1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 10 fields in a BTF type */ 188 BTF_FIELDS_MAX = 10, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 }; 206 207 typedef void (*btf_dtor_kfunc_t)(void *); 208 209 struct btf_field_kptr { 210 struct btf *btf; 211 struct module *module; 212 /* dtor used if btf_is_kernel(btf), otherwise the type is 213 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 214 */ 215 btf_dtor_kfunc_t dtor; 216 u32 btf_id; 217 }; 218 219 struct btf_field_graph_root { 220 struct btf *btf; 221 u32 value_btf_id; 222 u32 node_offset; 223 struct btf_record *value_rec; 224 }; 225 226 struct btf_field { 227 u32 offset; 228 u32 size; 229 enum btf_field_type type; 230 union { 231 struct btf_field_kptr kptr; 232 struct btf_field_graph_root graph_root; 233 }; 234 }; 235 236 struct btf_record { 237 u32 cnt; 238 u32 field_mask; 239 int spin_lock_off; 240 int timer_off; 241 int refcount_off; 242 struct btf_field fields[]; 243 }; 244 245 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 246 struct bpf_rb_node_kern { 247 struct rb_node rb_node; 248 void *owner; 249 } __attribute__((aligned(8))); 250 251 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 252 struct bpf_list_node_kern { 253 struct list_head list_head; 254 void *owner; 255 } __attribute__((aligned(8))); 256 257 struct bpf_map { 258 const struct bpf_map_ops *ops; 259 struct bpf_map *inner_map_meta; 260 #ifdef CONFIG_SECURITY 261 void *security; 262 #endif 263 enum bpf_map_type map_type; 264 u32 key_size; 265 u32 value_size; 266 u32 max_entries; 267 u64 map_extra; /* any per-map-type extra fields */ 268 u32 map_flags; 269 u32 id; 270 struct btf_record *record; 271 int numa_node; 272 u32 btf_key_type_id; 273 u32 btf_value_type_id; 274 u32 btf_vmlinux_value_type_id; 275 struct btf *btf; 276 #ifdef CONFIG_MEMCG_KMEM 277 struct obj_cgroup *objcg; 278 #endif 279 char name[BPF_OBJ_NAME_LEN]; 280 struct mutex freeze_mutex; 281 atomic64_t refcnt; 282 atomic64_t usercnt; 283 /* rcu is used before freeing and work is only used during freeing */ 284 union { 285 struct work_struct work; 286 struct rcu_head rcu; 287 }; 288 atomic64_t writecnt; 289 /* 'Ownership' of program-containing map is claimed by the first program 290 * that is going to use this map or by the first program which FD is 291 * stored in the map to make sure that all callers and callees have the 292 * same prog type, JITed flag and xdp_has_frags flag. 293 */ 294 struct { 295 spinlock_t lock; 296 enum bpf_prog_type type; 297 bool jited; 298 bool xdp_has_frags; 299 } owner; 300 bool bypass_spec_v1; 301 bool frozen; /* write-once; write-protected by freeze_mutex */ 302 bool free_after_mult_rcu_gp; 303 bool free_after_rcu_gp; 304 atomic64_t sleepable_refcnt; 305 s64 __percpu *elem_count; 306 }; 307 308 static inline const char *btf_field_type_name(enum btf_field_type type) 309 { 310 switch (type) { 311 case BPF_SPIN_LOCK: 312 return "bpf_spin_lock"; 313 case BPF_TIMER: 314 return "bpf_timer"; 315 case BPF_KPTR_UNREF: 316 case BPF_KPTR_REF: 317 return "kptr"; 318 case BPF_KPTR_PERCPU: 319 return "percpu_kptr"; 320 case BPF_LIST_HEAD: 321 return "bpf_list_head"; 322 case BPF_LIST_NODE: 323 return "bpf_list_node"; 324 case BPF_RB_ROOT: 325 return "bpf_rb_root"; 326 case BPF_RB_NODE: 327 return "bpf_rb_node"; 328 case BPF_REFCOUNT: 329 return "bpf_refcount"; 330 default: 331 WARN_ON_ONCE(1); 332 return "unknown"; 333 } 334 } 335 336 static inline u32 btf_field_type_size(enum btf_field_type type) 337 { 338 switch (type) { 339 case BPF_SPIN_LOCK: 340 return sizeof(struct bpf_spin_lock); 341 case BPF_TIMER: 342 return sizeof(struct bpf_timer); 343 case BPF_KPTR_UNREF: 344 case BPF_KPTR_REF: 345 case BPF_KPTR_PERCPU: 346 return sizeof(u64); 347 case BPF_LIST_HEAD: 348 return sizeof(struct bpf_list_head); 349 case BPF_LIST_NODE: 350 return sizeof(struct bpf_list_node); 351 case BPF_RB_ROOT: 352 return sizeof(struct bpf_rb_root); 353 case BPF_RB_NODE: 354 return sizeof(struct bpf_rb_node); 355 case BPF_REFCOUNT: 356 return sizeof(struct bpf_refcount); 357 default: 358 WARN_ON_ONCE(1); 359 return 0; 360 } 361 } 362 363 static inline u32 btf_field_type_align(enum btf_field_type type) 364 { 365 switch (type) { 366 case BPF_SPIN_LOCK: 367 return __alignof__(struct bpf_spin_lock); 368 case BPF_TIMER: 369 return __alignof__(struct bpf_timer); 370 case BPF_KPTR_UNREF: 371 case BPF_KPTR_REF: 372 case BPF_KPTR_PERCPU: 373 return __alignof__(u64); 374 case BPF_LIST_HEAD: 375 return __alignof__(struct bpf_list_head); 376 case BPF_LIST_NODE: 377 return __alignof__(struct bpf_list_node); 378 case BPF_RB_ROOT: 379 return __alignof__(struct bpf_rb_root); 380 case BPF_RB_NODE: 381 return __alignof__(struct bpf_rb_node); 382 case BPF_REFCOUNT: 383 return __alignof__(struct bpf_refcount); 384 default: 385 WARN_ON_ONCE(1); 386 return 0; 387 } 388 } 389 390 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 391 { 392 memset(addr, 0, field->size); 393 394 switch (field->type) { 395 case BPF_REFCOUNT: 396 refcount_set((refcount_t *)addr, 1); 397 break; 398 case BPF_RB_NODE: 399 RB_CLEAR_NODE((struct rb_node *)addr); 400 break; 401 case BPF_LIST_HEAD: 402 case BPF_LIST_NODE: 403 INIT_LIST_HEAD((struct list_head *)addr); 404 break; 405 case BPF_RB_ROOT: 406 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 407 case BPF_SPIN_LOCK: 408 case BPF_TIMER: 409 case BPF_KPTR_UNREF: 410 case BPF_KPTR_REF: 411 case BPF_KPTR_PERCPU: 412 break; 413 default: 414 WARN_ON_ONCE(1); 415 return; 416 } 417 } 418 419 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 420 { 421 if (IS_ERR_OR_NULL(rec)) 422 return false; 423 return rec->field_mask & type; 424 } 425 426 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 427 { 428 int i; 429 430 if (IS_ERR_OR_NULL(rec)) 431 return; 432 for (i = 0; i < rec->cnt; i++) 433 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 434 } 435 436 /* 'dst' must be a temporary buffer and should not point to memory that is being 437 * used in parallel by a bpf program or bpf syscall, otherwise the access from 438 * the bpf program or bpf syscall may be corrupted by the reinitialization, 439 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 440 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 441 * program or bpf syscall. 442 */ 443 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 444 { 445 bpf_obj_init(map->record, dst); 446 } 447 448 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 449 * forced to use 'long' read/writes to try to atomically copy long counters. 450 * Best-effort only. No barriers here, since it _will_ race with concurrent 451 * updates from BPF programs. Called from bpf syscall and mostly used with 452 * size 8 or 16 bytes, so ask compiler to inline it. 453 */ 454 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 455 { 456 const long *lsrc = src; 457 long *ldst = dst; 458 459 size /= sizeof(long); 460 while (size--) 461 data_race(*ldst++ = *lsrc++); 462 } 463 464 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 465 static inline void bpf_obj_memcpy(struct btf_record *rec, 466 void *dst, void *src, u32 size, 467 bool long_memcpy) 468 { 469 u32 curr_off = 0; 470 int i; 471 472 if (IS_ERR_OR_NULL(rec)) { 473 if (long_memcpy) 474 bpf_long_memcpy(dst, src, round_up(size, 8)); 475 else 476 memcpy(dst, src, size); 477 return; 478 } 479 480 for (i = 0; i < rec->cnt; i++) { 481 u32 next_off = rec->fields[i].offset; 482 u32 sz = next_off - curr_off; 483 484 memcpy(dst + curr_off, src + curr_off, sz); 485 curr_off += rec->fields[i].size + sz; 486 } 487 memcpy(dst + curr_off, src + curr_off, size - curr_off); 488 } 489 490 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 491 { 492 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 493 } 494 495 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 496 { 497 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 498 } 499 500 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 501 { 502 u32 curr_off = 0; 503 int i; 504 505 if (IS_ERR_OR_NULL(rec)) { 506 memset(dst, 0, size); 507 return; 508 } 509 510 for (i = 0; i < rec->cnt; i++) { 511 u32 next_off = rec->fields[i].offset; 512 u32 sz = next_off - curr_off; 513 514 memset(dst + curr_off, 0, sz); 515 curr_off += rec->fields[i].size + sz; 516 } 517 memset(dst + curr_off, 0, size - curr_off); 518 } 519 520 static inline void zero_map_value(struct bpf_map *map, void *dst) 521 { 522 bpf_obj_memzero(map->record, dst, map->value_size); 523 } 524 525 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 526 bool lock_src); 527 void bpf_timer_cancel_and_free(void *timer); 528 void bpf_list_head_free(const struct btf_field *field, void *list_head, 529 struct bpf_spin_lock *spin_lock); 530 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 531 struct bpf_spin_lock *spin_lock); 532 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 533 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 534 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 535 536 struct bpf_offload_dev; 537 struct bpf_offloaded_map; 538 539 struct bpf_map_dev_ops { 540 int (*map_get_next_key)(struct bpf_offloaded_map *map, 541 void *key, void *next_key); 542 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 543 void *key, void *value); 544 int (*map_update_elem)(struct bpf_offloaded_map *map, 545 void *key, void *value, u64 flags); 546 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 547 }; 548 549 struct bpf_offloaded_map { 550 struct bpf_map map; 551 struct net_device *netdev; 552 const struct bpf_map_dev_ops *dev_ops; 553 void *dev_priv; 554 struct list_head offloads; 555 }; 556 557 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 558 { 559 return container_of(map, struct bpf_offloaded_map, map); 560 } 561 562 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 563 { 564 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 565 } 566 567 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 568 { 569 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 570 map->ops->map_seq_show_elem; 571 } 572 573 int map_check_no_btf(const struct bpf_map *map, 574 const struct btf *btf, 575 const struct btf_type *key_type, 576 const struct btf_type *value_type); 577 578 bool bpf_map_meta_equal(const struct bpf_map *meta0, 579 const struct bpf_map *meta1); 580 581 extern const struct bpf_map_ops bpf_map_offload_ops; 582 583 /* bpf_type_flag contains a set of flags that are applicable to the values of 584 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 585 * or a memory is read-only. We classify types into two categories: base types 586 * and extended types. Extended types are base types combined with a type flag. 587 * 588 * Currently there are no more than 32 base types in arg_type, ret_type and 589 * reg_types. 590 */ 591 #define BPF_BASE_TYPE_BITS 8 592 593 enum bpf_type_flag { 594 /* PTR may be NULL. */ 595 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 596 597 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 598 * compatible with both mutable and immutable memory. 599 */ 600 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 601 602 /* MEM points to BPF ring buffer reservation. */ 603 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 604 605 /* MEM is in user address space. */ 606 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 609 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 610 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 611 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 612 * to the specified cpu. 613 */ 614 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 615 616 /* Indicates that the argument will be released. */ 617 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 618 619 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 620 * unreferenced and referenced kptr loaded from map value using a load 621 * instruction, so that they can only be dereferenced but not escape the 622 * BPF program into the kernel (i.e. cannot be passed as arguments to 623 * kfunc or bpf helpers). 624 */ 625 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 626 627 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 628 629 /* DYNPTR points to memory local to the bpf program. */ 630 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 631 632 /* DYNPTR points to a kernel-produced ringbuf record. */ 633 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 634 635 /* Size is known at compile time. */ 636 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 637 638 /* MEM is of an allocated object of type in program BTF. This is used to 639 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 640 */ 641 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 642 643 /* PTR was passed from the kernel in a trusted context, and may be 644 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 645 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 646 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 647 * without invoking bpf_kptr_xchg(). What we really need to know is 648 * whether a pointer is safe to pass to a kfunc or BPF helper function. 649 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 650 * helpers, they do not cover all possible instances of unsafe 651 * pointers. For example, a pointer that was obtained from walking a 652 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 653 * fact that it may be NULL, invalid, etc. This is due to backwards 654 * compatibility requirements, as this was the behavior that was first 655 * introduced when kptrs were added. The behavior is now considered 656 * deprecated, and PTR_UNTRUSTED will eventually be removed. 657 * 658 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 659 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 660 * For example, pointers passed to tracepoint arguments are considered 661 * PTR_TRUSTED, as are pointers that are passed to struct_ops 662 * callbacks. As alluded to above, pointers that are obtained from 663 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 664 * struct task_struct *task is PTR_TRUSTED, then accessing 665 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 666 * in a BPF register. Similarly, pointers passed to certain programs 667 * types such as kretprobes are not guaranteed to be valid, as they may 668 * for example contain an object that was recently freed. 669 */ 670 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 671 672 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 673 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 674 675 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 676 * Currently only valid for linked-list and rbtree nodes. If the nodes 677 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 678 */ 679 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 680 681 /* DYNPTR points to sk_buff */ 682 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 683 684 /* DYNPTR points to xdp_buff */ 685 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 686 687 __BPF_TYPE_FLAG_MAX, 688 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 689 }; 690 691 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 692 | DYNPTR_TYPE_XDP) 693 694 /* Max number of base types. */ 695 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 696 697 /* Max number of all types. */ 698 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 699 700 /* function argument constraints */ 701 enum bpf_arg_type { 702 ARG_DONTCARE = 0, /* unused argument in helper function */ 703 704 /* the following constraints used to prototype 705 * bpf_map_lookup/update/delete_elem() functions 706 */ 707 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 708 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 709 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 710 711 /* Used to prototype bpf_memcmp() and other functions that access data 712 * on eBPF program stack 713 */ 714 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 715 ARG_PTR_TO_ARENA, 716 717 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 718 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 719 720 ARG_PTR_TO_CTX, /* pointer to context */ 721 ARG_ANYTHING, /* any (initialized) argument is ok */ 722 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 723 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 724 ARG_PTR_TO_INT, /* pointer to int */ 725 ARG_PTR_TO_LONG, /* pointer to long */ 726 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 727 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 728 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 729 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 730 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 731 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 732 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 733 ARG_PTR_TO_STACK, /* pointer to stack */ 734 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 735 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 736 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 737 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 738 __BPF_ARG_TYPE_MAX, 739 740 /* Extended arg_types. */ 741 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 742 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 743 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 744 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 745 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 746 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 747 /* pointer to memory does not need to be initialized, helper function must fill 748 * all bytes or clear them in error case. 749 */ 750 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 751 /* Pointer to valid memory of size known at compile time. */ 752 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 753 754 /* This must be the last entry. Its purpose is to ensure the enum is 755 * wide enough to hold the higher bits reserved for bpf_type_flag. 756 */ 757 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 758 }; 759 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 760 761 /* type of values returned from helper functions */ 762 enum bpf_return_type { 763 RET_INTEGER, /* function returns integer */ 764 RET_VOID, /* function doesn't return anything */ 765 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 766 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 767 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 768 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 769 RET_PTR_TO_MEM, /* returns a pointer to memory */ 770 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 771 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 772 __BPF_RET_TYPE_MAX, 773 774 /* Extended ret_types. */ 775 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 776 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 777 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 778 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 779 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 780 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 781 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 782 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 783 784 /* This must be the last entry. Its purpose is to ensure the enum is 785 * wide enough to hold the higher bits reserved for bpf_type_flag. 786 */ 787 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 788 }; 789 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 790 791 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 792 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 793 * instructions after verifying 794 */ 795 struct bpf_func_proto { 796 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 797 bool gpl_only; 798 bool pkt_access; 799 bool might_sleep; 800 enum bpf_return_type ret_type; 801 union { 802 struct { 803 enum bpf_arg_type arg1_type; 804 enum bpf_arg_type arg2_type; 805 enum bpf_arg_type arg3_type; 806 enum bpf_arg_type arg4_type; 807 enum bpf_arg_type arg5_type; 808 }; 809 enum bpf_arg_type arg_type[5]; 810 }; 811 union { 812 struct { 813 u32 *arg1_btf_id; 814 u32 *arg2_btf_id; 815 u32 *arg3_btf_id; 816 u32 *arg4_btf_id; 817 u32 *arg5_btf_id; 818 }; 819 u32 *arg_btf_id[5]; 820 struct { 821 size_t arg1_size; 822 size_t arg2_size; 823 size_t arg3_size; 824 size_t arg4_size; 825 size_t arg5_size; 826 }; 827 size_t arg_size[5]; 828 }; 829 int *ret_btf_id; /* return value btf_id */ 830 bool (*allowed)(const struct bpf_prog *prog); 831 }; 832 833 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 834 * the first argument to eBPF programs. 835 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 836 */ 837 struct bpf_context; 838 839 enum bpf_access_type { 840 BPF_READ = 1, 841 BPF_WRITE = 2 842 }; 843 844 /* types of values stored in eBPF registers */ 845 /* Pointer types represent: 846 * pointer 847 * pointer + imm 848 * pointer + (u16) var 849 * pointer + (u16) var + imm 850 * if (range > 0) then [ptr, ptr + range - off) is safe to access 851 * if (id > 0) means that some 'var' was added 852 * if (off > 0) means that 'imm' was added 853 */ 854 enum bpf_reg_type { 855 NOT_INIT = 0, /* nothing was written into register */ 856 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 857 PTR_TO_CTX, /* reg points to bpf_context */ 858 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 859 PTR_TO_MAP_VALUE, /* reg points to map element value */ 860 PTR_TO_MAP_KEY, /* reg points to a map element key */ 861 PTR_TO_STACK, /* reg == frame_pointer + offset */ 862 PTR_TO_PACKET_META, /* skb->data - meta_len */ 863 PTR_TO_PACKET, /* reg points to skb->data */ 864 PTR_TO_PACKET_END, /* skb->data + headlen */ 865 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 866 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 867 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 868 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 869 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 870 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 871 /* PTR_TO_BTF_ID points to a kernel struct that does not need 872 * to be null checked by the BPF program. This does not imply the 873 * pointer is _not_ null and in practice this can easily be a null 874 * pointer when reading pointer chains. The assumption is program 875 * context will handle null pointer dereference typically via fault 876 * handling. The verifier must keep this in mind and can make no 877 * assumptions about null or non-null when doing branch analysis. 878 * Further, when passed into helpers the helpers can not, without 879 * additional context, assume the value is non-null. 880 */ 881 PTR_TO_BTF_ID, 882 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 883 * been checked for null. Used primarily to inform the verifier 884 * an explicit null check is required for this struct. 885 */ 886 PTR_TO_MEM, /* reg points to valid memory region */ 887 PTR_TO_ARENA, 888 PTR_TO_BUF, /* reg points to a read/write buffer */ 889 PTR_TO_FUNC, /* reg points to a bpf program function */ 890 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 891 __BPF_REG_TYPE_MAX, 892 893 /* Extended reg_types. */ 894 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 895 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 896 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 897 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 898 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 899 900 /* This must be the last entry. Its purpose is to ensure the enum is 901 * wide enough to hold the higher bits reserved for bpf_type_flag. 902 */ 903 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 904 }; 905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 906 907 /* The information passed from prog-specific *_is_valid_access 908 * back to the verifier. 909 */ 910 struct bpf_insn_access_aux { 911 enum bpf_reg_type reg_type; 912 union { 913 int ctx_field_size; 914 struct { 915 struct btf *btf; 916 u32 btf_id; 917 }; 918 }; 919 struct bpf_verifier_log *log; /* for verbose logs */ 920 }; 921 922 static inline void 923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 924 { 925 aux->ctx_field_size = size; 926 } 927 928 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 929 { 930 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 931 } 932 933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 934 { 935 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 936 } 937 938 struct bpf_prog_ops { 939 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 940 union bpf_attr __user *uattr); 941 }; 942 943 struct bpf_reg_state; 944 struct bpf_verifier_ops { 945 /* return eBPF function prototype for verification */ 946 const struct bpf_func_proto * 947 (*get_func_proto)(enum bpf_func_id func_id, 948 const struct bpf_prog *prog); 949 950 /* return true if 'size' wide access at offset 'off' within bpf_context 951 * with 'type' (read or write) is allowed 952 */ 953 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 954 const struct bpf_prog *prog, 955 struct bpf_insn_access_aux *info); 956 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 957 const struct bpf_prog *prog); 958 int (*gen_ld_abs)(const struct bpf_insn *orig, 959 struct bpf_insn *insn_buf); 960 u32 (*convert_ctx_access)(enum bpf_access_type type, 961 const struct bpf_insn *src, 962 struct bpf_insn *dst, 963 struct bpf_prog *prog, u32 *target_size); 964 int (*btf_struct_access)(struct bpf_verifier_log *log, 965 const struct bpf_reg_state *reg, 966 int off, int size); 967 }; 968 969 struct bpf_prog_offload_ops { 970 /* verifier basic callbacks */ 971 int (*insn_hook)(struct bpf_verifier_env *env, 972 int insn_idx, int prev_insn_idx); 973 int (*finalize)(struct bpf_verifier_env *env); 974 /* verifier optimization callbacks (called after .finalize) */ 975 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 976 struct bpf_insn *insn); 977 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 978 /* program management callbacks */ 979 int (*prepare)(struct bpf_prog *prog); 980 int (*translate)(struct bpf_prog *prog); 981 void (*destroy)(struct bpf_prog *prog); 982 }; 983 984 struct bpf_prog_offload { 985 struct bpf_prog *prog; 986 struct net_device *netdev; 987 struct bpf_offload_dev *offdev; 988 void *dev_priv; 989 struct list_head offloads; 990 bool dev_state; 991 bool opt_failed; 992 void *jited_image; 993 u32 jited_len; 994 }; 995 996 enum bpf_cgroup_storage_type { 997 BPF_CGROUP_STORAGE_SHARED, 998 BPF_CGROUP_STORAGE_PERCPU, 999 __BPF_CGROUP_STORAGE_MAX 1000 }; 1001 1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1003 1004 /* The longest tracepoint has 12 args. 1005 * See include/trace/bpf_probe.h 1006 */ 1007 #define MAX_BPF_FUNC_ARGS 12 1008 1009 /* The maximum number of arguments passed through registers 1010 * a single function may have. 1011 */ 1012 #define MAX_BPF_FUNC_REG_ARGS 5 1013 1014 /* The argument is a structure. */ 1015 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1016 1017 /* The argument is signed. */ 1018 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1019 1020 struct btf_func_model { 1021 u8 ret_size; 1022 u8 ret_flags; 1023 u8 nr_args; 1024 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1025 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1026 }; 1027 1028 /* Restore arguments before returning from trampoline to let original function 1029 * continue executing. This flag is used for fentry progs when there are no 1030 * fexit progs. 1031 */ 1032 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1033 /* Call original function after fentry progs, but before fexit progs. 1034 * Makes sense for fentry/fexit, normal calls and indirect calls. 1035 */ 1036 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1037 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1038 * programs only. Should not be used with normal calls and indirect calls. 1039 */ 1040 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1041 /* Store IP address of the caller on the trampoline stack, 1042 * so it's available for trampoline's programs. 1043 */ 1044 #define BPF_TRAMP_F_IP_ARG BIT(3) 1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1046 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1047 1048 /* Get original function from stack instead of from provided direct address. 1049 * Makes sense for trampolines with fexit or fmod_ret programs. 1050 */ 1051 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1052 1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1054 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1055 */ 1056 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1057 1058 /* Indicate that current trampoline is in a tail call context. Then, it has to 1059 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1060 */ 1061 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1062 1063 /* 1064 * Indicate the trampoline should be suitable to receive indirect calls; 1065 * without this indirectly calling the generated code can result in #UD/#CP, 1066 * depending on the CFI options. 1067 * 1068 * Used by bpf_struct_ops. 1069 * 1070 * Incompatible with FENTRY usage, overloads @func_addr argument. 1071 */ 1072 #define BPF_TRAMP_F_INDIRECT BIT(8) 1073 1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1075 * bytes on x86. 1076 */ 1077 enum { 1078 #if defined(__s390x__) 1079 BPF_MAX_TRAMP_LINKS = 27, 1080 #else 1081 BPF_MAX_TRAMP_LINKS = 38, 1082 #endif 1083 }; 1084 1085 struct bpf_tramp_links { 1086 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1087 int nr_links; 1088 }; 1089 1090 struct bpf_tramp_run_ctx; 1091 1092 /* Different use cases for BPF trampoline: 1093 * 1. replace nop at the function entry (kprobe equivalent) 1094 * flags = BPF_TRAMP_F_RESTORE_REGS 1095 * fentry = a set of programs to run before returning from trampoline 1096 * 1097 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1098 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1099 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1100 * fentry = a set of program to run before calling original function 1101 * fexit = a set of program to run after original function 1102 * 1103 * 3. replace direct call instruction anywhere in the function body 1104 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1105 * With flags = 0 1106 * fentry = a set of programs to run before returning from trampoline 1107 * With flags = BPF_TRAMP_F_CALL_ORIG 1108 * orig_call = original callback addr or direct function addr 1109 * fentry = a set of program to run before calling original function 1110 * fexit = a set of program to run after original function 1111 */ 1112 struct bpf_tramp_image; 1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1114 const struct btf_func_model *m, u32 flags, 1115 struct bpf_tramp_links *tlinks, 1116 void *func_addr); 1117 void *arch_alloc_bpf_trampoline(unsigned int size); 1118 void arch_free_bpf_trampoline(void *image, unsigned int size); 1119 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1120 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1121 struct bpf_tramp_links *tlinks, void *func_addr); 1122 1123 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1124 struct bpf_tramp_run_ctx *run_ctx); 1125 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1126 struct bpf_tramp_run_ctx *run_ctx); 1127 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1128 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1129 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1130 struct bpf_tramp_run_ctx *run_ctx); 1131 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1132 struct bpf_tramp_run_ctx *run_ctx); 1133 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1134 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1135 1136 struct bpf_ksym { 1137 unsigned long start; 1138 unsigned long end; 1139 char name[KSYM_NAME_LEN]; 1140 struct list_head lnode; 1141 struct latch_tree_node tnode; 1142 bool prog; 1143 }; 1144 1145 enum bpf_tramp_prog_type { 1146 BPF_TRAMP_FENTRY, 1147 BPF_TRAMP_FEXIT, 1148 BPF_TRAMP_MODIFY_RETURN, 1149 BPF_TRAMP_MAX, 1150 BPF_TRAMP_REPLACE, /* more than MAX */ 1151 }; 1152 1153 struct bpf_tramp_image { 1154 void *image; 1155 int size; 1156 struct bpf_ksym ksym; 1157 struct percpu_ref pcref; 1158 void *ip_after_call; 1159 void *ip_epilogue; 1160 union { 1161 struct rcu_head rcu; 1162 struct work_struct work; 1163 }; 1164 }; 1165 1166 struct bpf_trampoline { 1167 /* hlist for trampoline_table */ 1168 struct hlist_node hlist; 1169 struct ftrace_ops *fops; 1170 /* serializes access to fields of this trampoline */ 1171 struct mutex mutex; 1172 refcount_t refcnt; 1173 u32 flags; 1174 u64 key; 1175 struct { 1176 struct btf_func_model model; 1177 void *addr; 1178 bool ftrace_managed; 1179 } func; 1180 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1181 * program by replacing one of its functions. func.addr is the address 1182 * of the function it replaced. 1183 */ 1184 struct bpf_prog *extension_prog; 1185 /* list of BPF programs using this trampoline */ 1186 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1187 /* Number of attached programs. A counter per kind. */ 1188 int progs_cnt[BPF_TRAMP_MAX]; 1189 /* Executable image of trampoline */ 1190 struct bpf_tramp_image *cur_image; 1191 }; 1192 1193 struct bpf_attach_target_info { 1194 struct btf_func_model fmodel; 1195 long tgt_addr; 1196 struct module *tgt_mod; 1197 const char *tgt_name; 1198 const struct btf_type *tgt_type; 1199 }; 1200 1201 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1202 1203 struct bpf_dispatcher_prog { 1204 struct bpf_prog *prog; 1205 refcount_t users; 1206 }; 1207 1208 struct bpf_dispatcher { 1209 /* dispatcher mutex */ 1210 struct mutex mutex; 1211 void *func; 1212 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1213 int num_progs; 1214 void *image; 1215 void *rw_image; 1216 u32 image_off; 1217 struct bpf_ksym ksym; 1218 #ifdef CONFIG_HAVE_STATIC_CALL 1219 struct static_call_key *sc_key; 1220 void *sc_tramp; 1221 #endif 1222 }; 1223 1224 #ifndef __bpfcall 1225 #define __bpfcall __nocfi 1226 #endif 1227 1228 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1229 const void *ctx, 1230 const struct bpf_insn *insnsi, 1231 bpf_func_t bpf_func) 1232 { 1233 return bpf_func(ctx, insnsi); 1234 } 1235 1236 /* the implementation of the opaque uapi struct bpf_dynptr */ 1237 struct bpf_dynptr_kern { 1238 void *data; 1239 /* Size represents the number of usable bytes of dynptr data. 1240 * If for example the offset is at 4 for a local dynptr whose data is 1241 * of type u64, the number of usable bytes is 4. 1242 * 1243 * The upper 8 bits are reserved. It is as follows: 1244 * Bits 0 - 23 = size 1245 * Bits 24 - 30 = dynptr type 1246 * Bit 31 = whether dynptr is read-only 1247 */ 1248 u32 size; 1249 u32 offset; 1250 } __aligned(8); 1251 1252 enum bpf_dynptr_type { 1253 BPF_DYNPTR_TYPE_INVALID, 1254 /* Points to memory that is local to the bpf program */ 1255 BPF_DYNPTR_TYPE_LOCAL, 1256 /* Underlying data is a ringbuf record */ 1257 BPF_DYNPTR_TYPE_RINGBUF, 1258 /* Underlying data is a sk_buff */ 1259 BPF_DYNPTR_TYPE_SKB, 1260 /* Underlying data is a xdp_buff */ 1261 BPF_DYNPTR_TYPE_XDP, 1262 }; 1263 1264 int bpf_dynptr_check_size(u32 size); 1265 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1266 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1267 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1268 1269 #ifdef CONFIG_BPF_JIT 1270 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1271 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1272 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1273 struct bpf_attach_target_info *tgt_info); 1274 void bpf_trampoline_put(struct bpf_trampoline *tr); 1275 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1276 1277 /* 1278 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1279 * indirection with a direct call to the bpf program. If the architecture does 1280 * not have STATIC_CALL, avoid a double-indirection. 1281 */ 1282 #ifdef CONFIG_HAVE_STATIC_CALL 1283 1284 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1285 .sc_key = &STATIC_CALL_KEY(_name), \ 1286 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1287 1288 #define __BPF_DISPATCHER_SC(name) \ 1289 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1290 1291 #define __BPF_DISPATCHER_CALL(name) \ 1292 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1293 1294 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1295 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1296 1297 #else 1298 #define __BPF_DISPATCHER_SC_INIT(name) 1299 #define __BPF_DISPATCHER_SC(name) 1300 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1301 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1302 #endif 1303 1304 #define BPF_DISPATCHER_INIT(_name) { \ 1305 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1306 .func = &_name##_func, \ 1307 .progs = {}, \ 1308 .num_progs = 0, \ 1309 .image = NULL, \ 1310 .image_off = 0, \ 1311 .ksym = { \ 1312 .name = #_name, \ 1313 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1314 }, \ 1315 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1316 } 1317 1318 #define DEFINE_BPF_DISPATCHER(name) \ 1319 __BPF_DISPATCHER_SC(name); \ 1320 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1321 const void *ctx, \ 1322 const struct bpf_insn *insnsi, \ 1323 bpf_func_t bpf_func) \ 1324 { \ 1325 return __BPF_DISPATCHER_CALL(name); \ 1326 } \ 1327 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1328 struct bpf_dispatcher bpf_dispatcher_##name = \ 1329 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1330 1331 #define DECLARE_BPF_DISPATCHER(name) \ 1332 unsigned int bpf_dispatcher_##name##_func( \ 1333 const void *ctx, \ 1334 const struct bpf_insn *insnsi, \ 1335 bpf_func_t bpf_func); \ 1336 extern struct bpf_dispatcher bpf_dispatcher_##name; 1337 1338 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1339 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1340 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1341 struct bpf_prog *to); 1342 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1343 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1344 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1345 void bpf_ksym_add(struct bpf_ksym *ksym); 1346 void bpf_ksym_del(struct bpf_ksym *ksym); 1347 int bpf_jit_charge_modmem(u32 size); 1348 void bpf_jit_uncharge_modmem(u32 size); 1349 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1350 #else 1351 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1352 struct bpf_trampoline *tr) 1353 { 1354 return -ENOTSUPP; 1355 } 1356 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1357 struct bpf_trampoline *tr) 1358 { 1359 return -ENOTSUPP; 1360 } 1361 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1362 struct bpf_attach_target_info *tgt_info) 1363 { 1364 return NULL; 1365 } 1366 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1367 #define DEFINE_BPF_DISPATCHER(name) 1368 #define DECLARE_BPF_DISPATCHER(name) 1369 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1370 #define BPF_DISPATCHER_PTR(name) NULL 1371 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1372 struct bpf_prog *from, 1373 struct bpf_prog *to) {} 1374 static inline bool is_bpf_image_address(unsigned long address) 1375 { 1376 return false; 1377 } 1378 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1379 { 1380 return false; 1381 } 1382 #endif 1383 1384 struct bpf_func_info_aux { 1385 u16 linkage; 1386 bool unreliable; 1387 bool called : 1; 1388 bool verified : 1; 1389 }; 1390 1391 enum bpf_jit_poke_reason { 1392 BPF_POKE_REASON_TAIL_CALL, 1393 }; 1394 1395 /* Descriptor of pokes pointing /into/ the JITed image. */ 1396 struct bpf_jit_poke_descriptor { 1397 void *tailcall_target; 1398 void *tailcall_bypass; 1399 void *bypass_addr; 1400 void *aux; 1401 union { 1402 struct { 1403 struct bpf_map *map; 1404 u32 key; 1405 } tail_call; 1406 }; 1407 bool tailcall_target_stable; 1408 u8 adj_off; 1409 u16 reason; 1410 u32 insn_idx; 1411 }; 1412 1413 /* reg_type info for ctx arguments */ 1414 struct bpf_ctx_arg_aux { 1415 u32 offset; 1416 enum bpf_reg_type reg_type; 1417 struct btf *btf; 1418 u32 btf_id; 1419 }; 1420 1421 struct btf_mod_pair { 1422 struct btf *btf; 1423 struct module *module; 1424 }; 1425 1426 struct bpf_kfunc_desc_tab; 1427 1428 struct bpf_prog_aux { 1429 atomic64_t refcnt; 1430 u32 used_map_cnt; 1431 u32 used_btf_cnt; 1432 u32 max_ctx_offset; 1433 u32 max_pkt_offset; 1434 u32 max_tp_access; 1435 u32 stack_depth; 1436 u32 id; 1437 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1438 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1439 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1440 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1441 u32 ctx_arg_info_size; 1442 u32 max_rdonly_access; 1443 u32 max_rdwr_access; 1444 struct btf *attach_btf; 1445 const struct bpf_ctx_arg_aux *ctx_arg_info; 1446 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1447 struct bpf_prog *dst_prog; 1448 struct bpf_trampoline *dst_trampoline; 1449 enum bpf_prog_type saved_dst_prog_type; 1450 enum bpf_attach_type saved_dst_attach_type; 1451 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1452 bool dev_bound; /* Program is bound to the netdev. */ 1453 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1454 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1455 bool attach_tracing_prog; /* true if tracing another tracing program */ 1456 bool func_proto_unreliable; 1457 bool tail_call_reachable; 1458 bool xdp_has_frags; 1459 bool exception_cb; 1460 bool exception_boundary; 1461 struct bpf_arena *arena; 1462 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1463 const struct btf_type *attach_func_proto; 1464 /* function name for valid attach_btf_id */ 1465 const char *attach_func_name; 1466 struct bpf_prog **func; 1467 void *jit_data; /* JIT specific data. arch dependent */ 1468 struct bpf_jit_poke_descriptor *poke_tab; 1469 struct bpf_kfunc_desc_tab *kfunc_tab; 1470 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1471 u32 size_poke_tab; 1472 #ifdef CONFIG_FINEIBT 1473 struct bpf_ksym ksym_prefix; 1474 #endif 1475 struct bpf_ksym ksym; 1476 const struct bpf_prog_ops *ops; 1477 struct bpf_map **used_maps; 1478 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1479 struct btf_mod_pair *used_btfs; 1480 struct bpf_prog *prog; 1481 struct user_struct *user; 1482 u64 load_time; /* ns since boottime */ 1483 u32 verified_insns; 1484 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1485 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1486 char name[BPF_OBJ_NAME_LEN]; 1487 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1488 #ifdef CONFIG_SECURITY 1489 void *security; 1490 #endif 1491 struct bpf_token *token; 1492 struct bpf_prog_offload *offload; 1493 struct btf *btf; 1494 struct bpf_func_info *func_info; 1495 struct bpf_func_info_aux *func_info_aux; 1496 /* bpf_line_info loaded from userspace. linfo->insn_off 1497 * has the xlated insn offset. 1498 * Both the main and sub prog share the same linfo. 1499 * The subprog can access its first linfo by 1500 * using the linfo_idx. 1501 */ 1502 struct bpf_line_info *linfo; 1503 /* jited_linfo is the jited addr of the linfo. It has a 1504 * one to one mapping to linfo: 1505 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1506 * Both the main and sub prog share the same jited_linfo. 1507 * The subprog can access its first jited_linfo by 1508 * using the linfo_idx. 1509 */ 1510 void **jited_linfo; 1511 u32 func_info_cnt; 1512 u32 nr_linfo; 1513 /* subprog can use linfo_idx to access its first linfo and 1514 * jited_linfo. 1515 * main prog always has linfo_idx == 0 1516 */ 1517 u32 linfo_idx; 1518 struct module *mod; 1519 u32 num_exentries; 1520 struct exception_table_entry *extable; 1521 union { 1522 struct work_struct work; 1523 struct rcu_head rcu; 1524 }; 1525 }; 1526 1527 struct bpf_prog { 1528 u16 pages; /* Number of allocated pages */ 1529 u16 jited:1, /* Is our filter JIT'ed? */ 1530 jit_requested:1,/* archs need to JIT the prog */ 1531 gpl_compatible:1, /* Is filter GPL compatible? */ 1532 cb_access:1, /* Is control block accessed? */ 1533 dst_needed:1, /* Do we need dst entry? */ 1534 blinding_requested:1, /* needs constant blinding */ 1535 blinded:1, /* Was blinded */ 1536 is_func:1, /* program is a bpf function */ 1537 kprobe_override:1, /* Do we override a kprobe? */ 1538 has_callchain_buf:1, /* callchain buffer allocated? */ 1539 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1540 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1541 call_get_func_ip:1, /* Do we call get_func_ip() */ 1542 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1543 sleepable:1; /* BPF program is sleepable */ 1544 enum bpf_prog_type type; /* Type of BPF program */ 1545 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1546 u32 len; /* Number of filter blocks */ 1547 u32 jited_len; /* Size of jited insns in bytes */ 1548 u8 tag[BPF_TAG_SIZE]; 1549 struct bpf_prog_stats __percpu *stats; 1550 int __percpu *active; 1551 unsigned int (*bpf_func)(const void *ctx, 1552 const struct bpf_insn *insn); 1553 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1554 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1555 /* Instructions for interpreter */ 1556 union { 1557 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1558 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1559 }; 1560 }; 1561 1562 struct bpf_array_aux { 1563 /* Programs with direct jumps into programs part of this array. */ 1564 struct list_head poke_progs; 1565 struct bpf_map *map; 1566 struct mutex poke_mutex; 1567 struct work_struct work; 1568 }; 1569 1570 struct bpf_link { 1571 atomic64_t refcnt; 1572 u32 id; 1573 enum bpf_link_type type; 1574 const struct bpf_link_ops *ops; 1575 struct bpf_prog *prog; 1576 /* rcu is used before freeing, work can be used to schedule that 1577 * RCU-based freeing before that, so they never overlap 1578 */ 1579 union { 1580 struct rcu_head rcu; 1581 struct work_struct work; 1582 }; 1583 }; 1584 1585 struct bpf_link_ops { 1586 void (*release)(struct bpf_link *link); 1587 /* deallocate link resources callback, called without RCU grace period 1588 * waiting 1589 */ 1590 void (*dealloc)(struct bpf_link *link); 1591 /* deallocate link resources callback, called after RCU grace period; 1592 * if underlying BPF program is sleepable we go through tasks trace 1593 * RCU GP and then "classic" RCU GP 1594 */ 1595 void (*dealloc_deferred)(struct bpf_link *link); 1596 int (*detach)(struct bpf_link *link); 1597 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1598 struct bpf_prog *old_prog); 1599 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1600 int (*fill_link_info)(const struct bpf_link *link, 1601 struct bpf_link_info *info); 1602 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1603 struct bpf_map *old_map); 1604 }; 1605 1606 struct bpf_tramp_link { 1607 struct bpf_link link; 1608 struct hlist_node tramp_hlist; 1609 u64 cookie; 1610 }; 1611 1612 struct bpf_shim_tramp_link { 1613 struct bpf_tramp_link link; 1614 struct bpf_trampoline *trampoline; 1615 }; 1616 1617 struct bpf_tracing_link { 1618 struct bpf_tramp_link link; 1619 enum bpf_attach_type attach_type; 1620 struct bpf_trampoline *trampoline; 1621 struct bpf_prog *tgt_prog; 1622 }; 1623 1624 struct bpf_raw_tp_link { 1625 struct bpf_link link; 1626 struct bpf_raw_event_map *btp; 1627 u64 cookie; 1628 }; 1629 1630 struct bpf_link_primer { 1631 struct bpf_link *link; 1632 struct file *file; 1633 int fd; 1634 u32 id; 1635 }; 1636 1637 struct bpf_mount_opts { 1638 kuid_t uid; 1639 kgid_t gid; 1640 umode_t mode; 1641 1642 /* BPF token-related delegation options */ 1643 u64 delegate_cmds; 1644 u64 delegate_maps; 1645 u64 delegate_progs; 1646 u64 delegate_attachs; 1647 }; 1648 1649 struct bpf_token { 1650 struct work_struct work; 1651 atomic64_t refcnt; 1652 struct user_namespace *userns; 1653 u64 allowed_cmds; 1654 u64 allowed_maps; 1655 u64 allowed_progs; 1656 u64 allowed_attachs; 1657 #ifdef CONFIG_SECURITY 1658 void *security; 1659 #endif 1660 }; 1661 1662 struct bpf_struct_ops_value; 1663 struct btf_member; 1664 1665 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1666 /** 1667 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1668 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1669 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1670 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1671 * when determining whether the struct_ops progs in the 1672 * struct_ops map are valid. 1673 * @init: A callback that is invoked a single time, and before any other 1674 * callback, to initialize the structure. A nonzero return value means 1675 * the subsystem could not be initialized. 1676 * @check_member: When defined, a callback invoked by the verifier to allow 1677 * the subsystem to determine if an entry in the struct_ops map 1678 * is valid. A nonzero return value means that the map is 1679 * invalid and should be rejected by the verifier. 1680 * @init_member: A callback that is invoked for each member of the struct_ops 1681 * map to allow the subsystem to initialize the member. A nonzero 1682 * value means the member could not be initialized. This callback 1683 * is exclusive with the @type, @type_id, @value_type, and 1684 * @value_id fields. 1685 * @reg: A callback that is invoked when the struct_ops map has been 1686 * initialized and is being attached to. Zero means the struct_ops map 1687 * has been successfully registered and is live. A nonzero return value 1688 * means the struct_ops map could not be registered. 1689 * @unreg: A callback that is invoked when the struct_ops map should be 1690 * unregistered. 1691 * @update: A callback that is invoked when the live struct_ops map is being 1692 * updated to contain new values. This callback is only invoked when 1693 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1694 * it is assumed that the struct_ops map cannot be updated. 1695 * @validate: A callback that is invoked after all of the members have been 1696 * initialized. This callback should perform static checks on the 1697 * map, meaning that it should either fail or succeed 1698 * deterministically. A struct_ops map that has been validated may 1699 * not necessarily succeed in being registered if the call to @reg 1700 * fails. For example, a valid struct_ops map may be loaded, but 1701 * then fail to be registered due to there being another active 1702 * struct_ops map on the system in the subsystem already. For this 1703 * reason, if this callback is not defined, the check is skipped as 1704 * the struct_ops map will have final verification performed in 1705 * @reg. 1706 * @type: BTF type. 1707 * @value_type: Value type. 1708 * @name: The name of the struct bpf_struct_ops object. 1709 * @func_models: Func models 1710 * @type_id: BTF type id. 1711 * @value_id: BTF value id. 1712 */ 1713 struct bpf_struct_ops { 1714 const struct bpf_verifier_ops *verifier_ops; 1715 int (*init)(struct btf *btf); 1716 int (*check_member)(const struct btf_type *t, 1717 const struct btf_member *member, 1718 const struct bpf_prog *prog); 1719 int (*init_member)(const struct btf_type *t, 1720 const struct btf_member *member, 1721 void *kdata, const void *udata); 1722 int (*reg)(void *kdata); 1723 void (*unreg)(void *kdata); 1724 int (*update)(void *kdata, void *old_kdata); 1725 int (*validate)(void *kdata); 1726 void *cfi_stubs; 1727 struct module *owner; 1728 const char *name; 1729 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1730 }; 1731 1732 /* Every member of a struct_ops type has an instance even a member is not 1733 * an operator (function pointer). The "info" field will be assigned to 1734 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1735 * argument information required by the verifier to verify the program. 1736 * 1737 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1738 * corresponding entry for an given argument. 1739 */ 1740 struct bpf_struct_ops_arg_info { 1741 struct bpf_ctx_arg_aux *info; 1742 u32 cnt; 1743 }; 1744 1745 struct bpf_struct_ops_desc { 1746 struct bpf_struct_ops *st_ops; 1747 1748 const struct btf_type *type; 1749 const struct btf_type *value_type; 1750 u32 type_id; 1751 u32 value_id; 1752 1753 /* Collection of argument information for each member */ 1754 struct bpf_struct_ops_arg_info *arg_info; 1755 }; 1756 1757 enum bpf_struct_ops_state { 1758 BPF_STRUCT_OPS_STATE_INIT, 1759 BPF_STRUCT_OPS_STATE_INUSE, 1760 BPF_STRUCT_OPS_STATE_TOBEFREE, 1761 BPF_STRUCT_OPS_STATE_READY, 1762 }; 1763 1764 struct bpf_struct_ops_common_value { 1765 refcount_t refcnt; 1766 enum bpf_struct_ops_state state; 1767 }; 1768 1769 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1770 /* This macro helps developer to register a struct_ops type and generate 1771 * type information correctly. Developers should use this macro to register 1772 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1773 */ 1774 #define register_bpf_struct_ops(st_ops, type) \ 1775 ({ \ 1776 struct bpf_struct_ops_##type { \ 1777 struct bpf_struct_ops_common_value common; \ 1778 struct type data ____cacheline_aligned_in_smp; \ 1779 }; \ 1780 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1781 __register_bpf_struct_ops(st_ops); \ 1782 }) 1783 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1784 bool bpf_struct_ops_get(const void *kdata); 1785 void bpf_struct_ops_put(const void *kdata); 1786 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1787 void *value); 1788 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1789 struct bpf_tramp_link *link, 1790 const struct btf_func_model *model, 1791 void *stub_func, 1792 void **image, u32 *image_off, 1793 bool allow_alloc); 1794 void bpf_struct_ops_image_free(void *image); 1795 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1796 { 1797 if (owner == BPF_MODULE_OWNER) 1798 return bpf_struct_ops_get(data); 1799 else 1800 return try_module_get(owner); 1801 } 1802 static inline void bpf_module_put(const void *data, struct module *owner) 1803 { 1804 if (owner == BPF_MODULE_OWNER) 1805 bpf_struct_ops_put(data); 1806 else 1807 module_put(owner); 1808 } 1809 int bpf_struct_ops_link_create(union bpf_attr *attr); 1810 1811 #ifdef CONFIG_NET 1812 /* Define it here to avoid the use of forward declaration */ 1813 struct bpf_dummy_ops_state { 1814 int val; 1815 }; 1816 1817 struct bpf_dummy_ops { 1818 int (*test_1)(struct bpf_dummy_ops_state *cb); 1819 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1820 char a3, unsigned long a4); 1821 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1822 }; 1823 1824 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1825 union bpf_attr __user *uattr); 1826 #endif 1827 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1828 struct btf *btf, 1829 struct bpf_verifier_log *log); 1830 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1831 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1832 #else 1833 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1834 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1835 { 1836 return try_module_get(owner); 1837 } 1838 static inline void bpf_module_put(const void *data, struct module *owner) 1839 { 1840 module_put(owner); 1841 } 1842 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1843 void *key, 1844 void *value) 1845 { 1846 return -EINVAL; 1847 } 1848 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1849 { 1850 return -EOPNOTSUPP; 1851 } 1852 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1853 { 1854 } 1855 1856 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1857 { 1858 } 1859 1860 #endif 1861 1862 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1863 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1864 int cgroup_atype); 1865 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1866 #else 1867 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1868 int cgroup_atype) 1869 { 1870 return -EOPNOTSUPP; 1871 } 1872 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1873 { 1874 } 1875 #endif 1876 1877 struct bpf_array { 1878 struct bpf_map map; 1879 u32 elem_size; 1880 u32 index_mask; 1881 struct bpf_array_aux *aux; 1882 union { 1883 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1884 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1885 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1886 }; 1887 }; 1888 1889 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1890 #define MAX_TAIL_CALL_CNT 33 1891 1892 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1893 * It's enum to expose it (and thus make it discoverable) through BTF. 1894 */ 1895 enum { 1896 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1897 }; 1898 1899 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1900 BPF_F_RDONLY_PROG | \ 1901 BPF_F_WRONLY | \ 1902 BPF_F_WRONLY_PROG) 1903 1904 #define BPF_MAP_CAN_READ BIT(0) 1905 #define BPF_MAP_CAN_WRITE BIT(1) 1906 1907 /* Maximum number of user-producer ring buffer samples that can be drained in 1908 * a call to bpf_user_ringbuf_drain(). 1909 */ 1910 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1911 1912 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1913 { 1914 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1915 1916 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1917 * not possible. 1918 */ 1919 if (access_flags & BPF_F_RDONLY_PROG) 1920 return BPF_MAP_CAN_READ; 1921 else if (access_flags & BPF_F_WRONLY_PROG) 1922 return BPF_MAP_CAN_WRITE; 1923 else 1924 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1925 } 1926 1927 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1928 { 1929 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1930 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1931 } 1932 1933 struct bpf_event_entry { 1934 struct perf_event *event; 1935 struct file *perf_file; 1936 struct file *map_file; 1937 struct rcu_head rcu; 1938 }; 1939 1940 static inline bool map_type_contains_progs(struct bpf_map *map) 1941 { 1942 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1943 map->map_type == BPF_MAP_TYPE_DEVMAP || 1944 map->map_type == BPF_MAP_TYPE_CPUMAP; 1945 } 1946 1947 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1948 int bpf_prog_calc_tag(struct bpf_prog *fp); 1949 1950 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1951 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1952 1953 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1954 unsigned long off, unsigned long len); 1955 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1956 const struct bpf_insn *src, 1957 struct bpf_insn *dst, 1958 struct bpf_prog *prog, 1959 u32 *target_size); 1960 1961 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1962 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1963 1964 /* an array of programs to be executed under rcu_lock. 1965 * 1966 * Typical usage: 1967 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1968 * 1969 * the structure returned by bpf_prog_array_alloc() should be populated 1970 * with program pointers and the last pointer must be NULL. 1971 * The user has to keep refcnt on the program and make sure the program 1972 * is removed from the array before bpf_prog_put(). 1973 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1974 * since other cpus are walking the array of pointers in parallel. 1975 */ 1976 struct bpf_prog_array_item { 1977 struct bpf_prog *prog; 1978 union { 1979 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1980 u64 bpf_cookie; 1981 }; 1982 }; 1983 1984 struct bpf_prog_array { 1985 struct rcu_head rcu; 1986 struct bpf_prog_array_item items[]; 1987 }; 1988 1989 struct bpf_empty_prog_array { 1990 struct bpf_prog_array hdr; 1991 struct bpf_prog *null_prog; 1992 }; 1993 1994 /* to avoid allocating empty bpf_prog_array for cgroups that 1995 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1996 * It will not be modified the caller of bpf_prog_array_alloc() 1997 * (since caller requested prog_cnt == 0) 1998 * that pointer should be 'freed' by bpf_prog_array_free() 1999 */ 2000 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2001 2002 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2003 void bpf_prog_array_free(struct bpf_prog_array *progs); 2004 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2005 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2006 int bpf_prog_array_length(struct bpf_prog_array *progs); 2007 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2008 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2009 __u32 __user *prog_ids, u32 cnt); 2010 2011 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2012 struct bpf_prog *old_prog); 2013 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2014 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2015 struct bpf_prog *prog); 2016 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2017 u32 *prog_ids, u32 request_cnt, 2018 u32 *prog_cnt); 2019 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2020 struct bpf_prog *exclude_prog, 2021 struct bpf_prog *include_prog, 2022 u64 bpf_cookie, 2023 struct bpf_prog_array **new_array); 2024 2025 struct bpf_run_ctx {}; 2026 2027 struct bpf_cg_run_ctx { 2028 struct bpf_run_ctx run_ctx; 2029 const struct bpf_prog_array_item *prog_item; 2030 int retval; 2031 }; 2032 2033 struct bpf_trace_run_ctx { 2034 struct bpf_run_ctx run_ctx; 2035 u64 bpf_cookie; 2036 bool is_uprobe; 2037 }; 2038 2039 struct bpf_tramp_run_ctx { 2040 struct bpf_run_ctx run_ctx; 2041 u64 bpf_cookie; 2042 struct bpf_run_ctx *saved_run_ctx; 2043 }; 2044 2045 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2046 { 2047 struct bpf_run_ctx *old_ctx = NULL; 2048 2049 #ifdef CONFIG_BPF_SYSCALL 2050 old_ctx = current->bpf_ctx; 2051 current->bpf_ctx = new_ctx; 2052 #endif 2053 return old_ctx; 2054 } 2055 2056 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2057 { 2058 #ifdef CONFIG_BPF_SYSCALL 2059 current->bpf_ctx = old_ctx; 2060 #endif 2061 } 2062 2063 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2064 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2065 /* BPF program asks to set CN on the packet. */ 2066 #define BPF_RET_SET_CN (1 << 0) 2067 2068 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2069 2070 static __always_inline u32 2071 bpf_prog_run_array(const struct bpf_prog_array *array, 2072 const void *ctx, bpf_prog_run_fn run_prog) 2073 { 2074 const struct bpf_prog_array_item *item; 2075 const struct bpf_prog *prog; 2076 struct bpf_run_ctx *old_run_ctx; 2077 struct bpf_trace_run_ctx run_ctx; 2078 u32 ret = 1; 2079 2080 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2081 2082 if (unlikely(!array)) 2083 return ret; 2084 2085 run_ctx.is_uprobe = false; 2086 2087 migrate_disable(); 2088 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2089 item = &array->items[0]; 2090 while ((prog = READ_ONCE(item->prog))) { 2091 run_ctx.bpf_cookie = item->bpf_cookie; 2092 ret &= run_prog(prog, ctx); 2093 item++; 2094 } 2095 bpf_reset_run_ctx(old_run_ctx); 2096 migrate_enable(); 2097 return ret; 2098 } 2099 2100 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2101 * 2102 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2103 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2104 * in order to use the tasks_trace rcu grace period. 2105 * 2106 * When a non-sleepable program is inside the array, we take the rcu read 2107 * section and disable preemption for that program alone, so it can access 2108 * rcu-protected dynamically sized maps. 2109 */ 2110 static __always_inline u32 2111 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2112 const void *ctx, bpf_prog_run_fn run_prog) 2113 { 2114 const struct bpf_prog_array_item *item; 2115 const struct bpf_prog *prog; 2116 const struct bpf_prog_array *array; 2117 struct bpf_run_ctx *old_run_ctx; 2118 struct bpf_trace_run_ctx run_ctx; 2119 u32 ret = 1; 2120 2121 might_fault(); 2122 2123 rcu_read_lock_trace(); 2124 migrate_disable(); 2125 2126 run_ctx.is_uprobe = true; 2127 2128 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2129 if (unlikely(!array)) 2130 goto out; 2131 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2132 item = &array->items[0]; 2133 while ((prog = READ_ONCE(item->prog))) { 2134 if (!prog->sleepable) 2135 rcu_read_lock(); 2136 2137 run_ctx.bpf_cookie = item->bpf_cookie; 2138 ret &= run_prog(prog, ctx); 2139 item++; 2140 2141 if (!prog->sleepable) 2142 rcu_read_unlock(); 2143 } 2144 bpf_reset_run_ctx(old_run_ctx); 2145 out: 2146 migrate_enable(); 2147 rcu_read_unlock_trace(); 2148 return ret; 2149 } 2150 2151 #ifdef CONFIG_BPF_SYSCALL 2152 DECLARE_PER_CPU(int, bpf_prog_active); 2153 extern struct mutex bpf_stats_enabled_mutex; 2154 2155 /* 2156 * Block execution of BPF programs attached to instrumentation (perf, 2157 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2158 * these events can happen inside a region which holds a map bucket lock 2159 * and can deadlock on it. 2160 */ 2161 static inline void bpf_disable_instrumentation(void) 2162 { 2163 migrate_disable(); 2164 this_cpu_inc(bpf_prog_active); 2165 } 2166 2167 static inline void bpf_enable_instrumentation(void) 2168 { 2169 this_cpu_dec(bpf_prog_active); 2170 migrate_enable(); 2171 } 2172 2173 extern const struct super_operations bpf_super_ops; 2174 extern const struct file_operations bpf_map_fops; 2175 extern const struct file_operations bpf_prog_fops; 2176 extern const struct file_operations bpf_iter_fops; 2177 2178 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2179 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2180 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2181 #define BPF_MAP_TYPE(_id, _ops) \ 2182 extern const struct bpf_map_ops _ops; 2183 #define BPF_LINK_TYPE(_id, _name) 2184 #include <linux/bpf_types.h> 2185 #undef BPF_PROG_TYPE 2186 #undef BPF_MAP_TYPE 2187 #undef BPF_LINK_TYPE 2188 2189 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2190 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2191 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2192 2193 struct bpf_prog *bpf_prog_get(u32 ufd); 2194 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2195 bool attach_drv); 2196 void bpf_prog_add(struct bpf_prog *prog, int i); 2197 void bpf_prog_sub(struct bpf_prog *prog, int i); 2198 void bpf_prog_inc(struct bpf_prog *prog); 2199 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2200 void bpf_prog_put(struct bpf_prog *prog); 2201 2202 void bpf_prog_free_id(struct bpf_prog *prog); 2203 void bpf_map_free_id(struct bpf_map *map); 2204 2205 struct btf_field *btf_record_find(const struct btf_record *rec, 2206 u32 offset, u32 field_mask); 2207 void btf_record_free(struct btf_record *rec); 2208 void bpf_map_free_record(struct bpf_map *map); 2209 struct btf_record *btf_record_dup(const struct btf_record *rec); 2210 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2211 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2212 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2213 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2214 2215 struct bpf_map *bpf_map_get(u32 ufd); 2216 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2217 struct bpf_map *__bpf_map_get(struct fd f); 2218 void bpf_map_inc(struct bpf_map *map); 2219 void bpf_map_inc_with_uref(struct bpf_map *map); 2220 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2221 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2222 void bpf_map_put_with_uref(struct bpf_map *map); 2223 void bpf_map_put(struct bpf_map *map); 2224 void *bpf_map_area_alloc(u64 size, int numa_node); 2225 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2226 void bpf_map_area_free(void *base); 2227 bool bpf_map_write_active(const struct bpf_map *map); 2228 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2229 int generic_map_lookup_batch(struct bpf_map *map, 2230 const union bpf_attr *attr, 2231 union bpf_attr __user *uattr); 2232 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2233 const union bpf_attr *attr, 2234 union bpf_attr __user *uattr); 2235 int generic_map_delete_batch(struct bpf_map *map, 2236 const union bpf_attr *attr, 2237 union bpf_attr __user *uattr); 2238 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2239 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2240 2241 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2242 unsigned long nr_pages, struct page **page_array); 2243 #ifdef CONFIG_MEMCG_KMEM 2244 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2245 int node); 2246 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2247 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2248 gfp_t flags); 2249 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2250 size_t align, gfp_t flags); 2251 #else 2252 static inline void * 2253 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2254 int node) 2255 { 2256 return kmalloc_node(size, flags, node); 2257 } 2258 2259 static inline void * 2260 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 2261 { 2262 return kzalloc(size, flags); 2263 } 2264 2265 static inline void * 2266 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 2267 { 2268 return kvcalloc(n, size, flags); 2269 } 2270 2271 static inline void __percpu * 2272 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 2273 gfp_t flags) 2274 { 2275 return __alloc_percpu_gfp(size, align, flags); 2276 } 2277 #endif 2278 2279 static inline int 2280 bpf_map_init_elem_count(struct bpf_map *map) 2281 { 2282 size_t size = sizeof(*map->elem_count), align = size; 2283 gfp_t flags = GFP_USER | __GFP_NOWARN; 2284 2285 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2286 if (!map->elem_count) 2287 return -ENOMEM; 2288 2289 return 0; 2290 } 2291 2292 static inline void 2293 bpf_map_free_elem_count(struct bpf_map *map) 2294 { 2295 free_percpu(map->elem_count); 2296 } 2297 2298 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2299 { 2300 this_cpu_inc(*map->elem_count); 2301 } 2302 2303 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2304 { 2305 this_cpu_dec(*map->elem_count); 2306 } 2307 2308 extern int sysctl_unprivileged_bpf_disabled; 2309 2310 bool bpf_token_capable(const struct bpf_token *token, int cap); 2311 2312 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2313 { 2314 return bpf_token_capable(token, CAP_PERFMON); 2315 } 2316 2317 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2318 { 2319 return bpf_token_capable(token, CAP_PERFMON); 2320 } 2321 2322 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2323 { 2324 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2325 } 2326 2327 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2328 { 2329 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2330 } 2331 2332 int bpf_map_new_fd(struct bpf_map *map, int flags); 2333 int bpf_prog_new_fd(struct bpf_prog *prog); 2334 2335 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2336 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2337 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2338 int bpf_link_settle(struct bpf_link_primer *primer); 2339 void bpf_link_cleanup(struct bpf_link_primer *primer); 2340 void bpf_link_inc(struct bpf_link *link); 2341 void bpf_link_put(struct bpf_link *link); 2342 int bpf_link_new_fd(struct bpf_link *link); 2343 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2344 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2345 2346 void bpf_token_inc(struct bpf_token *token); 2347 void bpf_token_put(struct bpf_token *token); 2348 int bpf_token_create(union bpf_attr *attr); 2349 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2350 2351 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2352 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2353 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2354 enum bpf_prog_type prog_type, 2355 enum bpf_attach_type attach_type); 2356 2357 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2358 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2359 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2360 umode_t mode); 2361 2362 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2363 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2364 extern int bpf_iter_ ## target(args); \ 2365 int __init bpf_iter_ ## target(args) { return 0; } 2366 2367 /* 2368 * The task type of iterators. 2369 * 2370 * For BPF task iterators, they can be parameterized with various 2371 * parameters to visit only some of tasks. 2372 * 2373 * BPF_TASK_ITER_ALL (default) 2374 * Iterate over resources of every task. 2375 * 2376 * BPF_TASK_ITER_TID 2377 * Iterate over resources of a task/tid. 2378 * 2379 * BPF_TASK_ITER_TGID 2380 * Iterate over resources of every task of a process / task group. 2381 */ 2382 enum bpf_iter_task_type { 2383 BPF_TASK_ITER_ALL = 0, 2384 BPF_TASK_ITER_TID, 2385 BPF_TASK_ITER_TGID, 2386 }; 2387 2388 struct bpf_iter_aux_info { 2389 /* for map_elem iter */ 2390 struct bpf_map *map; 2391 2392 /* for cgroup iter */ 2393 struct { 2394 struct cgroup *start; /* starting cgroup */ 2395 enum bpf_cgroup_iter_order order; 2396 } cgroup; 2397 struct { 2398 enum bpf_iter_task_type type; 2399 u32 pid; 2400 } task; 2401 }; 2402 2403 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2404 union bpf_iter_link_info *linfo, 2405 struct bpf_iter_aux_info *aux); 2406 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2407 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2408 struct seq_file *seq); 2409 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2410 struct bpf_link_info *info); 2411 typedef const struct bpf_func_proto * 2412 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2413 const struct bpf_prog *prog); 2414 2415 enum bpf_iter_feature { 2416 BPF_ITER_RESCHED = BIT(0), 2417 }; 2418 2419 #define BPF_ITER_CTX_ARG_MAX 2 2420 struct bpf_iter_reg { 2421 const char *target; 2422 bpf_iter_attach_target_t attach_target; 2423 bpf_iter_detach_target_t detach_target; 2424 bpf_iter_show_fdinfo_t show_fdinfo; 2425 bpf_iter_fill_link_info_t fill_link_info; 2426 bpf_iter_get_func_proto_t get_func_proto; 2427 u32 ctx_arg_info_size; 2428 u32 feature; 2429 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2430 const struct bpf_iter_seq_info *seq_info; 2431 }; 2432 2433 struct bpf_iter_meta { 2434 __bpf_md_ptr(struct seq_file *, seq); 2435 u64 session_id; 2436 u64 seq_num; 2437 }; 2438 2439 struct bpf_iter__bpf_map_elem { 2440 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2441 __bpf_md_ptr(struct bpf_map *, map); 2442 __bpf_md_ptr(void *, key); 2443 __bpf_md_ptr(void *, value); 2444 }; 2445 2446 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2447 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2448 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2449 const struct bpf_func_proto * 2450 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2451 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2452 int bpf_iter_new_fd(struct bpf_link *link); 2453 bool bpf_link_is_iter(struct bpf_link *link); 2454 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2455 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2456 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2457 struct seq_file *seq); 2458 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2459 struct bpf_link_info *info); 2460 2461 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2462 struct bpf_func_state *caller, 2463 struct bpf_func_state *callee); 2464 2465 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2466 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2467 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2468 u64 flags); 2469 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2470 u64 flags); 2471 2472 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2473 2474 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2475 void *key, void *value, u64 map_flags); 2476 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2477 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2478 void *key, void *value, u64 map_flags); 2479 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2480 2481 int bpf_get_file_flag(int flags); 2482 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2483 size_t actual_size); 2484 2485 /* verify correctness of eBPF program */ 2486 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2487 2488 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2489 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2490 #endif 2491 2492 struct btf *bpf_get_btf_vmlinux(void); 2493 2494 /* Map specifics */ 2495 struct xdp_frame; 2496 struct sk_buff; 2497 struct bpf_dtab_netdev; 2498 struct bpf_cpu_map_entry; 2499 2500 void __dev_flush(void); 2501 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2502 struct net_device *dev_rx); 2503 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2504 struct net_device *dev_rx); 2505 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2506 struct bpf_map *map, bool exclude_ingress); 2507 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2508 struct bpf_prog *xdp_prog); 2509 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2510 struct bpf_prog *xdp_prog, struct bpf_map *map, 2511 bool exclude_ingress); 2512 2513 void __cpu_map_flush(void); 2514 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2515 struct net_device *dev_rx); 2516 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2517 struct sk_buff *skb); 2518 2519 /* Return map's numa specified by userspace */ 2520 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2521 { 2522 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2523 attr->numa_node : NUMA_NO_NODE; 2524 } 2525 2526 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2527 int array_map_alloc_check(union bpf_attr *attr); 2528 2529 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2530 union bpf_attr __user *uattr); 2531 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2532 union bpf_attr __user *uattr); 2533 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2534 const union bpf_attr *kattr, 2535 union bpf_attr __user *uattr); 2536 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2537 const union bpf_attr *kattr, 2538 union bpf_attr __user *uattr); 2539 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2540 const union bpf_attr *kattr, 2541 union bpf_attr __user *uattr); 2542 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2543 const union bpf_attr *kattr, 2544 union bpf_attr __user *uattr); 2545 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2546 const union bpf_attr *kattr, 2547 union bpf_attr __user *uattr); 2548 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2549 const struct bpf_prog *prog, 2550 struct bpf_insn_access_aux *info); 2551 2552 static inline bool bpf_tracing_ctx_access(int off, int size, 2553 enum bpf_access_type type) 2554 { 2555 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2556 return false; 2557 if (type != BPF_READ) 2558 return false; 2559 if (off % size != 0) 2560 return false; 2561 return true; 2562 } 2563 2564 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2565 enum bpf_access_type type, 2566 const struct bpf_prog *prog, 2567 struct bpf_insn_access_aux *info) 2568 { 2569 if (!bpf_tracing_ctx_access(off, size, type)) 2570 return false; 2571 return btf_ctx_access(off, size, type, prog, info); 2572 } 2573 2574 int btf_struct_access(struct bpf_verifier_log *log, 2575 const struct bpf_reg_state *reg, 2576 int off, int size, enum bpf_access_type atype, 2577 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2578 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2579 const struct btf *btf, u32 id, int off, 2580 const struct btf *need_btf, u32 need_type_id, 2581 bool strict); 2582 2583 int btf_distill_func_proto(struct bpf_verifier_log *log, 2584 struct btf *btf, 2585 const struct btf_type *func_proto, 2586 const char *func_name, 2587 struct btf_func_model *m); 2588 2589 struct bpf_reg_state; 2590 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2591 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2592 struct btf *btf, const struct btf_type *t); 2593 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2594 int comp_idx, const char *tag_key); 2595 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2596 int comp_idx, const char *tag_key, int last_id); 2597 2598 struct bpf_prog *bpf_prog_by_id(u32 id); 2599 struct bpf_link *bpf_link_by_id(u32 id); 2600 2601 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2602 const struct bpf_prog *prog); 2603 void bpf_task_storage_free(struct task_struct *task); 2604 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2605 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2606 const struct btf_func_model * 2607 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2608 const struct bpf_insn *insn); 2609 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2610 u16 btf_fd_idx, u8 **func_addr); 2611 2612 struct bpf_core_ctx { 2613 struct bpf_verifier_log *log; 2614 const struct btf *btf; 2615 }; 2616 2617 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2618 const struct bpf_reg_state *reg, 2619 const char *field_name, u32 btf_id, const char *suffix); 2620 2621 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2622 const struct btf *reg_btf, u32 reg_id, 2623 const struct btf *arg_btf, u32 arg_id); 2624 2625 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2626 int relo_idx, void *insn); 2627 2628 static inline bool unprivileged_ebpf_enabled(void) 2629 { 2630 return !sysctl_unprivileged_bpf_disabled; 2631 } 2632 2633 /* Not all bpf prog type has the bpf_ctx. 2634 * For the bpf prog type that has initialized the bpf_ctx, 2635 * this function can be used to decide if a kernel function 2636 * is called by a bpf program. 2637 */ 2638 static inline bool has_current_bpf_ctx(void) 2639 { 2640 return !!current->bpf_ctx; 2641 } 2642 2643 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2644 2645 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2646 enum bpf_dynptr_type type, u32 offset, u32 size); 2647 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2648 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2649 2650 bool dev_check_flush(void); 2651 bool cpu_map_check_flush(void); 2652 #else /* !CONFIG_BPF_SYSCALL */ 2653 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2654 { 2655 return ERR_PTR(-EOPNOTSUPP); 2656 } 2657 2658 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2659 enum bpf_prog_type type, 2660 bool attach_drv) 2661 { 2662 return ERR_PTR(-EOPNOTSUPP); 2663 } 2664 2665 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2666 { 2667 } 2668 2669 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2670 { 2671 } 2672 2673 static inline void bpf_prog_put(struct bpf_prog *prog) 2674 { 2675 } 2676 2677 static inline void bpf_prog_inc(struct bpf_prog *prog) 2678 { 2679 } 2680 2681 static inline struct bpf_prog *__must_check 2682 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2683 { 2684 return ERR_PTR(-EOPNOTSUPP); 2685 } 2686 2687 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2688 const struct bpf_link_ops *ops, 2689 struct bpf_prog *prog) 2690 { 2691 } 2692 2693 static inline int bpf_link_prime(struct bpf_link *link, 2694 struct bpf_link_primer *primer) 2695 { 2696 return -EOPNOTSUPP; 2697 } 2698 2699 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2700 { 2701 return -EOPNOTSUPP; 2702 } 2703 2704 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2705 { 2706 } 2707 2708 static inline void bpf_link_inc(struct bpf_link *link) 2709 { 2710 } 2711 2712 static inline void bpf_link_put(struct bpf_link *link) 2713 { 2714 } 2715 2716 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2717 { 2718 return -EOPNOTSUPP; 2719 } 2720 2721 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2722 { 2723 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2724 } 2725 2726 static inline void bpf_token_inc(struct bpf_token *token) 2727 { 2728 } 2729 2730 static inline void bpf_token_put(struct bpf_token *token) 2731 { 2732 } 2733 2734 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2735 { 2736 return ERR_PTR(-EOPNOTSUPP); 2737 } 2738 2739 static inline void __dev_flush(void) 2740 { 2741 } 2742 2743 struct xdp_frame; 2744 struct bpf_dtab_netdev; 2745 struct bpf_cpu_map_entry; 2746 2747 static inline 2748 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2749 struct net_device *dev_rx) 2750 { 2751 return 0; 2752 } 2753 2754 static inline 2755 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2756 struct net_device *dev_rx) 2757 { 2758 return 0; 2759 } 2760 2761 static inline 2762 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2763 struct bpf_map *map, bool exclude_ingress) 2764 { 2765 return 0; 2766 } 2767 2768 struct sk_buff; 2769 2770 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2771 struct sk_buff *skb, 2772 struct bpf_prog *xdp_prog) 2773 { 2774 return 0; 2775 } 2776 2777 static inline 2778 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2779 struct bpf_prog *xdp_prog, struct bpf_map *map, 2780 bool exclude_ingress) 2781 { 2782 return 0; 2783 } 2784 2785 static inline void __cpu_map_flush(void) 2786 { 2787 } 2788 2789 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2790 struct xdp_frame *xdpf, 2791 struct net_device *dev_rx) 2792 { 2793 return 0; 2794 } 2795 2796 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2797 struct sk_buff *skb) 2798 { 2799 return -EOPNOTSUPP; 2800 } 2801 2802 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2803 enum bpf_prog_type type) 2804 { 2805 return ERR_PTR(-EOPNOTSUPP); 2806 } 2807 2808 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2809 const union bpf_attr *kattr, 2810 union bpf_attr __user *uattr) 2811 { 2812 return -ENOTSUPP; 2813 } 2814 2815 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2816 const union bpf_attr *kattr, 2817 union bpf_attr __user *uattr) 2818 { 2819 return -ENOTSUPP; 2820 } 2821 2822 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2823 const union bpf_attr *kattr, 2824 union bpf_attr __user *uattr) 2825 { 2826 return -ENOTSUPP; 2827 } 2828 2829 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2830 const union bpf_attr *kattr, 2831 union bpf_attr __user *uattr) 2832 { 2833 return -ENOTSUPP; 2834 } 2835 2836 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2837 const union bpf_attr *kattr, 2838 union bpf_attr __user *uattr) 2839 { 2840 return -ENOTSUPP; 2841 } 2842 2843 static inline void bpf_map_put(struct bpf_map *map) 2844 { 2845 } 2846 2847 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2848 { 2849 return ERR_PTR(-ENOTSUPP); 2850 } 2851 2852 static inline int btf_struct_access(struct bpf_verifier_log *log, 2853 const struct bpf_reg_state *reg, 2854 int off, int size, enum bpf_access_type atype, 2855 u32 *next_btf_id, enum bpf_type_flag *flag, 2856 const char **field_name) 2857 { 2858 return -EACCES; 2859 } 2860 2861 static inline const struct bpf_func_proto * 2862 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2863 { 2864 return NULL; 2865 } 2866 2867 static inline void bpf_task_storage_free(struct task_struct *task) 2868 { 2869 } 2870 2871 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2872 { 2873 return false; 2874 } 2875 2876 static inline const struct btf_func_model * 2877 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2878 const struct bpf_insn *insn) 2879 { 2880 return NULL; 2881 } 2882 2883 static inline int 2884 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2885 u16 btf_fd_idx, u8 **func_addr) 2886 { 2887 return -ENOTSUPP; 2888 } 2889 2890 static inline bool unprivileged_ebpf_enabled(void) 2891 { 2892 return false; 2893 } 2894 2895 static inline bool has_current_bpf_ctx(void) 2896 { 2897 return false; 2898 } 2899 2900 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2901 { 2902 } 2903 2904 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2905 { 2906 } 2907 2908 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2909 enum bpf_dynptr_type type, u32 offset, u32 size) 2910 { 2911 } 2912 2913 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2914 { 2915 } 2916 2917 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2918 { 2919 } 2920 #endif /* CONFIG_BPF_SYSCALL */ 2921 2922 static __always_inline int 2923 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2924 { 2925 int ret = -EFAULT; 2926 2927 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2928 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2929 if (unlikely(ret < 0)) 2930 memset(dst, 0, size); 2931 return ret; 2932 } 2933 2934 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2935 struct btf_mod_pair *used_btfs, u32 len); 2936 2937 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2938 enum bpf_prog_type type) 2939 { 2940 return bpf_prog_get_type_dev(ufd, type, false); 2941 } 2942 2943 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2944 struct bpf_map **used_maps, u32 len); 2945 2946 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2947 2948 int bpf_prog_offload_compile(struct bpf_prog *prog); 2949 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2950 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2951 struct bpf_prog *prog); 2952 2953 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2954 2955 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2956 int bpf_map_offload_update_elem(struct bpf_map *map, 2957 void *key, void *value, u64 flags); 2958 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2959 int bpf_map_offload_get_next_key(struct bpf_map *map, 2960 void *key, void *next_key); 2961 2962 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2963 2964 struct bpf_offload_dev * 2965 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2966 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2967 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2968 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2969 struct net_device *netdev); 2970 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2971 struct net_device *netdev); 2972 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2973 2974 void unpriv_ebpf_notify(int new_state); 2975 2976 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2977 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2978 struct bpf_prog_aux *prog_aux); 2979 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2980 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2981 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2982 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2983 2984 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2985 { 2986 return aux->dev_bound; 2987 } 2988 2989 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2990 { 2991 return aux->offload_requested; 2992 } 2993 2994 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2995 2996 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2997 { 2998 return unlikely(map->ops == &bpf_map_offload_ops); 2999 } 3000 3001 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3002 void bpf_map_offload_map_free(struct bpf_map *map); 3003 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3004 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3005 const union bpf_attr *kattr, 3006 union bpf_attr __user *uattr); 3007 3008 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3009 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3010 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3011 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3012 union bpf_attr __user *uattr); 3013 3014 void sock_map_unhash(struct sock *sk); 3015 void sock_map_destroy(struct sock *sk); 3016 void sock_map_close(struct sock *sk, long timeout); 3017 #else 3018 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3019 struct bpf_prog_aux *prog_aux) 3020 { 3021 return -EOPNOTSUPP; 3022 } 3023 3024 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3025 u32 func_id) 3026 { 3027 return NULL; 3028 } 3029 3030 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3031 union bpf_attr *attr) 3032 { 3033 return -EOPNOTSUPP; 3034 } 3035 3036 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3037 struct bpf_prog *old_prog) 3038 { 3039 return -EOPNOTSUPP; 3040 } 3041 3042 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3043 { 3044 } 3045 3046 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3047 { 3048 return false; 3049 } 3050 3051 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3052 { 3053 return false; 3054 } 3055 3056 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3057 { 3058 return false; 3059 } 3060 3061 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3062 { 3063 return false; 3064 } 3065 3066 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3067 { 3068 return ERR_PTR(-EOPNOTSUPP); 3069 } 3070 3071 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3072 { 3073 } 3074 3075 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3076 { 3077 return 0; 3078 } 3079 3080 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3081 const union bpf_attr *kattr, 3082 union bpf_attr __user *uattr) 3083 { 3084 return -ENOTSUPP; 3085 } 3086 3087 #ifdef CONFIG_BPF_SYSCALL 3088 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3089 struct bpf_prog *prog) 3090 { 3091 return -EINVAL; 3092 } 3093 3094 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3095 enum bpf_prog_type ptype) 3096 { 3097 return -EOPNOTSUPP; 3098 } 3099 3100 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3101 u64 flags) 3102 { 3103 return -EOPNOTSUPP; 3104 } 3105 3106 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3107 union bpf_attr __user *uattr) 3108 { 3109 return -EINVAL; 3110 } 3111 #endif /* CONFIG_BPF_SYSCALL */ 3112 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3113 3114 static __always_inline void 3115 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3116 { 3117 const struct bpf_prog_array_item *item; 3118 struct bpf_prog *prog; 3119 3120 if (unlikely(!array)) 3121 return; 3122 3123 item = &array->items[0]; 3124 while ((prog = READ_ONCE(item->prog))) { 3125 bpf_prog_inc_misses_counter(prog); 3126 item++; 3127 } 3128 } 3129 3130 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3131 void bpf_sk_reuseport_detach(struct sock *sk); 3132 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3133 void *value); 3134 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3135 void *value, u64 map_flags); 3136 #else 3137 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3138 { 3139 } 3140 3141 #ifdef CONFIG_BPF_SYSCALL 3142 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3143 void *key, void *value) 3144 { 3145 return -EOPNOTSUPP; 3146 } 3147 3148 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3149 void *key, void *value, 3150 u64 map_flags) 3151 { 3152 return -EOPNOTSUPP; 3153 } 3154 #endif /* CONFIG_BPF_SYSCALL */ 3155 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3156 3157 /* verifier prototypes for helper functions called from eBPF programs */ 3158 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3159 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3160 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3161 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3162 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3163 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3164 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3165 3166 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3167 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3168 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3169 extern const struct bpf_func_proto bpf_tail_call_proto; 3170 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3171 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3172 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3173 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3174 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3175 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3176 extern const struct bpf_func_proto bpf_get_stackid_proto; 3177 extern const struct bpf_func_proto bpf_get_stack_proto; 3178 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3179 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3180 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3181 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3182 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3183 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3184 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3185 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3186 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3187 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3188 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3189 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3190 extern const struct bpf_func_proto bpf_spin_lock_proto; 3191 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3192 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3193 extern const struct bpf_func_proto bpf_strtol_proto; 3194 extern const struct bpf_func_proto bpf_strtoul_proto; 3195 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3196 extern const struct bpf_func_proto bpf_jiffies64_proto; 3197 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3198 extern const struct bpf_func_proto bpf_event_output_data_proto; 3199 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3200 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3201 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3202 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3203 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3204 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3205 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3206 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3207 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3208 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3209 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3210 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3211 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3212 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3213 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3214 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3215 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3216 extern const struct bpf_func_proto bpf_snprintf_proto; 3217 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3218 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3219 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3220 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3221 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3222 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3223 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3224 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3225 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3226 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3227 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3228 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3229 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3230 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3231 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3232 extern const struct bpf_func_proto bpf_find_vma_proto; 3233 extern const struct bpf_func_proto bpf_loop_proto; 3234 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3235 extern const struct bpf_func_proto bpf_set_retval_proto; 3236 extern const struct bpf_func_proto bpf_get_retval_proto; 3237 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3238 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3239 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3240 3241 const struct bpf_func_proto *tracing_prog_func_proto( 3242 enum bpf_func_id func_id, const struct bpf_prog *prog); 3243 3244 /* Shared helpers among cBPF and eBPF. */ 3245 void bpf_user_rnd_init_once(void); 3246 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3247 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3248 3249 #if defined(CONFIG_NET) 3250 bool bpf_sock_common_is_valid_access(int off, int size, 3251 enum bpf_access_type type, 3252 struct bpf_insn_access_aux *info); 3253 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3254 struct bpf_insn_access_aux *info); 3255 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3256 const struct bpf_insn *si, 3257 struct bpf_insn *insn_buf, 3258 struct bpf_prog *prog, 3259 u32 *target_size); 3260 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3261 struct bpf_dynptr_kern *ptr); 3262 #else 3263 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3264 enum bpf_access_type type, 3265 struct bpf_insn_access_aux *info) 3266 { 3267 return false; 3268 } 3269 static inline bool bpf_sock_is_valid_access(int off, int size, 3270 enum bpf_access_type type, 3271 struct bpf_insn_access_aux *info) 3272 { 3273 return false; 3274 } 3275 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3276 const struct bpf_insn *si, 3277 struct bpf_insn *insn_buf, 3278 struct bpf_prog *prog, 3279 u32 *target_size) 3280 { 3281 return 0; 3282 } 3283 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3284 struct bpf_dynptr_kern *ptr) 3285 { 3286 return -EOPNOTSUPP; 3287 } 3288 #endif 3289 3290 #ifdef CONFIG_INET 3291 struct sk_reuseport_kern { 3292 struct sk_buff *skb; 3293 struct sock *sk; 3294 struct sock *selected_sk; 3295 struct sock *migrating_sk; 3296 void *data_end; 3297 u32 hash; 3298 u32 reuseport_id; 3299 bool bind_inany; 3300 }; 3301 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3302 struct bpf_insn_access_aux *info); 3303 3304 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3305 const struct bpf_insn *si, 3306 struct bpf_insn *insn_buf, 3307 struct bpf_prog *prog, 3308 u32 *target_size); 3309 3310 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3311 struct bpf_insn_access_aux *info); 3312 3313 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3314 const struct bpf_insn *si, 3315 struct bpf_insn *insn_buf, 3316 struct bpf_prog *prog, 3317 u32 *target_size); 3318 #else 3319 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3320 enum bpf_access_type type, 3321 struct bpf_insn_access_aux *info) 3322 { 3323 return false; 3324 } 3325 3326 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3327 const struct bpf_insn *si, 3328 struct bpf_insn *insn_buf, 3329 struct bpf_prog *prog, 3330 u32 *target_size) 3331 { 3332 return 0; 3333 } 3334 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3335 enum bpf_access_type type, 3336 struct bpf_insn_access_aux *info) 3337 { 3338 return false; 3339 } 3340 3341 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3342 const struct bpf_insn *si, 3343 struct bpf_insn *insn_buf, 3344 struct bpf_prog *prog, 3345 u32 *target_size) 3346 { 3347 return 0; 3348 } 3349 #endif /* CONFIG_INET */ 3350 3351 enum bpf_text_poke_type { 3352 BPF_MOD_CALL, 3353 BPF_MOD_JUMP, 3354 }; 3355 3356 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3357 void *addr1, void *addr2); 3358 3359 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3360 struct bpf_prog *new, struct bpf_prog *old); 3361 3362 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3363 int bpf_arch_text_invalidate(void *dst, size_t len); 3364 3365 struct btf_id_set; 3366 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3367 3368 #define MAX_BPRINTF_VARARGS 12 3369 #define MAX_BPRINTF_BUF 1024 3370 3371 struct bpf_bprintf_data { 3372 u32 *bin_args; 3373 char *buf; 3374 bool get_bin_args; 3375 bool get_buf; 3376 }; 3377 3378 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3379 u32 num_args, struct bpf_bprintf_data *data); 3380 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3381 3382 #ifdef CONFIG_BPF_LSM 3383 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3384 void bpf_cgroup_atype_put(int cgroup_atype); 3385 #else 3386 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3387 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3388 #endif /* CONFIG_BPF_LSM */ 3389 3390 struct key; 3391 3392 #ifdef CONFIG_KEYS 3393 struct bpf_key { 3394 struct key *key; 3395 bool has_ref; 3396 }; 3397 #endif /* CONFIG_KEYS */ 3398 3399 static inline bool type_is_alloc(u32 type) 3400 { 3401 return type & MEM_ALLOC; 3402 } 3403 3404 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3405 { 3406 if (memcg_bpf_enabled()) 3407 return flags | __GFP_ACCOUNT; 3408 return flags; 3409 } 3410 3411 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3412 { 3413 return prog->aux->func_idx != 0; 3414 } 3415 3416 #endif /* _LINUX_BPF_H */ 3417