xref: /linux-6.15/include/linux/bpf.h (revision f4edc66e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60 
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66 
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 					struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 				   const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 	const struct seq_operations *seq_ops;
75 	bpf_iter_init_seq_priv_t init_seq_private;
76 	bpf_iter_fini_seq_priv_t fini_seq_private;
77 	u32 seq_priv_size;
78 };
79 
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 	/* funcs callable from userspace (via syscall) */
83 	int (*map_alloc_check)(union bpf_attr *attr);
84 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 	void (*map_release)(struct bpf_map *map, struct file *map_file);
86 	void (*map_free)(struct bpf_map *map);
87 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 	void (*map_release_uref)(struct bpf_map *map);
89 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 				union bpf_attr __user *uattr);
92 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 					  void *value, u64 flags);
94 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 					   const union bpf_attr *attr,
96 					   union bpf_attr __user *uattr);
97 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 				const union bpf_attr *attr,
99 				union bpf_attr __user *uattr);
100 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 
103 	/* funcs callable from userspace and from eBPF programs */
104 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 	long (*map_delete_elem)(struct bpf_map *map, void *key);
107 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 	long (*map_pop_elem)(struct bpf_map *map, void *value);
109 	long (*map_peek_elem)(struct bpf_map *map, void *value);
110 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111 
112 	/* funcs called by prog_array and perf_event_array map */
113 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 				int fd);
115 	/* If need_defer is true, the implementation should guarantee that
116 	 * the to-be-put element is still alive before the bpf program, which
117 	 * may manipulate it, exists.
118 	 */
119 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 				  struct seq_file *m);
124 	int (*map_check_btf)(const struct bpf_map *map,
125 			     const struct btf *btf,
126 			     const struct btf_type *key_type,
127 			     const struct btf_type *value_type);
128 
129 	/* Prog poke tracking helpers. */
130 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 			     struct bpf_prog *new);
134 
135 	/* Direct value access helpers. */
136 	int (*map_direct_value_addr)(const struct bpf_map *map,
137 				     u64 *imm, u32 off);
138 	int (*map_direct_value_meta)(const struct bpf_map *map,
139 				     u64 imm, u32 *off);
140 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 			     struct poll_table_struct *pts);
143 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 					       unsigned long len, unsigned long pgoff,
145 					       unsigned long flags);
146 
147 	/* Functions called by bpf_local_storage maps */
148 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 					void *owner, u32 size);
150 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 					   void *owner, u32 size);
152 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153 
154 	/* Misc helpers.*/
155 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156 
157 	/* map_meta_equal must be implemented for maps that can be
158 	 * used as an inner map.  It is a runtime check to ensure
159 	 * an inner map can be inserted to an outer map.
160 	 *
161 	 * Some properties of the inner map has been used during the
162 	 * verification time.  When inserting an inner map at the runtime,
163 	 * map_meta_equal has to ensure the inserting map has the same
164 	 * properties that the verifier has used earlier.
165 	 */
166 	bool (*map_meta_equal)(const struct bpf_map *meta0,
167 			       const struct bpf_map *meta1);
168 
169 
170 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 					      struct bpf_func_state *caller,
172 					      struct bpf_func_state *callee);
173 	long (*map_for_each_callback)(struct bpf_map *map,
174 				     bpf_callback_t callback_fn,
175 				     void *callback_ctx, u64 flags);
176 
177 	u64 (*map_mem_usage)(const struct bpf_map *map);
178 
179 	/* BTF id of struct allocated by map_alloc */
180 	int *map_btf_id;
181 
182 	/* bpf_iter info used to open a seq_file */
183 	const struct bpf_iter_seq_info *iter_seq_info;
184 };
185 
186 enum {
187 	/* Support at most 11 fields in a BTF type */
188 	BTF_FIELDS_MAX	   = 11,
189 };
190 
191 enum btf_field_type {
192 	BPF_SPIN_LOCK  = (1 << 0),
193 	BPF_TIMER      = (1 << 1),
194 	BPF_KPTR_UNREF = (1 << 2),
195 	BPF_KPTR_REF   = (1 << 3),
196 	BPF_KPTR_PERCPU = (1 << 4),
197 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 	BPF_LIST_HEAD  = (1 << 5),
199 	BPF_LIST_NODE  = (1 << 6),
200 	BPF_RB_ROOT    = (1 << 7),
201 	BPF_RB_NODE    = (1 << 8),
202 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 	BPF_REFCOUNT   = (1 << 9),
205 	BPF_WORKQUEUE  = (1 << 10),
206 	BPF_UPTR       = (1 << 11),
207 };
208 
209 typedef void (*btf_dtor_kfunc_t)(void *);
210 
211 struct btf_field_kptr {
212 	struct btf *btf;
213 	struct module *module;
214 	/* dtor used if btf_is_kernel(btf), otherwise the type is
215 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
216 	 */
217 	btf_dtor_kfunc_t dtor;
218 	u32 btf_id;
219 };
220 
221 struct btf_field_graph_root {
222 	struct btf *btf;
223 	u32 value_btf_id;
224 	u32 node_offset;
225 	struct btf_record *value_rec;
226 };
227 
228 struct btf_field {
229 	u32 offset;
230 	u32 size;
231 	enum btf_field_type type;
232 	union {
233 		struct btf_field_kptr kptr;
234 		struct btf_field_graph_root graph_root;
235 	};
236 };
237 
238 struct btf_record {
239 	u32 cnt;
240 	u32 field_mask;
241 	int spin_lock_off;
242 	int timer_off;
243 	int wq_off;
244 	int refcount_off;
245 	struct btf_field fields[];
246 };
247 
248 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
249 struct bpf_rb_node_kern {
250 	struct rb_node rb_node;
251 	void *owner;
252 } __attribute__((aligned(8)));
253 
254 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
255 struct bpf_list_node_kern {
256 	struct list_head list_head;
257 	void *owner;
258 } __attribute__((aligned(8)));
259 
260 struct bpf_map {
261 	const struct bpf_map_ops *ops;
262 	struct bpf_map *inner_map_meta;
263 #ifdef CONFIG_SECURITY
264 	void *security;
265 #endif
266 	enum bpf_map_type map_type;
267 	u32 key_size;
268 	u32 value_size;
269 	u32 max_entries;
270 	u64 map_extra; /* any per-map-type extra fields */
271 	u32 map_flags;
272 	u32 id;
273 	struct btf_record *record;
274 	int numa_node;
275 	u32 btf_key_type_id;
276 	u32 btf_value_type_id;
277 	u32 btf_vmlinux_value_type_id;
278 	struct btf *btf;
279 #ifdef CONFIG_MEMCG
280 	struct obj_cgroup *objcg;
281 #endif
282 	char name[BPF_OBJ_NAME_LEN];
283 	struct mutex freeze_mutex;
284 	atomic64_t refcnt;
285 	atomic64_t usercnt;
286 	/* rcu is used before freeing and work is only used during freeing */
287 	union {
288 		struct work_struct work;
289 		struct rcu_head rcu;
290 	};
291 	atomic64_t writecnt;
292 	/* 'Ownership' of program-containing map is claimed by the first program
293 	 * that is going to use this map or by the first program which FD is
294 	 * stored in the map to make sure that all callers and callees have the
295 	 * same prog type, JITed flag and xdp_has_frags flag.
296 	 */
297 	struct {
298 		const struct btf_type *attach_func_proto;
299 		spinlock_t lock;
300 		enum bpf_prog_type type;
301 		bool jited;
302 		bool xdp_has_frags;
303 	} owner;
304 	bool bypass_spec_v1;
305 	bool frozen; /* write-once; write-protected by freeze_mutex */
306 	bool free_after_mult_rcu_gp;
307 	bool free_after_rcu_gp;
308 	atomic64_t sleepable_refcnt;
309 	s64 __percpu *elem_count;
310 };
311 
312 static inline const char *btf_field_type_name(enum btf_field_type type)
313 {
314 	switch (type) {
315 	case BPF_SPIN_LOCK:
316 		return "bpf_spin_lock";
317 	case BPF_TIMER:
318 		return "bpf_timer";
319 	case BPF_WORKQUEUE:
320 		return "bpf_wq";
321 	case BPF_KPTR_UNREF:
322 	case BPF_KPTR_REF:
323 		return "kptr";
324 	case BPF_KPTR_PERCPU:
325 		return "percpu_kptr";
326 	case BPF_UPTR:
327 		return "uptr";
328 	case BPF_LIST_HEAD:
329 		return "bpf_list_head";
330 	case BPF_LIST_NODE:
331 		return "bpf_list_node";
332 	case BPF_RB_ROOT:
333 		return "bpf_rb_root";
334 	case BPF_RB_NODE:
335 		return "bpf_rb_node";
336 	case BPF_REFCOUNT:
337 		return "bpf_refcount";
338 	default:
339 		WARN_ON_ONCE(1);
340 		return "unknown";
341 	}
342 }
343 
344 static inline u32 btf_field_type_size(enum btf_field_type type)
345 {
346 	switch (type) {
347 	case BPF_SPIN_LOCK:
348 		return sizeof(struct bpf_spin_lock);
349 	case BPF_TIMER:
350 		return sizeof(struct bpf_timer);
351 	case BPF_WORKQUEUE:
352 		return sizeof(struct bpf_wq);
353 	case BPF_KPTR_UNREF:
354 	case BPF_KPTR_REF:
355 	case BPF_KPTR_PERCPU:
356 	case BPF_UPTR:
357 		return sizeof(u64);
358 	case BPF_LIST_HEAD:
359 		return sizeof(struct bpf_list_head);
360 	case BPF_LIST_NODE:
361 		return sizeof(struct bpf_list_node);
362 	case BPF_RB_ROOT:
363 		return sizeof(struct bpf_rb_root);
364 	case BPF_RB_NODE:
365 		return sizeof(struct bpf_rb_node);
366 	case BPF_REFCOUNT:
367 		return sizeof(struct bpf_refcount);
368 	default:
369 		WARN_ON_ONCE(1);
370 		return 0;
371 	}
372 }
373 
374 static inline u32 btf_field_type_align(enum btf_field_type type)
375 {
376 	switch (type) {
377 	case BPF_SPIN_LOCK:
378 		return __alignof__(struct bpf_spin_lock);
379 	case BPF_TIMER:
380 		return __alignof__(struct bpf_timer);
381 	case BPF_WORKQUEUE:
382 		return __alignof__(struct bpf_wq);
383 	case BPF_KPTR_UNREF:
384 	case BPF_KPTR_REF:
385 	case BPF_KPTR_PERCPU:
386 	case BPF_UPTR:
387 		return __alignof__(u64);
388 	case BPF_LIST_HEAD:
389 		return __alignof__(struct bpf_list_head);
390 	case BPF_LIST_NODE:
391 		return __alignof__(struct bpf_list_node);
392 	case BPF_RB_ROOT:
393 		return __alignof__(struct bpf_rb_root);
394 	case BPF_RB_NODE:
395 		return __alignof__(struct bpf_rb_node);
396 	case BPF_REFCOUNT:
397 		return __alignof__(struct bpf_refcount);
398 	default:
399 		WARN_ON_ONCE(1);
400 		return 0;
401 	}
402 }
403 
404 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
405 {
406 	memset(addr, 0, field->size);
407 
408 	switch (field->type) {
409 	case BPF_REFCOUNT:
410 		refcount_set((refcount_t *)addr, 1);
411 		break;
412 	case BPF_RB_NODE:
413 		RB_CLEAR_NODE((struct rb_node *)addr);
414 		break;
415 	case BPF_LIST_HEAD:
416 	case BPF_LIST_NODE:
417 		INIT_LIST_HEAD((struct list_head *)addr);
418 		break;
419 	case BPF_RB_ROOT:
420 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
421 	case BPF_SPIN_LOCK:
422 	case BPF_TIMER:
423 	case BPF_WORKQUEUE:
424 	case BPF_KPTR_UNREF:
425 	case BPF_KPTR_REF:
426 	case BPF_KPTR_PERCPU:
427 	case BPF_UPTR:
428 		break;
429 	default:
430 		WARN_ON_ONCE(1);
431 		return;
432 	}
433 }
434 
435 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
436 {
437 	if (IS_ERR_OR_NULL(rec))
438 		return false;
439 	return rec->field_mask & type;
440 }
441 
442 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
443 {
444 	int i;
445 
446 	if (IS_ERR_OR_NULL(rec))
447 		return;
448 	for (i = 0; i < rec->cnt; i++)
449 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
450 }
451 
452 /* 'dst' must be a temporary buffer and should not point to memory that is being
453  * used in parallel by a bpf program or bpf syscall, otherwise the access from
454  * the bpf program or bpf syscall may be corrupted by the reinitialization,
455  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
456  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
457  * program or bpf syscall.
458  */
459 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
460 {
461 	bpf_obj_init(map->record, dst);
462 }
463 
464 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
465  * forced to use 'long' read/writes to try to atomically copy long counters.
466  * Best-effort only.  No barriers here, since it _will_ race with concurrent
467  * updates from BPF programs. Called from bpf syscall and mostly used with
468  * size 8 or 16 bytes, so ask compiler to inline it.
469  */
470 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
471 {
472 	const long *lsrc = src;
473 	long *ldst = dst;
474 
475 	size /= sizeof(long);
476 	while (size--)
477 		data_race(*ldst++ = *lsrc++);
478 }
479 
480 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
481 static inline void bpf_obj_memcpy(struct btf_record *rec,
482 				  void *dst, void *src, u32 size,
483 				  bool long_memcpy)
484 {
485 	u32 curr_off = 0;
486 	int i;
487 
488 	if (IS_ERR_OR_NULL(rec)) {
489 		if (long_memcpy)
490 			bpf_long_memcpy(dst, src, round_up(size, 8));
491 		else
492 			memcpy(dst, src, size);
493 		return;
494 	}
495 
496 	for (i = 0; i < rec->cnt; i++) {
497 		u32 next_off = rec->fields[i].offset;
498 		u32 sz = next_off - curr_off;
499 
500 		memcpy(dst + curr_off, src + curr_off, sz);
501 		curr_off += rec->fields[i].size + sz;
502 	}
503 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
504 }
505 
506 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
507 {
508 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
509 }
510 
511 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
512 {
513 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
514 }
515 
516 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
517 {
518 	unsigned long *src_uptr, *dst_uptr;
519 	const struct btf_field *field;
520 	int i;
521 
522 	if (!btf_record_has_field(rec, BPF_UPTR))
523 		return;
524 
525 	for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
526 		if (field->type != BPF_UPTR)
527 			continue;
528 
529 		src_uptr = src + field->offset;
530 		dst_uptr = dst + field->offset;
531 		swap(*src_uptr, *dst_uptr);
532 	}
533 }
534 
535 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
536 {
537 	u32 curr_off = 0;
538 	int i;
539 
540 	if (IS_ERR_OR_NULL(rec)) {
541 		memset(dst, 0, size);
542 		return;
543 	}
544 
545 	for (i = 0; i < rec->cnt; i++) {
546 		u32 next_off = rec->fields[i].offset;
547 		u32 sz = next_off - curr_off;
548 
549 		memset(dst + curr_off, 0, sz);
550 		curr_off += rec->fields[i].size + sz;
551 	}
552 	memset(dst + curr_off, 0, size - curr_off);
553 }
554 
555 static inline void zero_map_value(struct bpf_map *map, void *dst)
556 {
557 	bpf_obj_memzero(map->record, dst, map->value_size);
558 }
559 
560 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
561 			   bool lock_src);
562 void bpf_timer_cancel_and_free(void *timer);
563 void bpf_wq_cancel_and_free(void *timer);
564 void bpf_list_head_free(const struct btf_field *field, void *list_head,
565 			struct bpf_spin_lock *spin_lock);
566 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
567 		      struct bpf_spin_lock *spin_lock);
568 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
569 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
570 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
571 
572 struct bpf_offload_dev;
573 struct bpf_offloaded_map;
574 
575 struct bpf_map_dev_ops {
576 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
577 				void *key, void *next_key);
578 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
579 			       void *key, void *value);
580 	int (*map_update_elem)(struct bpf_offloaded_map *map,
581 			       void *key, void *value, u64 flags);
582 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
583 };
584 
585 struct bpf_offloaded_map {
586 	struct bpf_map map;
587 	struct net_device *netdev;
588 	const struct bpf_map_dev_ops *dev_ops;
589 	void *dev_priv;
590 	struct list_head offloads;
591 };
592 
593 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
594 {
595 	return container_of(map, struct bpf_offloaded_map, map);
596 }
597 
598 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
599 {
600 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
601 }
602 
603 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
604 {
605 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
606 		map->ops->map_seq_show_elem;
607 }
608 
609 int map_check_no_btf(const struct bpf_map *map,
610 		     const struct btf *btf,
611 		     const struct btf_type *key_type,
612 		     const struct btf_type *value_type);
613 
614 bool bpf_map_meta_equal(const struct bpf_map *meta0,
615 			const struct bpf_map *meta1);
616 
617 extern const struct bpf_map_ops bpf_map_offload_ops;
618 
619 /* bpf_type_flag contains a set of flags that are applicable to the values of
620  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
621  * or a memory is read-only. We classify types into two categories: base types
622  * and extended types. Extended types are base types combined with a type flag.
623  *
624  * Currently there are no more than 32 base types in arg_type, ret_type and
625  * reg_types.
626  */
627 #define BPF_BASE_TYPE_BITS	8
628 
629 enum bpf_type_flag {
630 	/* PTR may be NULL. */
631 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
632 
633 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
634 	 * compatible with both mutable and immutable memory.
635 	 */
636 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
637 
638 	/* MEM points to BPF ring buffer reservation. */
639 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
640 
641 	/* MEM is in user address space. */
642 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
643 
644 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
645 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
646 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
647 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
648 	 * to the specified cpu.
649 	 */
650 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
651 
652 	/* Indicates that the argument will be released. */
653 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
654 
655 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
656 	 * unreferenced and referenced kptr loaded from map value using a load
657 	 * instruction, so that they can only be dereferenced but not escape the
658 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
659 	 * kfunc or bpf helpers).
660 	 */
661 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
662 
663 	/* MEM can be uninitialized. */
664 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
665 
666 	/* DYNPTR points to memory local to the bpf program. */
667 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
668 
669 	/* DYNPTR points to a kernel-produced ringbuf record. */
670 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
671 
672 	/* Size is known at compile time. */
673 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
674 
675 	/* MEM is of an allocated object of type in program BTF. This is used to
676 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
677 	 */
678 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
679 
680 	/* PTR was passed from the kernel in a trusted context, and may be
681 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
682 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
683 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
684 	 * without invoking bpf_kptr_xchg(). What we really need to know is
685 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
686 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
687 	 * helpers, they do not cover all possible instances of unsafe
688 	 * pointers. For example, a pointer that was obtained from walking a
689 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
690 	 * fact that it may be NULL, invalid, etc. This is due to backwards
691 	 * compatibility requirements, as this was the behavior that was first
692 	 * introduced when kptrs were added. The behavior is now considered
693 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
694 	 *
695 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
696 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
697 	 * For example, pointers passed to tracepoint arguments are considered
698 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
699 	 * callbacks. As alluded to above, pointers that are obtained from
700 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
701 	 * struct task_struct *task is PTR_TRUSTED, then accessing
702 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
703 	 * in a BPF register. Similarly, pointers passed to certain programs
704 	 * types such as kretprobes are not guaranteed to be valid, as they may
705 	 * for example contain an object that was recently freed.
706 	 */
707 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
708 
709 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
710 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
711 
712 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
713 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
714 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
715 	 */
716 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
717 
718 	/* DYNPTR points to sk_buff */
719 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
720 
721 	/* DYNPTR points to xdp_buff */
722 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
723 
724 	/* Memory must be aligned on some architectures, used in combination with
725 	 * MEM_FIXED_SIZE.
726 	 */
727 	MEM_ALIGNED		= BIT(17 + BPF_BASE_TYPE_BITS),
728 
729 	/* MEM is being written to, often combined with MEM_UNINIT. Non-presence
730 	 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
731 	 * MEM_UNINIT means that memory needs to be initialized since it is also
732 	 * read.
733 	 */
734 	MEM_WRITE		= BIT(18 + BPF_BASE_TYPE_BITS),
735 
736 	__BPF_TYPE_FLAG_MAX,
737 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
738 };
739 
740 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
741 				 | DYNPTR_TYPE_XDP)
742 
743 /* Max number of base types. */
744 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
745 
746 /* Max number of all types. */
747 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
748 
749 /* function argument constraints */
750 enum bpf_arg_type {
751 	ARG_DONTCARE = 0,	/* unused argument in helper function */
752 
753 	/* the following constraints used to prototype
754 	 * bpf_map_lookup/update/delete_elem() functions
755 	 */
756 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
757 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
758 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
759 
760 	/* Used to prototype bpf_memcmp() and other functions that access data
761 	 * on eBPF program stack
762 	 */
763 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
764 	ARG_PTR_TO_ARENA,
765 
766 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
767 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
768 
769 	ARG_PTR_TO_CTX,		/* pointer to context */
770 	ARG_ANYTHING,		/* any (initialized) argument is ok */
771 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
772 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
773 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
774 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
775 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
776 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
777 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
778 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
779 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
780 	ARG_PTR_TO_STACK,	/* pointer to stack */
781 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
782 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
783 	ARG_KPTR_XCHG_DEST,	/* pointer to destination that kptrs are bpf_kptr_xchg'd into */
784 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
785 	__BPF_ARG_TYPE_MAX,
786 
787 	/* Extended arg_types. */
788 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
789 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
790 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
791 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
792 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
793 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
794 	/* Pointer to memory does not need to be initialized, since helper function
795 	 * fills all bytes or clears them in error case.
796 	 */
797 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
798 	/* Pointer to valid memory of size known at compile time. */
799 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
800 
801 	/* This must be the last entry. Its purpose is to ensure the enum is
802 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
803 	 */
804 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
805 };
806 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
807 
808 /* type of values returned from helper functions */
809 enum bpf_return_type {
810 	RET_INTEGER,			/* function returns integer */
811 	RET_VOID,			/* function doesn't return anything */
812 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
813 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
814 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
815 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
816 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
817 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
818 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
819 	__BPF_RET_TYPE_MAX,
820 
821 	/* Extended ret_types. */
822 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
823 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
824 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
825 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
826 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
827 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
828 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
829 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
830 
831 	/* This must be the last entry. Its purpose is to ensure the enum is
832 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
833 	 */
834 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
835 };
836 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
837 
838 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
839  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
840  * instructions after verifying
841  */
842 struct bpf_func_proto {
843 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
844 	bool gpl_only;
845 	bool pkt_access;
846 	bool might_sleep;
847 	/* set to true if helper follows contract for llvm
848 	 * attribute bpf_fastcall:
849 	 * - void functions do not scratch r0
850 	 * - functions taking N arguments scratch only registers r1-rN
851 	 */
852 	bool allow_fastcall;
853 	enum bpf_return_type ret_type;
854 	union {
855 		struct {
856 			enum bpf_arg_type arg1_type;
857 			enum bpf_arg_type arg2_type;
858 			enum bpf_arg_type arg3_type;
859 			enum bpf_arg_type arg4_type;
860 			enum bpf_arg_type arg5_type;
861 		};
862 		enum bpf_arg_type arg_type[5];
863 	};
864 	union {
865 		struct {
866 			u32 *arg1_btf_id;
867 			u32 *arg2_btf_id;
868 			u32 *arg3_btf_id;
869 			u32 *arg4_btf_id;
870 			u32 *arg5_btf_id;
871 		};
872 		u32 *arg_btf_id[5];
873 		struct {
874 			size_t arg1_size;
875 			size_t arg2_size;
876 			size_t arg3_size;
877 			size_t arg4_size;
878 			size_t arg5_size;
879 		};
880 		size_t arg_size[5];
881 	};
882 	int *ret_btf_id; /* return value btf_id */
883 	bool (*allowed)(const struct bpf_prog *prog);
884 };
885 
886 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
887  * the first argument to eBPF programs.
888  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
889  */
890 struct bpf_context;
891 
892 enum bpf_access_type {
893 	BPF_READ = 1,
894 	BPF_WRITE = 2
895 };
896 
897 /* types of values stored in eBPF registers */
898 /* Pointer types represent:
899  * pointer
900  * pointer + imm
901  * pointer + (u16) var
902  * pointer + (u16) var + imm
903  * if (range > 0) then [ptr, ptr + range - off) is safe to access
904  * if (id > 0) means that some 'var' was added
905  * if (off > 0) means that 'imm' was added
906  */
907 enum bpf_reg_type {
908 	NOT_INIT = 0,		 /* nothing was written into register */
909 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
910 	PTR_TO_CTX,		 /* reg points to bpf_context */
911 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
912 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
913 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
914 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
915 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
916 	PTR_TO_PACKET,		 /* reg points to skb->data */
917 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
918 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
919 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
920 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
921 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
922 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
923 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
924 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
925 	 * to be null checked by the BPF program. This does not imply the
926 	 * pointer is _not_ null and in practice this can easily be a null
927 	 * pointer when reading pointer chains. The assumption is program
928 	 * context will handle null pointer dereference typically via fault
929 	 * handling. The verifier must keep this in mind and can make no
930 	 * assumptions about null or non-null when doing branch analysis.
931 	 * Further, when passed into helpers the helpers can not, without
932 	 * additional context, assume the value is non-null.
933 	 */
934 	PTR_TO_BTF_ID,
935 	PTR_TO_MEM,		 /* reg points to valid memory region */
936 	PTR_TO_ARENA,
937 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
938 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
939 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
940 	__BPF_REG_TYPE_MAX,
941 
942 	/* Extended reg_types. */
943 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
944 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
945 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
946 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
947 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
948 	 * been checked for null. Used primarily to inform the verifier
949 	 * an explicit null check is required for this struct.
950 	 */
951 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
952 
953 	/* This must be the last entry. Its purpose is to ensure the enum is
954 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
955 	 */
956 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
957 };
958 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
959 
960 /* The information passed from prog-specific *_is_valid_access
961  * back to the verifier.
962  */
963 struct bpf_insn_access_aux {
964 	enum bpf_reg_type reg_type;
965 	bool is_ldsx;
966 	union {
967 		int ctx_field_size;
968 		struct {
969 			struct btf *btf;
970 			u32 btf_id;
971 			u32 ref_obj_id;
972 		};
973 	};
974 	struct bpf_verifier_log *log; /* for verbose logs */
975 	bool is_retval; /* is accessing function return value ? */
976 };
977 
978 static inline void
979 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
980 {
981 	aux->ctx_field_size = size;
982 }
983 
984 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
985 {
986 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
987 }
988 
989 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
990 {
991 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
992 }
993 
994 /* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an
995  * atomic load or store, and false if it is a read-modify-write instruction.
996  */
997 static inline bool
998 bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn)
999 {
1000 	switch (atomic_insn->imm) {
1001 	case BPF_LOAD_ACQ:
1002 	case BPF_STORE_REL:
1003 		return true;
1004 	default:
1005 		return false;
1006 	}
1007 }
1008 
1009 struct bpf_prog_ops {
1010 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
1011 			union bpf_attr __user *uattr);
1012 };
1013 
1014 struct bpf_reg_state;
1015 struct bpf_verifier_ops {
1016 	/* return eBPF function prototype for verification */
1017 	const struct bpf_func_proto *
1018 	(*get_func_proto)(enum bpf_func_id func_id,
1019 			  const struct bpf_prog *prog);
1020 
1021 	/* return true if 'size' wide access at offset 'off' within bpf_context
1022 	 * with 'type' (read or write) is allowed
1023 	 */
1024 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1025 				const struct bpf_prog *prog,
1026 				struct bpf_insn_access_aux *info);
1027 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1028 			    const struct bpf_prog *prog);
1029 	int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1030 			    s16 ctx_stack_off);
1031 	int (*gen_ld_abs)(const struct bpf_insn *orig,
1032 			  struct bpf_insn *insn_buf);
1033 	u32 (*convert_ctx_access)(enum bpf_access_type type,
1034 				  const struct bpf_insn *src,
1035 				  struct bpf_insn *dst,
1036 				  struct bpf_prog *prog, u32 *target_size);
1037 	int (*btf_struct_access)(struct bpf_verifier_log *log,
1038 				 const struct bpf_reg_state *reg,
1039 				 int off, int size);
1040 };
1041 
1042 struct bpf_prog_offload_ops {
1043 	/* verifier basic callbacks */
1044 	int (*insn_hook)(struct bpf_verifier_env *env,
1045 			 int insn_idx, int prev_insn_idx);
1046 	int (*finalize)(struct bpf_verifier_env *env);
1047 	/* verifier optimization callbacks (called after .finalize) */
1048 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1049 			    struct bpf_insn *insn);
1050 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1051 	/* program management callbacks */
1052 	int (*prepare)(struct bpf_prog *prog);
1053 	int (*translate)(struct bpf_prog *prog);
1054 	void (*destroy)(struct bpf_prog *prog);
1055 };
1056 
1057 struct bpf_prog_offload {
1058 	struct bpf_prog		*prog;
1059 	struct net_device	*netdev;
1060 	struct bpf_offload_dev	*offdev;
1061 	void			*dev_priv;
1062 	struct list_head	offloads;
1063 	bool			dev_state;
1064 	bool			opt_failed;
1065 	void			*jited_image;
1066 	u32			jited_len;
1067 };
1068 
1069 enum bpf_cgroup_storage_type {
1070 	BPF_CGROUP_STORAGE_SHARED,
1071 	BPF_CGROUP_STORAGE_PERCPU,
1072 	__BPF_CGROUP_STORAGE_MAX
1073 };
1074 
1075 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1076 
1077 /* The longest tracepoint has 12 args.
1078  * See include/trace/bpf_probe.h
1079  */
1080 #define MAX_BPF_FUNC_ARGS 12
1081 
1082 /* The maximum number of arguments passed through registers
1083  * a single function may have.
1084  */
1085 #define MAX_BPF_FUNC_REG_ARGS 5
1086 
1087 /* The argument is a structure. */
1088 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1089 
1090 /* The argument is signed. */
1091 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1092 
1093 struct btf_func_model {
1094 	u8 ret_size;
1095 	u8 ret_flags;
1096 	u8 nr_args;
1097 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1098 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1099 };
1100 
1101 /* Restore arguments before returning from trampoline to let original function
1102  * continue executing. This flag is used for fentry progs when there are no
1103  * fexit progs.
1104  */
1105 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1106 /* Call original function after fentry progs, but before fexit progs.
1107  * Makes sense for fentry/fexit, normal calls and indirect calls.
1108  */
1109 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1110 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1111  * programs only. Should not be used with normal calls and indirect calls.
1112  */
1113 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1114 /* Store IP address of the caller on the trampoline stack,
1115  * so it's available for trampoline's programs.
1116  */
1117 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1118 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1119 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1120 
1121 /* Get original function from stack instead of from provided direct address.
1122  * Makes sense for trampolines with fexit or fmod_ret programs.
1123  */
1124 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1125 
1126 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1127  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1128  */
1129 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1130 
1131 /* Indicate that current trampoline is in a tail call context. Then, it has to
1132  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1133  */
1134 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1135 
1136 /*
1137  * Indicate the trampoline should be suitable to receive indirect calls;
1138  * without this indirectly calling the generated code can result in #UD/#CP,
1139  * depending on the CFI options.
1140  *
1141  * Used by bpf_struct_ops.
1142  *
1143  * Incompatible with FENTRY usage, overloads @func_addr argument.
1144  */
1145 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1146 
1147 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1148  * bytes on x86.
1149  */
1150 enum {
1151 #if defined(__s390x__)
1152 	BPF_MAX_TRAMP_LINKS = 27,
1153 #else
1154 	BPF_MAX_TRAMP_LINKS = 38,
1155 #endif
1156 };
1157 
1158 struct bpf_tramp_links {
1159 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1160 	int nr_links;
1161 };
1162 
1163 struct bpf_tramp_run_ctx;
1164 
1165 /* Different use cases for BPF trampoline:
1166  * 1. replace nop at the function entry (kprobe equivalent)
1167  *    flags = BPF_TRAMP_F_RESTORE_REGS
1168  *    fentry = a set of programs to run before returning from trampoline
1169  *
1170  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1171  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1172  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1173  *    fentry = a set of program to run before calling original function
1174  *    fexit = a set of program to run after original function
1175  *
1176  * 3. replace direct call instruction anywhere in the function body
1177  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1178  *    With flags = 0
1179  *      fentry = a set of programs to run before returning from trampoline
1180  *    With flags = BPF_TRAMP_F_CALL_ORIG
1181  *      orig_call = original callback addr or direct function addr
1182  *      fentry = a set of program to run before calling original function
1183  *      fexit = a set of program to run after original function
1184  */
1185 struct bpf_tramp_image;
1186 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1187 				const struct btf_func_model *m, u32 flags,
1188 				struct bpf_tramp_links *tlinks,
1189 				void *func_addr);
1190 void *arch_alloc_bpf_trampoline(unsigned int size);
1191 void arch_free_bpf_trampoline(void *image, unsigned int size);
1192 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1193 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1194 			     struct bpf_tramp_links *tlinks, void *func_addr);
1195 
1196 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1197 					     struct bpf_tramp_run_ctx *run_ctx);
1198 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1199 					     struct bpf_tramp_run_ctx *run_ctx);
1200 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1201 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1202 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1203 				      struct bpf_tramp_run_ctx *run_ctx);
1204 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1205 				      struct bpf_tramp_run_ctx *run_ctx);
1206 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1207 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1208 
1209 struct bpf_ksym {
1210 	unsigned long		 start;
1211 	unsigned long		 end;
1212 	char			 name[KSYM_NAME_LEN];
1213 	struct list_head	 lnode;
1214 	struct latch_tree_node	 tnode;
1215 	bool			 prog;
1216 };
1217 
1218 enum bpf_tramp_prog_type {
1219 	BPF_TRAMP_FENTRY,
1220 	BPF_TRAMP_FEXIT,
1221 	BPF_TRAMP_MODIFY_RETURN,
1222 	BPF_TRAMP_MAX,
1223 	BPF_TRAMP_REPLACE, /* more than MAX */
1224 };
1225 
1226 struct bpf_tramp_image {
1227 	void *image;
1228 	int size;
1229 	struct bpf_ksym ksym;
1230 	struct percpu_ref pcref;
1231 	void *ip_after_call;
1232 	void *ip_epilogue;
1233 	union {
1234 		struct rcu_head rcu;
1235 		struct work_struct work;
1236 	};
1237 };
1238 
1239 struct bpf_trampoline {
1240 	/* hlist for trampoline_table */
1241 	struct hlist_node hlist;
1242 	struct ftrace_ops *fops;
1243 	/* serializes access to fields of this trampoline */
1244 	struct mutex mutex;
1245 	refcount_t refcnt;
1246 	u32 flags;
1247 	u64 key;
1248 	struct {
1249 		struct btf_func_model model;
1250 		void *addr;
1251 		bool ftrace_managed;
1252 	} func;
1253 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1254 	 * program by replacing one of its functions. func.addr is the address
1255 	 * of the function it replaced.
1256 	 */
1257 	struct bpf_prog *extension_prog;
1258 	/* list of BPF programs using this trampoline */
1259 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1260 	/* Number of attached programs. A counter per kind. */
1261 	int progs_cnt[BPF_TRAMP_MAX];
1262 	/* Executable image of trampoline */
1263 	struct bpf_tramp_image *cur_image;
1264 };
1265 
1266 struct bpf_attach_target_info {
1267 	struct btf_func_model fmodel;
1268 	long tgt_addr;
1269 	struct module *tgt_mod;
1270 	const char *tgt_name;
1271 	const struct btf_type *tgt_type;
1272 };
1273 
1274 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1275 
1276 struct bpf_dispatcher_prog {
1277 	struct bpf_prog *prog;
1278 	refcount_t users;
1279 };
1280 
1281 struct bpf_dispatcher {
1282 	/* dispatcher mutex */
1283 	struct mutex mutex;
1284 	void *func;
1285 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1286 	int num_progs;
1287 	void *image;
1288 	void *rw_image;
1289 	u32 image_off;
1290 	struct bpf_ksym ksym;
1291 #ifdef CONFIG_HAVE_STATIC_CALL
1292 	struct static_call_key *sc_key;
1293 	void *sc_tramp;
1294 #endif
1295 };
1296 
1297 #ifndef __bpfcall
1298 #define __bpfcall __nocfi
1299 #endif
1300 
1301 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1302 	const void *ctx,
1303 	const struct bpf_insn *insnsi,
1304 	bpf_func_t bpf_func)
1305 {
1306 	return bpf_func(ctx, insnsi);
1307 }
1308 
1309 /* the implementation of the opaque uapi struct bpf_dynptr */
1310 struct bpf_dynptr_kern {
1311 	void *data;
1312 	/* Size represents the number of usable bytes of dynptr data.
1313 	 * If for example the offset is at 4 for a local dynptr whose data is
1314 	 * of type u64, the number of usable bytes is 4.
1315 	 *
1316 	 * The upper 8 bits are reserved. It is as follows:
1317 	 * Bits 0 - 23 = size
1318 	 * Bits 24 - 30 = dynptr type
1319 	 * Bit 31 = whether dynptr is read-only
1320 	 */
1321 	u32 size;
1322 	u32 offset;
1323 } __aligned(8);
1324 
1325 enum bpf_dynptr_type {
1326 	BPF_DYNPTR_TYPE_INVALID,
1327 	/* Points to memory that is local to the bpf program */
1328 	BPF_DYNPTR_TYPE_LOCAL,
1329 	/* Underlying data is a ringbuf record */
1330 	BPF_DYNPTR_TYPE_RINGBUF,
1331 	/* Underlying data is a sk_buff */
1332 	BPF_DYNPTR_TYPE_SKB,
1333 	/* Underlying data is a xdp_buff */
1334 	BPF_DYNPTR_TYPE_XDP,
1335 };
1336 
1337 int bpf_dynptr_check_size(u32 size);
1338 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1339 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1340 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1341 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1342 
1343 #ifdef CONFIG_BPF_JIT
1344 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1345 			     struct bpf_trampoline *tr,
1346 			     struct bpf_prog *tgt_prog);
1347 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1348 			       struct bpf_trampoline *tr,
1349 			       struct bpf_prog *tgt_prog);
1350 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1351 					  struct bpf_attach_target_info *tgt_info);
1352 void bpf_trampoline_put(struct bpf_trampoline *tr);
1353 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1354 
1355 /*
1356  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1357  * indirection with a direct call to the bpf program. If the architecture does
1358  * not have STATIC_CALL, avoid a double-indirection.
1359  */
1360 #ifdef CONFIG_HAVE_STATIC_CALL
1361 
1362 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1363 	.sc_key = &STATIC_CALL_KEY(_name),			\
1364 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1365 
1366 #define __BPF_DISPATCHER_SC(name)				\
1367 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1368 
1369 #define __BPF_DISPATCHER_CALL(name)				\
1370 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1371 
1372 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1373 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1374 
1375 #else
1376 #define __BPF_DISPATCHER_SC_INIT(name)
1377 #define __BPF_DISPATCHER_SC(name)
1378 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1379 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1380 #endif
1381 
1382 #define BPF_DISPATCHER_INIT(_name) {				\
1383 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1384 	.func = &_name##_func,					\
1385 	.progs = {},						\
1386 	.num_progs = 0,						\
1387 	.image = NULL,						\
1388 	.image_off = 0,						\
1389 	.ksym = {						\
1390 		.name  = #_name,				\
1391 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1392 	},							\
1393 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1394 }
1395 
1396 #define DEFINE_BPF_DISPATCHER(name)					\
1397 	__BPF_DISPATCHER_SC(name);					\
1398 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1399 		const void *ctx,					\
1400 		const struct bpf_insn *insnsi,				\
1401 		bpf_func_t bpf_func)					\
1402 	{								\
1403 		return __BPF_DISPATCHER_CALL(name);			\
1404 	}								\
1405 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1406 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1407 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1408 
1409 #define DECLARE_BPF_DISPATCHER(name)					\
1410 	unsigned int bpf_dispatcher_##name##_func(			\
1411 		const void *ctx,					\
1412 		const struct bpf_insn *insnsi,				\
1413 		bpf_func_t bpf_func);					\
1414 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1415 
1416 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1417 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1418 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1419 				struct bpf_prog *to);
1420 /* Called only from JIT-enabled code, so there's no need for stubs. */
1421 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1422 void bpf_image_ksym_add(struct bpf_ksym *ksym);
1423 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1424 void bpf_ksym_add(struct bpf_ksym *ksym);
1425 void bpf_ksym_del(struct bpf_ksym *ksym);
1426 int bpf_jit_charge_modmem(u32 size);
1427 void bpf_jit_uncharge_modmem(u32 size);
1428 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1429 #else
1430 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1431 					   struct bpf_trampoline *tr,
1432 					   struct bpf_prog *tgt_prog)
1433 {
1434 	return -ENOTSUPP;
1435 }
1436 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1437 					     struct bpf_trampoline *tr,
1438 					     struct bpf_prog *tgt_prog)
1439 {
1440 	return -ENOTSUPP;
1441 }
1442 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1443 							struct bpf_attach_target_info *tgt_info)
1444 {
1445 	return NULL;
1446 }
1447 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1448 #define DEFINE_BPF_DISPATCHER(name)
1449 #define DECLARE_BPF_DISPATCHER(name)
1450 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1451 #define BPF_DISPATCHER_PTR(name) NULL
1452 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1453 					      struct bpf_prog *from,
1454 					      struct bpf_prog *to) {}
1455 static inline bool is_bpf_image_address(unsigned long address)
1456 {
1457 	return false;
1458 }
1459 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1460 {
1461 	return false;
1462 }
1463 #endif
1464 
1465 struct bpf_func_info_aux {
1466 	u16 linkage;
1467 	bool unreliable;
1468 	bool called : 1;
1469 	bool verified : 1;
1470 };
1471 
1472 enum bpf_jit_poke_reason {
1473 	BPF_POKE_REASON_TAIL_CALL,
1474 };
1475 
1476 /* Descriptor of pokes pointing /into/ the JITed image. */
1477 struct bpf_jit_poke_descriptor {
1478 	void *tailcall_target;
1479 	void *tailcall_bypass;
1480 	void *bypass_addr;
1481 	void *aux;
1482 	union {
1483 		struct {
1484 			struct bpf_map *map;
1485 			u32 key;
1486 		} tail_call;
1487 	};
1488 	bool tailcall_target_stable;
1489 	u8 adj_off;
1490 	u16 reason;
1491 	u32 insn_idx;
1492 };
1493 
1494 /* reg_type info for ctx arguments */
1495 struct bpf_ctx_arg_aux {
1496 	u32 offset;
1497 	enum bpf_reg_type reg_type;
1498 	struct btf *btf;
1499 	u32 btf_id;
1500 	u32 ref_obj_id;
1501 	bool refcounted;
1502 };
1503 
1504 struct btf_mod_pair {
1505 	struct btf *btf;
1506 	struct module *module;
1507 };
1508 
1509 struct bpf_kfunc_desc_tab;
1510 
1511 struct bpf_prog_aux {
1512 	atomic64_t refcnt;
1513 	u32 used_map_cnt;
1514 	u32 used_btf_cnt;
1515 	u32 max_ctx_offset;
1516 	u32 max_pkt_offset;
1517 	u32 max_tp_access;
1518 	u32 stack_depth;
1519 	u32 id;
1520 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1521 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1522 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1523 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1524 	u32 ctx_arg_info_size;
1525 	u32 max_rdonly_access;
1526 	u32 max_rdwr_access;
1527 	struct btf *attach_btf;
1528 	struct bpf_ctx_arg_aux *ctx_arg_info;
1529 	void __percpu *priv_stack_ptr;
1530 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1531 	struct bpf_prog *dst_prog;
1532 	struct bpf_trampoline *dst_trampoline;
1533 	enum bpf_prog_type saved_dst_prog_type;
1534 	enum bpf_attach_type saved_dst_attach_type;
1535 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1536 	bool dev_bound; /* Program is bound to the netdev. */
1537 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1538 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1539 	bool attach_tracing_prog; /* true if tracing another tracing program */
1540 	bool func_proto_unreliable;
1541 	bool tail_call_reachable;
1542 	bool xdp_has_frags;
1543 	bool exception_cb;
1544 	bool exception_boundary;
1545 	bool is_extended; /* true if extended by freplace program */
1546 	bool jits_use_priv_stack;
1547 	bool priv_stack_requested;
1548 	bool changes_pkt_data;
1549 	bool might_sleep;
1550 	u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1551 	struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1552 	struct bpf_arena *arena;
1553 	void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1554 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1555 	const struct btf_type *attach_func_proto;
1556 	/* function name for valid attach_btf_id */
1557 	const char *attach_func_name;
1558 	struct bpf_prog **func;
1559 	void *jit_data; /* JIT specific data. arch dependent */
1560 	struct bpf_jit_poke_descriptor *poke_tab;
1561 	struct bpf_kfunc_desc_tab *kfunc_tab;
1562 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1563 	u32 size_poke_tab;
1564 #ifdef CONFIG_FINEIBT
1565 	struct bpf_ksym ksym_prefix;
1566 #endif
1567 	struct bpf_ksym ksym;
1568 	const struct bpf_prog_ops *ops;
1569 	struct bpf_map **used_maps;
1570 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1571 	struct btf_mod_pair *used_btfs;
1572 	struct bpf_prog *prog;
1573 	struct user_struct *user;
1574 	u64 load_time; /* ns since boottime */
1575 	u32 verified_insns;
1576 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1577 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1578 	char name[BPF_OBJ_NAME_LEN];
1579 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1580 #ifdef CONFIG_SECURITY
1581 	void *security;
1582 #endif
1583 	struct bpf_token *token;
1584 	struct bpf_prog_offload *offload;
1585 	struct btf *btf;
1586 	struct bpf_func_info *func_info;
1587 	struct bpf_func_info_aux *func_info_aux;
1588 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1589 	 * has the xlated insn offset.
1590 	 * Both the main and sub prog share the same linfo.
1591 	 * The subprog can access its first linfo by
1592 	 * using the linfo_idx.
1593 	 */
1594 	struct bpf_line_info *linfo;
1595 	/* jited_linfo is the jited addr of the linfo.  It has a
1596 	 * one to one mapping to linfo:
1597 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1598 	 * Both the main and sub prog share the same jited_linfo.
1599 	 * The subprog can access its first jited_linfo by
1600 	 * using the linfo_idx.
1601 	 */
1602 	void **jited_linfo;
1603 	u32 func_info_cnt;
1604 	u32 nr_linfo;
1605 	/* subprog can use linfo_idx to access its first linfo and
1606 	 * jited_linfo.
1607 	 * main prog always has linfo_idx == 0
1608 	 */
1609 	u32 linfo_idx;
1610 	struct module *mod;
1611 	u32 num_exentries;
1612 	struct exception_table_entry *extable;
1613 	union {
1614 		struct work_struct work;
1615 		struct rcu_head	rcu;
1616 	};
1617 };
1618 
1619 struct bpf_prog {
1620 	u16			pages;		/* Number of allocated pages */
1621 	u16			jited:1,	/* Is our filter JIT'ed? */
1622 				jit_requested:1,/* archs need to JIT the prog */
1623 				gpl_compatible:1, /* Is filter GPL compatible? */
1624 				cb_access:1,	/* Is control block accessed? */
1625 				dst_needed:1,	/* Do we need dst entry? */
1626 				blinding_requested:1, /* needs constant blinding */
1627 				blinded:1,	/* Was blinded */
1628 				is_func:1,	/* program is a bpf function */
1629 				kprobe_override:1, /* Do we override a kprobe? */
1630 				has_callchain_buf:1, /* callchain buffer allocated? */
1631 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1632 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1633 				call_get_func_ip:1, /* Do we call get_func_ip() */
1634 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1635 				sleepable:1;	/* BPF program is sleepable */
1636 	enum bpf_prog_type	type;		/* Type of BPF program */
1637 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1638 	u32			len;		/* Number of filter blocks */
1639 	u32			jited_len;	/* Size of jited insns in bytes */
1640 	u8			tag[BPF_TAG_SIZE];
1641 	struct bpf_prog_stats __percpu *stats;
1642 	int __percpu		*active;
1643 	unsigned int		(*bpf_func)(const void *ctx,
1644 					    const struct bpf_insn *insn);
1645 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1646 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1647 	/* Instructions for interpreter */
1648 	union {
1649 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1650 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1651 	};
1652 };
1653 
1654 struct bpf_array_aux {
1655 	/* Programs with direct jumps into programs part of this array. */
1656 	struct list_head poke_progs;
1657 	struct bpf_map *map;
1658 	struct mutex poke_mutex;
1659 	struct work_struct work;
1660 };
1661 
1662 struct bpf_link {
1663 	atomic64_t refcnt;
1664 	u32 id;
1665 	enum bpf_link_type type;
1666 	const struct bpf_link_ops *ops;
1667 	struct bpf_prog *prog;
1668 	/* whether BPF link itself has "sleepable" semantics, which can differ
1669 	 * from underlying BPF program having a "sleepable" semantics, as BPF
1670 	 * link's semantics is determined by target attach hook
1671 	 */
1672 	bool sleepable;
1673 	/* rcu is used before freeing, work can be used to schedule that
1674 	 * RCU-based freeing before that, so they never overlap
1675 	 */
1676 	union {
1677 		struct rcu_head rcu;
1678 		struct work_struct work;
1679 	};
1680 };
1681 
1682 struct bpf_link_ops {
1683 	void (*release)(struct bpf_link *link);
1684 	/* deallocate link resources callback, called without RCU grace period
1685 	 * waiting
1686 	 */
1687 	void (*dealloc)(struct bpf_link *link);
1688 	/* deallocate link resources callback, called after RCU grace period;
1689 	 * if either the underlying BPF program is sleepable or BPF link's
1690 	 * target hook is sleepable, we'll go through tasks trace RCU GP and
1691 	 * then "classic" RCU GP; this need for chaining tasks trace and
1692 	 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1693 	 */
1694 	void (*dealloc_deferred)(struct bpf_link *link);
1695 	int (*detach)(struct bpf_link *link);
1696 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1697 			   struct bpf_prog *old_prog);
1698 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1699 	int (*fill_link_info)(const struct bpf_link *link,
1700 			      struct bpf_link_info *info);
1701 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1702 			  struct bpf_map *old_map);
1703 	__poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1704 };
1705 
1706 struct bpf_tramp_link {
1707 	struct bpf_link link;
1708 	struct hlist_node tramp_hlist;
1709 	u64 cookie;
1710 };
1711 
1712 struct bpf_shim_tramp_link {
1713 	struct bpf_tramp_link link;
1714 	struct bpf_trampoline *trampoline;
1715 };
1716 
1717 struct bpf_tracing_link {
1718 	struct bpf_tramp_link link;
1719 	enum bpf_attach_type attach_type;
1720 	struct bpf_trampoline *trampoline;
1721 	struct bpf_prog *tgt_prog;
1722 };
1723 
1724 struct bpf_raw_tp_link {
1725 	struct bpf_link link;
1726 	struct bpf_raw_event_map *btp;
1727 	u64 cookie;
1728 };
1729 
1730 struct bpf_link_primer {
1731 	struct bpf_link *link;
1732 	struct file *file;
1733 	int fd;
1734 	u32 id;
1735 };
1736 
1737 struct bpf_mount_opts {
1738 	kuid_t uid;
1739 	kgid_t gid;
1740 	umode_t mode;
1741 
1742 	/* BPF token-related delegation options */
1743 	u64 delegate_cmds;
1744 	u64 delegate_maps;
1745 	u64 delegate_progs;
1746 	u64 delegate_attachs;
1747 };
1748 
1749 struct bpf_token {
1750 	struct work_struct work;
1751 	atomic64_t refcnt;
1752 	struct user_namespace *userns;
1753 	u64 allowed_cmds;
1754 	u64 allowed_maps;
1755 	u64 allowed_progs;
1756 	u64 allowed_attachs;
1757 #ifdef CONFIG_SECURITY
1758 	void *security;
1759 #endif
1760 };
1761 
1762 struct bpf_struct_ops_value;
1763 struct btf_member;
1764 
1765 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1766 /**
1767  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1768  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1769  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1770  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1771  *		  when determining whether the struct_ops progs in the
1772  *		  struct_ops map are valid.
1773  * @init: A callback that is invoked a single time, and before any other
1774  *	  callback, to initialize the structure. A nonzero return value means
1775  *	  the subsystem could not be initialized.
1776  * @check_member: When defined, a callback invoked by the verifier to allow
1777  *		  the subsystem to determine if an entry in the struct_ops map
1778  *		  is valid. A nonzero return value means that the map is
1779  *		  invalid and should be rejected by the verifier.
1780  * @init_member: A callback that is invoked for each member of the struct_ops
1781  *		 map to allow the subsystem to initialize the member. A nonzero
1782  *		 value means the member could not be initialized. This callback
1783  *		 is exclusive with the @type, @type_id, @value_type, and
1784  *		 @value_id fields.
1785  * @reg: A callback that is invoked when the struct_ops map has been
1786  *	 initialized and is being attached to. Zero means the struct_ops map
1787  *	 has been successfully registered and is live. A nonzero return value
1788  *	 means the struct_ops map could not be registered.
1789  * @unreg: A callback that is invoked when the struct_ops map should be
1790  *	   unregistered.
1791  * @update: A callback that is invoked when the live struct_ops map is being
1792  *	    updated to contain new values. This callback is only invoked when
1793  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1794  *	    it is assumed that the struct_ops map cannot be updated.
1795  * @validate: A callback that is invoked after all of the members have been
1796  *	      initialized. This callback should perform static checks on the
1797  *	      map, meaning that it should either fail or succeed
1798  *	      deterministically. A struct_ops map that has been validated may
1799  *	      not necessarily succeed in being registered if the call to @reg
1800  *	      fails. For example, a valid struct_ops map may be loaded, but
1801  *	      then fail to be registered due to there being another active
1802  *	      struct_ops map on the system in the subsystem already. For this
1803  *	      reason, if this callback is not defined, the check is skipped as
1804  *	      the struct_ops map will have final verification performed in
1805  *	      @reg.
1806  * @type: BTF type.
1807  * @value_type: Value type.
1808  * @name: The name of the struct bpf_struct_ops object.
1809  * @func_models: Func models
1810  * @type_id: BTF type id.
1811  * @value_id: BTF value id.
1812  */
1813 struct bpf_struct_ops {
1814 	const struct bpf_verifier_ops *verifier_ops;
1815 	int (*init)(struct btf *btf);
1816 	int (*check_member)(const struct btf_type *t,
1817 			    const struct btf_member *member,
1818 			    const struct bpf_prog *prog);
1819 	int (*init_member)(const struct btf_type *t,
1820 			   const struct btf_member *member,
1821 			   void *kdata, const void *udata);
1822 	int (*reg)(void *kdata, struct bpf_link *link);
1823 	void (*unreg)(void *kdata, struct bpf_link *link);
1824 	int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1825 	int (*validate)(void *kdata);
1826 	void *cfi_stubs;
1827 	struct module *owner;
1828 	const char *name;
1829 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1830 };
1831 
1832 /* Every member of a struct_ops type has an instance even a member is not
1833  * an operator (function pointer). The "info" field will be assigned to
1834  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1835  * argument information required by the verifier to verify the program.
1836  *
1837  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1838  * corresponding entry for an given argument.
1839  */
1840 struct bpf_struct_ops_arg_info {
1841 	struct bpf_ctx_arg_aux *info;
1842 	u32 cnt;
1843 };
1844 
1845 struct bpf_struct_ops_desc {
1846 	struct bpf_struct_ops *st_ops;
1847 
1848 	const struct btf_type *type;
1849 	const struct btf_type *value_type;
1850 	u32 type_id;
1851 	u32 value_id;
1852 
1853 	/* Collection of argument information for each member */
1854 	struct bpf_struct_ops_arg_info *arg_info;
1855 };
1856 
1857 enum bpf_struct_ops_state {
1858 	BPF_STRUCT_OPS_STATE_INIT,
1859 	BPF_STRUCT_OPS_STATE_INUSE,
1860 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1861 	BPF_STRUCT_OPS_STATE_READY,
1862 };
1863 
1864 struct bpf_struct_ops_common_value {
1865 	refcount_t refcnt;
1866 	enum bpf_struct_ops_state state;
1867 };
1868 
1869 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1870 /* This macro helps developer to register a struct_ops type and generate
1871  * type information correctly. Developers should use this macro to register
1872  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1873  */
1874 #define register_bpf_struct_ops(st_ops, type)				\
1875 	({								\
1876 		struct bpf_struct_ops_##type {				\
1877 			struct bpf_struct_ops_common_value common;	\
1878 			struct type data ____cacheline_aligned_in_smp;	\
1879 		};							\
1880 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1881 		__register_bpf_struct_ops(st_ops);			\
1882 	})
1883 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1884 bool bpf_struct_ops_get(const void *kdata);
1885 void bpf_struct_ops_put(const void *kdata);
1886 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1887 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1888 				       void *value);
1889 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1890 				      struct bpf_tramp_link *link,
1891 				      const struct btf_func_model *model,
1892 				      void *stub_func,
1893 				      void **image, u32 *image_off,
1894 				      bool allow_alloc);
1895 void bpf_struct_ops_image_free(void *image);
1896 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1897 {
1898 	if (owner == BPF_MODULE_OWNER)
1899 		return bpf_struct_ops_get(data);
1900 	else
1901 		return try_module_get(owner);
1902 }
1903 static inline void bpf_module_put(const void *data, struct module *owner)
1904 {
1905 	if (owner == BPF_MODULE_OWNER)
1906 		bpf_struct_ops_put(data);
1907 	else
1908 		module_put(owner);
1909 }
1910 int bpf_struct_ops_link_create(union bpf_attr *attr);
1911 
1912 #ifdef CONFIG_NET
1913 /* Define it here to avoid the use of forward declaration */
1914 struct bpf_dummy_ops_state {
1915 	int val;
1916 };
1917 
1918 struct bpf_dummy_ops {
1919 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1920 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1921 		      char a3, unsigned long a4);
1922 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1923 };
1924 
1925 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1926 			    union bpf_attr __user *uattr);
1927 #endif
1928 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1929 			     struct btf *btf,
1930 			     struct bpf_verifier_log *log);
1931 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1932 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1933 #else
1934 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1935 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1936 {
1937 	return try_module_get(owner);
1938 }
1939 static inline void bpf_module_put(const void *data, struct module *owner)
1940 {
1941 	module_put(owner);
1942 }
1943 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1944 {
1945 	return -ENOTSUPP;
1946 }
1947 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1948 						     void *key,
1949 						     void *value)
1950 {
1951 	return -EINVAL;
1952 }
1953 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1954 {
1955 	return -EOPNOTSUPP;
1956 }
1957 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1958 {
1959 }
1960 
1961 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1962 {
1963 }
1964 
1965 #endif
1966 
1967 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
1968 			       const struct bpf_ctx_arg_aux *info, u32 cnt);
1969 
1970 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1971 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1972 				    int cgroup_atype);
1973 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1974 #else
1975 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1976 						  int cgroup_atype)
1977 {
1978 	return -EOPNOTSUPP;
1979 }
1980 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1981 {
1982 }
1983 #endif
1984 
1985 struct bpf_array {
1986 	struct bpf_map map;
1987 	u32 elem_size;
1988 	u32 index_mask;
1989 	struct bpf_array_aux *aux;
1990 	union {
1991 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1992 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1993 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1994 	};
1995 };
1996 
1997 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1998 #define MAX_TAIL_CALL_CNT 33
1999 
2000 /* Maximum number of loops for bpf_loop and bpf_iter_num.
2001  * It's enum to expose it (and thus make it discoverable) through BTF.
2002  */
2003 enum {
2004 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
2005 	BPF_MAX_TIMED_LOOPS = 0xffff,
2006 };
2007 
2008 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
2009 				 BPF_F_RDONLY_PROG |	\
2010 				 BPF_F_WRONLY |		\
2011 				 BPF_F_WRONLY_PROG)
2012 
2013 #define BPF_MAP_CAN_READ	BIT(0)
2014 #define BPF_MAP_CAN_WRITE	BIT(1)
2015 
2016 /* Maximum number of user-producer ring buffer samples that can be drained in
2017  * a call to bpf_user_ringbuf_drain().
2018  */
2019 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
2020 
2021 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
2022 {
2023 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2024 
2025 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2026 	 * not possible.
2027 	 */
2028 	if (access_flags & BPF_F_RDONLY_PROG)
2029 		return BPF_MAP_CAN_READ;
2030 	else if (access_flags & BPF_F_WRONLY_PROG)
2031 		return BPF_MAP_CAN_WRITE;
2032 	else
2033 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2034 }
2035 
2036 static inline bool bpf_map_flags_access_ok(u32 access_flags)
2037 {
2038 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2039 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2040 }
2041 
2042 struct bpf_event_entry {
2043 	struct perf_event *event;
2044 	struct file *perf_file;
2045 	struct file *map_file;
2046 	struct rcu_head rcu;
2047 };
2048 
2049 static inline bool map_type_contains_progs(struct bpf_map *map)
2050 {
2051 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2052 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
2053 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
2054 }
2055 
2056 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2057 int bpf_prog_calc_tag(struct bpf_prog *fp);
2058 
2059 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2060 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2061 
2062 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void);
2063 
2064 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2065 					unsigned long off, unsigned long len);
2066 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2067 					const struct bpf_insn *src,
2068 					struct bpf_insn *dst,
2069 					struct bpf_prog *prog,
2070 					u32 *target_size);
2071 
2072 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2073 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2074 
2075 /* an array of programs to be executed under rcu_lock.
2076  *
2077  * Typical usage:
2078  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2079  *
2080  * the structure returned by bpf_prog_array_alloc() should be populated
2081  * with program pointers and the last pointer must be NULL.
2082  * The user has to keep refcnt on the program and make sure the program
2083  * is removed from the array before bpf_prog_put().
2084  * The 'struct bpf_prog_array *' should only be replaced with xchg()
2085  * since other cpus are walking the array of pointers in parallel.
2086  */
2087 struct bpf_prog_array_item {
2088 	struct bpf_prog *prog;
2089 	union {
2090 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2091 		u64 bpf_cookie;
2092 	};
2093 };
2094 
2095 struct bpf_prog_array {
2096 	struct rcu_head rcu;
2097 	struct bpf_prog_array_item items[];
2098 };
2099 
2100 struct bpf_empty_prog_array {
2101 	struct bpf_prog_array hdr;
2102 	struct bpf_prog *null_prog;
2103 };
2104 
2105 /* to avoid allocating empty bpf_prog_array for cgroups that
2106  * don't have bpf program attached use one global 'bpf_empty_prog_array'
2107  * It will not be modified the caller of bpf_prog_array_alloc()
2108  * (since caller requested prog_cnt == 0)
2109  * that pointer should be 'freed' by bpf_prog_array_free()
2110  */
2111 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2112 
2113 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2114 void bpf_prog_array_free(struct bpf_prog_array *progs);
2115 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2116 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2117 int bpf_prog_array_length(struct bpf_prog_array *progs);
2118 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2119 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2120 				__u32 __user *prog_ids, u32 cnt);
2121 
2122 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2123 				struct bpf_prog *old_prog);
2124 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2125 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2126 			     struct bpf_prog *prog);
2127 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2128 			     u32 *prog_ids, u32 request_cnt,
2129 			     u32 *prog_cnt);
2130 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2131 			struct bpf_prog *exclude_prog,
2132 			struct bpf_prog *include_prog,
2133 			u64 bpf_cookie,
2134 			struct bpf_prog_array **new_array);
2135 
2136 struct bpf_run_ctx {};
2137 
2138 struct bpf_cg_run_ctx {
2139 	struct bpf_run_ctx run_ctx;
2140 	const struct bpf_prog_array_item *prog_item;
2141 	int retval;
2142 };
2143 
2144 struct bpf_trace_run_ctx {
2145 	struct bpf_run_ctx run_ctx;
2146 	u64 bpf_cookie;
2147 	bool is_uprobe;
2148 };
2149 
2150 struct bpf_tramp_run_ctx {
2151 	struct bpf_run_ctx run_ctx;
2152 	u64 bpf_cookie;
2153 	struct bpf_run_ctx *saved_run_ctx;
2154 };
2155 
2156 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2157 {
2158 	struct bpf_run_ctx *old_ctx = NULL;
2159 
2160 #ifdef CONFIG_BPF_SYSCALL
2161 	old_ctx = current->bpf_ctx;
2162 	current->bpf_ctx = new_ctx;
2163 #endif
2164 	return old_ctx;
2165 }
2166 
2167 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2168 {
2169 #ifdef CONFIG_BPF_SYSCALL
2170 	current->bpf_ctx = old_ctx;
2171 #endif
2172 }
2173 
2174 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2175 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2176 /* BPF program asks to set CN on the packet. */
2177 #define BPF_RET_SET_CN						(1 << 0)
2178 
2179 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2180 
2181 static __always_inline u32
2182 bpf_prog_run_array(const struct bpf_prog_array *array,
2183 		   const void *ctx, bpf_prog_run_fn run_prog)
2184 {
2185 	const struct bpf_prog_array_item *item;
2186 	const struct bpf_prog *prog;
2187 	struct bpf_run_ctx *old_run_ctx;
2188 	struct bpf_trace_run_ctx run_ctx;
2189 	u32 ret = 1;
2190 
2191 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2192 
2193 	if (unlikely(!array))
2194 		return ret;
2195 
2196 	run_ctx.is_uprobe = false;
2197 
2198 	migrate_disable();
2199 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2200 	item = &array->items[0];
2201 	while ((prog = READ_ONCE(item->prog))) {
2202 		run_ctx.bpf_cookie = item->bpf_cookie;
2203 		ret &= run_prog(prog, ctx);
2204 		item++;
2205 	}
2206 	bpf_reset_run_ctx(old_run_ctx);
2207 	migrate_enable();
2208 	return ret;
2209 }
2210 
2211 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2212  *
2213  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2214  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2215  * in order to use the tasks_trace rcu grace period.
2216  *
2217  * When a non-sleepable program is inside the array, we take the rcu read
2218  * section and disable preemption for that program alone, so it can access
2219  * rcu-protected dynamically sized maps.
2220  */
2221 static __always_inline u32
2222 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2223 			  const void *ctx, bpf_prog_run_fn run_prog)
2224 {
2225 	const struct bpf_prog_array_item *item;
2226 	const struct bpf_prog *prog;
2227 	struct bpf_run_ctx *old_run_ctx;
2228 	struct bpf_trace_run_ctx run_ctx;
2229 	u32 ret = 1;
2230 
2231 	might_fault();
2232 	RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2233 
2234 	if (unlikely(!array))
2235 		return ret;
2236 
2237 	migrate_disable();
2238 
2239 	run_ctx.is_uprobe = true;
2240 
2241 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2242 	item = &array->items[0];
2243 	while ((prog = READ_ONCE(item->prog))) {
2244 		if (!prog->sleepable)
2245 			rcu_read_lock();
2246 
2247 		run_ctx.bpf_cookie = item->bpf_cookie;
2248 		ret &= run_prog(prog, ctx);
2249 		item++;
2250 
2251 		if (!prog->sleepable)
2252 			rcu_read_unlock();
2253 	}
2254 	bpf_reset_run_ctx(old_run_ctx);
2255 	migrate_enable();
2256 	return ret;
2257 }
2258 
2259 #ifdef CONFIG_BPF_SYSCALL
2260 DECLARE_PER_CPU(int, bpf_prog_active);
2261 extern struct mutex bpf_stats_enabled_mutex;
2262 
2263 /*
2264  * Block execution of BPF programs attached to instrumentation (perf,
2265  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2266  * these events can happen inside a region which holds a map bucket lock
2267  * and can deadlock on it.
2268  */
2269 static inline void bpf_disable_instrumentation(void)
2270 {
2271 	migrate_disable();
2272 	this_cpu_inc(bpf_prog_active);
2273 }
2274 
2275 static inline void bpf_enable_instrumentation(void)
2276 {
2277 	this_cpu_dec(bpf_prog_active);
2278 	migrate_enable();
2279 }
2280 
2281 extern const struct super_operations bpf_super_ops;
2282 extern const struct file_operations bpf_map_fops;
2283 extern const struct file_operations bpf_prog_fops;
2284 extern const struct file_operations bpf_iter_fops;
2285 
2286 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2287 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2288 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2289 #define BPF_MAP_TYPE(_id, _ops) \
2290 	extern const struct bpf_map_ops _ops;
2291 #define BPF_LINK_TYPE(_id, _name)
2292 #include <linux/bpf_types.h>
2293 #undef BPF_PROG_TYPE
2294 #undef BPF_MAP_TYPE
2295 #undef BPF_LINK_TYPE
2296 
2297 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2298 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2299 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2300 
2301 struct bpf_prog *bpf_prog_get(u32 ufd);
2302 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2303 				       bool attach_drv);
2304 void bpf_prog_add(struct bpf_prog *prog, int i);
2305 void bpf_prog_sub(struct bpf_prog *prog, int i);
2306 void bpf_prog_inc(struct bpf_prog *prog);
2307 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2308 void bpf_prog_put(struct bpf_prog *prog);
2309 
2310 void bpf_prog_free_id(struct bpf_prog *prog);
2311 void bpf_map_free_id(struct bpf_map *map);
2312 
2313 struct btf_field *btf_record_find(const struct btf_record *rec,
2314 				  u32 offset, u32 field_mask);
2315 void btf_record_free(struct btf_record *rec);
2316 void bpf_map_free_record(struct bpf_map *map);
2317 struct btf_record *btf_record_dup(const struct btf_record *rec);
2318 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2319 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2320 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2321 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2322 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2323 
2324 struct bpf_map *bpf_map_get(u32 ufd);
2325 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2326 
2327 /*
2328  * The __bpf_map_get() and __btf_get_by_fd() functions parse a file
2329  * descriptor and return a corresponding map or btf object.
2330  * Their names are double underscored to emphasize the fact that they
2331  * do not increase refcnt. To also increase refcnt use corresponding
2332  * bpf_map_get() and btf_get_by_fd() functions.
2333  */
2334 
2335 static inline struct bpf_map *__bpf_map_get(struct fd f)
2336 {
2337 	if (fd_empty(f))
2338 		return ERR_PTR(-EBADF);
2339 	if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2340 		return ERR_PTR(-EINVAL);
2341 	return fd_file(f)->private_data;
2342 }
2343 
2344 static inline struct btf *__btf_get_by_fd(struct fd f)
2345 {
2346 	if (fd_empty(f))
2347 		return ERR_PTR(-EBADF);
2348 	if (unlikely(fd_file(f)->f_op != &btf_fops))
2349 		return ERR_PTR(-EINVAL);
2350 	return fd_file(f)->private_data;
2351 }
2352 
2353 void bpf_map_inc(struct bpf_map *map);
2354 void bpf_map_inc_with_uref(struct bpf_map *map);
2355 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2356 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2357 void bpf_map_put_with_uref(struct bpf_map *map);
2358 void bpf_map_put(struct bpf_map *map);
2359 void *bpf_map_area_alloc(u64 size, int numa_node);
2360 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2361 void bpf_map_area_free(void *base);
2362 bool bpf_map_write_active(const struct bpf_map *map);
2363 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2364 int  generic_map_lookup_batch(struct bpf_map *map,
2365 			      const union bpf_attr *attr,
2366 			      union bpf_attr __user *uattr);
2367 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2368 			      const union bpf_attr *attr,
2369 			      union bpf_attr __user *uattr);
2370 int  generic_map_delete_batch(struct bpf_map *map,
2371 			      const union bpf_attr *attr,
2372 			      union bpf_attr __user *uattr);
2373 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2374 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2375 
2376 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2377 			unsigned long nr_pages, struct page **page_array);
2378 #ifdef CONFIG_MEMCG
2379 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2380 			   int node);
2381 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2382 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2383 		       gfp_t flags);
2384 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2385 				    size_t align, gfp_t flags);
2386 #else
2387 /*
2388  * These specialized allocators have to be macros for their allocations to be
2389  * accounted separately (to have separate alloc_tag).
2390  */
2391 #define bpf_map_kmalloc_node(_map, _size, _flags, _node)	\
2392 		kmalloc_node(_size, _flags, _node)
2393 #define bpf_map_kzalloc(_map, _size, _flags)			\
2394 		kzalloc(_size, _flags)
2395 #define bpf_map_kvcalloc(_map, _n, _size, _flags)		\
2396 		kvcalloc(_n, _size, _flags)
2397 #define bpf_map_alloc_percpu(_map, _size, _align, _flags)	\
2398 		__alloc_percpu_gfp(_size, _align, _flags)
2399 #endif
2400 
2401 static inline int
2402 bpf_map_init_elem_count(struct bpf_map *map)
2403 {
2404 	size_t size = sizeof(*map->elem_count), align = size;
2405 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2406 
2407 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2408 	if (!map->elem_count)
2409 		return -ENOMEM;
2410 
2411 	return 0;
2412 }
2413 
2414 static inline void
2415 bpf_map_free_elem_count(struct bpf_map *map)
2416 {
2417 	free_percpu(map->elem_count);
2418 }
2419 
2420 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2421 {
2422 	this_cpu_inc(*map->elem_count);
2423 }
2424 
2425 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2426 {
2427 	this_cpu_dec(*map->elem_count);
2428 }
2429 
2430 extern int sysctl_unprivileged_bpf_disabled;
2431 
2432 bool bpf_token_capable(const struct bpf_token *token, int cap);
2433 
2434 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2435 {
2436 	return bpf_token_capable(token, CAP_PERFMON);
2437 }
2438 
2439 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2440 {
2441 	return bpf_token_capable(token, CAP_PERFMON);
2442 }
2443 
2444 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2445 {
2446 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2447 }
2448 
2449 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2450 {
2451 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2452 }
2453 
2454 int bpf_map_new_fd(struct bpf_map *map, int flags);
2455 int bpf_prog_new_fd(struct bpf_prog *prog);
2456 
2457 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2458 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2459 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2460 			     const struct bpf_link_ops *ops, struct bpf_prog *prog,
2461 			     bool sleepable);
2462 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2463 int bpf_link_settle(struct bpf_link_primer *primer);
2464 void bpf_link_cleanup(struct bpf_link_primer *primer);
2465 void bpf_link_inc(struct bpf_link *link);
2466 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2467 void bpf_link_put(struct bpf_link *link);
2468 int bpf_link_new_fd(struct bpf_link *link);
2469 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2470 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2471 
2472 void bpf_token_inc(struct bpf_token *token);
2473 void bpf_token_put(struct bpf_token *token);
2474 int bpf_token_create(union bpf_attr *attr);
2475 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2476 
2477 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2478 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2479 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2480 			       enum bpf_prog_type prog_type,
2481 			       enum bpf_attach_type attach_type);
2482 
2483 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2484 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2485 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2486 			    umode_t mode);
2487 
2488 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2489 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2490 	extern int bpf_iter_ ## target(args);			\
2491 	int __init bpf_iter_ ## target(args) { return 0; }
2492 
2493 /*
2494  * The task type of iterators.
2495  *
2496  * For BPF task iterators, they can be parameterized with various
2497  * parameters to visit only some of tasks.
2498  *
2499  * BPF_TASK_ITER_ALL (default)
2500  *	Iterate over resources of every task.
2501  *
2502  * BPF_TASK_ITER_TID
2503  *	Iterate over resources of a task/tid.
2504  *
2505  * BPF_TASK_ITER_TGID
2506  *	Iterate over resources of every task of a process / task group.
2507  */
2508 enum bpf_iter_task_type {
2509 	BPF_TASK_ITER_ALL = 0,
2510 	BPF_TASK_ITER_TID,
2511 	BPF_TASK_ITER_TGID,
2512 };
2513 
2514 struct bpf_iter_aux_info {
2515 	/* for map_elem iter */
2516 	struct bpf_map *map;
2517 
2518 	/* for cgroup iter */
2519 	struct {
2520 		struct cgroup *start; /* starting cgroup */
2521 		enum bpf_cgroup_iter_order order;
2522 	} cgroup;
2523 	struct {
2524 		enum bpf_iter_task_type	type;
2525 		u32 pid;
2526 	} task;
2527 };
2528 
2529 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2530 					union bpf_iter_link_info *linfo,
2531 					struct bpf_iter_aux_info *aux);
2532 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2533 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2534 					struct seq_file *seq);
2535 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2536 					 struct bpf_link_info *info);
2537 typedef const struct bpf_func_proto *
2538 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2539 			     const struct bpf_prog *prog);
2540 
2541 enum bpf_iter_feature {
2542 	BPF_ITER_RESCHED	= BIT(0),
2543 };
2544 
2545 #define BPF_ITER_CTX_ARG_MAX 2
2546 struct bpf_iter_reg {
2547 	const char *target;
2548 	bpf_iter_attach_target_t attach_target;
2549 	bpf_iter_detach_target_t detach_target;
2550 	bpf_iter_show_fdinfo_t show_fdinfo;
2551 	bpf_iter_fill_link_info_t fill_link_info;
2552 	bpf_iter_get_func_proto_t get_func_proto;
2553 	u32 ctx_arg_info_size;
2554 	u32 feature;
2555 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2556 	const struct bpf_iter_seq_info *seq_info;
2557 };
2558 
2559 struct bpf_iter_meta {
2560 	__bpf_md_ptr(struct seq_file *, seq);
2561 	u64 session_id;
2562 	u64 seq_num;
2563 };
2564 
2565 struct bpf_iter__bpf_map_elem {
2566 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2567 	__bpf_md_ptr(struct bpf_map *, map);
2568 	__bpf_md_ptr(void *, key);
2569 	__bpf_md_ptr(void *, value);
2570 };
2571 
2572 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2573 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2574 int bpf_iter_prog_supported(struct bpf_prog *prog);
2575 const struct bpf_func_proto *
2576 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2577 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2578 int bpf_iter_new_fd(struct bpf_link *link);
2579 bool bpf_link_is_iter(struct bpf_link *link);
2580 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2581 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2582 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2583 			      struct seq_file *seq);
2584 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2585 				struct bpf_link_info *info);
2586 
2587 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2588 				   struct bpf_func_state *caller,
2589 				   struct bpf_func_state *callee);
2590 
2591 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2592 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2593 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2594 			   u64 flags);
2595 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2596 			    u64 flags);
2597 
2598 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2599 
2600 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2601 				 void *key, void *value, u64 map_flags);
2602 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2603 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2604 				void *key, void *value, u64 map_flags);
2605 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2606 
2607 int bpf_get_file_flag(int flags);
2608 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2609 			     size_t actual_size);
2610 
2611 /* verify correctness of eBPF program */
2612 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2613 
2614 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2615 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2616 #endif
2617 
2618 struct btf *bpf_get_btf_vmlinux(void);
2619 
2620 /* Map specifics */
2621 struct xdp_frame;
2622 struct sk_buff;
2623 struct bpf_dtab_netdev;
2624 struct bpf_cpu_map_entry;
2625 
2626 void __dev_flush(struct list_head *flush_list);
2627 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2628 		    struct net_device *dev_rx);
2629 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2630 		    struct net_device *dev_rx);
2631 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2632 			  struct bpf_map *map, bool exclude_ingress);
2633 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2634 			     const struct bpf_prog *xdp_prog);
2635 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2636 			   const struct bpf_prog *xdp_prog,
2637 			   struct bpf_map *map, bool exclude_ingress);
2638 
2639 void __cpu_map_flush(struct list_head *flush_list);
2640 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2641 		    struct net_device *dev_rx);
2642 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2643 			     struct sk_buff *skb);
2644 
2645 /* Return map's numa specified by userspace */
2646 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2647 {
2648 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2649 		attr->numa_node : NUMA_NO_NODE;
2650 }
2651 
2652 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2653 int array_map_alloc_check(union bpf_attr *attr);
2654 
2655 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2656 			  union bpf_attr __user *uattr);
2657 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2658 			  union bpf_attr __user *uattr);
2659 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2660 			      const union bpf_attr *kattr,
2661 			      union bpf_attr __user *uattr);
2662 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2663 				     const union bpf_attr *kattr,
2664 				     union bpf_attr __user *uattr);
2665 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2666 			     const union bpf_attr *kattr,
2667 			     union bpf_attr __user *uattr);
2668 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2669 				const union bpf_attr *kattr,
2670 				union bpf_attr __user *uattr);
2671 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2672 			 const union bpf_attr *kattr,
2673 			 union bpf_attr __user *uattr);
2674 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2675 		    const struct bpf_prog *prog,
2676 		    struct bpf_insn_access_aux *info);
2677 
2678 static inline bool bpf_tracing_ctx_access(int off, int size,
2679 					  enum bpf_access_type type)
2680 {
2681 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2682 		return false;
2683 	if (type != BPF_READ)
2684 		return false;
2685 	if (off % size != 0)
2686 		return false;
2687 	return true;
2688 }
2689 
2690 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2691 					      enum bpf_access_type type,
2692 					      const struct bpf_prog *prog,
2693 					      struct bpf_insn_access_aux *info)
2694 {
2695 	if (!bpf_tracing_ctx_access(off, size, type))
2696 		return false;
2697 	return btf_ctx_access(off, size, type, prog, info);
2698 }
2699 
2700 int btf_struct_access(struct bpf_verifier_log *log,
2701 		      const struct bpf_reg_state *reg,
2702 		      int off, int size, enum bpf_access_type atype,
2703 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2704 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2705 			  const struct btf *btf, u32 id, int off,
2706 			  const struct btf *need_btf, u32 need_type_id,
2707 			  bool strict);
2708 
2709 int btf_distill_func_proto(struct bpf_verifier_log *log,
2710 			   struct btf *btf,
2711 			   const struct btf_type *func_proto,
2712 			   const char *func_name,
2713 			   struct btf_func_model *m);
2714 
2715 struct bpf_reg_state;
2716 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2717 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2718 			 struct btf *btf, const struct btf_type *t);
2719 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2720 				    int comp_idx, const char *tag_key);
2721 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2722 			   int comp_idx, const char *tag_key, int last_id);
2723 
2724 struct bpf_prog *bpf_prog_by_id(u32 id);
2725 struct bpf_link *bpf_link_by_id(u32 id);
2726 
2727 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2728 						 const struct bpf_prog *prog);
2729 void bpf_task_storage_free(struct task_struct *task);
2730 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2731 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2732 const struct btf_func_model *
2733 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2734 			 const struct bpf_insn *insn);
2735 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2736 		       u16 btf_fd_idx, u8 **func_addr);
2737 
2738 struct bpf_core_ctx {
2739 	struct bpf_verifier_log *log;
2740 	const struct btf *btf;
2741 };
2742 
2743 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2744 				const struct bpf_reg_state *reg,
2745 				const char *field_name, u32 btf_id, const char *suffix);
2746 
2747 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2748 			       const struct btf *reg_btf, u32 reg_id,
2749 			       const struct btf *arg_btf, u32 arg_id);
2750 
2751 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2752 		   int relo_idx, void *insn);
2753 
2754 static inline bool unprivileged_ebpf_enabled(void)
2755 {
2756 	return !sysctl_unprivileged_bpf_disabled;
2757 }
2758 
2759 /* Not all bpf prog type has the bpf_ctx.
2760  * For the bpf prog type that has initialized the bpf_ctx,
2761  * this function can be used to decide if a kernel function
2762  * is called by a bpf program.
2763  */
2764 static inline bool has_current_bpf_ctx(void)
2765 {
2766 	return !!current->bpf_ctx;
2767 }
2768 
2769 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2770 
2771 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2772 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2773 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2774 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2775 
2776 #else /* !CONFIG_BPF_SYSCALL */
2777 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2778 {
2779 	return ERR_PTR(-EOPNOTSUPP);
2780 }
2781 
2782 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2783 						     enum bpf_prog_type type,
2784 						     bool attach_drv)
2785 {
2786 	return ERR_PTR(-EOPNOTSUPP);
2787 }
2788 
2789 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2790 {
2791 }
2792 
2793 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2794 {
2795 }
2796 
2797 static inline void bpf_prog_put(struct bpf_prog *prog)
2798 {
2799 }
2800 
2801 static inline void bpf_prog_inc(struct bpf_prog *prog)
2802 {
2803 }
2804 
2805 static inline struct bpf_prog *__must_check
2806 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2807 {
2808 	return ERR_PTR(-EOPNOTSUPP);
2809 }
2810 
2811 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2812 				 const struct bpf_link_ops *ops,
2813 				 struct bpf_prog *prog)
2814 {
2815 }
2816 
2817 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2818 					   const struct bpf_link_ops *ops, struct bpf_prog *prog,
2819 					   bool sleepable)
2820 {
2821 }
2822 
2823 static inline int bpf_link_prime(struct bpf_link *link,
2824 				 struct bpf_link_primer *primer)
2825 {
2826 	return -EOPNOTSUPP;
2827 }
2828 
2829 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2830 {
2831 	return -EOPNOTSUPP;
2832 }
2833 
2834 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2835 {
2836 }
2837 
2838 static inline void bpf_link_inc(struct bpf_link *link)
2839 {
2840 }
2841 
2842 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2843 {
2844 	return NULL;
2845 }
2846 
2847 static inline void bpf_link_put(struct bpf_link *link)
2848 {
2849 }
2850 
2851 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2852 {
2853 	return -EOPNOTSUPP;
2854 }
2855 
2856 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2857 {
2858 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2859 }
2860 
2861 static inline void bpf_token_inc(struct bpf_token *token)
2862 {
2863 }
2864 
2865 static inline void bpf_token_put(struct bpf_token *token)
2866 {
2867 }
2868 
2869 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2870 {
2871 	return ERR_PTR(-EOPNOTSUPP);
2872 }
2873 
2874 static inline void __dev_flush(struct list_head *flush_list)
2875 {
2876 }
2877 
2878 struct xdp_frame;
2879 struct bpf_dtab_netdev;
2880 struct bpf_cpu_map_entry;
2881 
2882 static inline
2883 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2884 		    struct net_device *dev_rx)
2885 {
2886 	return 0;
2887 }
2888 
2889 static inline
2890 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2891 		    struct net_device *dev_rx)
2892 {
2893 	return 0;
2894 }
2895 
2896 static inline
2897 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2898 			  struct bpf_map *map, bool exclude_ingress)
2899 {
2900 	return 0;
2901 }
2902 
2903 struct sk_buff;
2904 
2905 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2906 					   struct sk_buff *skb,
2907 					   const struct bpf_prog *xdp_prog)
2908 {
2909 	return 0;
2910 }
2911 
2912 static inline
2913 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2914 			   const struct bpf_prog *xdp_prog,
2915 			   struct bpf_map *map, bool exclude_ingress)
2916 {
2917 	return 0;
2918 }
2919 
2920 static inline void __cpu_map_flush(struct list_head *flush_list)
2921 {
2922 }
2923 
2924 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2925 				  struct xdp_frame *xdpf,
2926 				  struct net_device *dev_rx)
2927 {
2928 	return 0;
2929 }
2930 
2931 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2932 					   struct sk_buff *skb)
2933 {
2934 	return -EOPNOTSUPP;
2935 }
2936 
2937 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2938 				enum bpf_prog_type type)
2939 {
2940 	return ERR_PTR(-EOPNOTSUPP);
2941 }
2942 
2943 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2944 					const union bpf_attr *kattr,
2945 					union bpf_attr __user *uattr)
2946 {
2947 	return -ENOTSUPP;
2948 }
2949 
2950 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2951 					const union bpf_attr *kattr,
2952 					union bpf_attr __user *uattr)
2953 {
2954 	return -ENOTSUPP;
2955 }
2956 
2957 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2958 					    const union bpf_attr *kattr,
2959 					    union bpf_attr __user *uattr)
2960 {
2961 	return -ENOTSUPP;
2962 }
2963 
2964 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2965 						   const union bpf_attr *kattr,
2966 						   union bpf_attr __user *uattr)
2967 {
2968 	return -ENOTSUPP;
2969 }
2970 
2971 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2972 					      const union bpf_attr *kattr,
2973 					      union bpf_attr __user *uattr)
2974 {
2975 	return -ENOTSUPP;
2976 }
2977 
2978 static inline void bpf_map_put(struct bpf_map *map)
2979 {
2980 }
2981 
2982 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2983 {
2984 	return ERR_PTR(-ENOTSUPP);
2985 }
2986 
2987 static inline int btf_struct_access(struct bpf_verifier_log *log,
2988 				    const struct bpf_reg_state *reg,
2989 				    int off, int size, enum bpf_access_type atype,
2990 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2991 				    const char **field_name)
2992 {
2993 	return -EACCES;
2994 }
2995 
2996 static inline const struct bpf_func_proto *
2997 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2998 {
2999 	return NULL;
3000 }
3001 
3002 static inline void bpf_task_storage_free(struct task_struct *task)
3003 {
3004 }
3005 
3006 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3007 {
3008 	return false;
3009 }
3010 
3011 static inline const struct btf_func_model *
3012 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3013 			 const struct bpf_insn *insn)
3014 {
3015 	return NULL;
3016 }
3017 
3018 static inline int
3019 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3020 		   u16 btf_fd_idx, u8 **func_addr)
3021 {
3022 	return -ENOTSUPP;
3023 }
3024 
3025 static inline bool unprivileged_ebpf_enabled(void)
3026 {
3027 	return false;
3028 }
3029 
3030 static inline bool has_current_bpf_ctx(void)
3031 {
3032 	return false;
3033 }
3034 
3035 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
3036 {
3037 }
3038 
3039 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
3040 {
3041 }
3042 
3043 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3044 				   enum bpf_dynptr_type type, u32 offset, u32 size)
3045 {
3046 }
3047 
3048 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3049 {
3050 }
3051 
3052 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3053 {
3054 }
3055 #endif /* CONFIG_BPF_SYSCALL */
3056 
3057 static __always_inline int
3058 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3059 {
3060 	int ret = -EFAULT;
3061 
3062 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
3063 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3064 	if (unlikely(ret < 0))
3065 		memset(dst, 0, size);
3066 	return ret;
3067 }
3068 
3069 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3070 
3071 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3072 						 enum bpf_prog_type type)
3073 {
3074 	return bpf_prog_get_type_dev(ufd, type, false);
3075 }
3076 
3077 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3078 			  struct bpf_map **used_maps, u32 len);
3079 
3080 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3081 
3082 int bpf_prog_offload_compile(struct bpf_prog *prog);
3083 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3084 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3085 			       struct bpf_prog *prog);
3086 
3087 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3088 
3089 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3090 int bpf_map_offload_update_elem(struct bpf_map *map,
3091 				void *key, void *value, u64 flags);
3092 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3093 int bpf_map_offload_get_next_key(struct bpf_map *map,
3094 				 void *key, void *next_key);
3095 
3096 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3097 
3098 struct bpf_offload_dev *
3099 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3100 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3101 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3102 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3103 				    struct net_device *netdev);
3104 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3105 				       struct net_device *netdev);
3106 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3107 
3108 void unpriv_ebpf_notify(int new_state);
3109 
3110 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3111 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3112 			      struct bpf_prog_aux *prog_aux);
3113 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3114 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3115 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3116 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3117 
3118 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3119 {
3120 	return aux->dev_bound;
3121 }
3122 
3123 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3124 {
3125 	return aux->offload_requested;
3126 }
3127 
3128 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3129 
3130 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3131 {
3132 	return unlikely(map->ops == &bpf_map_offload_ops);
3133 }
3134 
3135 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3136 void bpf_map_offload_map_free(struct bpf_map *map);
3137 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3138 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3139 			      const union bpf_attr *kattr,
3140 			      union bpf_attr __user *uattr);
3141 
3142 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3143 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3144 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3145 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3146 			    union bpf_attr __user *uattr);
3147 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3148 
3149 void sock_map_unhash(struct sock *sk);
3150 void sock_map_destroy(struct sock *sk);
3151 void sock_map_close(struct sock *sk, long timeout);
3152 #else
3153 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3154 					    struct bpf_prog_aux *prog_aux)
3155 {
3156 	return -EOPNOTSUPP;
3157 }
3158 
3159 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3160 						u32 func_id)
3161 {
3162 	return NULL;
3163 }
3164 
3165 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3166 					  union bpf_attr *attr)
3167 {
3168 	return -EOPNOTSUPP;
3169 }
3170 
3171 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3172 					     struct bpf_prog *old_prog)
3173 {
3174 	return -EOPNOTSUPP;
3175 }
3176 
3177 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3178 {
3179 }
3180 
3181 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3182 {
3183 	return false;
3184 }
3185 
3186 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3187 {
3188 	return false;
3189 }
3190 
3191 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3192 {
3193 	return false;
3194 }
3195 
3196 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3197 {
3198 	return false;
3199 }
3200 
3201 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3202 {
3203 	return ERR_PTR(-EOPNOTSUPP);
3204 }
3205 
3206 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3207 {
3208 }
3209 
3210 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3211 {
3212 	return 0;
3213 }
3214 
3215 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3216 					    const union bpf_attr *kattr,
3217 					    union bpf_attr __user *uattr)
3218 {
3219 	return -ENOTSUPP;
3220 }
3221 
3222 #ifdef CONFIG_BPF_SYSCALL
3223 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3224 				       struct bpf_prog *prog)
3225 {
3226 	return -EINVAL;
3227 }
3228 
3229 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3230 				       enum bpf_prog_type ptype)
3231 {
3232 	return -EOPNOTSUPP;
3233 }
3234 
3235 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3236 					   u64 flags)
3237 {
3238 	return -EOPNOTSUPP;
3239 }
3240 
3241 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3242 					  union bpf_attr __user *uattr)
3243 {
3244 	return -EINVAL;
3245 }
3246 
3247 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3248 {
3249 	return -EOPNOTSUPP;
3250 }
3251 #endif /* CONFIG_BPF_SYSCALL */
3252 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3253 
3254 static __always_inline void
3255 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3256 {
3257 	const struct bpf_prog_array_item *item;
3258 	struct bpf_prog *prog;
3259 
3260 	if (unlikely(!array))
3261 		return;
3262 
3263 	item = &array->items[0];
3264 	while ((prog = READ_ONCE(item->prog))) {
3265 		bpf_prog_inc_misses_counter(prog);
3266 		item++;
3267 	}
3268 }
3269 
3270 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3271 void bpf_sk_reuseport_detach(struct sock *sk);
3272 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3273 				       void *value);
3274 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3275 				       void *value, u64 map_flags);
3276 #else
3277 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3278 {
3279 }
3280 
3281 #ifdef CONFIG_BPF_SYSCALL
3282 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3283 						     void *key, void *value)
3284 {
3285 	return -EOPNOTSUPP;
3286 }
3287 
3288 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3289 						     void *key, void *value,
3290 						     u64 map_flags)
3291 {
3292 	return -EOPNOTSUPP;
3293 }
3294 #endif /* CONFIG_BPF_SYSCALL */
3295 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3296 
3297 /* verifier prototypes for helper functions called from eBPF programs */
3298 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3299 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3300 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3301 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3302 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3303 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3304 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3305 
3306 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3307 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3308 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3309 extern const struct bpf_func_proto bpf_tail_call_proto;
3310 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3311 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3312 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3313 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3314 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3315 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3316 extern const struct bpf_func_proto bpf_get_stackid_proto;
3317 extern const struct bpf_func_proto bpf_get_stack_proto;
3318 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3319 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3320 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3321 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3322 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3323 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3324 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3325 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3326 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3327 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3328 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3329 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3330 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3331 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3332 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3333 extern const struct bpf_func_proto bpf_spin_lock_proto;
3334 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3335 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3336 extern const struct bpf_func_proto bpf_strtol_proto;
3337 extern const struct bpf_func_proto bpf_strtoul_proto;
3338 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3339 extern const struct bpf_func_proto bpf_jiffies64_proto;
3340 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3341 extern const struct bpf_func_proto bpf_event_output_data_proto;
3342 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3343 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3344 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3345 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3346 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3347 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3348 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3349 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3350 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3351 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3352 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3353 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3354 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3355 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3356 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3357 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3358 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3359 extern const struct bpf_func_proto bpf_snprintf_proto;
3360 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3361 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3362 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3363 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3364 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3365 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3366 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3367 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3368 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3369 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3370 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3371 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3372 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3373 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3374 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3375 extern const struct bpf_func_proto bpf_find_vma_proto;
3376 extern const struct bpf_func_proto bpf_loop_proto;
3377 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3378 extern const struct bpf_func_proto bpf_set_retval_proto;
3379 extern const struct bpf_func_proto bpf_get_retval_proto;
3380 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3381 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3382 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3383 
3384 const struct bpf_func_proto *tracing_prog_func_proto(
3385   enum bpf_func_id func_id, const struct bpf_prog *prog);
3386 
3387 /* Shared helpers among cBPF and eBPF. */
3388 void bpf_user_rnd_init_once(void);
3389 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3390 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3391 
3392 #if defined(CONFIG_NET)
3393 bool bpf_sock_common_is_valid_access(int off, int size,
3394 				     enum bpf_access_type type,
3395 				     struct bpf_insn_access_aux *info);
3396 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3397 			      struct bpf_insn_access_aux *info);
3398 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3399 				const struct bpf_insn *si,
3400 				struct bpf_insn *insn_buf,
3401 				struct bpf_prog *prog,
3402 				u32 *target_size);
3403 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3404 			       struct bpf_dynptr *ptr);
3405 #else
3406 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3407 						   enum bpf_access_type type,
3408 						   struct bpf_insn_access_aux *info)
3409 {
3410 	return false;
3411 }
3412 static inline bool bpf_sock_is_valid_access(int off, int size,
3413 					    enum bpf_access_type type,
3414 					    struct bpf_insn_access_aux *info)
3415 {
3416 	return false;
3417 }
3418 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3419 					      const struct bpf_insn *si,
3420 					      struct bpf_insn *insn_buf,
3421 					      struct bpf_prog *prog,
3422 					      u32 *target_size)
3423 {
3424 	return 0;
3425 }
3426 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3427 					     struct bpf_dynptr *ptr)
3428 {
3429 	return -EOPNOTSUPP;
3430 }
3431 #endif
3432 
3433 #ifdef CONFIG_INET
3434 struct sk_reuseport_kern {
3435 	struct sk_buff *skb;
3436 	struct sock *sk;
3437 	struct sock *selected_sk;
3438 	struct sock *migrating_sk;
3439 	void *data_end;
3440 	u32 hash;
3441 	u32 reuseport_id;
3442 	bool bind_inany;
3443 };
3444 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3445 				  struct bpf_insn_access_aux *info);
3446 
3447 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3448 				    const struct bpf_insn *si,
3449 				    struct bpf_insn *insn_buf,
3450 				    struct bpf_prog *prog,
3451 				    u32 *target_size);
3452 
3453 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3454 				  struct bpf_insn_access_aux *info);
3455 
3456 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3457 				    const struct bpf_insn *si,
3458 				    struct bpf_insn *insn_buf,
3459 				    struct bpf_prog *prog,
3460 				    u32 *target_size);
3461 #else
3462 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3463 						enum bpf_access_type type,
3464 						struct bpf_insn_access_aux *info)
3465 {
3466 	return false;
3467 }
3468 
3469 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3470 						  const struct bpf_insn *si,
3471 						  struct bpf_insn *insn_buf,
3472 						  struct bpf_prog *prog,
3473 						  u32 *target_size)
3474 {
3475 	return 0;
3476 }
3477 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3478 						enum bpf_access_type type,
3479 						struct bpf_insn_access_aux *info)
3480 {
3481 	return false;
3482 }
3483 
3484 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3485 						  const struct bpf_insn *si,
3486 						  struct bpf_insn *insn_buf,
3487 						  struct bpf_prog *prog,
3488 						  u32 *target_size)
3489 {
3490 	return 0;
3491 }
3492 #endif /* CONFIG_INET */
3493 
3494 enum bpf_text_poke_type {
3495 	BPF_MOD_CALL,
3496 	BPF_MOD_JUMP,
3497 };
3498 
3499 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3500 		       void *addr1, void *addr2);
3501 
3502 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3503 			       struct bpf_prog *new, struct bpf_prog *old);
3504 
3505 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3506 int bpf_arch_text_invalidate(void *dst, size_t len);
3507 
3508 struct btf_id_set;
3509 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3510 
3511 #define MAX_BPRINTF_VARARGS		12
3512 #define MAX_BPRINTF_BUF			1024
3513 
3514 struct bpf_bprintf_data {
3515 	u32 *bin_args;
3516 	char *buf;
3517 	bool get_bin_args;
3518 	bool get_buf;
3519 };
3520 
3521 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3522 			u32 num_args, struct bpf_bprintf_data *data);
3523 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3524 
3525 #ifdef CONFIG_BPF_LSM
3526 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3527 void bpf_cgroup_atype_put(int cgroup_atype);
3528 #else
3529 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3530 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3531 #endif /* CONFIG_BPF_LSM */
3532 
3533 struct key;
3534 
3535 #ifdef CONFIG_KEYS
3536 struct bpf_key {
3537 	struct key *key;
3538 	bool has_ref;
3539 };
3540 #endif /* CONFIG_KEYS */
3541 
3542 static inline bool type_is_alloc(u32 type)
3543 {
3544 	return type & MEM_ALLOC;
3545 }
3546 
3547 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3548 {
3549 	if (memcg_bpf_enabled())
3550 		return flags | __GFP_ACCOUNT;
3551 	return flags;
3552 }
3553 
3554 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3555 {
3556 	return prog->aux->func_idx != 0;
3557 }
3558 
3559 #endif /* _LINUX_BPF_H */
3560