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3075 			      struct bpf_insn_access_aux *info);
3076 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3077 				const struct bpf_insn *si,
3078 				struct bpf_insn *insn_buf,
3079 				struct bpf_prog *prog,
3080 				u32 *target_size);
3081 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3082 			       struct bpf_dynptr_kern *ptr);
3083 #else
3084 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3085 						   enum bpf_access_type type,
3086 						   struct bpf_insn_access_aux *info)
3087 {
3088 	return false;
3089 }
3090 static inline bool bpf_sock_is_valid_access(int off, int size,
3091 					    enum bpf_access_type type,
3092 					    struct bpf_insn_access_aux *info)
3093 {
3094 	return false;
3095 }
3096 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3097 					      const struct bpf_insn *si,
3098 					      struct bpf_insn *insn_buf,
3099 					      struct bpf_prog *prog,
3100 					      u32 *target_size)
3101 {
3102 	return 0;
3103 }
3104 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3105 					     struct bpf_dynptr_kern *ptr)
3106 {
3107 	return -EOPNOTSUPP;
3108 }
3109 #endif
3110 
3111 #ifdef CONFIG_INET
3112 struct sk_reuseport_kern {
3113 	struct sk_buff *skb;
3114 	struct sock *sk;
3115 	struct sock *selected_sk;
3116 	struct sock *migrating_sk;
3117 	void *data_end;
3118 	u32 hash;
3119 	u32 reuseport_id;
3120 	bool bind_inany;
3121 };
3122 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3123 				  struct bpf_insn_access_aux *info);
3124 
3125 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3126 				    const struct bpf_insn *si,
3127 				    struct bpf_insn *insn_buf,
3128 				    struct bpf_prog *prog,
3129 				    u32 *target_size);
3130 
3131 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3132 				  struct bpf_insn_access_aux *info);
3133 
3134 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3135 				    const struct bpf_insn *si,
3136 				    struct bpf_insn *insn_buf,
3137 				    struct bpf_prog *prog,
3138 				    u32 *target_size);
3139 #else
3140 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3141 						enum bpf_access_type type,
3142 						struct bpf_insn_access_aux *info)
3143 {
3144 	return false;
3145 }
3146 
3147 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3148 						  const struct bpf_insn *si,
3149 						  struct bpf_insn *insn_buf,
3150 						  struct bpf_prog *prog,
3151 						  u32 *target_size)
3152 {
3153 	return 0;
3154 }
3155 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3156 						enum bpf_access_type type,
3157 						struct bpf_insn_access_aux *info)
3158 {
3159 	return false;
3160 }
3161 
3162 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3163 						  const struct bpf_insn *si,
3164 						  struct bpf_insn *insn_buf,
3165 						  struct bpf_prog *prog,
3166 						  u32 *target_size)
3167 {
3168 	return 0;
3169 }
3170 #endif /* CONFIG_INET */
3171 
3172 enum bpf_text_poke_type {
3173 	BPF_MOD_CALL,
3174 	BPF_MOD_JUMP,
3175 };
3176 
3177 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3178 		       void *addr1, void *addr2);
3179 
3180 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3181 int bpf_arch_text_invalidate(void *dst, size_t len);
3182 
3183 struct btf_id_set;
3184 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3185 
3186 #define MAX_BPRINTF_VARARGS		12
3187 #define MAX_BPRINTF_BUF			1024
3188 
3189 struct bpf_bprintf_data {
3190 	u32 *bin_args;
3191 	char *buf;
3192 	bool get_bin_args;
3193 	bool get_buf;
3194 };
3195 
3196 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3197 			u32 num_args, struct bpf_bprintf_data *data);
3198 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3199 
3200 #ifdef CONFIG_BPF_LSM
3201 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3202 void bpf_cgroup_atype_put(int cgroup_atype);
3203 #else
3204 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3205 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3206 #endif /* CONFIG_BPF_LSM */
3207 
3208 struct key;
3209 
3210 #ifdef CONFIG_KEYS
3211 struct bpf_key {
3212 	struct key *key;
3213 	bool has_ref;
3214 };
3215 #endif /* CONFIG_KEYS */
3216 
3217 static inline bool type_is_alloc(u32 type)
3218 {
3219 	return type & MEM_ALLOC;
3220 }
3221 
3222 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3223 {
3224 	if (memcg_bpf_enabled())
3225 		return flags | __GFP_ACCOUNT;
3226 	return flags;
3227 }
3228 
3229 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3230 {
3231 	return prog->aux->func_idx != 0;
3232 }
3233 
3234 #endif /* _LINUX_BPF_H */
3235