xref: /linux-6.15/include/linux/bpf.h (revision e75e4e07)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60 
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66 
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 					struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 				   const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 	const struct seq_operations *seq_ops;
75 	bpf_iter_init_seq_priv_t init_seq_private;
76 	bpf_iter_fini_seq_priv_t fini_seq_private;
77 	u32 seq_priv_size;
78 };
79 
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 	/* funcs callable from userspace (via syscall) */
83 	int (*map_alloc_check)(union bpf_attr *attr);
84 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 	void (*map_release)(struct bpf_map *map, struct file *map_file);
86 	void (*map_free)(struct bpf_map *map);
87 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 	void (*map_release_uref)(struct bpf_map *map);
89 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 				union bpf_attr __user *uattr);
92 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 					  void *value, u64 flags);
94 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 					   const union bpf_attr *attr,
96 					   union bpf_attr __user *uattr);
97 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 				const union bpf_attr *attr,
99 				union bpf_attr __user *uattr);
100 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 
103 	/* funcs callable from userspace and from eBPF programs */
104 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 	long (*map_delete_elem)(struct bpf_map *map, void *key);
107 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 	long (*map_pop_elem)(struct bpf_map *map, void *value);
109 	long (*map_peek_elem)(struct bpf_map *map, void *value);
110 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111 
112 	/* funcs called by prog_array and perf_event_array map */
113 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 				int fd);
115 	/* If need_defer is true, the implementation should guarantee that
116 	 * the to-be-put element is still alive before the bpf program, which
117 	 * may manipulate it, exists.
118 	 */
119 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 				  struct seq_file *m);
124 	int (*map_check_btf)(const struct bpf_map *map,
125 			     const struct btf *btf,
126 			     const struct btf_type *key_type,
127 			     const struct btf_type *value_type);
128 
129 	/* Prog poke tracking helpers. */
130 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 			     struct bpf_prog *new);
134 
135 	/* Direct value access helpers. */
136 	int (*map_direct_value_addr)(const struct bpf_map *map,
137 				     u64 *imm, u32 off);
138 	int (*map_direct_value_meta)(const struct bpf_map *map,
139 				     u64 imm, u32 *off);
140 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 			     struct poll_table_struct *pts);
143 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 					       unsigned long len, unsigned long pgoff,
145 					       unsigned long flags);
146 
147 	/* Functions called by bpf_local_storage maps */
148 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 					void *owner, u32 size);
150 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 					   void *owner, u32 size);
152 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153 
154 	/* Misc helpers.*/
155 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156 
157 	/* map_meta_equal must be implemented for maps that can be
158 	 * used as an inner map.  It is a runtime check to ensure
159 	 * an inner map can be inserted to an outer map.
160 	 *
161 	 * Some properties of the inner map has been used during the
162 	 * verification time.  When inserting an inner map at the runtime,
163 	 * map_meta_equal has to ensure the inserting map has the same
164 	 * properties that the verifier has used earlier.
165 	 */
166 	bool (*map_meta_equal)(const struct bpf_map *meta0,
167 			       const struct bpf_map *meta1);
168 
169 
170 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 					      struct bpf_func_state *caller,
172 					      struct bpf_func_state *callee);
173 	long (*map_for_each_callback)(struct bpf_map *map,
174 				     bpf_callback_t callback_fn,
175 				     void *callback_ctx, u64 flags);
176 
177 	u64 (*map_mem_usage)(const struct bpf_map *map);
178 
179 	/* BTF id of struct allocated by map_alloc */
180 	int *map_btf_id;
181 
182 	/* bpf_iter info used to open a seq_file */
183 	const struct bpf_iter_seq_info *iter_seq_info;
184 };
185 
186 enum {
187 	/* Support at most 10 fields in a BTF type */
188 	BTF_FIELDS_MAX	   = 10,
189 };
190 
191 enum btf_field_type {
192 	BPF_SPIN_LOCK  = (1 << 0),
193 	BPF_TIMER      = (1 << 1),
194 	BPF_KPTR_UNREF = (1 << 2),
195 	BPF_KPTR_REF   = (1 << 3),
196 	BPF_KPTR_PERCPU = (1 << 4),
197 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 	BPF_LIST_HEAD  = (1 << 5),
199 	BPF_LIST_NODE  = (1 << 6),
200 	BPF_RB_ROOT    = (1 << 7),
201 	BPF_RB_NODE    = (1 << 8),
202 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 	BPF_REFCOUNT   = (1 << 9),
205 };
206 
207 typedef void (*btf_dtor_kfunc_t)(void *);
208 
209 struct btf_field_kptr {
210 	struct btf *btf;
211 	struct module *module;
212 	/* dtor used if btf_is_kernel(btf), otherwise the type is
213 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
214 	 */
215 	btf_dtor_kfunc_t dtor;
216 	u32 btf_id;
217 };
218 
219 struct btf_field_graph_root {
220 	struct btf *btf;
221 	u32 value_btf_id;
222 	u32 node_offset;
223 	struct btf_record *value_rec;
224 };
225 
226 struct btf_field {
227 	u32 offset;
228 	u32 size;
229 	enum btf_field_type type;
230 	union {
231 		struct btf_field_kptr kptr;
232 		struct btf_field_graph_root graph_root;
233 	};
234 };
235 
236 struct btf_record {
237 	u32 cnt;
238 	u32 field_mask;
239 	int spin_lock_off;
240 	int timer_off;
241 	int refcount_off;
242 	struct btf_field fields[];
243 };
244 
245 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
246 struct bpf_rb_node_kern {
247 	struct rb_node rb_node;
248 	void *owner;
249 } __attribute__((aligned(8)));
250 
251 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
252 struct bpf_list_node_kern {
253 	struct list_head list_head;
254 	void *owner;
255 } __attribute__((aligned(8)));
256 
257 struct bpf_map {
258 	const struct bpf_map_ops *ops;
259 	struct bpf_map *inner_map_meta;
260 #ifdef CONFIG_SECURITY
261 	void *security;
262 #endif
263 	enum bpf_map_type map_type;
264 	u32 key_size;
265 	u32 value_size;
266 	u32 max_entries;
267 	u64 map_extra; /* any per-map-type extra fields */
268 	u32 map_flags;
269 	u32 id;
270 	struct btf_record *record;
271 	int numa_node;
272 	u32 btf_key_type_id;
273 	u32 btf_value_type_id;
274 	u32 btf_vmlinux_value_type_id;
275 	struct btf *btf;
276 #ifdef CONFIG_MEMCG_KMEM
277 	struct obj_cgroup *objcg;
278 #endif
279 	char name[BPF_OBJ_NAME_LEN];
280 	struct mutex freeze_mutex;
281 	atomic64_t refcnt;
282 	atomic64_t usercnt;
283 	/* rcu is used before freeing and work is only used during freeing */
284 	union {
285 		struct work_struct work;
286 		struct rcu_head rcu;
287 	};
288 	atomic64_t writecnt;
289 	/* 'Ownership' of program-containing map is claimed by the first program
290 	 * that is going to use this map or by the first program which FD is
291 	 * stored in the map to make sure that all callers and callees have the
292 	 * same prog type, JITed flag and xdp_has_frags flag.
293 	 */
294 	struct {
295 		spinlock_t lock;
296 		enum bpf_prog_type type;
297 		bool jited;
298 		bool xdp_has_frags;
299 	} owner;
300 	bool bypass_spec_v1;
301 	bool frozen; /* write-once; write-protected by freeze_mutex */
302 	bool free_after_mult_rcu_gp;
303 	bool free_after_rcu_gp;
304 	atomic64_t sleepable_refcnt;
305 	s64 __percpu *elem_count;
306 };
307 
308 static inline const char *btf_field_type_name(enum btf_field_type type)
309 {
310 	switch (type) {
311 	case BPF_SPIN_LOCK:
312 		return "bpf_spin_lock";
313 	case BPF_TIMER:
314 		return "bpf_timer";
315 	case BPF_KPTR_UNREF:
316 	case BPF_KPTR_REF:
317 		return "kptr";
318 	case BPF_KPTR_PERCPU:
319 		return "percpu_kptr";
320 	case BPF_LIST_HEAD:
321 		return "bpf_list_head";
322 	case BPF_LIST_NODE:
323 		return "bpf_list_node";
324 	case BPF_RB_ROOT:
325 		return "bpf_rb_root";
326 	case BPF_RB_NODE:
327 		return "bpf_rb_node";
328 	case BPF_REFCOUNT:
329 		return "bpf_refcount";
330 	default:
331 		WARN_ON_ONCE(1);
332 		return "unknown";
333 	}
334 }
335 
336 static inline u32 btf_field_type_size(enum btf_field_type type)
337 {
338 	switch (type) {
339 	case BPF_SPIN_LOCK:
340 		return sizeof(struct bpf_spin_lock);
341 	case BPF_TIMER:
342 		return sizeof(struct bpf_timer);
343 	case BPF_KPTR_UNREF:
344 	case BPF_KPTR_REF:
345 	case BPF_KPTR_PERCPU:
346 		return sizeof(u64);
347 	case BPF_LIST_HEAD:
348 		return sizeof(struct bpf_list_head);
349 	case BPF_LIST_NODE:
350 		return sizeof(struct bpf_list_node);
351 	case BPF_RB_ROOT:
352 		return sizeof(struct bpf_rb_root);
353 	case BPF_RB_NODE:
354 		return sizeof(struct bpf_rb_node);
355 	case BPF_REFCOUNT:
356 		return sizeof(struct bpf_refcount);
357 	default:
358 		WARN_ON_ONCE(1);
359 		return 0;
360 	}
361 }
362 
363 static inline u32 btf_field_type_align(enum btf_field_type type)
364 {
365 	switch (type) {
366 	case BPF_SPIN_LOCK:
367 		return __alignof__(struct bpf_spin_lock);
368 	case BPF_TIMER:
369 		return __alignof__(struct bpf_timer);
370 	case BPF_KPTR_UNREF:
371 	case BPF_KPTR_REF:
372 	case BPF_KPTR_PERCPU:
373 		return __alignof__(u64);
374 	case BPF_LIST_HEAD:
375 		return __alignof__(struct bpf_list_head);
376 	case BPF_LIST_NODE:
377 		return __alignof__(struct bpf_list_node);
378 	case BPF_RB_ROOT:
379 		return __alignof__(struct bpf_rb_root);
380 	case BPF_RB_NODE:
381 		return __alignof__(struct bpf_rb_node);
382 	case BPF_REFCOUNT:
383 		return __alignof__(struct bpf_refcount);
384 	default:
385 		WARN_ON_ONCE(1);
386 		return 0;
387 	}
388 }
389 
390 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
391 {
392 	memset(addr, 0, field->size);
393 
394 	switch (field->type) {
395 	case BPF_REFCOUNT:
396 		refcount_set((refcount_t *)addr, 1);
397 		break;
398 	case BPF_RB_NODE:
399 		RB_CLEAR_NODE((struct rb_node *)addr);
400 		break;
401 	case BPF_LIST_HEAD:
402 	case BPF_LIST_NODE:
403 		INIT_LIST_HEAD((struct list_head *)addr);
404 		break;
405 	case BPF_RB_ROOT:
406 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
407 	case BPF_SPIN_LOCK:
408 	case BPF_TIMER:
409 	case BPF_KPTR_UNREF:
410 	case BPF_KPTR_REF:
411 	case BPF_KPTR_PERCPU:
412 		break;
413 	default:
414 		WARN_ON_ONCE(1);
415 		return;
416 	}
417 }
418 
419 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
420 {
421 	if (IS_ERR_OR_NULL(rec))
422 		return false;
423 	return rec->field_mask & type;
424 }
425 
426 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
427 {
428 	int i;
429 
430 	if (IS_ERR_OR_NULL(rec))
431 		return;
432 	for (i = 0; i < rec->cnt; i++)
433 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
434 }
435 
436 /* 'dst' must be a temporary buffer and should not point to memory that is being
437  * used in parallel by a bpf program or bpf syscall, otherwise the access from
438  * the bpf program or bpf syscall may be corrupted by the reinitialization,
439  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
440  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
441  * program or bpf syscall.
442  */
443 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
444 {
445 	bpf_obj_init(map->record, dst);
446 }
447 
448 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
449  * forced to use 'long' read/writes to try to atomically copy long counters.
450  * Best-effort only.  No barriers here, since it _will_ race with concurrent
451  * updates from BPF programs. Called from bpf syscall and mostly used with
452  * size 8 or 16 bytes, so ask compiler to inline it.
453  */
454 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
455 {
456 	const long *lsrc = src;
457 	long *ldst = dst;
458 
459 	size /= sizeof(long);
460 	while (size--)
461 		data_race(*ldst++ = *lsrc++);
462 }
463 
464 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
465 static inline void bpf_obj_memcpy(struct btf_record *rec,
466 				  void *dst, void *src, u32 size,
467 				  bool long_memcpy)
468 {
469 	u32 curr_off = 0;
470 	int i;
471 
472 	if (IS_ERR_OR_NULL(rec)) {
473 		if (long_memcpy)
474 			bpf_long_memcpy(dst, src, round_up(size, 8));
475 		else
476 			memcpy(dst, src, size);
477 		return;
478 	}
479 
480 	for (i = 0; i < rec->cnt; i++) {
481 		u32 next_off = rec->fields[i].offset;
482 		u32 sz = next_off - curr_off;
483 
484 		memcpy(dst + curr_off, src + curr_off, sz);
485 		curr_off += rec->fields[i].size + sz;
486 	}
487 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
488 }
489 
490 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
491 {
492 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
493 }
494 
495 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
496 {
497 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
498 }
499 
500 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
501 {
502 	u32 curr_off = 0;
503 	int i;
504 
505 	if (IS_ERR_OR_NULL(rec)) {
506 		memset(dst, 0, size);
507 		return;
508 	}
509 
510 	for (i = 0; i < rec->cnt; i++) {
511 		u32 next_off = rec->fields[i].offset;
512 		u32 sz = next_off - curr_off;
513 
514 		memset(dst + curr_off, 0, sz);
515 		curr_off += rec->fields[i].size + sz;
516 	}
517 	memset(dst + curr_off, 0, size - curr_off);
518 }
519 
520 static inline void zero_map_value(struct bpf_map *map, void *dst)
521 {
522 	bpf_obj_memzero(map->record, dst, map->value_size);
523 }
524 
525 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
526 			   bool lock_src);
527 void bpf_timer_cancel_and_free(void *timer);
528 void bpf_list_head_free(const struct btf_field *field, void *list_head,
529 			struct bpf_spin_lock *spin_lock);
530 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
531 		      struct bpf_spin_lock *spin_lock);
532 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
533 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
534 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
535 
536 struct bpf_offload_dev;
537 struct bpf_offloaded_map;
538 
539 struct bpf_map_dev_ops {
540 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
541 				void *key, void *next_key);
542 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
543 			       void *key, void *value);
544 	int (*map_update_elem)(struct bpf_offloaded_map *map,
545 			       void *key, void *value, u64 flags);
546 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
547 };
548 
549 struct bpf_offloaded_map {
550 	struct bpf_map map;
551 	struct net_device *netdev;
552 	const struct bpf_map_dev_ops *dev_ops;
553 	void *dev_priv;
554 	struct list_head offloads;
555 };
556 
557 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
558 {
559 	return container_of(map, struct bpf_offloaded_map, map);
560 }
561 
562 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
563 {
564 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
565 }
566 
567 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
568 {
569 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
570 		map->ops->map_seq_show_elem;
571 }
572 
573 int map_check_no_btf(const struct bpf_map *map,
574 		     const struct btf *btf,
575 		     const struct btf_type *key_type,
576 		     const struct btf_type *value_type);
577 
578 bool bpf_map_meta_equal(const struct bpf_map *meta0,
579 			const struct bpf_map *meta1);
580 
581 extern const struct bpf_map_ops bpf_map_offload_ops;
582 
583 /* bpf_type_flag contains a set of flags that are applicable to the values of
584  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
585  * or a memory is read-only. We classify types into two categories: base types
586  * and extended types. Extended types are base types combined with a type flag.
587  *
588  * Currently there are no more than 32 base types in arg_type, ret_type and
589  * reg_types.
590  */
591 #define BPF_BASE_TYPE_BITS	8
592 
593 enum bpf_type_flag {
594 	/* PTR may be NULL. */
595 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
596 
597 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
598 	 * compatible with both mutable and immutable memory.
599 	 */
600 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
601 
602 	/* MEM points to BPF ring buffer reservation. */
603 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
604 
605 	/* MEM is in user address space. */
606 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
607 
608 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
609 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
610 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
611 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
612 	 * to the specified cpu.
613 	 */
614 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
615 
616 	/* Indicates that the argument will be released. */
617 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
618 
619 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
620 	 * unreferenced and referenced kptr loaded from map value using a load
621 	 * instruction, so that they can only be dereferenced but not escape the
622 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
623 	 * kfunc or bpf helpers).
624 	 */
625 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
626 
627 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
628 
629 	/* DYNPTR points to memory local to the bpf program. */
630 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
631 
632 	/* DYNPTR points to a kernel-produced ringbuf record. */
633 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
634 
635 	/* Size is known at compile time. */
636 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
637 
638 	/* MEM is of an allocated object of type in program BTF. This is used to
639 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
640 	 */
641 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
642 
643 	/* PTR was passed from the kernel in a trusted context, and may be
644 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
645 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
646 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
647 	 * without invoking bpf_kptr_xchg(). What we really need to know is
648 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
649 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
650 	 * helpers, they do not cover all possible instances of unsafe
651 	 * pointers. For example, a pointer that was obtained from walking a
652 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
653 	 * fact that it may be NULL, invalid, etc. This is due to backwards
654 	 * compatibility requirements, as this was the behavior that was first
655 	 * introduced when kptrs were added. The behavior is now considered
656 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
657 	 *
658 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
659 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
660 	 * For example, pointers passed to tracepoint arguments are considered
661 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
662 	 * callbacks. As alluded to above, pointers that are obtained from
663 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
664 	 * struct task_struct *task is PTR_TRUSTED, then accessing
665 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
666 	 * in a BPF register. Similarly, pointers passed to certain programs
667 	 * types such as kretprobes are not guaranteed to be valid, as they may
668 	 * for example contain an object that was recently freed.
669 	 */
670 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
671 
672 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
673 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
674 
675 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
676 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
677 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
678 	 */
679 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
680 
681 	/* DYNPTR points to sk_buff */
682 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
683 
684 	/* DYNPTR points to xdp_buff */
685 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
686 
687 	__BPF_TYPE_FLAG_MAX,
688 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
689 };
690 
691 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
692 				 | DYNPTR_TYPE_XDP)
693 
694 /* Max number of base types. */
695 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
696 
697 /* Max number of all types. */
698 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
699 
700 /* function argument constraints */
701 enum bpf_arg_type {
702 	ARG_DONTCARE = 0,	/* unused argument in helper function */
703 
704 	/* the following constraints used to prototype
705 	 * bpf_map_lookup/update/delete_elem() functions
706 	 */
707 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
708 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
709 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
710 
711 	/* Used to prototype bpf_memcmp() and other functions that access data
712 	 * on eBPF program stack
713 	 */
714 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
715 	ARG_PTR_TO_ARENA,
716 
717 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
718 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
719 
720 	ARG_PTR_TO_CTX,		/* pointer to context */
721 	ARG_ANYTHING,		/* any (initialized) argument is ok */
722 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
723 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
724 	ARG_PTR_TO_INT,		/* pointer to int */
725 	ARG_PTR_TO_LONG,	/* pointer to long */
726 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
727 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
728 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
729 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
730 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
731 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
732 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
733 	ARG_PTR_TO_STACK,	/* pointer to stack */
734 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
735 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
736 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
737 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
738 	__BPF_ARG_TYPE_MAX,
739 
740 	/* Extended arg_types. */
741 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
742 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
743 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
744 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
745 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
746 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
747 	/* pointer to memory does not need to be initialized, helper function must fill
748 	 * all bytes or clear them in error case.
749 	 */
750 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
751 	/* Pointer to valid memory of size known at compile time. */
752 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
753 
754 	/* This must be the last entry. Its purpose is to ensure the enum is
755 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
756 	 */
757 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
758 };
759 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
760 
761 /* type of values returned from helper functions */
762 enum bpf_return_type {
763 	RET_INTEGER,			/* function returns integer */
764 	RET_VOID,			/* function doesn't return anything */
765 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
766 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
767 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
768 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
769 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
770 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
771 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
772 	__BPF_RET_TYPE_MAX,
773 
774 	/* Extended ret_types. */
775 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
776 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
777 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
778 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
779 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
780 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
781 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
782 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
783 
784 	/* This must be the last entry. Its purpose is to ensure the enum is
785 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
786 	 */
787 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
788 };
789 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
790 
791 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
792  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
793  * instructions after verifying
794  */
795 struct bpf_func_proto {
796 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
797 	bool gpl_only;
798 	bool pkt_access;
799 	bool might_sleep;
800 	enum bpf_return_type ret_type;
801 	union {
802 		struct {
803 			enum bpf_arg_type arg1_type;
804 			enum bpf_arg_type arg2_type;
805 			enum bpf_arg_type arg3_type;
806 			enum bpf_arg_type arg4_type;
807 			enum bpf_arg_type arg5_type;
808 		};
809 		enum bpf_arg_type arg_type[5];
810 	};
811 	union {
812 		struct {
813 			u32 *arg1_btf_id;
814 			u32 *arg2_btf_id;
815 			u32 *arg3_btf_id;
816 			u32 *arg4_btf_id;
817 			u32 *arg5_btf_id;
818 		};
819 		u32 *arg_btf_id[5];
820 		struct {
821 			size_t arg1_size;
822 			size_t arg2_size;
823 			size_t arg3_size;
824 			size_t arg4_size;
825 			size_t arg5_size;
826 		};
827 		size_t arg_size[5];
828 	};
829 	int *ret_btf_id; /* return value btf_id */
830 	bool (*allowed)(const struct bpf_prog *prog);
831 };
832 
833 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
834  * the first argument to eBPF programs.
835  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
836  */
837 struct bpf_context;
838 
839 enum bpf_access_type {
840 	BPF_READ = 1,
841 	BPF_WRITE = 2
842 };
843 
844 /* types of values stored in eBPF registers */
845 /* Pointer types represent:
846  * pointer
847  * pointer + imm
848  * pointer + (u16) var
849  * pointer + (u16) var + imm
850  * if (range > 0) then [ptr, ptr + range - off) is safe to access
851  * if (id > 0) means that some 'var' was added
852  * if (off > 0) means that 'imm' was added
853  */
854 enum bpf_reg_type {
855 	NOT_INIT = 0,		 /* nothing was written into register */
856 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
857 	PTR_TO_CTX,		 /* reg points to bpf_context */
858 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
859 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
860 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
861 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
862 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
863 	PTR_TO_PACKET,		 /* reg points to skb->data */
864 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
865 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
866 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
867 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
868 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
869 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
870 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
871 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
872 	 * to be null checked by the BPF program. This does not imply the
873 	 * pointer is _not_ null and in practice this can easily be a null
874 	 * pointer when reading pointer chains. The assumption is program
875 	 * context will handle null pointer dereference typically via fault
876 	 * handling. The verifier must keep this in mind and can make no
877 	 * assumptions about null or non-null when doing branch analysis.
878 	 * Further, when passed into helpers the helpers can not, without
879 	 * additional context, assume the value is non-null.
880 	 */
881 	PTR_TO_BTF_ID,
882 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
883 	 * been checked for null. Used primarily to inform the verifier
884 	 * an explicit null check is required for this struct.
885 	 */
886 	PTR_TO_MEM,		 /* reg points to valid memory region */
887 	PTR_TO_ARENA,
888 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
889 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
890 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
891 	__BPF_REG_TYPE_MAX,
892 
893 	/* Extended reg_types. */
894 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
895 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
896 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
897 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
898 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
899 
900 	/* This must be the last entry. Its purpose is to ensure the enum is
901 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
902 	 */
903 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
904 };
905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
906 
907 /* The information passed from prog-specific *_is_valid_access
908  * back to the verifier.
909  */
910 struct bpf_insn_access_aux {
911 	enum bpf_reg_type reg_type;
912 	union {
913 		int ctx_field_size;
914 		struct {
915 			struct btf *btf;
916 			u32 btf_id;
917 		};
918 	};
919 	struct bpf_verifier_log *log; /* for verbose logs */
920 };
921 
922 static inline void
923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
924 {
925 	aux->ctx_field_size = size;
926 }
927 
928 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
929 {
930 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
931 }
932 
933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
934 {
935 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
936 }
937 
938 struct bpf_prog_ops {
939 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
940 			union bpf_attr __user *uattr);
941 };
942 
943 struct bpf_reg_state;
944 struct bpf_verifier_ops {
945 	/* return eBPF function prototype for verification */
946 	const struct bpf_func_proto *
947 	(*get_func_proto)(enum bpf_func_id func_id,
948 			  const struct bpf_prog *prog);
949 
950 	/* return true if 'size' wide access at offset 'off' within bpf_context
951 	 * with 'type' (read or write) is allowed
952 	 */
953 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
954 				const struct bpf_prog *prog,
955 				struct bpf_insn_access_aux *info);
956 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
957 			    const struct bpf_prog *prog);
958 	int (*gen_ld_abs)(const struct bpf_insn *orig,
959 			  struct bpf_insn *insn_buf);
960 	u32 (*convert_ctx_access)(enum bpf_access_type type,
961 				  const struct bpf_insn *src,
962 				  struct bpf_insn *dst,
963 				  struct bpf_prog *prog, u32 *target_size);
964 	int (*btf_struct_access)(struct bpf_verifier_log *log,
965 				 const struct bpf_reg_state *reg,
966 				 int off, int size);
967 };
968 
969 struct bpf_prog_offload_ops {
970 	/* verifier basic callbacks */
971 	int (*insn_hook)(struct bpf_verifier_env *env,
972 			 int insn_idx, int prev_insn_idx);
973 	int (*finalize)(struct bpf_verifier_env *env);
974 	/* verifier optimization callbacks (called after .finalize) */
975 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
976 			    struct bpf_insn *insn);
977 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
978 	/* program management callbacks */
979 	int (*prepare)(struct bpf_prog *prog);
980 	int (*translate)(struct bpf_prog *prog);
981 	void (*destroy)(struct bpf_prog *prog);
982 };
983 
984 struct bpf_prog_offload {
985 	struct bpf_prog		*prog;
986 	struct net_device	*netdev;
987 	struct bpf_offload_dev	*offdev;
988 	void			*dev_priv;
989 	struct list_head	offloads;
990 	bool			dev_state;
991 	bool			opt_failed;
992 	void			*jited_image;
993 	u32			jited_len;
994 };
995 
996 enum bpf_cgroup_storage_type {
997 	BPF_CGROUP_STORAGE_SHARED,
998 	BPF_CGROUP_STORAGE_PERCPU,
999 	__BPF_CGROUP_STORAGE_MAX
1000 };
1001 
1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1003 
1004 /* The longest tracepoint has 12 args.
1005  * See include/trace/bpf_probe.h
1006  */
1007 #define MAX_BPF_FUNC_ARGS 12
1008 
1009 /* The maximum number of arguments passed through registers
1010  * a single function may have.
1011  */
1012 #define MAX_BPF_FUNC_REG_ARGS 5
1013 
1014 /* The argument is a structure. */
1015 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1016 
1017 /* The argument is signed. */
1018 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1019 
1020 struct btf_func_model {
1021 	u8 ret_size;
1022 	u8 ret_flags;
1023 	u8 nr_args;
1024 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1025 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1026 };
1027 
1028 /* Restore arguments before returning from trampoline to let original function
1029  * continue executing. This flag is used for fentry progs when there are no
1030  * fexit progs.
1031  */
1032 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1033 /* Call original function after fentry progs, but before fexit progs.
1034  * Makes sense for fentry/fexit, normal calls and indirect calls.
1035  */
1036 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1037 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1038  * programs only. Should not be used with normal calls and indirect calls.
1039  */
1040 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1041 /* Store IP address of the caller on the trampoline stack,
1042  * so it's available for trampoline's programs.
1043  */
1044 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1046 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1047 
1048 /* Get original function from stack instead of from provided direct address.
1049  * Makes sense for trampolines with fexit or fmod_ret programs.
1050  */
1051 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1052 
1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1054  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1055  */
1056 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1057 
1058 /* Indicate that current trampoline is in a tail call context. Then, it has to
1059  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1060  */
1061 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1062 
1063 /*
1064  * Indicate the trampoline should be suitable to receive indirect calls;
1065  * without this indirectly calling the generated code can result in #UD/#CP,
1066  * depending on the CFI options.
1067  *
1068  * Used by bpf_struct_ops.
1069  *
1070  * Incompatible with FENTRY usage, overloads @func_addr argument.
1071  */
1072 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1073 
1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1075  * bytes on x86.
1076  */
1077 enum {
1078 #if defined(__s390x__)
1079 	BPF_MAX_TRAMP_LINKS = 27,
1080 #else
1081 	BPF_MAX_TRAMP_LINKS = 38,
1082 #endif
1083 };
1084 
1085 struct bpf_tramp_links {
1086 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1087 	int nr_links;
1088 };
1089 
1090 struct bpf_tramp_run_ctx;
1091 
1092 /* Different use cases for BPF trampoline:
1093  * 1. replace nop at the function entry (kprobe equivalent)
1094  *    flags = BPF_TRAMP_F_RESTORE_REGS
1095  *    fentry = a set of programs to run before returning from trampoline
1096  *
1097  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1098  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1099  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1100  *    fentry = a set of program to run before calling original function
1101  *    fexit = a set of program to run after original function
1102  *
1103  * 3. replace direct call instruction anywhere in the function body
1104  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1105  *    With flags = 0
1106  *      fentry = a set of programs to run before returning from trampoline
1107  *    With flags = BPF_TRAMP_F_CALL_ORIG
1108  *      orig_call = original callback addr or direct function addr
1109  *      fentry = a set of program to run before calling original function
1110  *      fexit = a set of program to run after original function
1111  */
1112 struct bpf_tramp_image;
1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1114 				const struct btf_func_model *m, u32 flags,
1115 				struct bpf_tramp_links *tlinks,
1116 				void *func_addr);
1117 void *arch_alloc_bpf_trampoline(unsigned int size);
1118 void arch_free_bpf_trampoline(void *image, unsigned int size);
1119 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1120 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1121 			     struct bpf_tramp_links *tlinks, void *func_addr);
1122 
1123 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1124 					     struct bpf_tramp_run_ctx *run_ctx);
1125 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1126 					     struct bpf_tramp_run_ctx *run_ctx);
1127 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1128 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1129 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1130 				      struct bpf_tramp_run_ctx *run_ctx);
1131 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1132 				      struct bpf_tramp_run_ctx *run_ctx);
1133 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1134 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1135 
1136 struct bpf_ksym {
1137 	unsigned long		 start;
1138 	unsigned long		 end;
1139 	char			 name[KSYM_NAME_LEN];
1140 	struct list_head	 lnode;
1141 	struct latch_tree_node	 tnode;
1142 	bool			 prog;
1143 };
1144 
1145 enum bpf_tramp_prog_type {
1146 	BPF_TRAMP_FENTRY,
1147 	BPF_TRAMP_FEXIT,
1148 	BPF_TRAMP_MODIFY_RETURN,
1149 	BPF_TRAMP_MAX,
1150 	BPF_TRAMP_REPLACE, /* more than MAX */
1151 };
1152 
1153 struct bpf_tramp_image {
1154 	void *image;
1155 	int size;
1156 	struct bpf_ksym ksym;
1157 	struct percpu_ref pcref;
1158 	void *ip_after_call;
1159 	void *ip_epilogue;
1160 	union {
1161 		struct rcu_head rcu;
1162 		struct work_struct work;
1163 	};
1164 };
1165 
1166 struct bpf_trampoline {
1167 	/* hlist for trampoline_table */
1168 	struct hlist_node hlist;
1169 	struct ftrace_ops *fops;
1170 	/* serializes access to fields of this trampoline */
1171 	struct mutex mutex;
1172 	refcount_t refcnt;
1173 	u32 flags;
1174 	u64 key;
1175 	struct {
1176 		struct btf_func_model model;
1177 		void *addr;
1178 		bool ftrace_managed;
1179 	} func;
1180 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1181 	 * program by replacing one of its functions. func.addr is the address
1182 	 * of the function it replaced.
1183 	 */
1184 	struct bpf_prog *extension_prog;
1185 	/* list of BPF programs using this trampoline */
1186 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1187 	/* Number of attached programs. A counter per kind. */
1188 	int progs_cnt[BPF_TRAMP_MAX];
1189 	/* Executable image of trampoline */
1190 	struct bpf_tramp_image *cur_image;
1191 };
1192 
1193 struct bpf_attach_target_info {
1194 	struct btf_func_model fmodel;
1195 	long tgt_addr;
1196 	struct module *tgt_mod;
1197 	const char *tgt_name;
1198 	const struct btf_type *tgt_type;
1199 };
1200 
1201 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1202 
1203 struct bpf_dispatcher_prog {
1204 	struct bpf_prog *prog;
1205 	refcount_t users;
1206 };
1207 
1208 struct bpf_dispatcher {
1209 	/* dispatcher mutex */
1210 	struct mutex mutex;
1211 	void *func;
1212 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1213 	int num_progs;
1214 	void *image;
1215 	void *rw_image;
1216 	u32 image_off;
1217 	struct bpf_ksym ksym;
1218 #ifdef CONFIG_HAVE_STATIC_CALL
1219 	struct static_call_key *sc_key;
1220 	void *sc_tramp;
1221 #endif
1222 };
1223 
1224 #ifndef __bpfcall
1225 #define __bpfcall __nocfi
1226 #endif
1227 
1228 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1229 	const void *ctx,
1230 	const struct bpf_insn *insnsi,
1231 	bpf_func_t bpf_func)
1232 {
1233 	return bpf_func(ctx, insnsi);
1234 }
1235 
1236 /* the implementation of the opaque uapi struct bpf_dynptr */
1237 struct bpf_dynptr_kern {
1238 	void *data;
1239 	/* Size represents the number of usable bytes of dynptr data.
1240 	 * If for example the offset is at 4 for a local dynptr whose data is
1241 	 * of type u64, the number of usable bytes is 4.
1242 	 *
1243 	 * The upper 8 bits are reserved. It is as follows:
1244 	 * Bits 0 - 23 = size
1245 	 * Bits 24 - 30 = dynptr type
1246 	 * Bit 31 = whether dynptr is read-only
1247 	 */
1248 	u32 size;
1249 	u32 offset;
1250 } __aligned(8);
1251 
1252 enum bpf_dynptr_type {
1253 	BPF_DYNPTR_TYPE_INVALID,
1254 	/* Points to memory that is local to the bpf program */
1255 	BPF_DYNPTR_TYPE_LOCAL,
1256 	/* Underlying data is a ringbuf record */
1257 	BPF_DYNPTR_TYPE_RINGBUF,
1258 	/* Underlying data is a sk_buff */
1259 	BPF_DYNPTR_TYPE_SKB,
1260 	/* Underlying data is a xdp_buff */
1261 	BPF_DYNPTR_TYPE_XDP,
1262 };
1263 
1264 int bpf_dynptr_check_size(u32 size);
1265 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1266 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1267 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1268 
1269 #ifdef CONFIG_BPF_JIT
1270 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1271 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1272 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1273 					  struct bpf_attach_target_info *tgt_info);
1274 void bpf_trampoline_put(struct bpf_trampoline *tr);
1275 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1276 
1277 /*
1278  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1279  * indirection with a direct call to the bpf program. If the architecture does
1280  * not have STATIC_CALL, avoid a double-indirection.
1281  */
1282 #ifdef CONFIG_HAVE_STATIC_CALL
1283 
1284 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1285 	.sc_key = &STATIC_CALL_KEY(_name),			\
1286 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1287 
1288 #define __BPF_DISPATCHER_SC(name)				\
1289 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1290 
1291 #define __BPF_DISPATCHER_CALL(name)				\
1292 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1293 
1294 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1295 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1296 
1297 #else
1298 #define __BPF_DISPATCHER_SC_INIT(name)
1299 #define __BPF_DISPATCHER_SC(name)
1300 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1301 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1302 #endif
1303 
1304 #define BPF_DISPATCHER_INIT(_name) {				\
1305 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1306 	.func = &_name##_func,					\
1307 	.progs = {},						\
1308 	.num_progs = 0,						\
1309 	.image = NULL,						\
1310 	.image_off = 0,						\
1311 	.ksym = {						\
1312 		.name  = #_name,				\
1313 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1314 	},							\
1315 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1316 }
1317 
1318 #define DEFINE_BPF_DISPATCHER(name)					\
1319 	__BPF_DISPATCHER_SC(name);					\
1320 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1321 		const void *ctx,					\
1322 		const struct bpf_insn *insnsi,				\
1323 		bpf_func_t bpf_func)					\
1324 	{								\
1325 		return __BPF_DISPATCHER_CALL(name);			\
1326 	}								\
1327 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1328 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1329 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1330 
1331 #define DECLARE_BPF_DISPATCHER(name)					\
1332 	unsigned int bpf_dispatcher_##name##_func(			\
1333 		const void *ctx,					\
1334 		const struct bpf_insn *insnsi,				\
1335 		bpf_func_t bpf_func);					\
1336 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1337 
1338 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1339 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1340 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1341 				struct bpf_prog *to);
1342 /* Called only from JIT-enabled code, so there's no need for stubs. */
1343 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1344 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1345 void bpf_ksym_add(struct bpf_ksym *ksym);
1346 void bpf_ksym_del(struct bpf_ksym *ksym);
1347 int bpf_jit_charge_modmem(u32 size);
1348 void bpf_jit_uncharge_modmem(u32 size);
1349 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1350 #else
1351 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1352 					   struct bpf_trampoline *tr)
1353 {
1354 	return -ENOTSUPP;
1355 }
1356 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1357 					     struct bpf_trampoline *tr)
1358 {
1359 	return -ENOTSUPP;
1360 }
1361 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1362 							struct bpf_attach_target_info *tgt_info)
1363 {
1364 	return NULL;
1365 }
1366 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1367 #define DEFINE_BPF_DISPATCHER(name)
1368 #define DECLARE_BPF_DISPATCHER(name)
1369 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1370 #define BPF_DISPATCHER_PTR(name) NULL
1371 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1372 					      struct bpf_prog *from,
1373 					      struct bpf_prog *to) {}
1374 static inline bool is_bpf_image_address(unsigned long address)
1375 {
1376 	return false;
1377 }
1378 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1379 {
1380 	return false;
1381 }
1382 #endif
1383 
1384 struct bpf_func_info_aux {
1385 	u16 linkage;
1386 	bool unreliable;
1387 	bool called : 1;
1388 	bool verified : 1;
1389 };
1390 
1391 enum bpf_jit_poke_reason {
1392 	BPF_POKE_REASON_TAIL_CALL,
1393 };
1394 
1395 /* Descriptor of pokes pointing /into/ the JITed image. */
1396 struct bpf_jit_poke_descriptor {
1397 	void *tailcall_target;
1398 	void *tailcall_bypass;
1399 	void *bypass_addr;
1400 	void *aux;
1401 	union {
1402 		struct {
1403 			struct bpf_map *map;
1404 			u32 key;
1405 		} tail_call;
1406 	};
1407 	bool tailcall_target_stable;
1408 	u8 adj_off;
1409 	u16 reason;
1410 	u32 insn_idx;
1411 };
1412 
1413 /* reg_type info for ctx arguments */
1414 struct bpf_ctx_arg_aux {
1415 	u32 offset;
1416 	enum bpf_reg_type reg_type;
1417 	struct btf *btf;
1418 	u32 btf_id;
1419 };
1420 
1421 struct btf_mod_pair {
1422 	struct btf *btf;
1423 	struct module *module;
1424 };
1425 
1426 struct bpf_kfunc_desc_tab;
1427 
1428 struct bpf_prog_aux {
1429 	atomic64_t refcnt;
1430 	u32 used_map_cnt;
1431 	u32 used_btf_cnt;
1432 	u32 max_ctx_offset;
1433 	u32 max_pkt_offset;
1434 	u32 max_tp_access;
1435 	u32 stack_depth;
1436 	u32 id;
1437 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1438 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1439 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1440 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1441 	u32 ctx_arg_info_size;
1442 	u32 max_rdonly_access;
1443 	u32 max_rdwr_access;
1444 	struct btf *attach_btf;
1445 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1446 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1447 	struct bpf_prog *dst_prog;
1448 	struct bpf_trampoline *dst_trampoline;
1449 	enum bpf_prog_type saved_dst_prog_type;
1450 	enum bpf_attach_type saved_dst_attach_type;
1451 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1452 	bool dev_bound; /* Program is bound to the netdev. */
1453 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1454 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1455 	bool attach_tracing_prog; /* true if tracing another tracing program */
1456 	bool func_proto_unreliable;
1457 	bool tail_call_reachable;
1458 	bool xdp_has_frags;
1459 	bool exception_cb;
1460 	bool exception_boundary;
1461 	struct bpf_arena *arena;
1462 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1463 	const struct btf_type *attach_func_proto;
1464 	/* function name for valid attach_btf_id */
1465 	const char *attach_func_name;
1466 	struct bpf_prog **func;
1467 	void *jit_data; /* JIT specific data. arch dependent */
1468 	struct bpf_jit_poke_descriptor *poke_tab;
1469 	struct bpf_kfunc_desc_tab *kfunc_tab;
1470 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1471 	u32 size_poke_tab;
1472 #ifdef CONFIG_FINEIBT
1473 	struct bpf_ksym ksym_prefix;
1474 #endif
1475 	struct bpf_ksym ksym;
1476 	const struct bpf_prog_ops *ops;
1477 	struct bpf_map **used_maps;
1478 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1479 	struct btf_mod_pair *used_btfs;
1480 	struct bpf_prog *prog;
1481 	struct user_struct *user;
1482 	u64 load_time; /* ns since boottime */
1483 	u32 verified_insns;
1484 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1485 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1486 	char name[BPF_OBJ_NAME_LEN];
1487 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1488 #ifdef CONFIG_SECURITY
1489 	void *security;
1490 #endif
1491 	struct bpf_token *token;
1492 	struct bpf_prog_offload *offload;
1493 	struct btf *btf;
1494 	struct bpf_func_info *func_info;
1495 	struct bpf_func_info_aux *func_info_aux;
1496 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1497 	 * has the xlated insn offset.
1498 	 * Both the main and sub prog share the same linfo.
1499 	 * The subprog can access its first linfo by
1500 	 * using the linfo_idx.
1501 	 */
1502 	struct bpf_line_info *linfo;
1503 	/* jited_linfo is the jited addr of the linfo.  It has a
1504 	 * one to one mapping to linfo:
1505 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1506 	 * Both the main and sub prog share the same jited_linfo.
1507 	 * The subprog can access its first jited_linfo by
1508 	 * using the linfo_idx.
1509 	 */
1510 	void **jited_linfo;
1511 	u32 func_info_cnt;
1512 	u32 nr_linfo;
1513 	/* subprog can use linfo_idx to access its first linfo and
1514 	 * jited_linfo.
1515 	 * main prog always has linfo_idx == 0
1516 	 */
1517 	u32 linfo_idx;
1518 	struct module *mod;
1519 	u32 num_exentries;
1520 	struct exception_table_entry *extable;
1521 	union {
1522 		struct work_struct work;
1523 		struct rcu_head	rcu;
1524 	};
1525 };
1526 
1527 struct bpf_prog {
1528 	u16			pages;		/* Number of allocated pages */
1529 	u16			jited:1,	/* Is our filter JIT'ed? */
1530 				jit_requested:1,/* archs need to JIT the prog */
1531 				gpl_compatible:1, /* Is filter GPL compatible? */
1532 				cb_access:1,	/* Is control block accessed? */
1533 				dst_needed:1,	/* Do we need dst entry? */
1534 				blinding_requested:1, /* needs constant blinding */
1535 				blinded:1,	/* Was blinded */
1536 				is_func:1,	/* program is a bpf function */
1537 				kprobe_override:1, /* Do we override a kprobe? */
1538 				has_callchain_buf:1, /* callchain buffer allocated? */
1539 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1540 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1541 				call_get_func_ip:1, /* Do we call get_func_ip() */
1542 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1543 				sleepable:1;	/* BPF program is sleepable */
1544 	enum bpf_prog_type	type;		/* Type of BPF program */
1545 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1546 	u32			len;		/* Number of filter blocks */
1547 	u32			jited_len;	/* Size of jited insns in bytes */
1548 	u8			tag[BPF_TAG_SIZE];
1549 	struct bpf_prog_stats __percpu *stats;
1550 	int __percpu		*active;
1551 	unsigned int		(*bpf_func)(const void *ctx,
1552 					    const struct bpf_insn *insn);
1553 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1554 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1555 	/* Instructions for interpreter */
1556 	union {
1557 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1558 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1559 	};
1560 };
1561 
1562 struct bpf_array_aux {
1563 	/* Programs with direct jumps into programs part of this array. */
1564 	struct list_head poke_progs;
1565 	struct bpf_map *map;
1566 	struct mutex poke_mutex;
1567 	struct work_struct work;
1568 };
1569 
1570 struct bpf_link {
1571 	atomic64_t refcnt;
1572 	u32 id;
1573 	enum bpf_link_type type;
1574 	const struct bpf_link_ops *ops;
1575 	struct bpf_prog *prog;
1576 	/* rcu is used before freeing, work can be used to schedule that
1577 	 * RCU-based freeing before that, so they never overlap
1578 	 */
1579 	union {
1580 		struct rcu_head rcu;
1581 		struct work_struct work;
1582 	};
1583 };
1584 
1585 struct bpf_link_ops {
1586 	void (*release)(struct bpf_link *link);
1587 	/* deallocate link resources callback, called without RCU grace period
1588 	 * waiting
1589 	 */
1590 	void (*dealloc)(struct bpf_link *link);
1591 	/* deallocate link resources callback, called after RCU grace period;
1592 	 * if underlying BPF program is sleepable we go through tasks trace
1593 	 * RCU GP and then "classic" RCU GP
1594 	 */
1595 	void (*dealloc_deferred)(struct bpf_link *link);
1596 	int (*detach)(struct bpf_link *link);
1597 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1598 			   struct bpf_prog *old_prog);
1599 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1600 	int (*fill_link_info)(const struct bpf_link *link,
1601 			      struct bpf_link_info *info);
1602 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1603 			  struct bpf_map *old_map);
1604 };
1605 
1606 struct bpf_tramp_link {
1607 	struct bpf_link link;
1608 	struct hlist_node tramp_hlist;
1609 	u64 cookie;
1610 };
1611 
1612 struct bpf_shim_tramp_link {
1613 	struct bpf_tramp_link link;
1614 	struct bpf_trampoline *trampoline;
1615 };
1616 
1617 struct bpf_tracing_link {
1618 	struct bpf_tramp_link link;
1619 	enum bpf_attach_type attach_type;
1620 	struct bpf_trampoline *trampoline;
1621 	struct bpf_prog *tgt_prog;
1622 };
1623 
1624 struct bpf_raw_tp_link {
1625 	struct bpf_link link;
1626 	struct bpf_raw_event_map *btp;
1627 	u64 cookie;
1628 };
1629 
1630 struct bpf_link_primer {
1631 	struct bpf_link *link;
1632 	struct file *file;
1633 	int fd;
1634 	u32 id;
1635 };
1636 
1637 struct bpf_mount_opts {
1638 	kuid_t uid;
1639 	kgid_t gid;
1640 	umode_t mode;
1641 
1642 	/* BPF token-related delegation options */
1643 	u64 delegate_cmds;
1644 	u64 delegate_maps;
1645 	u64 delegate_progs;
1646 	u64 delegate_attachs;
1647 };
1648 
1649 struct bpf_token {
1650 	struct work_struct work;
1651 	atomic64_t refcnt;
1652 	struct user_namespace *userns;
1653 	u64 allowed_cmds;
1654 	u64 allowed_maps;
1655 	u64 allowed_progs;
1656 	u64 allowed_attachs;
1657 #ifdef CONFIG_SECURITY
1658 	void *security;
1659 #endif
1660 };
1661 
1662 struct bpf_struct_ops_value;
1663 struct btf_member;
1664 
1665 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1666 /**
1667  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1668  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1669  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1670  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1671  *		  when determining whether the struct_ops progs in the
1672  *		  struct_ops map are valid.
1673  * @init: A callback that is invoked a single time, and before any other
1674  *	  callback, to initialize the structure. A nonzero return value means
1675  *	  the subsystem could not be initialized.
1676  * @check_member: When defined, a callback invoked by the verifier to allow
1677  *		  the subsystem to determine if an entry in the struct_ops map
1678  *		  is valid. A nonzero return value means that the map is
1679  *		  invalid and should be rejected by the verifier.
1680  * @init_member: A callback that is invoked for each member of the struct_ops
1681  *		 map to allow the subsystem to initialize the member. A nonzero
1682  *		 value means the member could not be initialized. This callback
1683  *		 is exclusive with the @type, @type_id, @value_type, and
1684  *		 @value_id fields.
1685  * @reg: A callback that is invoked when the struct_ops map has been
1686  *	 initialized and is being attached to. Zero means the struct_ops map
1687  *	 has been successfully registered and is live. A nonzero return value
1688  *	 means the struct_ops map could not be registered.
1689  * @unreg: A callback that is invoked when the struct_ops map should be
1690  *	   unregistered.
1691  * @update: A callback that is invoked when the live struct_ops map is being
1692  *	    updated to contain new values. This callback is only invoked when
1693  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1694  *	    it is assumed that the struct_ops map cannot be updated.
1695  * @validate: A callback that is invoked after all of the members have been
1696  *	      initialized. This callback should perform static checks on the
1697  *	      map, meaning that it should either fail or succeed
1698  *	      deterministically. A struct_ops map that has been validated may
1699  *	      not necessarily succeed in being registered if the call to @reg
1700  *	      fails. For example, a valid struct_ops map may be loaded, but
1701  *	      then fail to be registered due to there being another active
1702  *	      struct_ops map on the system in the subsystem already. For this
1703  *	      reason, if this callback is not defined, the check is skipped as
1704  *	      the struct_ops map will have final verification performed in
1705  *	      @reg.
1706  * @type: BTF type.
1707  * @value_type: Value type.
1708  * @name: The name of the struct bpf_struct_ops object.
1709  * @func_models: Func models
1710  * @type_id: BTF type id.
1711  * @value_id: BTF value id.
1712  */
1713 struct bpf_struct_ops {
1714 	const struct bpf_verifier_ops *verifier_ops;
1715 	int (*init)(struct btf *btf);
1716 	int (*check_member)(const struct btf_type *t,
1717 			    const struct btf_member *member,
1718 			    const struct bpf_prog *prog);
1719 	int (*init_member)(const struct btf_type *t,
1720 			   const struct btf_member *member,
1721 			   void *kdata, const void *udata);
1722 	int (*reg)(void *kdata);
1723 	void (*unreg)(void *kdata);
1724 	int (*update)(void *kdata, void *old_kdata);
1725 	int (*validate)(void *kdata);
1726 	void *cfi_stubs;
1727 	struct module *owner;
1728 	const char *name;
1729 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1730 };
1731 
1732 /* Every member of a struct_ops type has an instance even a member is not
1733  * an operator (function pointer). The "info" field will be assigned to
1734  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1735  * argument information required by the verifier to verify the program.
1736  *
1737  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1738  * corresponding entry for an given argument.
1739  */
1740 struct bpf_struct_ops_arg_info {
1741 	struct bpf_ctx_arg_aux *info;
1742 	u32 cnt;
1743 };
1744 
1745 struct bpf_struct_ops_desc {
1746 	struct bpf_struct_ops *st_ops;
1747 
1748 	const struct btf_type *type;
1749 	const struct btf_type *value_type;
1750 	u32 type_id;
1751 	u32 value_id;
1752 
1753 	/* Collection of argument information for each member */
1754 	struct bpf_struct_ops_arg_info *arg_info;
1755 };
1756 
1757 enum bpf_struct_ops_state {
1758 	BPF_STRUCT_OPS_STATE_INIT,
1759 	BPF_STRUCT_OPS_STATE_INUSE,
1760 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1761 	BPF_STRUCT_OPS_STATE_READY,
1762 };
1763 
1764 struct bpf_struct_ops_common_value {
1765 	refcount_t refcnt;
1766 	enum bpf_struct_ops_state state;
1767 };
1768 
1769 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1770 /* This macro helps developer to register a struct_ops type and generate
1771  * type information correctly. Developers should use this macro to register
1772  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1773  */
1774 #define register_bpf_struct_ops(st_ops, type)				\
1775 	({								\
1776 		struct bpf_struct_ops_##type {				\
1777 			struct bpf_struct_ops_common_value common;	\
1778 			struct type data ____cacheline_aligned_in_smp;	\
1779 		};							\
1780 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1781 		__register_bpf_struct_ops(st_ops);			\
1782 	})
1783 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1784 bool bpf_struct_ops_get(const void *kdata);
1785 void bpf_struct_ops_put(const void *kdata);
1786 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1787 				       void *value);
1788 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1789 				      struct bpf_tramp_link *link,
1790 				      const struct btf_func_model *model,
1791 				      void *stub_func,
1792 				      void **image, u32 *image_off,
1793 				      bool allow_alloc);
1794 void bpf_struct_ops_image_free(void *image);
1795 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1796 {
1797 	if (owner == BPF_MODULE_OWNER)
1798 		return bpf_struct_ops_get(data);
1799 	else
1800 		return try_module_get(owner);
1801 }
1802 static inline void bpf_module_put(const void *data, struct module *owner)
1803 {
1804 	if (owner == BPF_MODULE_OWNER)
1805 		bpf_struct_ops_put(data);
1806 	else
1807 		module_put(owner);
1808 }
1809 int bpf_struct_ops_link_create(union bpf_attr *attr);
1810 
1811 #ifdef CONFIG_NET
1812 /* Define it here to avoid the use of forward declaration */
1813 struct bpf_dummy_ops_state {
1814 	int val;
1815 };
1816 
1817 struct bpf_dummy_ops {
1818 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1819 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1820 		      char a3, unsigned long a4);
1821 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1822 };
1823 
1824 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1825 			    union bpf_attr __user *uattr);
1826 #endif
1827 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1828 			     struct btf *btf,
1829 			     struct bpf_verifier_log *log);
1830 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1831 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1832 #else
1833 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1834 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1835 {
1836 	return try_module_get(owner);
1837 }
1838 static inline void bpf_module_put(const void *data, struct module *owner)
1839 {
1840 	module_put(owner);
1841 }
1842 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1843 						     void *key,
1844 						     void *value)
1845 {
1846 	return -EINVAL;
1847 }
1848 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1849 {
1850 	return -EOPNOTSUPP;
1851 }
1852 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1853 {
1854 }
1855 
1856 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1857 {
1858 }
1859 
1860 #endif
1861 
1862 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1863 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1864 				    int cgroup_atype);
1865 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1866 #else
1867 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1868 						  int cgroup_atype)
1869 {
1870 	return -EOPNOTSUPP;
1871 }
1872 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1873 {
1874 }
1875 #endif
1876 
1877 struct bpf_array {
1878 	struct bpf_map map;
1879 	u32 elem_size;
1880 	u32 index_mask;
1881 	struct bpf_array_aux *aux;
1882 	union {
1883 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1884 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1885 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1886 	};
1887 };
1888 
1889 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1890 #define MAX_TAIL_CALL_CNT 33
1891 
1892 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1893  * It's enum to expose it (and thus make it discoverable) through BTF.
1894  */
1895 enum {
1896 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1897 };
1898 
1899 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1900 				 BPF_F_RDONLY_PROG |	\
1901 				 BPF_F_WRONLY |		\
1902 				 BPF_F_WRONLY_PROG)
1903 
1904 #define BPF_MAP_CAN_READ	BIT(0)
1905 #define BPF_MAP_CAN_WRITE	BIT(1)
1906 
1907 /* Maximum number of user-producer ring buffer samples that can be drained in
1908  * a call to bpf_user_ringbuf_drain().
1909  */
1910 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1911 
1912 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1913 {
1914 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1915 
1916 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1917 	 * not possible.
1918 	 */
1919 	if (access_flags & BPF_F_RDONLY_PROG)
1920 		return BPF_MAP_CAN_READ;
1921 	else if (access_flags & BPF_F_WRONLY_PROG)
1922 		return BPF_MAP_CAN_WRITE;
1923 	else
1924 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1925 }
1926 
1927 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1928 {
1929 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1930 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1931 }
1932 
1933 struct bpf_event_entry {
1934 	struct perf_event *event;
1935 	struct file *perf_file;
1936 	struct file *map_file;
1937 	struct rcu_head rcu;
1938 };
1939 
1940 static inline bool map_type_contains_progs(struct bpf_map *map)
1941 {
1942 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1943 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1944 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1945 }
1946 
1947 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1948 int bpf_prog_calc_tag(struct bpf_prog *fp);
1949 
1950 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1951 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1952 
1953 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1954 					unsigned long off, unsigned long len);
1955 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1956 					const struct bpf_insn *src,
1957 					struct bpf_insn *dst,
1958 					struct bpf_prog *prog,
1959 					u32 *target_size);
1960 
1961 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1962 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1963 
1964 /* an array of programs to be executed under rcu_lock.
1965  *
1966  * Typical usage:
1967  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1968  *
1969  * the structure returned by bpf_prog_array_alloc() should be populated
1970  * with program pointers and the last pointer must be NULL.
1971  * The user has to keep refcnt on the program and make sure the program
1972  * is removed from the array before bpf_prog_put().
1973  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1974  * since other cpus are walking the array of pointers in parallel.
1975  */
1976 struct bpf_prog_array_item {
1977 	struct bpf_prog *prog;
1978 	union {
1979 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1980 		u64 bpf_cookie;
1981 	};
1982 };
1983 
1984 struct bpf_prog_array {
1985 	struct rcu_head rcu;
1986 	struct bpf_prog_array_item items[];
1987 };
1988 
1989 struct bpf_empty_prog_array {
1990 	struct bpf_prog_array hdr;
1991 	struct bpf_prog *null_prog;
1992 };
1993 
1994 /* to avoid allocating empty bpf_prog_array for cgroups that
1995  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1996  * It will not be modified the caller of bpf_prog_array_alloc()
1997  * (since caller requested prog_cnt == 0)
1998  * that pointer should be 'freed' by bpf_prog_array_free()
1999  */
2000 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2001 
2002 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2003 void bpf_prog_array_free(struct bpf_prog_array *progs);
2004 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2005 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2006 int bpf_prog_array_length(struct bpf_prog_array *progs);
2007 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2008 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2009 				__u32 __user *prog_ids, u32 cnt);
2010 
2011 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2012 				struct bpf_prog *old_prog);
2013 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2014 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2015 			     struct bpf_prog *prog);
2016 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2017 			     u32 *prog_ids, u32 request_cnt,
2018 			     u32 *prog_cnt);
2019 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2020 			struct bpf_prog *exclude_prog,
2021 			struct bpf_prog *include_prog,
2022 			u64 bpf_cookie,
2023 			struct bpf_prog_array **new_array);
2024 
2025 struct bpf_run_ctx {};
2026 
2027 struct bpf_cg_run_ctx {
2028 	struct bpf_run_ctx run_ctx;
2029 	const struct bpf_prog_array_item *prog_item;
2030 	int retval;
2031 };
2032 
2033 struct bpf_trace_run_ctx {
2034 	struct bpf_run_ctx run_ctx;
2035 	u64 bpf_cookie;
2036 	bool is_uprobe;
2037 };
2038 
2039 struct bpf_tramp_run_ctx {
2040 	struct bpf_run_ctx run_ctx;
2041 	u64 bpf_cookie;
2042 	struct bpf_run_ctx *saved_run_ctx;
2043 };
2044 
2045 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2046 {
2047 	struct bpf_run_ctx *old_ctx = NULL;
2048 
2049 #ifdef CONFIG_BPF_SYSCALL
2050 	old_ctx = current->bpf_ctx;
2051 	current->bpf_ctx = new_ctx;
2052 #endif
2053 	return old_ctx;
2054 }
2055 
2056 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2057 {
2058 #ifdef CONFIG_BPF_SYSCALL
2059 	current->bpf_ctx = old_ctx;
2060 #endif
2061 }
2062 
2063 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2064 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2065 /* BPF program asks to set CN on the packet. */
2066 #define BPF_RET_SET_CN						(1 << 0)
2067 
2068 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2069 
2070 static __always_inline u32
2071 bpf_prog_run_array(const struct bpf_prog_array *array,
2072 		   const void *ctx, bpf_prog_run_fn run_prog)
2073 {
2074 	const struct bpf_prog_array_item *item;
2075 	const struct bpf_prog *prog;
2076 	struct bpf_run_ctx *old_run_ctx;
2077 	struct bpf_trace_run_ctx run_ctx;
2078 	u32 ret = 1;
2079 
2080 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2081 
2082 	if (unlikely(!array))
2083 		return ret;
2084 
2085 	run_ctx.is_uprobe = false;
2086 
2087 	migrate_disable();
2088 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2089 	item = &array->items[0];
2090 	while ((prog = READ_ONCE(item->prog))) {
2091 		run_ctx.bpf_cookie = item->bpf_cookie;
2092 		ret &= run_prog(prog, ctx);
2093 		item++;
2094 	}
2095 	bpf_reset_run_ctx(old_run_ctx);
2096 	migrate_enable();
2097 	return ret;
2098 }
2099 
2100 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2101  *
2102  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2103  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2104  * in order to use the tasks_trace rcu grace period.
2105  *
2106  * When a non-sleepable program is inside the array, we take the rcu read
2107  * section and disable preemption for that program alone, so it can access
2108  * rcu-protected dynamically sized maps.
2109  */
2110 static __always_inline u32
2111 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2112 			  const void *ctx, bpf_prog_run_fn run_prog)
2113 {
2114 	const struct bpf_prog_array_item *item;
2115 	const struct bpf_prog *prog;
2116 	const struct bpf_prog_array *array;
2117 	struct bpf_run_ctx *old_run_ctx;
2118 	struct bpf_trace_run_ctx run_ctx;
2119 	u32 ret = 1;
2120 
2121 	might_fault();
2122 
2123 	rcu_read_lock_trace();
2124 	migrate_disable();
2125 
2126 	run_ctx.is_uprobe = true;
2127 
2128 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2129 	if (unlikely(!array))
2130 		goto out;
2131 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2132 	item = &array->items[0];
2133 	while ((prog = READ_ONCE(item->prog))) {
2134 		if (!prog->sleepable)
2135 			rcu_read_lock();
2136 
2137 		run_ctx.bpf_cookie = item->bpf_cookie;
2138 		ret &= run_prog(prog, ctx);
2139 		item++;
2140 
2141 		if (!prog->sleepable)
2142 			rcu_read_unlock();
2143 	}
2144 	bpf_reset_run_ctx(old_run_ctx);
2145 out:
2146 	migrate_enable();
2147 	rcu_read_unlock_trace();
2148 	return ret;
2149 }
2150 
2151 #ifdef CONFIG_BPF_SYSCALL
2152 DECLARE_PER_CPU(int, bpf_prog_active);
2153 extern struct mutex bpf_stats_enabled_mutex;
2154 
2155 /*
2156  * Block execution of BPF programs attached to instrumentation (perf,
2157  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2158  * these events can happen inside a region which holds a map bucket lock
2159  * and can deadlock on it.
2160  */
2161 static inline void bpf_disable_instrumentation(void)
2162 {
2163 	migrate_disable();
2164 	this_cpu_inc(bpf_prog_active);
2165 }
2166 
2167 static inline void bpf_enable_instrumentation(void)
2168 {
2169 	this_cpu_dec(bpf_prog_active);
2170 	migrate_enable();
2171 }
2172 
2173 extern const struct super_operations bpf_super_ops;
2174 extern const struct file_operations bpf_map_fops;
2175 extern const struct file_operations bpf_prog_fops;
2176 extern const struct file_operations bpf_iter_fops;
2177 
2178 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2179 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2180 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2181 #define BPF_MAP_TYPE(_id, _ops) \
2182 	extern const struct bpf_map_ops _ops;
2183 #define BPF_LINK_TYPE(_id, _name)
2184 #include <linux/bpf_types.h>
2185 #undef BPF_PROG_TYPE
2186 #undef BPF_MAP_TYPE
2187 #undef BPF_LINK_TYPE
2188 
2189 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2190 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2191 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2192 
2193 struct bpf_prog *bpf_prog_get(u32 ufd);
2194 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2195 				       bool attach_drv);
2196 void bpf_prog_add(struct bpf_prog *prog, int i);
2197 void bpf_prog_sub(struct bpf_prog *prog, int i);
2198 void bpf_prog_inc(struct bpf_prog *prog);
2199 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2200 void bpf_prog_put(struct bpf_prog *prog);
2201 
2202 void bpf_prog_free_id(struct bpf_prog *prog);
2203 void bpf_map_free_id(struct bpf_map *map);
2204 
2205 struct btf_field *btf_record_find(const struct btf_record *rec,
2206 				  u32 offset, u32 field_mask);
2207 void btf_record_free(struct btf_record *rec);
2208 void bpf_map_free_record(struct bpf_map *map);
2209 struct btf_record *btf_record_dup(const struct btf_record *rec);
2210 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2211 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2212 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2213 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2214 
2215 struct bpf_map *bpf_map_get(u32 ufd);
2216 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2217 struct bpf_map *__bpf_map_get(struct fd f);
2218 void bpf_map_inc(struct bpf_map *map);
2219 void bpf_map_inc_with_uref(struct bpf_map *map);
2220 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2221 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2222 void bpf_map_put_with_uref(struct bpf_map *map);
2223 void bpf_map_put(struct bpf_map *map);
2224 void *bpf_map_area_alloc(u64 size, int numa_node);
2225 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2226 void bpf_map_area_free(void *base);
2227 bool bpf_map_write_active(const struct bpf_map *map);
2228 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2229 int  generic_map_lookup_batch(struct bpf_map *map,
2230 			      const union bpf_attr *attr,
2231 			      union bpf_attr __user *uattr);
2232 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2233 			      const union bpf_attr *attr,
2234 			      union bpf_attr __user *uattr);
2235 int  generic_map_delete_batch(struct bpf_map *map,
2236 			      const union bpf_attr *attr,
2237 			      union bpf_attr __user *uattr);
2238 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2239 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2240 
2241 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2242 			unsigned long nr_pages, struct page **page_array);
2243 #ifdef CONFIG_MEMCG_KMEM
2244 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2245 			   int node);
2246 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2247 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2248 		       gfp_t flags);
2249 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2250 				    size_t align, gfp_t flags);
2251 #else
2252 static inline void *
2253 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2254 		     int node)
2255 {
2256 	return kmalloc_node(size, flags, node);
2257 }
2258 
2259 static inline void *
2260 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2261 {
2262 	return kzalloc(size, flags);
2263 }
2264 
2265 static inline void *
2266 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2267 {
2268 	return kvcalloc(n, size, flags);
2269 }
2270 
2271 static inline void __percpu *
2272 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2273 		     gfp_t flags)
2274 {
2275 	return __alloc_percpu_gfp(size, align, flags);
2276 }
2277 #endif
2278 
2279 static inline int
2280 bpf_map_init_elem_count(struct bpf_map *map)
2281 {
2282 	size_t size = sizeof(*map->elem_count), align = size;
2283 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2284 
2285 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2286 	if (!map->elem_count)
2287 		return -ENOMEM;
2288 
2289 	return 0;
2290 }
2291 
2292 static inline void
2293 bpf_map_free_elem_count(struct bpf_map *map)
2294 {
2295 	free_percpu(map->elem_count);
2296 }
2297 
2298 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2299 {
2300 	this_cpu_inc(*map->elem_count);
2301 }
2302 
2303 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2304 {
2305 	this_cpu_dec(*map->elem_count);
2306 }
2307 
2308 extern int sysctl_unprivileged_bpf_disabled;
2309 
2310 bool bpf_token_capable(const struct bpf_token *token, int cap);
2311 
2312 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2313 {
2314 	return bpf_token_capable(token, CAP_PERFMON);
2315 }
2316 
2317 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2318 {
2319 	return bpf_token_capable(token, CAP_PERFMON);
2320 }
2321 
2322 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2323 {
2324 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2325 }
2326 
2327 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2328 {
2329 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2330 }
2331 
2332 int bpf_map_new_fd(struct bpf_map *map, int flags);
2333 int bpf_prog_new_fd(struct bpf_prog *prog);
2334 
2335 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2336 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2337 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2338 int bpf_link_settle(struct bpf_link_primer *primer);
2339 void bpf_link_cleanup(struct bpf_link_primer *primer);
2340 void bpf_link_inc(struct bpf_link *link);
2341 void bpf_link_put(struct bpf_link *link);
2342 int bpf_link_new_fd(struct bpf_link *link);
2343 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2344 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2345 
2346 void bpf_token_inc(struct bpf_token *token);
2347 void bpf_token_put(struct bpf_token *token);
2348 int bpf_token_create(union bpf_attr *attr);
2349 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2350 
2351 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2352 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2353 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2354 			       enum bpf_prog_type prog_type,
2355 			       enum bpf_attach_type attach_type);
2356 
2357 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2358 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2359 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2360 			    umode_t mode);
2361 
2362 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2363 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2364 	extern int bpf_iter_ ## target(args);			\
2365 	int __init bpf_iter_ ## target(args) { return 0; }
2366 
2367 /*
2368  * The task type of iterators.
2369  *
2370  * For BPF task iterators, they can be parameterized with various
2371  * parameters to visit only some of tasks.
2372  *
2373  * BPF_TASK_ITER_ALL (default)
2374  *	Iterate over resources of every task.
2375  *
2376  * BPF_TASK_ITER_TID
2377  *	Iterate over resources of a task/tid.
2378  *
2379  * BPF_TASK_ITER_TGID
2380  *	Iterate over resources of every task of a process / task group.
2381  */
2382 enum bpf_iter_task_type {
2383 	BPF_TASK_ITER_ALL = 0,
2384 	BPF_TASK_ITER_TID,
2385 	BPF_TASK_ITER_TGID,
2386 };
2387 
2388 struct bpf_iter_aux_info {
2389 	/* for map_elem iter */
2390 	struct bpf_map *map;
2391 
2392 	/* for cgroup iter */
2393 	struct {
2394 		struct cgroup *start; /* starting cgroup */
2395 		enum bpf_cgroup_iter_order order;
2396 	} cgroup;
2397 	struct {
2398 		enum bpf_iter_task_type	type;
2399 		u32 pid;
2400 	} task;
2401 };
2402 
2403 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2404 					union bpf_iter_link_info *linfo,
2405 					struct bpf_iter_aux_info *aux);
2406 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2407 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2408 					struct seq_file *seq);
2409 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2410 					 struct bpf_link_info *info);
2411 typedef const struct bpf_func_proto *
2412 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2413 			     const struct bpf_prog *prog);
2414 
2415 enum bpf_iter_feature {
2416 	BPF_ITER_RESCHED	= BIT(0),
2417 };
2418 
2419 #define BPF_ITER_CTX_ARG_MAX 2
2420 struct bpf_iter_reg {
2421 	const char *target;
2422 	bpf_iter_attach_target_t attach_target;
2423 	bpf_iter_detach_target_t detach_target;
2424 	bpf_iter_show_fdinfo_t show_fdinfo;
2425 	bpf_iter_fill_link_info_t fill_link_info;
2426 	bpf_iter_get_func_proto_t get_func_proto;
2427 	u32 ctx_arg_info_size;
2428 	u32 feature;
2429 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2430 	const struct bpf_iter_seq_info *seq_info;
2431 };
2432 
2433 struct bpf_iter_meta {
2434 	__bpf_md_ptr(struct seq_file *, seq);
2435 	u64 session_id;
2436 	u64 seq_num;
2437 };
2438 
2439 struct bpf_iter__bpf_map_elem {
2440 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2441 	__bpf_md_ptr(struct bpf_map *, map);
2442 	__bpf_md_ptr(void *, key);
2443 	__bpf_md_ptr(void *, value);
2444 };
2445 
2446 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2447 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2448 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2449 const struct bpf_func_proto *
2450 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2451 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2452 int bpf_iter_new_fd(struct bpf_link *link);
2453 bool bpf_link_is_iter(struct bpf_link *link);
2454 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2455 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2456 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2457 			      struct seq_file *seq);
2458 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2459 				struct bpf_link_info *info);
2460 
2461 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2462 				   struct bpf_func_state *caller,
2463 				   struct bpf_func_state *callee);
2464 
2465 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2466 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2467 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2468 			   u64 flags);
2469 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2470 			    u64 flags);
2471 
2472 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2473 
2474 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2475 				 void *key, void *value, u64 map_flags);
2476 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2477 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2478 				void *key, void *value, u64 map_flags);
2479 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2480 
2481 int bpf_get_file_flag(int flags);
2482 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2483 			     size_t actual_size);
2484 
2485 /* verify correctness of eBPF program */
2486 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2487 
2488 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2489 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2490 #endif
2491 
2492 struct btf *bpf_get_btf_vmlinux(void);
2493 
2494 /* Map specifics */
2495 struct xdp_frame;
2496 struct sk_buff;
2497 struct bpf_dtab_netdev;
2498 struct bpf_cpu_map_entry;
2499 
2500 void __dev_flush(void);
2501 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2502 		    struct net_device *dev_rx);
2503 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2504 		    struct net_device *dev_rx);
2505 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2506 			  struct bpf_map *map, bool exclude_ingress);
2507 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2508 			     struct bpf_prog *xdp_prog);
2509 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2510 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2511 			   bool exclude_ingress);
2512 
2513 void __cpu_map_flush(void);
2514 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2515 		    struct net_device *dev_rx);
2516 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2517 			     struct sk_buff *skb);
2518 
2519 /* Return map's numa specified by userspace */
2520 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2521 {
2522 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2523 		attr->numa_node : NUMA_NO_NODE;
2524 }
2525 
2526 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2527 int array_map_alloc_check(union bpf_attr *attr);
2528 
2529 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2530 			  union bpf_attr __user *uattr);
2531 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2532 			  union bpf_attr __user *uattr);
2533 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2534 			      const union bpf_attr *kattr,
2535 			      union bpf_attr __user *uattr);
2536 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2537 				     const union bpf_attr *kattr,
2538 				     union bpf_attr __user *uattr);
2539 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2540 			     const union bpf_attr *kattr,
2541 			     union bpf_attr __user *uattr);
2542 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2543 				const union bpf_attr *kattr,
2544 				union bpf_attr __user *uattr);
2545 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2546 			 const union bpf_attr *kattr,
2547 			 union bpf_attr __user *uattr);
2548 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2549 		    const struct bpf_prog *prog,
2550 		    struct bpf_insn_access_aux *info);
2551 
2552 static inline bool bpf_tracing_ctx_access(int off, int size,
2553 					  enum bpf_access_type type)
2554 {
2555 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2556 		return false;
2557 	if (type != BPF_READ)
2558 		return false;
2559 	if (off % size != 0)
2560 		return false;
2561 	return true;
2562 }
2563 
2564 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2565 					      enum bpf_access_type type,
2566 					      const struct bpf_prog *prog,
2567 					      struct bpf_insn_access_aux *info)
2568 {
2569 	if (!bpf_tracing_ctx_access(off, size, type))
2570 		return false;
2571 	return btf_ctx_access(off, size, type, prog, info);
2572 }
2573 
2574 int btf_struct_access(struct bpf_verifier_log *log,
2575 		      const struct bpf_reg_state *reg,
2576 		      int off, int size, enum bpf_access_type atype,
2577 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2578 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2579 			  const struct btf *btf, u32 id, int off,
2580 			  const struct btf *need_btf, u32 need_type_id,
2581 			  bool strict);
2582 
2583 int btf_distill_func_proto(struct bpf_verifier_log *log,
2584 			   struct btf *btf,
2585 			   const struct btf_type *func_proto,
2586 			   const char *func_name,
2587 			   struct btf_func_model *m);
2588 
2589 struct bpf_reg_state;
2590 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2591 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2592 			 struct btf *btf, const struct btf_type *t);
2593 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2594 				    int comp_idx, const char *tag_key);
2595 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2596 			   int comp_idx, const char *tag_key, int last_id);
2597 
2598 struct bpf_prog *bpf_prog_by_id(u32 id);
2599 struct bpf_link *bpf_link_by_id(u32 id);
2600 
2601 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2602 						 const struct bpf_prog *prog);
2603 void bpf_task_storage_free(struct task_struct *task);
2604 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2605 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2606 const struct btf_func_model *
2607 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2608 			 const struct bpf_insn *insn);
2609 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2610 		       u16 btf_fd_idx, u8 **func_addr);
2611 
2612 struct bpf_core_ctx {
2613 	struct bpf_verifier_log *log;
2614 	const struct btf *btf;
2615 };
2616 
2617 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2618 				const struct bpf_reg_state *reg,
2619 				const char *field_name, u32 btf_id, const char *suffix);
2620 
2621 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2622 			       const struct btf *reg_btf, u32 reg_id,
2623 			       const struct btf *arg_btf, u32 arg_id);
2624 
2625 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2626 		   int relo_idx, void *insn);
2627 
2628 static inline bool unprivileged_ebpf_enabled(void)
2629 {
2630 	return !sysctl_unprivileged_bpf_disabled;
2631 }
2632 
2633 /* Not all bpf prog type has the bpf_ctx.
2634  * For the bpf prog type that has initialized the bpf_ctx,
2635  * this function can be used to decide if a kernel function
2636  * is called by a bpf program.
2637  */
2638 static inline bool has_current_bpf_ctx(void)
2639 {
2640 	return !!current->bpf_ctx;
2641 }
2642 
2643 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2644 
2645 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2646 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2647 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2648 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2649 
2650 bool dev_check_flush(void);
2651 bool cpu_map_check_flush(void);
2652 #else /* !CONFIG_BPF_SYSCALL */
2653 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2654 {
2655 	return ERR_PTR(-EOPNOTSUPP);
2656 }
2657 
2658 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2659 						     enum bpf_prog_type type,
2660 						     bool attach_drv)
2661 {
2662 	return ERR_PTR(-EOPNOTSUPP);
2663 }
2664 
2665 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2666 {
2667 }
2668 
2669 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2670 {
2671 }
2672 
2673 static inline void bpf_prog_put(struct bpf_prog *prog)
2674 {
2675 }
2676 
2677 static inline void bpf_prog_inc(struct bpf_prog *prog)
2678 {
2679 }
2680 
2681 static inline struct bpf_prog *__must_check
2682 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2683 {
2684 	return ERR_PTR(-EOPNOTSUPP);
2685 }
2686 
2687 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2688 				 const struct bpf_link_ops *ops,
2689 				 struct bpf_prog *prog)
2690 {
2691 }
2692 
2693 static inline int bpf_link_prime(struct bpf_link *link,
2694 				 struct bpf_link_primer *primer)
2695 {
2696 	return -EOPNOTSUPP;
2697 }
2698 
2699 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2700 {
2701 	return -EOPNOTSUPP;
2702 }
2703 
2704 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2705 {
2706 }
2707 
2708 static inline void bpf_link_inc(struct bpf_link *link)
2709 {
2710 }
2711 
2712 static inline void bpf_link_put(struct bpf_link *link)
2713 {
2714 }
2715 
2716 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2717 {
2718 	return -EOPNOTSUPP;
2719 }
2720 
2721 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2722 {
2723 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2724 }
2725 
2726 static inline void bpf_token_inc(struct bpf_token *token)
2727 {
2728 }
2729 
2730 static inline void bpf_token_put(struct bpf_token *token)
2731 {
2732 }
2733 
2734 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2735 {
2736 	return ERR_PTR(-EOPNOTSUPP);
2737 }
2738 
2739 static inline void __dev_flush(void)
2740 {
2741 }
2742 
2743 struct xdp_frame;
2744 struct bpf_dtab_netdev;
2745 struct bpf_cpu_map_entry;
2746 
2747 static inline
2748 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2749 		    struct net_device *dev_rx)
2750 {
2751 	return 0;
2752 }
2753 
2754 static inline
2755 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2756 		    struct net_device *dev_rx)
2757 {
2758 	return 0;
2759 }
2760 
2761 static inline
2762 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2763 			  struct bpf_map *map, bool exclude_ingress)
2764 {
2765 	return 0;
2766 }
2767 
2768 struct sk_buff;
2769 
2770 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2771 					   struct sk_buff *skb,
2772 					   struct bpf_prog *xdp_prog)
2773 {
2774 	return 0;
2775 }
2776 
2777 static inline
2778 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2779 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2780 			   bool exclude_ingress)
2781 {
2782 	return 0;
2783 }
2784 
2785 static inline void __cpu_map_flush(void)
2786 {
2787 }
2788 
2789 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2790 				  struct xdp_frame *xdpf,
2791 				  struct net_device *dev_rx)
2792 {
2793 	return 0;
2794 }
2795 
2796 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2797 					   struct sk_buff *skb)
2798 {
2799 	return -EOPNOTSUPP;
2800 }
2801 
2802 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2803 				enum bpf_prog_type type)
2804 {
2805 	return ERR_PTR(-EOPNOTSUPP);
2806 }
2807 
2808 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2809 					const union bpf_attr *kattr,
2810 					union bpf_attr __user *uattr)
2811 {
2812 	return -ENOTSUPP;
2813 }
2814 
2815 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2816 					const union bpf_attr *kattr,
2817 					union bpf_attr __user *uattr)
2818 {
2819 	return -ENOTSUPP;
2820 }
2821 
2822 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2823 					    const union bpf_attr *kattr,
2824 					    union bpf_attr __user *uattr)
2825 {
2826 	return -ENOTSUPP;
2827 }
2828 
2829 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2830 						   const union bpf_attr *kattr,
2831 						   union bpf_attr __user *uattr)
2832 {
2833 	return -ENOTSUPP;
2834 }
2835 
2836 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2837 					      const union bpf_attr *kattr,
2838 					      union bpf_attr __user *uattr)
2839 {
2840 	return -ENOTSUPP;
2841 }
2842 
2843 static inline void bpf_map_put(struct bpf_map *map)
2844 {
2845 }
2846 
2847 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2848 {
2849 	return ERR_PTR(-ENOTSUPP);
2850 }
2851 
2852 static inline int btf_struct_access(struct bpf_verifier_log *log,
2853 				    const struct bpf_reg_state *reg,
2854 				    int off, int size, enum bpf_access_type atype,
2855 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2856 				    const char **field_name)
2857 {
2858 	return -EACCES;
2859 }
2860 
2861 static inline const struct bpf_func_proto *
2862 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2863 {
2864 	return NULL;
2865 }
2866 
2867 static inline void bpf_task_storage_free(struct task_struct *task)
2868 {
2869 }
2870 
2871 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2872 {
2873 	return false;
2874 }
2875 
2876 static inline const struct btf_func_model *
2877 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2878 			 const struct bpf_insn *insn)
2879 {
2880 	return NULL;
2881 }
2882 
2883 static inline int
2884 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2885 		   u16 btf_fd_idx, u8 **func_addr)
2886 {
2887 	return -ENOTSUPP;
2888 }
2889 
2890 static inline bool unprivileged_ebpf_enabled(void)
2891 {
2892 	return false;
2893 }
2894 
2895 static inline bool has_current_bpf_ctx(void)
2896 {
2897 	return false;
2898 }
2899 
2900 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2901 {
2902 }
2903 
2904 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2905 {
2906 }
2907 
2908 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2909 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2910 {
2911 }
2912 
2913 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2914 {
2915 }
2916 
2917 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2918 {
2919 }
2920 #endif /* CONFIG_BPF_SYSCALL */
2921 
2922 static __always_inline int
2923 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2924 {
2925 	int ret = -EFAULT;
2926 
2927 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2928 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2929 	if (unlikely(ret < 0))
2930 		memset(dst, 0, size);
2931 	return ret;
2932 }
2933 
2934 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2935 			  struct btf_mod_pair *used_btfs, u32 len);
2936 
2937 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2938 						 enum bpf_prog_type type)
2939 {
2940 	return bpf_prog_get_type_dev(ufd, type, false);
2941 }
2942 
2943 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2944 			  struct bpf_map **used_maps, u32 len);
2945 
2946 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2947 
2948 int bpf_prog_offload_compile(struct bpf_prog *prog);
2949 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2950 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2951 			       struct bpf_prog *prog);
2952 
2953 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2954 
2955 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2956 int bpf_map_offload_update_elem(struct bpf_map *map,
2957 				void *key, void *value, u64 flags);
2958 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2959 int bpf_map_offload_get_next_key(struct bpf_map *map,
2960 				 void *key, void *next_key);
2961 
2962 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2963 
2964 struct bpf_offload_dev *
2965 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2966 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2967 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2968 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2969 				    struct net_device *netdev);
2970 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2971 				       struct net_device *netdev);
2972 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2973 
2974 void unpriv_ebpf_notify(int new_state);
2975 
2976 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2977 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2978 			      struct bpf_prog_aux *prog_aux);
2979 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2980 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2981 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2982 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2983 
2984 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2985 {
2986 	return aux->dev_bound;
2987 }
2988 
2989 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2990 {
2991 	return aux->offload_requested;
2992 }
2993 
2994 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2995 
2996 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2997 {
2998 	return unlikely(map->ops == &bpf_map_offload_ops);
2999 }
3000 
3001 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3002 void bpf_map_offload_map_free(struct bpf_map *map);
3003 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3004 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3005 			      const union bpf_attr *kattr,
3006 			      union bpf_attr __user *uattr);
3007 
3008 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3009 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3010 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3011 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3012 			    union bpf_attr __user *uattr);
3013 
3014 void sock_map_unhash(struct sock *sk);
3015 void sock_map_destroy(struct sock *sk);
3016 void sock_map_close(struct sock *sk, long timeout);
3017 #else
3018 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3019 					    struct bpf_prog_aux *prog_aux)
3020 {
3021 	return -EOPNOTSUPP;
3022 }
3023 
3024 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3025 						u32 func_id)
3026 {
3027 	return NULL;
3028 }
3029 
3030 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3031 					  union bpf_attr *attr)
3032 {
3033 	return -EOPNOTSUPP;
3034 }
3035 
3036 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3037 					     struct bpf_prog *old_prog)
3038 {
3039 	return -EOPNOTSUPP;
3040 }
3041 
3042 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3043 {
3044 }
3045 
3046 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3047 {
3048 	return false;
3049 }
3050 
3051 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3052 {
3053 	return false;
3054 }
3055 
3056 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3057 {
3058 	return false;
3059 }
3060 
3061 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3062 {
3063 	return false;
3064 }
3065 
3066 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3067 {
3068 	return ERR_PTR(-EOPNOTSUPP);
3069 }
3070 
3071 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3072 {
3073 }
3074 
3075 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3076 {
3077 	return 0;
3078 }
3079 
3080 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3081 					    const union bpf_attr *kattr,
3082 					    union bpf_attr __user *uattr)
3083 {
3084 	return -ENOTSUPP;
3085 }
3086 
3087 #ifdef CONFIG_BPF_SYSCALL
3088 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3089 				       struct bpf_prog *prog)
3090 {
3091 	return -EINVAL;
3092 }
3093 
3094 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3095 				       enum bpf_prog_type ptype)
3096 {
3097 	return -EOPNOTSUPP;
3098 }
3099 
3100 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3101 					   u64 flags)
3102 {
3103 	return -EOPNOTSUPP;
3104 }
3105 
3106 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3107 					  union bpf_attr __user *uattr)
3108 {
3109 	return -EINVAL;
3110 }
3111 #endif /* CONFIG_BPF_SYSCALL */
3112 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3113 
3114 static __always_inline void
3115 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3116 {
3117 	const struct bpf_prog_array_item *item;
3118 	struct bpf_prog *prog;
3119 
3120 	if (unlikely(!array))
3121 		return;
3122 
3123 	item = &array->items[0];
3124 	while ((prog = READ_ONCE(item->prog))) {
3125 		bpf_prog_inc_misses_counter(prog);
3126 		item++;
3127 	}
3128 }
3129 
3130 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3131 void bpf_sk_reuseport_detach(struct sock *sk);
3132 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3133 				       void *value);
3134 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3135 				       void *value, u64 map_flags);
3136 #else
3137 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3138 {
3139 }
3140 
3141 #ifdef CONFIG_BPF_SYSCALL
3142 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3143 						     void *key, void *value)
3144 {
3145 	return -EOPNOTSUPP;
3146 }
3147 
3148 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3149 						     void *key, void *value,
3150 						     u64 map_flags)
3151 {
3152 	return -EOPNOTSUPP;
3153 }
3154 #endif /* CONFIG_BPF_SYSCALL */
3155 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3156 
3157 /* verifier prototypes for helper functions called from eBPF programs */
3158 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3159 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3160 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3161 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3162 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3163 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3164 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3165 
3166 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3167 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3168 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3169 extern const struct bpf_func_proto bpf_tail_call_proto;
3170 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3171 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3172 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3173 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3174 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3175 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3176 extern const struct bpf_func_proto bpf_get_stackid_proto;
3177 extern const struct bpf_func_proto bpf_get_stack_proto;
3178 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3179 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3180 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3181 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3182 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3183 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3184 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3185 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3186 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3187 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3188 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3189 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3190 extern const struct bpf_func_proto bpf_spin_lock_proto;
3191 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3192 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3193 extern const struct bpf_func_proto bpf_strtol_proto;
3194 extern const struct bpf_func_proto bpf_strtoul_proto;
3195 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3196 extern const struct bpf_func_proto bpf_jiffies64_proto;
3197 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3198 extern const struct bpf_func_proto bpf_event_output_data_proto;
3199 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3200 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3201 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3202 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3203 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3204 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3205 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3206 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3207 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3208 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3209 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3210 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3211 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3212 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3213 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3214 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3215 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3216 extern const struct bpf_func_proto bpf_snprintf_proto;
3217 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3218 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3219 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3220 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3221 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3222 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3223 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3224 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3225 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3226 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3227 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3228 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3229 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3230 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3231 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3232 extern const struct bpf_func_proto bpf_find_vma_proto;
3233 extern const struct bpf_func_proto bpf_loop_proto;
3234 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3235 extern const struct bpf_func_proto bpf_set_retval_proto;
3236 extern const struct bpf_func_proto bpf_get_retval_proto;
3237 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3238 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3239 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3240 
3241 const struct bpf_func_proto *tracing_prog_func_proto(
3242   enum bpf_func_id func_id, const struct bpf_prog *prog);
3243 
3244 /* Shared helpers among cBPF and eBPF. */
3245 void bpf_user_rnd_init_once(void);
3246 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3247 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3248 
3249 #if defined(CONFIG_NET)
3250 bool bpf_sock_common_is_valid_access(int off, int size,
3251 				     enum bpf_access_type type,
3252 				     struct bpf_insn_access_aux *info);
3253 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3254 			      struct bpf_insn_access_aux *info);
3255 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3256 				const struct bpf_insn *si,
3257 				struct bpf_insn *insn_buf,
3258 				struct bpf_prog *prog,
3259 				u32 *target_size);
3260 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3261 			       struct bpf_dynptr_kern *ptr);
3262 #else
3263 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3264 						   enum bpf_access_type type,
3265 						   struct bpf_insn_access_aux *info)
3266 {
3267 	return false;
3268 }
3269 static inline bool bpf_sock_is_valid_access(int off, int size,
3270 					    enum bpf_access_type type,
3271 					    struct bpf_insn_access_aux *info)
3272 {
3273 	return false;
3274 }
3275 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3276 					      const struct bpf_insn *si,
3277 					      struct bpf_insn *insn_buf,
3278 					      struct bpf_prog *prog,
3279 					      u32 *target_size)
3280 {
3281 	return 0;
3282 }
3283 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3284 					     struct bpf_dynptr_kern *ptr)
3285 {
3286 	return -EOPNOTSUPP;
3287 }
3288 #endif
3289 
3290 #ifdef CONFIG_INET
3291 struct sk_reuseport_kern {
3292 	struct sk_buff *skb;
3293 	struct sock *sk;
3294 	struct sock *selected_sk;
3295 	struct sock *migrating_sk;
3296 	void *data_end;
3297 	u32 hash;
3298 	u32 reuseport_id;
3299 	bool bind_inany;
3300 };
3301 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3302 				  struct bpf_insn_access_aux *info);
3303 
3304 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3305 				    const struct bpf_insn *si,
3306 				    struct bpf_insn *insn_buf,
3307 				    struct bpf_prog *prog,
3308 				    u32 *target_size);
3309 
3310 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3311 				  struct bpf_insn_access_aux *info);
3312 
3313 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3314 				    const struct bpf_insn *si,
3315 				    struct bpf_insn *insn_buf,
3316 				    struct bpf_prog *prog,
3317 				    u32 *target_size);
3318 #else
3319 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3320 						enum bpf_access_type type,
3321 						struct bpf_insn_access_aux *info)
3322 {
3323 	return false;
3324 }
3325 
3326 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3327 						  const struct bpf_insn *si,
3328 						  struct bpf_insn *insn_buf,
3329 						  struct bpf_prog *prog,
3330 						  u32 *target_size)
3331 {
3332 	return 0;
3333 }
3334 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3335 						enum bpf_access_type type,
3336 						struct bpf_insn_access_aux *info)
3337 {
3338 	return false;
3339 }
3340 
3341 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3342 						  const struct bpf_insn *si,
3343 						  struct bpf_insn *insn_buf,
3344 						  struct bpf_prog *prog,
3345 						  u32 *target_size)
3346 {
3347 	return 0;
3348 }
3349 #endif /* CONFIG_INET */
3350 
3351 enum bpf_text_poke_type {
3352 	BPF_MOD_CALL,
3353 	BPF_MOD_JUMP,
3354 };
3355 
3356 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3357 		       void *addr1, void *addr2);
3358 
3359 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3360 			       struct bpf_prog *new, struct bpf_prog *old);
3361 
3362 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3363 int bpf_arch_text_invalidate(void *dst, size_t len);
3364 
3365 struct btf_id_set;
3366 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3367 
3368 #define MAX_BPRINTF_VARARGS		12
3369 #define MAX_BPRINTF_BUF			1024
3370 
3371 struct bpf_bprintf_data {
3372 	u32 *bin_args;
3373 	char *buf;
3374 	bool get_bin_args;
3375 	bool get_buf;
3376 };
3377 
3378 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3379 			u32 num_args, struct bpf_bprintf_data *data);
3380 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3381 
3382 #ifdef CONFIG_BPF_LSM
3383 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3384 void bpf_cgroup_atype_put(int cgroup_atype);
3385 #else
3386 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3387 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3388 #endif /* CONFIG_BPF_LSM */
3389 
3390 struct key;
3391 
3392 #ifdef CONFIG_KEYS
3393 struct bpf_key {
3394 	struct key *key;
3395 	bool has_ref;
3396 };
3397 #endif /* CONFIG_KEYS */
3398 
3399 static inline bool type_is_alloc(u32 type)
3400 {
3401 	return type & MEM_ALLOC;
3402 }
3403 
3404 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3405 {
3406 	if (memcg_bpf_enabled())
3407 		return flags | __GFP_ACCOUNT;
3408 	return flags;
3409 }
3410 
3411 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3412 {
3413 	return prog->aux->func_idx != 0;
3414 }
3415 
3416 #endif /* _LINUX_BPF_H */
3417