xref: /linux-6.15/include/linux/bpf.h (revision dee3d0be)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60 
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66 
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 					struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 				   const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 	const struct seq_operations *seq_ops;
75 	bpf_iter_init_seq_priv_t init_seq_private;
76 	bpf_iter_fini_seq_priv_t fini_seq_private;
77 	u32 seq_priv_size;
78 };
79 
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 	/* funcs callable from userspace (via syscall) */
83 	int (*map_alloc_check)(union bpf_attr *attr);
84 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 	void (*map_release)(struct bpf_map *map, struct file *map_file);
86 	void (*map_free)(struct bpf_map *map);
87 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 	void (*map_release_uref)(struct bpf_map *map);
89 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 				union bpf_attr __user *uattr);
92 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 					  void *value, u64 flags);
94 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 					   const union bpf_attr *attr,
96 					   union bpf_attr __user *uattr);
97 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 				const union bpf_attr *attr,
99 				union bpf_attr __user *uattr);
100 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 
103 	/* funcs callable from userspace and from eBPF programs */
104 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 	long (*map_delete_elem)(struct bpf_map *map, void *key);
107 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 	long (*map_pop_elem)(struct bpf_map *map, void *value);
109 	long (*map_peek_elem)(struct bpf_map *map, void *value);
110 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111 
112 	/* funcs called by prog_array and perf_event_array map */
113 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 				int fd);
115 	/* If need_defer is true, the implementation should guarantee that
116 	 * the to-be-put element is still alive before the bpf program, which
117 	 * may manipulate it, exists.
118 	 */
119 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 				  struct seq_file *m);
124 	int (*map_check_btf)(const struct bpf_map *map,
125 			     const struct btf *btf,
126 			     const struct btf_type *key_type,
127 			     const struct btf_type *value_type);
128 
129 	/* Prog poke tracking helpers. */
130 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 			     struct bpf_prog *new);
134 
135 	/* Direct value access helpers. */
136 	int (*map_direct_value_addr)(const struct bpf_map *map,
137 				     u64 *imm, u32 off);
138 	int (*map_direct_value_meta)(const struct bpf_map *map,
139 				     u64 imm, u32 *off);
140 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 			     struct poll_table_struct *pts);
143 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 					       unsigned long len, unsigned long pgoff,
145 					       unsigned long flags);
146 
147 	/* Functions called by bpf_local_storage maps */
148 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 					void *owner, u32 size);
150 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 					   void *owner, u32 size);
152 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153 
154 	/* Misc helpers.*/
155 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156 
157 	/* map_meta_equal must be implemented for maps that can be
158 	 * used as an inner map.  It is a runtime check to ensure
159 	 * an inner map can be inserted to an outer map.
160 	 *
161 	 * Some properties of the inner map has been used during the
162 	 * verification time.  When inserting an inner map at the runtime,
163 	 * map_meta_equal has to ensure the inserting map has the same
164 	 * properties that the verifier has used earlier.
165 	 */
166 	bool (*map_meta_equal)(const struct bpf_map *meta0,
167 			       const struct bpf_map *meta1);
168 
169 
170 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 					      struct bpf_func_state *caller,
172 					      struct bpf_func_state *callee);
173 	long (*map_for_each_callback)(struct bpf_map *map,
174 				     bpf_callback_t callback_fn,
175 				     void *callback_ctx, u64 flags);
176 
177 	u64 (*map_mem_usage)(const struct bpf_map *map);
178 
179 	/* BTF id of struct allocated by map_alloc */
180 	int *map_btf_id;
181 
182 	/* bpf_iter info used to open a seq_file */
183 	const struct bpf_iter_seq_info *iter_seq_info;
184 };
185 
186 enum {
187 	/* Support at most 10 fields in a BTF type */
188 	BTF_FIELDS_MAX	   = 10,
189 };
190 
191 enum btf_field_type {
192 	BPF_SPIN_LOCK  = (1 << 0),
193 	BPF_TIMER      = (1 << 1),
194 	BPF_KPTR_UNREF = (1 << 2),
195 	BPF_KPTR_REF   = (1 << 3),
196 	BPF_KPTR_PERCPU = (1 << 4),
197 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 	BPF_LIST_HEAD  = (1 << 5),
199 	BPF_LIST_NODE  = (1 << 6),
200 	BPF_RB_ROOT    = (1 << 7),
201 	BPF_RB_NODE    = (1 << 8),
202 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 	BPF_REFCOUNT   = (1 << 9),
205 };
206 
207 typedef void (*btf_dtor_kfunc_t)(void *);
208 
209 struct btf_field_kptr {
210 	struct btf *btf;
211 	struct module *module;
212 	/* dtor used if btf_is_kernel(btf), otherwise the type is
213 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
214 	 */
215 	btf_dtor_kfunc_t dtor;
216 	u32 btf_id;
217 };
218 
219 struct btf_field_graph_root {
220 	struct btf *btf;
221 	u32 value_btf_id;
222 	u32 node_offset;
223 	struct btf_record *value_rec;
224 };
225 
226 struct btf_field {
227 	u32 offset;
228 	u32 size;
229 	enum btf_field_type type;
230 	union {
231 		struct btf_field_kptr kptr;
232 		struct btf_field_graph_root graph_root;
233 	};
234 };
235 
236 struct btf_record {
237 	u32 cnt;
238 	u32 field_mask;
239 	int spin_lock_off;
240 	int timer_off;
241 	int refcount_off;
242 	struct btf_field fields[];
243 };
244 
245 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
246 struct bpf_rb_node_kern {
247 	struct rb_node rb_node;
248 	void *owner;
249 } __attribute__((aligned(8)));
250 
251 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
252 struct bpf_list_node_kern {
253 	struct list_head list_head;
254 	void *owner;
255 } __attribute__((aligned(8)));
256 
257 struct bpf_map {
258 	const struct bpf_map_ops *ops;
259 	struct bpf_map *inner_map_meta;
260 #ifdef CONFIG_SECURITY
261 	void *security;
262 #endif
263 	enum bpf_map_type map_type;
264 	u32 key_size;
265 	u32 value_size;
266 	u32 max_entries;
267 	u64 map_extra; /* any per-map-type extra fields */
268 	u32 map_flags;
269 	u32 id;
270 	struct btf_record *record;
271 	int numa_node;
272 	u32 btf_key_type_id;
273 	u32 btf_value_type_id;
274 	u32 btf_vmlinux_value_type_id;
275 	struct btf *btf;
276 #ifdef CONFIG_MEMCG_KMEM
277 	struct obj_cgroup *objcg;
278 #endif
279 	char name[BPF_OBJ_NAME_LEN];
280 	struct mutex freeze_mutex;
281 	atomic64_t refcnt;
282 	atomic64_t usercnt;
283 	/* rcu is used before freeing and work is only used during freeing */
284 	union {
285 		struct work_struct work;
286 		struct rcu_head rcu;
287 	};
288 	atomic64_t writecnt;
289 	/* 'Ownership' of program-containing map is claimed by the first program
290 	 * that is going to use this map or by the first program which FD is
291 	 * stored in the map to make sure that all callers and callees have the
292 	 * same prog type, JITed flag and xdp_has_frags flag.
293 	 */
294 	struct {
295 		spinlock_t lock;
296 		enum bpf_prog_type type;
297 		bool jited;
298 		bool xdp_has_frags;
299 	} owner;
300 	bool bypass_spec_v1;
301 	bool frozen; /* write-once; write-protected by freeze_mutex */
302 	bool free_after_mult_rcu_gp;
303 	bool free_after_rcu_gp;
304 	atomic64_t sleepable_refcnt;
305 	s64 __percpu *elem_count;
306 };
307 
308 static inline const char *btf_field_type_name(enum btf_field_type type)
309 {
310 	switch (type) {
311 	case BPF_SPIN_LOCK:
312 		return "bpf_spin_lock";
313 	case BPF_TIMER:
314 		return "bpf_timer";
315 	case BPF_KPTR_UNREF:
316 	case BPF_KPTR_REF:
317 		return "kptr";
318 	case BPF_KPTR_PERCPU:
319 		return "percpu_kptr";
320 	case BPF_LIST_HEAD:
321 		return "bpf_list_head";
322 	case BPF_LIST_NODE:
323 		return "bpf_list_node";
324 	case BPF_RB_ROOT:
325 		return "bpf_rb_root";
326 	case BPF_RB_NODE:
327 		return "bpf_rb_node";
328 	case BPF_REFCOUNT:
329 		return "bpf_refcount";
330 	default:
331 		WARN_ON_ONCE(1);
332 		return "unknown";
333 	}
334 }
335 
336 static inline u32 btf_field_type_size(enum btf_field_type type)
337 {
338 	switch (type) {
339 	case BPF_SPIN_LOCK:
340 		return sizeof(struct bpf_spin_lock);
341 	case BPF_TIMER:
342 		return sizeof(struct bpf_timer);
343 	case BPF_KPTR_UNREF:
344 	case BPF_KPTR_REF:
345 	case BPF_KPTR_PERCPU:
346 		return sizeof(u64);
347 	case BPF_LIST_HEAD:
348 		return sizeof(struct bpf_list_head);
349 	case BPF_LIST_NODE:
350 		return sizeof(struct bpf_list_node);
351 	case BPF_RB_ROOT:
352 		return sizeof(struct bpf_rb_root);
353 	case BPF_RB_NODE:
354 		return sizeof(struct bpf_rb_node);
355 	case BPF_REFCOUNT:
356 		return sizeof(struct bpf_refcount);
357 	default:
358 		WARN_ON_ONCE(1);
359 		return 0;
360 	}
361 }
362 
363 static inline u32 btf_field_type_align(enum btf_field_type type)
364 {
365 	switch (type) {
366 	case BPF_SPIN_LOCK:
367 		return __alignof__(struct bpf_spin_lock);
368 	case BPF_TIMER:
369 		return __alignof__(struct bpf_timer);
370 	case BPF_KPTR_UNREF:
371 	case BPF_KPTR_REF:
372 	case BPF_KPTR_PERCPU:
373 		return __alignof__(u64);
374 	case BPF_LIST_HEAD:
375 		return __alignof__(struct bpf_list_head);
376 	case BPF_LIST_NODE:
377 		return __alignof__(struct bpf_list_node);
378 	case BPF_RB_ROOT:
379 		return __alignof__(struct bpf_rb_root);
380 	case BPF_RB_NODE:
381 		return __alignof__(struct bpf_rb_node);
382 	case BPF_REFCOUNT:
383 		return __alignof__(struct bpf_refcount);
384 	default:
385 		WARN_ON_ONCE(1);
386 		return 0;
387 	}
388 }
389 
390 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
391 {
392 	memset(addr, 0, field->size);
393 
394 	switch (field->type) {
395 	case BPF_REFCOUNT:
396 		refcount_set((refcount_t *)addr, 1);
397 		break;
398 	case BPF_RB_NODE:
399 		RB_CLEAR_NODE((struct rb_node *)addr);
400 		break;
401 	case BPF_LIST_HEAD:
402 	case BPF_LIST_NODE:
403 		INIT_LIST_HEAD((struct list_head *)addr);
404 		break;
405 	case BPF_RB_ROOT:
406 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
407 	case BPF_SPIN_LOCK:
408 	case BPF_TIMER:
409 	case BPF_KPTR_UNREF:
410 	case BPF_KPTR_REF:
411 	case BPF_KPTR_PERCPU:
412 		break;
413 	default:
414 		WARN_ON_ONCE(1);
415 		return;
416 	}
417 }
418 
419 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
420 {
421 	if (IS_ERR_OR_NULL(rec))
422 		return false;
423 	return rec->field_mask & type;
424 }
425 
426 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
427 {
428 	int i;
429 
430 	if (IS_ERR_OR_NULL(rec))
431 		return;
432 	for (i = 0; i < rec->cnt; i++)
433 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
434 }
435 
436 /* 'dst' must be a temporary buffer and should not point to memory that is being
437  * used in parallel by a bpf program or bpf syscall, otherwise the access from
438  * the bpf program or bpf syscall may be corrupted by the reinitialization,
439  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
440  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
441  * program or bpf syscall.
442  */
443 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
444 {
445 	bpf_obj_init(map->record, dst);
446 }
447 
448 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
449  * forced to use 'long' read/writes to try to atomically copy long counters.
450  * Best-effort only.  No barriers here, since it _will_ race with concurrent
451  * updates from BPF programs. Called from bpf syscall and mostly used with
452  * size 8 or 16 bytes, so ask compiler to inline it.
453  */
454 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
455 {
456 	const long *lsrc = src;
457 	long *ldst = dst;
458 
459 	size /= sizeof(long);
460 	while (size--)
461 		data_race(*ldst++ = *lsrc++);
462 }
463 
464 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
465 static inline void bpf_obj_memcpy(struct btf_record *rec,
466 				  void *dst, void *src, u32 size,
467 				  bool long_memcpy)
468 {
469 	u32 curr_off = 0;
470 	int i;
471 
472 	if (IS_ERR_OR_NULL(rec)) {
473 		if (long_memcpy)
474 			bpf_long_memcpy(dst, src, round_up(size, 8));
475 		else
476 			memcpy(dst, src, size);
477 		return;
478 	}
479 
480 	for (i = 0; i < rec->cnt; i++) {
481 		u32 next_off = rec->fields[i].offset;
482 		u32 sz = next_off - curr_off;
483 
484 		memcpy(dst + curr_off, src + curr_off, sz);
485 		curr_off += rec->fields[i].size + sz;
486 	}
487 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
488 }
489 
490 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
491 {
492 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
493 }
494 
495 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
496 {
497 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
498 }
499 
500 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
501 {
502 	u32 curr_off = 0;
503 	int i;
504 
505 	if (IS_ERR_OR_NULL(rec)) {
506 		memset(dst, 0, size);
507 		return;
508 	}
509 
510 	for (i = 0; i < rec->cnt; i++) {
511 		u32 next_off = rec->fields[i].offset;
512 		u32 sz = next_off - curr_off;
513 
514 		memset(dst + curr_off, 0, sz);
515 		curr_off += rec->fields[i].size + sz;
516 	}
517 	memset(dst + curr_off, 0, size - curr_off);
518 }
519 
520 static inline void zero_map_value(struct bpf_map *map, void *dst)
521 {
522 	bpf_obj_memzero(map->record, dst, map->value_size);
523 }
524 
525 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
526 			   bool lock_src);
527 void bpf_timer_cancel_and_free(void *timer);
528 void bpf_list_head_free(const struct btf_field *field, void *list_head,
529 			struct bpf_spin_lock *spin_lock);
530 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
531 		      struct bpf_spin_lock *spin_lock);
532 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
533 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
534 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
535 
536 struct bpf_offload_dev;
537 struct bpf_offloaded_map;
538 
539 struct bpf_map_dev_ops {
540 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
541 				void *key, void *next_key);
542 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
543 			       void *key, void *value);
544 	int (*map_update_elem)(struct bpf_offloaded_map *map,
545 			       void *key, void *value, u64 flags);
546 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
547 };
548 
549 struct bpf_offloaded_map {
550 	struct bpf_map map;
551 	struct net_device *netdev;
552 	const struct bpf_map_dev_ops *dev_ops;
553 	void *dev_priv;
554 	struct list_head offloads;
555 };
556 
557 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
558 {
559 	return container_of(map, struct bpf_offloaded_map, map);
560 }
561 
562 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
563 {
564 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
565 }
566 
567 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
568 {
569 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
570 		map->ops->map_seq_show_elem;
571 }
572 
573 int map_check_no_btf(const struct bpf_map *map,
574 		     const struct btf *btf,
575 		     const struct btf_type *key_type,
576 		     const struct btf_type *value_type);
577 
578 bool bpf_map_meta_equal(const struct bpf_map *meta0,
579 			const struct bpf_map *meta1);
580 
581 extern const struct bpf_map_ops bpf_map_offload_ops;
582 
583 /* bpf_type_flag contains a set of flags that are applicable to the values of
584  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
585  * or a memory is read-only. We classify types into two categories: base types
586  * and extended types. Extended types are base types combined with a type flag.
587  *
588  * Currently there are no more than 32 base types in arg_type, ret_type and
589  * reg_types.
590  */
591 #define BPF_BASE_TYPE_BITS	8
592 
593 enum bpf_type_flag {
594 	/* PTR may be NULL. */
595 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
596 
597 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
598 	 * compatible with both mutable and immutable memory.
599 	 */
600 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
601 
602 	/* MEM points to BPF ring buffer reservation. */
603 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
604 
605 	/* MEM is in user address space. */
606 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
607 
608 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
609 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
610 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
611 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
612 	 * to the specified cpu.
613 	 */
614 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
615 
616 	/* Indicates that the argument will be released. */
617 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
618 
619 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
620 	 * unreferenced and referenced kptr loaded from map value using a load
621 	 * instruction, so that they can only be dereferenced but not escape the
622 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
623 	 * kfunc or bpf helpers).
624 	 */
625 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
626 
627 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
628 
629 	/* DYNPTR points to memory local to the bpf program. */
630 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
631 
632 	/* DYNPTR points to a kernel-produced ringbuf record. */
633 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
634 
635 	/* Size is known at compile time. */
636 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
637 
638 	/* MEM is of an allocated object of type in program BTF. This is used to
639 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
640 	 */
641 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
642 
643 	/* PTR was passed from the kernel in a trusted context, and may be
644 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
645 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
646 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
647 	 * without invoking bpf_kptr_xchg(). What we really need to know is
648 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
649 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
650 	 * helpers, they do not cover all possible instances of unsafe
651 	 * pointers. For example, a pointer that was obtained from walking a
652 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
653 	 * fact that it may be NULL, invalid, etc. This is due to backwards
654 	 * compatibility requirements, as this was the behavior that was first
655 	 * introduced when kptrs were added. The behavior is now considered
656 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
657 	 *
658 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
659 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
660 	 * For example, pointers passed to tracepoint arguments are considered
661 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
662 	 * callbacks. As alluded to above, pointers that are obtained from
663 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
664 	 * struct task_struct *task is PTR_TRUSTED, then accessing
665 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
666 	 * in a BPF register. Similarly, pointers passed to certain programs
667 	 * types such as kretprobes are not guaranteed to be valid, as they may
668 	 * for example contain an object that was recently freed.
669 	 */
670 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
671 
672 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
673 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
674 
675 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
676 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
677 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
678 	 */
679 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
680 
681 	/* DYNPTR points to sk_buff */
682 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
683 
684 	/* DYNPTR points to xdp_buff */
685 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
686 
687 	__BPF_TYPE_FLAG_MAX,
688 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
689 };
690 
691 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
692 				 | DYNPTR_TYPE_XDP)
693 
694 /* Max number of base types. */
695 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
696 
697 /* Max number of all types. */
698 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
699 
700 /* function argument constraints */
701 enum bpf_arg_type {
702 	ARG_DONTCARE = 0,	/* unused argument in helper function */
703 
704 	/* the following constraints used to prototype
705 	 * bpf_map_lookup/update/delete_elem() functions
706 	 */
707 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
708 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
709 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
710 
711 	/* Used to prototype bpf_memcmp() and other functions that access data
712 	 * on eBPF program stack
713 	 */
714 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
715 	ARG_PTR_TO_ARENA,
716 
717 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
718 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
719 
720 	ARG_PTR_TO_CTX,		/* pointer to context */
721 	ARG_ANYTHING,		/* any (initialized) argument is ok */
722 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
723 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
724 	ARG_PTR_TO_INT,		/* pointer to int */
725 	ARG_PTR_TO_LONG,	/* pointer to long */
726 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
727 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
728 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
729 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
730 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
731 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
732 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
733 	ARG_PTR_TO_STACK,	/* pointer to stack */
734 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
735 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
736 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
737 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
738 	__BPF_ARG_TYPE_MAX,
739 
740 	/* Extended arg_types. */
741 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
742 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
743 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
744 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
745 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
746 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
747 	/* pointer to memory does not need to be initialized, helper function must fill
748 	 * all bytes or clear them in error case.
749 	 */
750 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
751 	/* Pointer to valid memory of size known at compile time. */
752 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
753 
754 	/* This must be the last entry. Its purpose is to ensure the enum is
755 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
756 	 */
757 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
758 };
759 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
760 
761 /* type of values returned from helper functions */
762 enum bpf_return_type {
763 	RET_INTEGER,			/* function returns integer */
764 	RET_VOID,			/* function doesn't return anything */
765 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
766 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
767 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
768 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
769 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
770 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
771 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
772 	__BPF_RET_TYPE_MAX,
773 
774 	/* Extended ret_types. */
775 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
776 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
777 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
778 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
779 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
780 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
781 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
782 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
783 
784 	/* This must be the last entry. Its purpose is to ensure the enum is
785 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
786 	 */
787 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
788 };
789 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
790 
791 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
792  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
793  * instructions after verifying
794  */
795 struct bpf_func_proto {
796 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
797 	bool gpl_only;
798 	bool pkt_access;
799 	bool might_sleep;
800 	enum bpf_return_type ret_type;
801 	union {
802 		struct {
803 			enum bpf_arg_type arg1_type;
804 			enum bpf_arg_type arg2_type;
805 			enum bpf_arg_type arg3_type;
806 			enum bpf_arg_type arg4_type;
807 			enum bpf_arg_type arg5_type;
808 		};
809 		enum bpf_arg_type arg_type[5];
810 	};
811 	union {
812 		struct {
813 			u32 *arg1_btf_id;
814 			u32 *arg2_btf_id;
815 			u32 *arg3_btf_id;
816 			u32 *arg4_btf_id;
817 			u32 *arg5_btf_id;
818 		};
819 		u32 *arg_btf_id[5];
820 		struct {
821 			size_t arg1_size;
822 			size_t arg2_size;
823 			size_t arg3_size;
824 			size_t arg4_size;
825 			size_t arg5_size;
826 		};
827 		size_t arg_size[5];
828 	};
829 	int *ret_btf_id; /* return value btf_id */
830 	bool (*allowed)(const struct bpf_prog *prog);
831 };
832 
833 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
834  * the first argument to eBPF programs.
835  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
836  */
837 struct bpf_context;
838 
839 enum bpf_access_type {
840 	BPF_READ = 1,
841 	BPF_WRITE = 2
842 };
843 
844 /* types of values stored in eBPF registers */
845 /* Pointer types represent:
846  * pointer
847  * pointer + imm
848  * pointer + (u16) var
849  * pointer + (u16) var + imm
850  * if (range > 0) then [ptr, ptr + range - off) is safe to access
851  * if (id > 0) means that some 'var' was added
852  * if (off > 0) means that 'imm' was added
853  */
854 enum bpf_reg_type {
855 	NOT_INIT = 0,		 /* nothing was written into register */
856 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
857 	PTR_TO_CTX,		 /* reg points to bpf_context */
858 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
859 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
860 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
861 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
862 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
863 	PTR_TO_PACKET,		 /* reg points to skb->data */
864 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
865 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
866 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
867 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
868 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
869 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
870 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
871 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
872 	 * to be null checked by the BPF program. This does not imply the
873 	 * pointer is _not_ null and in practice this can easily be a null
874 	 * pointer when reading pointer chains. The assumption is program
875 	 * context will handle null pointer dereference typically via fault
876 	 * handling. The verifier must keep this in mind and can make no
877 	 * assumptions about null or non-null when doing branch analysis.
878 	 * Further, when passed into helpers the helpers can not, without
879 	 * additional context, assume the value is non-null.
880 	 */
881 	PTR_TO_BTF_ID,
882 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
883 	 * been checked for null. Used primarily to inform the verifier
884 	 * an explicit null check is required for this struct.
885 	 */
886 	PTR_TO_MEM,		 /* reg points to valid memory region */
887 	PTR_TO_ARENA,
888 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
889 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
890 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
891 	__BPF_REG_TYPE_MAX,
892 
893 	/* Extended reg_types. */
894 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
895 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
896 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
897 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
898 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
899 
900 	/* This must be the last entry. Its purpose is to ensure the enum is
901 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
902 	 */
903 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
904 };
905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
906 
907 /* The information passed from prog-specific *_is_valid_access
908  * back to the verifier.
909  */
910 struct bpf_insn_access_aux {
911 	enum bpf_reg_type reg_type;
912 	union {
913 		int ctx_field_size;
914 		struct {
915 			struct btf *btf;
916 			u32 btf_id;
917 		};
918 	};
919 	struct bpf_verifier_log *log; /* for verbose logs */
920 };
921 
922 static inline void
923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
924 {
925 	aux->ctx_field_size = size;
926 }
927 
928 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
929 {
930 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
931 }
932 
933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
934 {
935 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
936 }
937 
938 struct bpf_prog_ops {
939 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
940 			union bpf_attr __user *uattr);
941 };
942 
943 struct bpf_reg_state;
944 struct bpf_verifier_ops {
945 	/* return eBPF function prototype for verification */
946 	const struct bpf_func_proto *
947 	(*get_func_proto)(enum bpf_func_id func_id,
948 			  const struct bpf_prog *prog);
949 
950 	/* return true if 'size' wide access at offset 'off' within bpf_context
951 	 * with 'type' (read or write) is allowed
952 	 */
953 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
954 				const struct bpf_prog *prog,
955 				struct bpf_insn_access_aux *info);
956 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
957 			    const struct bpf_prog *prog);
958 	int (*gen_ld_abs)(const struct bpf_insn *orig,
959 			  struct bpf_insn *insn_buf);
960 	u32 (*convert_ctx_access)(enum bpf_access_type type,
961 				  const struct bpf_insn *src,
962 				  struct bpf_insn *dst,
963 				  struct bpf_prog *prog, u32 *target_size);
964 	int (*btf_struct_access)(struct bpf_verifier_log *log,
965 				 const struct bpf_reg_state *reg,
966 				 int off, int size);
967 };
968 
969 struct bpf_prog_offload_ops {
970 	/* verifier basic callbacks */
971 	int (*insn_hook)(struct bpf_verifier_env *env,
972 			 int insn_idx, int prev_insn_idx);
973 	int (*finalize)(struct bpf_verifier_env *env);
974 	/* verifier optimization callbacks (called after .finalize) */
975 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
976 			    struct bpf_insn *insn);
977 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
978 	/* program management callbacks */
979 	int (*prepare)(struct bpf_prog *prog);
980 	int (*translate)(struct bpf_prog *prog);
981 	void (*destroy)(struct bpf_prog *prog);
982 };
983 
984 struct bpf_prog_offload {
985 	struct bpf_prog		*prog;
986 	struct net_device	*netdev;
987 	struct bpf_offload_dev	*offdev;
988 	void			*dev_priv;
989 	struct list_head	offloads;
990 	bool			dev_state;
991 	bool			opt_failed;
992 	void			*jited_image;
993 	u32			jited_len;
994 };
995 
996 enum bpf_cgroup_storage_type {
997 	BPF_CGROUP_STORAGE_SHARED,
998 	BPF_CGROUP_STORAGE_PERCPU,
999 	__BPF_CGROUP_STORAGE_MAX
1000 };
1001 
1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1003 
1004 /* The longest tracepoint has 12 args.
1005  * See include/trace/bpf_probe.h
1006  */
1007 #define MAX_BPF_FUNC_ARGS 12
1008 
1009 /* The maximum number of arguments passed through registers
1010  * a single function may have.
1011  */
1012 #define MAX_BPF_FUNC_REG_ARGS 5
1013 
1014 /* The argument is a structure. */
1015 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1016 
1017 /* The argument is signed. */
1018 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1019 
1020 struct btf_func_model {
1021 	u8 ret_size;
1022 	u8 ret_flags;
1023 	u8 nr_args;
1024 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1025 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1026 };
1027 
1028 /* Restore arguments before returning from trampoline to let original function
1029  * continue executing. This flag is used for fentry progs when there are no
1030  * fexit progs.
1031  */
1032 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1033 /* Call original function after fentry progs, but before fexit progs.
1034  * Makes sense for fentry/fexit, normal calls and indirect calls.
1035  */
1036 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1037 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1038  * programs only. Should not be used with normal calls and indirect calls.
1039  */
1040 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1041 /* Store IP address of the caller on the trampoline stack,
1042  * so it's available for trampoline's programs.
1043  */
1044 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1046 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1047 
1048 /* Get original function from stack instead of from provided direct address.
1049  * Makes sense for trampolines with fexit or fmod_ret programs.
1050  */
1051 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1052 
1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1054  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1055  */
1056 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1057 
1058 /* Indicate that current trampoline is in a tail call context. Then, it has to
1059  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1060  */
1061 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1062 
1063 /*
1064  * Indicate the trampoline should be suitable to receive indirect calls;
1065  * without this indirectly calling the generated code can result in #UD/#CP,
1066  * depending on the CFI options.
1067  *
1068  * Used by bpf_struct_ops.
1069  *
1070  * Incompatible with FENTRY usage, overloads @func_addr argument.
1071  */
1072 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1073 
1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1075  * bytes on x86.
1076  */
1077 enum {
1078 #if defined(__s390x__)
1079 	BPF_MAX_TRAMP_LINKS = 27,
1080 #else
1081 	BPF_MAX_TRAMP_LINKS = 38,
1082 #endif
1083 };
1084 
1085 struct bpf_tramp_links {
1086 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1087 	int nr_links;
1088 };
1089 
1090 struct bpf_tramp_run_ctx;
1091 
1092 /* Different use cases for BPF trampoline:
1093  * 1. replace nop at the function entry (kprobe equivalent)
1094  *    flags = BPF_TRAMP_F_RESTORE_REGS
1095  *    fentry = a set of programs to run before returning from trampoline
1096  *
1097  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1098  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1099  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1100  *    fentry = a set of program to run before calling original function
1101  *    fexit = a set of program to run after original function
1102  *
1103  * 3. replace direct call instruction anywhere in the function body
1104  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1105  *    With flags = 0
1106  *      fentry = a set of programs to run before returning from trampoline
1107  *    With flags = BPF_TRAMP_F_CALL_ORIG
1108  *      orig_call = original callback addr or direct function addr
1109  *      fentry = a set of program to run before calling original function
1110  *      fexit = a set of program to run after original function
1111  */
1112 struct bpf_tramp_image;
1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1114 				const struct btf_func_model *m, u32 flags,
1115 				struct bpf_tramp_links *tlinks,
1116 				void *func_addr);
1117 void *arch_alloc_bpf_trampoline(unsigned int size);
1118 void arch_free_bpf_trampoline(void *image, unsigned int size);
1119 void arch_protect_bpf_trampoline(void *image, unsigned int size);
1120 void arch_unprotect_bpf_trampoline(void *image, unsigned int size);
1121 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1122 			     struct bpf_tramp_links *tlinks, void *func_addr);
1123 
1124 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1125 					     struct bpf_tramp_run_ctx *run_ctx);
1126 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1127 					     struct bpf_tramp_run_ctx *run_ctx);
1128 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1129 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1130 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1131 				      struct bpf_tramp_run_ctx *run_ctx);
1132 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1133 				      struct bpf_tramp_run_ctx *run_ctx);
1134 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1135 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1136 
1137 struct bpf_ksym {
1138 	unsigned long		 start;
1139 	unsigned long		 end;
1140 	char			 name[KSYM_NAME_LEN];
1141 	struct list_head	 lnode;
1142 	struct latch_tree_node	 tnode;
1143 	bool			 prog;
1144 };
1145 
1146 enum bpf_tramp_prog_type {
1147 	BPF_TRAMP_FENTRY,
1148 	BPF_TRAMP_FEXIT,
1149 	BPF_TRAMP_MODIFY_RETURN,
1150 	BPF_TRAMP_MAX,
1151 	BPF_TRAMP_REPLACE, /* more than MAX */
1152 };
1153 
1154 struct bpf_tramp_image {
1155 	void *image;
1156 	int size;
1157 	struct bpf_ksym ksym;
1158 	struct percpu_ref pcref;
1159 	void *ip_after_call;
1160 	void *ip_epilogue;
1161 	union {
1162 		struct rcu_head rcu;
1163 		struct work_struct work;
1164 	};
1165 };
1166 
1167 struct bpf_trampoline {
1168 	/* hlist for trampoline_table */
1169 	struct hlist_node hlist;
1170 	struct ftrace_ops *fops;
1171 	/* serializes access to fields of this trampoline */
1172 	struct mutex mutex;
1173 	refcount_t refcnt;
1174 	u32 flags;
1175 	u64 key;
1176 	struct {
1177 		struct btf_func_model model;
1178 		void *addr;
1179 		bool ftrace_managed;
1180 	} func;
1181 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1182 	 * program by replacing one of its functions. func.addr is the address
1183 	 * of the function it replaced.
1184 	 */
1185 	struct bpf_prog *extension_prog;
1186 	/* list of BPF programs using this trampoline */
1187 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1188 	/* Number of attached programs. A counter per kind. */
1189 	int progs_cnt[BPF_TRAMP_MAX];
1190 	/* Executable image of trampoline */
1191 	struct bpf_tramp_image *cur_image;
1192 };
1193 
1194 struct bpf_attach_target_info {
1195 	struct btf_func_model fmodel;
1196 	long tgt_addr;
1197 	struct module *tgt_mod;
1198 	const char *tgt_name;
1199 	const struct btf_type *tgt_type;
1200 };
1201 
1202 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1203 
1204 struct bpf_dispatcher_prog {
1205 	struct bpf_prog *prog;
1206 	refcount_t users;
1207 };
1208 
1209 struct bpf_dispatcher {
1210 	/* dispatcher mutex */
1211 	struct mutex mutex;
1212 	void *func;
1213 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1214 	int num_progs;
1215 	void *image;
1216 	void *rw_image;
1217 	u32 image_off;
1218 	struct bpf_ksym ksym;
1219 #ifdef CONFIG_HAVE_STATIC_CALL
1220 	struct static_call_key *sc_key;
1221 	void *sc_tramp;
1222 #endif
1223 };
1224 
1225 #ifndef __bpfcall
1226 #define __bpfcall __nocfi
1227 #endif
1228 
1229 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1230 	const void *ctx,
1231 	const struct bpf_insn *insnsi,
1232 	bpf_func_t bpf_func)
1233 {
1234 	return bpf_func(ctx, insnsi);
1235 }
1236 
1237 /* the implementation of the opaque uapi struct bpf_dynptr */
1238 struct bpf_dynptr_kern {
1239 	void *data;
1240 	/* Size represents the number of usable bytes of dynptr data.
1241 	 * If for example the offset is at 4 for a local dynptr whose data is
1242 	 * of type u64, the number of usable bytes is 4.
1243 	 *
1244 	 * The upper 8 bits are reserved. It is as follows:
1245 	 * Bits 0 - 23 = size
1246 	 * Bits 24 - 30 = dynptr type
1247 	 * Bit 31 = whether dynptr is read-only
1248 	 */
1249 	u32 size;
1250 	u32 offset;
1251 } __aligned(8);
1252 
1253 enum bpf_dynptr_type {
1254 	BPF_DYNPTR_TYPE_INVALID,
1255 	/* Points to memory that is local to the bpf program */
1256 	BPF_DYNPTR_TYPE_LOCAL,
1257 	/* Underlying data is a ringbuf record */
1258 	BPF_DYNPTR_TYPE_RINGBUF,
1259 	/* Underlying data is a sk_buff */
1260 	BPF_DYNPTR_TYPE_SKB,
1261 	/* Underlying data is a xdp_buff */
1262 	BPF_DYNPTR_TYPE_XDP,
1263 };
1264 
1265 int bpf_dynptr_check_size(u32 size);
1266 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1267 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1268 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1269 
1270 #ifdef CONFIG_BPF_JIT
1271 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1272 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1273 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1274 					  struct bpf_attach_target_info *tgt_info);
1275 void bpf_trampoline_put(struct bpf_trampoline *tr);
1276 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1277 
1278 /*
1279  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1280  * indirection with a direct call to the bpf program. If the architecture does
1281  * not have STATIC_CALL, avoid a double-indirection.
1282  */
1283 #ifdef CONFIG_HAVE_STATIC_CALL
1284 
1285 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1286 	.sc_key = &STATIC_CALL_KEY(_name),			\
1287 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1288 
1289 #define __BPF_DISPATCHER_SC(name)				\
1290 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1291 
1292 #define __BPF_DISPATCHER_CALL(name)				\
1293 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1294 
1295 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1296 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1297 
1298 #else
1299 #define __BPF_DISPATCHER_SC_INIT(name)
1300 #define __BPF_DISPATCHER_SC(name)
1301 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1302 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1303 #endif
1304 
1305 #define BPF_DISPATCHER_INIT(_name) {				\
1306 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1307 	.func = &_name##_func,					\
1308 	.progs = {},						\
1309 	.num_progs = 0,						\
1310 	.image = NULL,						\
1311 	.image_off = 0,						\
1312 	.ksym = {						\
1313 		.name  = #_name,				\
1314 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1315 	},							\
1316 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1317 }
1318 
1319 #define DEFINE_BPF_DISPATCHER(name)					\
1320 	__BPF_DISPATCHER_SC(name);					\
1321 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1322 		const void *ctx,					\
1323 		const struct bpf_insn *insnsi,				\
1324 		bpf_func_t bpf_func)					\
1325 	{								\
1326 		return __BPF_DISPATCHER_CALL(name);			\
1327 	}								\
1328 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1329 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1330 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1331 
1332 #define DECLARE_BPF_DISPATCHER(name)					\
1333 	unsigned int bpf_dispatcher_##name##_func(			\
1334 		const void *ctx,					\
1335 		const struct bpf_insn *insnsi,				\
1336 		bpf_func_t bpf_func);					\
1337 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1338 
1339 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1340 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1341 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1342 				struct bpf_prog *to);
1343 /* Called only from JIT-enabled code, so there's no need for stubs. */
1344 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1345 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1346 void bpf_ksym_add(struct bpf_ksym *ksym);
1347 void bpf_ksym_del(struct bpf_ksym *ksym);
1348 int bpf_jit_charge_modmem(u32 size);
1349 void bpf_jit_uncharge_modmem(u32 size);
1350 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1351 #else
1352 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1353 					   struct bpf_trampoline *tr)
1354 {
1355 	return -ENOTSUPP;
1356 }
1357 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1358 					     struct bpf_trampoline *tr)
1359 {
1360 	return -ENOTSUPP;
1361 }
1362 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1363 							struct bpf_attach_target_info *tgt_info)
1364 {
1365 	return NULL;
1366 }
1367 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1368 #define DEFINE_BPF_DISPATCHER(name)
1369 #define DECLARE_BPF_DISPATCHER(name)
1370 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1371 #define BPF_DISPATCHER_PTR(name) NULL
1372 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1373 					      struct bpf_prog *from,
1374 					      struct bpf_prog *to) {}
1375 static inline bool is_bpf_image_address(unsigned long address)
1376 {
1377 	return false;
1378 }
1379 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1380 {
1381 	return false;
1382 }
1383 #endif
1384 
1385 struct bpf_func_info_aux {
1386 	u16 linkage;
1387 	bool unreliable;
1388 	bool called : 1;
1389 	bool verified : 1;
1390 };
1391 
1392 enum bpf_jit_poke_reason {
1393 	BPF_POKE_REASON_TAIL_CALL,
1394 };
1395 
1396 /* Descriptor of pokes pointing /into/ the JITed image. */
1397 struct bpf_jit_poke_descriptor {
1398 	void *tailcall_target;
1399 	void *tailcall_bypass;
1400 	void *bypass_addr;
1401 	void *aux;
1402 	union {
1403 		struct {
1404 			struct bpf_map *map;
1405 			u32 key;
1406 		} tail_call;
1407 	};
1408 	bool tailcall_target_stable;
1409 	u8 adj_off;
1410 	u16 reason;
1411 	u32 insn_idx;
1412 };
1413 
1414 /* reg_type info for ctx arguments */
1415 struct bpf_ctx_arg_aux {
1416 	u32 offset;
1417 	enum bpf_reg_type reg_type;
1418 	struct btf *btf;
1419 	u32 btf_id;
1420 };
1421 
1422 struct btf_mod_pair {
1423 	struct btf *btf;
1424 	struct module *module;
1425 };
1426 
1427 struct bpf_kfunc_desc_tab;
1428 
1429 struct bpf_prog_aux {
1430 	atomic64_t refcnt;
1431 	u32 used_map_cnt;
1432 	u32 used_btf_cnt;
1433 	u32 max_ctx_offset;
1434 	u32 max_pkt_offset;
1435 	u32 max_tp_access;
1436 	u32 stack_depth;
1437 	u32 id;
1438 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1439 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1440 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1441 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1442 	u32 ctx_arg_info_size;
1443 	u32 max_rdonly_access;
1444 	u32 max_rdwr_access;
1445 	struct btf *attach_btf;
1446 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1447 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1448 	struct bpf_prog *dst_prog;
1449 	struct bpf_trampoline *dst_trampoline;
1450 	enum bpf_prog_type saved_dst_prog_type;
1451 	enum bpf_attach_type saved_dst_attach_type;
1452 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1453 	bool dev_bound; /* Program is bound to the netdev. */
1454 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1455 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1456 	bool attach_tracing_prog; /* true if tracing another tracing program */
1457 	bool func_proto_unreliable;
1458 	bool tail_call_reachable;
1459 	bool xdp_has_frags;
1460 	bool exception_cb;
1461 	bool exception_boundary;
1462 	struct bpf_arena *arena;
1463 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1464 	const struct btf_type *attach_func_proto;
1465 	/* function name for valid attach_btf_id */
1466 	const char *attach_func_name;
1467 	struct bpf_prog **func;
1468 	void *jit_data; /* JIT specific data. arch dependent */
1469 	struct bpf_jit_poke_descriptor *poke_tab;
1470 	struct bpf_kfunc_desc_tab *kfunc_tab;
1471 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1472 	u32 size_poke_tab;
1473 #ifdef CONFIG_FINEIBT
1474 	struct bpf_ksym ksym_prefix;
1475 #endif
1476 	struct bpf_ksym ksym;
1477 	const struct bpf_prog_ops *ops;
1478 	struct bpf_map **used_maps;
1479 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1480 	struct btf_mod_pair *used_btfs;
1481 	struct bpf_prog *prog;
1482 	struct user_struct *user;
1483 	u64 load_time; /* ns since boottime */
1484 	u32 verified_insns;
1485 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1486 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1487 	char name[BPF_OBJ_NAME_LEN];
1488 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1489 #ifdef CONFIG_SECURITY
1490 	void *security;
1491 #endif
1492 	struct bpf_token *token;
1493 	struct bpf_prog_offload *offload;
1494 	struct btf *btf;
1495 	struct bpf_func_info *func_info;
1496 	struct bpf_func_info_aux *func_info_aux;
1497 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1498 	 * has the xlated insn offset.
1499 	 * Both the main and sub prog share the same linfo.
1500 	 * The subprog can access its first linfo by
1501 	 * using the linfo_idx.
1502 	 */
1503 	struct bpf_line_info *linfo;
1504 	/* jited_linfo is the jited addr of the linfo.  It has a
1505 	 * one to one mapping to linfo:
1506 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1507 	 * Both the main and sub prog share the same jited_linfo.
1508 	 * The subprog can access its first jited_linfo by
1509 	 * using the linfo_idx.
1510 	 */
1511 	void **jited_linfo;
1512 	u32 func_info_cnt;
1513 	u32 nr_linfo;
1514 	/* subprog can use linfo_idx to access its first linfo and
1515 	 * jited_linfo.
1516 	 * main prog always has linfo_idx == 0
1517 	 */
1518 	u32 linfo_idx;
1519 	struct module *mod;
1520 	u32 num_exentries;
1521 	struct exception_table_entry *extable;
1522 	union {
1523 		struct work_struct work;
1524 		struct rcu_head	rcu;
1525 	};
1526 };
1527 
1528 struct bpf_prog {
1529 	u16			pages;		/* Number of allocated pages */
1530 	u16			jited:1,	/* Is our filter JIT'ed? */
1531 				jit_requested:1,/* archs need to JIT the prog */
1532 				gpl_compatible:1, /* Is filter GPL compatible? */
1533 				cb_access:1,	/* Is control block accessed? */
1534 				dst_needed:1,	/* Do we need dst entry? */
1535 				blinding_requested:1, /* needs constant blinding */
1536 				blinded:1,	/* Was blinded */
1537 				is_func:1,	/* program is a bpf function */
1538 				kprobe_override:1, /* Do we override a kprobe? */
1539 				has_callchain_buf:1, /* callchain buffer allocated? */
1540 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1541 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1542 				call_get_func_ip:1, /* Do we call get_func_ip() */
1543 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1544 				sleepable:1;	/* BPF program is sleepable */
1545 	enum bpf_prog_type	type;		/* Type of BPF program */
1546 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1547 	u32			len;		/* Number of filter blocks */
1548 	u32			jited_len;	/* Size of jited insns in bytes */
1549 	u8			tag[BPF_TAG_SIZE];
1550 	struct bpf_prog_stats __percpu *stats;
1551 	int __percpu		*active;
1552 	unsigned int		(*bpf_func)(const void *ctx,
1553 					    const struct bpf_insn *insn);
1554 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1555 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1556 	/* Instructions for interpreter */
1557 	union {
1558 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1559 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1560 	};
1561 };
1562 
1563 struct bpf_array_aux {
1564 	/* Programs with direct jumps into programs part of this array. */
1565 	struct list_head poke_progs;
1566 	struct bpf_map *map;
1567 	struct mutex poke_mutex;
1568 	struct work_struct work;
1569 };
1570 
1571 struct bpf_link {
1572 	atomic64_t refcnt;
1573 	u32 id;
1574 	enum bpf_link_type type;
1575 	const struct bpf_link_ops *ops;
1576 	struct bpf_prog *prog;
1577 	/* rcu is used before freeing, work can be used to schedule that
1578 	 * RCU-based freeing before that, so they never overlap
1579 	 */
1580 	union {
1581 		struct rcu_head rcu;
1582 		struct work_struct work;
1583 	};
1584 };
1585 
1586 struct bpf_link_ops {
1587 	void (*release)(struct bpf_link *link);
1588 	/* deallocate link resources callback, called without RCU grace period
1589 	 * waiting
1590 	 */
1591 	void (*dealloc)(struct bpf_link *link);
1592 	/* deallocate link resources callback, called after RCU grace period;
1593 	 * if underlying BPF program is sleepable we go through tasks trace
1594 	 * RCU GP and then "classic" RCU GP
1595 	 */
1596 	void (*dealloc_deferred)(struct bpf_link *link);
1597 	int (*detach)(struct bpf_link *link);
1598 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1599 			   struct bpf_prog *old_prog);
1600 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1601 	int (*fill_link_info)(const struct bpf_link *link,
1602 			      struct bpf_link_info *info);
1603 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1604 			  struct bpf_map *old_map);
1605 };
1606 
1607 struct bpf_tramp_link {
1608 	struct bpf_link link;
1609 	struct hlist_node tramp_hlist;
1610 	u64 cookie;
1611 };
1612 
1613 struct bpf_shim_tramp_link {
1614 	struct bpf_tramp_link link;
1615 	struct bpf_trampoline *trampoline;
1616 };
1617 
1618 struct bpf_tracing_link {
1619 	struct bpf_tramp_link link;
1620 	enum bpf_attach_type attach_type;
1621 	struct bpf_trampoline *trampoline;
1622 	struct bpf_prog *tgt_prog;
1623 };
1624 
1625 struct bpf_link_primer {
1626 	struct bpf_link *link;
1627 	struct file *file;
1628 	int fd;
1629 	u32 id;
1630 };
1631 
1632 struct bpf_mount_opts {
1633 	kuid_t uid;
1634 	kgid_t gid;
1635 	umode_t mode;
1636 
1637 	/* BPF token-related delegation options */
1638 	u64 delegate_cmds;
1639 	u64 delegate_maps;
1640 	u64 delegate_progs;
1641 	u64 delegate_attachs;
1642 };
1643 
1644 struct bpf_token {
1645 	struct work_struct work;
1646 	atomic64_t refcnt;
1647 	struct user_namespace *userns;
1648 	u64 allowed_cmds;
1649 	u64 allowed_maps;
1650 	u64 allowed_progs;
1651 	u64 allowed_attachs;
1652 #ifdef CONFIG_SECURITY
1653 	void *security;
1654 #endif
1655 };
1656 
1657 struct bpf_struct_ops_value;
1658 struct btf_member;
1659 
1660 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1661 /**
1662  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1663  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1664  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1665  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1666  *		  when determining whether the struct_ops progs in the
1667  *		  struct_ops map are valid.
1668  * @init: A callback that is invoked a single time, and before any other
1669  *	  callback, to initialize the structure. A nonzero return value means
1670  *	  the subsystem could not be initialized.
1671  * @check_member: When defined, a callback invoked by the verifier to allow
1672  *		  the subsystem to determine if an entry in the struct_ops map
1673  *		  is valid. A nonzero return value means that the map is
1674  *		  invalid and should be rejected by the verifier.
1675  * @init_member: A callback that is invoked for each member of the struct_ops
1676  *		 map to allow the subsystem to initialize the member. A nonzero
1677  *		 value means the member could not be initialized. This callback
1678  *		 is exclusive with the @type, @type_id, @value_type, and
1679  *		 @value_id fields.
1680  * @reg: A callback that is invoked when the struct_ops map has been
1681  *	 initialized and is being attached to. Zero means the struct_ops map
1682  *	 has been successfully registered and is live. A nonzero return value
1683  *	 means the struct_ops map could not be registered.
1684  * @unreg: A callback that is invoked when the struct_ops map should be
1685  *	   unregistered.
1686  * @update: A callback that is invoked when the live struct_ops map is being
1687  *	    updated to contain new values. This callback is only invoked when
1688  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1689  *	    it is assumed that the struct_ops map cannot be updated.
1690  * @validate: A callback that is invoked after all of the members have been
1691  *	      initialized. This callback should perform static checks on the
1692  *	      map, meaning that it should either fail or succeed
1693  *	      deterministically. A struct_ops map that has been validated may
1694  *	      not necessarily succeed in being registered if the call to @reg
1695  *	      fails. For example, a valid struct_ops map may be loaded, but
1696  *	      then fail to be registered due to there being another active
1697  *	      struct_ops map on the system in the subsystem already. For this
1698  *	      reason, if this callback is not defined, the check is skipped as
1699  *	      the struct_ops map will have final verification performed in
1700  *	      @reg.
1701  * @type: BTF type.
1702  * @value_type: Value type.
1703  * @name: The name of the struct bpf_struct_ops object.
1704  * @func_models: Func models
1705  * @type_id: BTF type id.
1706  * @value_id: BTF value id.
1707  */
1708 struct bpf_struct_ops {
1709 	const struct bpf_verifier_ops *verifier_ops;
1710 	int (*init)(struct btf *btf);
1711 	int (*check_member)(const struct btf_type *t,
1712 			    const struct btf_member *member,
1713 			    const struct bpf_prog *prog);
1714 	int (*init_member)(const struct btf_type *t,
1715 			   const struct btf_member *member,
1716 			   void *kdata, const void *udata);
1717 	int (*reg)(void *kdata);
1718 	void (*unreg)(void *kdata);
1719 	int (*update)(void *kdata, void *old_kdata);
1720 	int (*validate)(void *kdata);
1721 	void *cfi_stubs;
1722 	struct module *owner;
1723 	const char *name;
1724 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1725 };
1726 
1727 /* Every member of a struct_ops type has an instance even a member is not
1728  * an operator (function pointer). The "info" field will be assigned to
1729  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1730  * argument information required by the verifier to verify the program.
1731  *
1732  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1733  * corresponding entry for an given argument.
1734  */
1735 struct bpf_struct_ops_arg_info {
1736 	struct bpf_ctx_arg_aux *info;
1737 	u32 cnt;
1738 };
1739 
1740 struct bpf_struct_ops_desc {
1741 	struct bpf_struct_ops *st_ops;
1742 
1743 	const struct btf_type *type;
1744 	const struct btf_type *value_type;
1745 	u32 type_id;
1746 	u32 value_id;
1747 
1748 	/* Collection of argument information for each member */
1749 	struct bpf_struct_ops_arg_info *arg_info;
1750 };
1751 
1752 enum bpf_struct_ops_state {
1753 	BPF_STRUCT_OPS_STATE_INIT,
1754 	BPF_STRUCT_OPS_STATE_INUSE,
1755 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1756 	BPF_STRUCT_OPS_STATE_READY,
1757 };
1758 
1759 struct bpf_struct_ops_common_value {
1760 	refcount_t refcnt;
1761 	enum bpf_struct_ops_state state;
1762 };
1763 
1764 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1765 /* This macro helps developer to register a struct_ops type and generate
1766  * type information correctly. Developers should use this macro to register
1767  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1768  */
1769 #define register_bpf_struct_ops(st_ops, type)				\
1770 	({								\
1771 		struct bpf_struct_ops_##type {				\
1772 			struct bpf_struct_ops_common_value common;	\
1773 			struct type data ____cacheline_aligned_in_smp;	\
1774 		};							\
1775 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1776 		__register_bpf_struct_ops(st_ops);			\
1777 	})
1778 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1779 bool bpf_struct_ops_get(const void *kdata);
1780 void bpf_struct_ops_put(const void *kdata);
1781 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1782 				       void *value);
1783 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1784 				      struct bpf_tramp_link *link,
1785 				      const struct btf_func_model *model,
1786 				      void *stub_func,
1787 				      void **image, u32 *image_off,
1788 				      bool allow_alloc);
1789 void bpf_struct_ops_image_free(void *image);
1790 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1791 {
1792 	if (owner == BPF_MODULE_OWNER)
1793 		return bpf_struct_ops_get(data);
1794 	else
1795 		return try_module_get(owner);
1796 }
1797 static inline void bpf_module_put(const void *data, struct module *owner)
1798 {
1799 	if (owner == BPF_MODULE_OWNER)
1800 		bpf_struct_ops_put(data);
1801 	else
1802 		module_put(owner);
1803 }
1804 int bpf_struct_ops_link_create(union bpf_attr *attr);
1805 
1806 #ifdef CONFIG_NET
1807 /* Define it here to avoid the use of forward declaration */
1808 struct bpf_dummy_ops_state {
1809 	int val;
1810 };
1811 
1812 struct bpf_dummy_ops {
1813 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1814 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1815 		      char a3, unsigned long a4);
1816 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1817 };
1818 
1819 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1820 			    union bpf_attr __user *uattr);
1821 #endif
1822 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1823 			     struct btf *btf,
1824 			     struct bpf_verifier_log *log);
1825 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1826 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1827 #else
1828 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1829 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1830 {
1831 	return try_module_get(owner);
1832 }
1833 static inline void bpf_module_put(const void *data, struct module *owner)
1834 {
1835 	module_put(owner);
1836 }
1837 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1838 						     void *key,
1839 						     void *value)
1840 {
1841 	return -EINVAL;
1842 }
1843 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1844 {
1845 	return -EOPNOTSUPP;
1846 }
1847 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1848 {
1849 }
1850 
1851 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1852 {
1853 }
1854 
1855 #endif
1856 
1857 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1858 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1859 				    int cgroup_atype);
1860 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1861 #else
1862 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1863 						  int cgroup_atype)
1864 {
1865 	return -EOPNOTSUPP;
1866 }
1867 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1868 {
1869 }
1870 #endif
1871 
1872 struct bpf_array {
1873 	struct bpf_map map;
1874 	u32 elem_size;
1875 	u32 index_mask;
1876 	struct bpf_array_aux *aux;
1877 	union {
1878 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1879 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1880 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1881 	};
1882 };
1883 
1884 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1885 #define MAX_TAIL_CALL_CNT 33
1886 
1887 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1888  * It's enum to expose it (and thus make it discoverable) through BTF.
1889  */
1890 enum {
1891 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1892 };
1893 
1894 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1895 				 BPF_F_RDONLY_PROG |	\
1896 				 BPF_F_WRONLY |		\
1897 				 BPF_F_WRONLY_PROG)
1898 
1899 #define BPF_MAP_CAN_READ	BIT(0)
1900 #define BPF_MAP_CAN_WRITE	BIT(1)
1901 
1902 /* Maximum number of user-producer ring buffer samples that can be drained in
1903  * a call to bpf_user_ringbuf_drain().
1904  */
1905 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1906 
1907 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1908 {
1909 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1910 
1911 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1912 	 * not possible.
1913 	 */
1914 	if (access_flags & BPF_F_RDONLY_PROG)
1915 		return BPF_MAP_CAN_READ;
1916 	else if (access_flags & BPF_F_WRONLY_PROG)
1917 		return BPF_MAP_CAN_WRITE;
1918 	else
1919 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1920 }
1921 
1922 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1923 {
1924 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1925 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1926 }
1927 
1928 struct bpf_event_entry {
1929 	struct perf_event *event;
1930 	struct file *perf_file;
1931 	struct file *map_file;
1932 	struct rcu_head rcu;
1933 };
1934 
1935 static inline bool map_type_contains_progs(struct bpf_map *map)
1936 {
1937 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1938 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1939 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1940 }
1941 
1942 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1943 int bpf_prog_calc_tag(struct bpf_prog *fp);
1944 
1945 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1946 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1947 
1948 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1949 					unsigned long off, unsigned long len);
1950 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1951 					const struct bpf_insn *src,
1952 					struct bpf_insn *dst,
1953 					struct bpf_prog *prog,
1954 					u32 *target_size);
1955 
1956 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1957 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1958 
1959 /* an array of programs to be executed under rcu_lock.
1960  *
1961  * Typical usage:
1962  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1963  *
1964  * the structure returned by bpf_prog_array_alloc() should be populated
1965  * with program pointers and the last pointer must be NULL.
1966  * The user has to keep refcnt on the program and make sure the program
1967  * is removed from the array before bpf_prog_put().
1968  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1969  * since other cpus are walking the array of pointers in parallel.
1970  */
1971 struct bpf_prog_array_item {
1972 	struct bpf_prog *prog;
1973 	union {
1974 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1975 		u64 bpf_cookie;
1976 	};
1977 };
1978 
1979 struct bpf_prog_array {
1980 	struct rcu_head rcu;
1981 	struct bpf_prog_array_item items[];
1982 };
1983 
1984 struct bpf_empty_prog_array {
1985 	struct bpf_prog_array hdr;
1986 	struct bpf_prog *null_prog;
1987 };
1988 
1989 /* to avoid allocating empty bpf_prog_array for cgroups that
1990  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1991  * It will not be modified the caller of bpf_prog_array_alloc()
1992  * (since caller requested prog_cnt == 0)
1993  * that pointer should be 'freed' by bpf_prog_array_free()
1994  */
1995 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1996 
1997 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1998 void bpf_prog_array_free(struct bpf_prog_array *progs);
1999 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2000 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2001 int bpf_prog_array_length(struct bpf_prog_array *progs);
2002 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2003 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2004 				__u32 __user *prog_ids, u32 cnt);
2005 
2006 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2007 				struct bpf_prog *old_prog);
2008 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2009 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2010 			     struct bpf_prog *prog);
2011 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2012 			     u32 *prog_ids, u32 request_cnt,
2013 			     u32 *prog_cnt);
2014 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2015 			struct bpf_prog *exclude_prog,
2016 			struct bpf_prog *include_prog,
2017 			u64 bpf_cookie,
2018 			struct bpf_prog_array **new_array);
2019 
2020 struct bpf_run_ctx {};
2021 
2022 struct bpf_cg_run_ctx {
2023 	struct bpf_run_ctx run_ctx;
2024 	const struct bpf_prog_array_item *prog_item;
2025 	int retval;
2026 };
2027 
2028 struct bpf_trace_run_ctx {
2029 	struct bpf_run_ctx run_ctx;
2030 	u64 bpf_cookie;
2031 	bool is_uprobe;
2032 };
2033 
2034 struct bpf_tramp_run_ctx {
2035 	struct bpf_run_ctx run_ctx;
2036 	u64 bpf_cookie;
2037 	struct bpf_run_ctx *saved_run_ctx;
2038 };
2039 
2040 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2041 {
2042 	struct bpf_run_ctx *old_ctx = NULL;
2043 
2044 #ifdef CONFIG_BPF_SYSCALL
2045 	old_ctx = current->bpf_ctx;
2046 	current->bpf_ctx = new_ctx;
2047 #endif
2048 	return old_ctx;
2049 }
2050 
2051 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2052 {
2053 #ifdef CONFIG_BPF_SYSCALL
2054 	current->bpf_ctx = old_ctx;
2055 #endif
2056 }
2057 
2058 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2059 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2060 /* BPF program asks to set CN on the packet. */
2061 #define BPF_RET_SET_CN						(1 << 0)
2062 
2063 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2064 
2065 static __always_inline u32
2066 bpf_prog_run_array(const struct bpf_prog_array *array,
2067 		   const void *ctx, bpf_prog_run_fn run_prog)
2068 {
2069 	const struct bpf_prog_array_item *item;
2070 	const struct bpf_prog *prog;
2071 	struct bpf_run_ctx *old_run_ctx;
2072 	struct bpf_trace_run_ctx run_ctx;
2073 	u32 ret = 1;
2074 
2075 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2076 
2077 	if (unlikely(!array))
2078 		return ret;
2079 
2080 	run_ctx.is_uprobe = false;
2081 
2082 	migrate_disable();
2083 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2084 	item = &array->items[0];
2085 	while ((prog = READ_ONCE(item->prog))) {
2086 		run_ctx.bpf_cookie = item->bpf_cookie;
2087 		ret &= run_prog(prog, ctx);
2088 		item++;
2089 	}
2090 	bpf_reset_run_ctx(old_run_ctx);
2091 	migrate_enable();
2092 	return ret;
2093 }
2094 
2095 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2096  *
2097  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2098  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2099  * in order to use the tasks_trace rcu grace period.
2100  *
2101  * When a non-sleepable program is inside the array, we take the rcu read
2102  * section and disable preemption for that program alone, so it can access
2103  * rcu-protected dynamically sized maps.
2104  */
2105 static __always_inline u32
2106 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2107 			  const void *ctx, bpf_prog_run_fn run_prog)
2108 {
2109 	const struct bpf_prog_array_item *item;
2110 	const struct bpf_prog *prog;
2111 	const struct bpf_prog_array *array;
2112 	struct bpf_run_ctx *old_run_ctx;
2113 	struct bpf_trace_run_ctx run_ctx;
2114 	u32 ret = 1;
2115 
2116 	might_fault();
2117 
2118 	rcu_read_lock_trace();
2119 	migrate_disable();
2120 
2121 	run_ctx.is_uprobe = true;
2122 
2123 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2124 	if (unlikely(!array))
2125 		goto out;
2126 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2127 	item = &array->items[0];
2128 	while ((prog = READ_ONCE(item->prog))) {
2129 		if (!prog->sleepable)
2130 			rcu_read_lock();
2131 
2132 		run_ctx.bpf_cookie = item->bpf_cookie;
2133 		ret &= run_prog(prog, ctx);
2134 		item++;
2135 
2136 		if (!prog->sleepable)
2137 			rcu_read_unlock();
2138 	}
2139 	bpf_reset_run_ctx(old_run_ctx);
2140 out:
2141 	migrate_enable();
2142 	rcu_read_unlock_trace();
2143 	return ret;
2144 }
2145 
2146 #ifdef CONFIG_BPF_SYSCALL
2147 DECLARE_PER_CPU(int, bpf_prog_active);
2148 extern struct mutex bpf_stats_enabled_mutex;
2149 
2150 /*
2151  * Block execution of BPF programs attached to instrumentation (perf,
2152  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2153  * these events can happen inside a region which holds a map bucket lock
2154  * and can deadlock on it.
2155  */
2156 static inline void bpf_disable_instrumentation(void)
2157 {
2158 	migrate_disable();
2159 	this_cpu_inc(bpf_prog_active);
2160 }
2161 
2162 static inline void bpf_enable_instrumentation(void)
2163 {
2164 	this_cpu_dec(bpf_prog_active);
2165 	migrate_enable();
2166 }
2167 
2168 extern const struct super_operations bpf_super_ops;
2169 extern const struct file_operations bpf_map_fops;
2170 extern const struct file_operations bpf_prog_fops;
2171 extern const struct file_operations bpf_iter_fops;
2172 
2173 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2174 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2175 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2176 #define BPF_MAP_TYPE(_id, _ops) \
2177 	extern const struct bpf_map_ops _ops;
2178 #define BPF_LINK_TYPE(_id, _name)
2179 #include <linux/bpf_types.h>
2180 #undef BPF_PROG_TYPE
2181 #undef BPF_MAP_TYPE
2182 #undef BPF_LINK_TYPE
2183 
2184 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2185 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2186 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2187 
2188 struct bpf_prog *bpf_prog_get(u32 ufd);
2189 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2190 				       bool attach_drv);
2191 void bpf_prog_add(struct bpf_prog *prog, int i);
2192 void bpf_prog_sub(struct bpf_prog *prog, int i);
2193 void bpf_prog_inc(struct bpf_prog *prog);
2194 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2195 void bpf_prog_put(struct bpf_prog *prog);
2196 
2197 void bpf_prog_free_id(struct bpf_prog *prog);
2198 void bpf_map_free_id(struct bpf_map *map);
2199 
2200 struct btf_field *btf_record_find(const struct btf_record *rec,
2201 				  u32 offset, u32 field_mask);
2202 void btf_record_free(struct btf_record *rec);
2203 void bpf_map_free_record(struct bpf_map *map);
2204 struct btf_record *btf_record_dup(const struct btf_record *rec);
2205 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2206 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2207 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2208 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2209 
2210 struct bpf_map *bpf_map_get(u32 ufd);
2211 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2212 struct bpf_map *__bpf_map_get(struct fd f);
2213 void bpf_map_inc(struct bpf_map *map);
2214 void bpf_map_inc_with_uref(struct bpf_map *map);
2215 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2216 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2217 void bpf_map_put_with_uref(struct bpf_map *map);
2218 void bpf_map_put(struct bpf_map *map);
2219 void *bpf_map_area_alloc(u64 size, int numa_node);
2220 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2221 void bpf_map_area_free(void *base);
2222 bool bpf_map_write_active(const struct bpf_map *map);
2223 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2224 int  generic_map_lookup_batch(struct bpf_map *map,
2225 			      const union bpf_attr *attr,
2226 			      union bpf_attr __user *uattr);
2227 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2228 			      const union bpf_attr *attr,
2229 			      union bpf_attr __user *uattr);
2230 int  generic_map_delete_batch(struct bpf_map *map,
2231 			      const union bpf_attr *attr,
2232 			      union bpf_attr __user *uattr);
2233 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2234 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2235 
2236 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2237 			unsigned long nr_pages, struct page **page_array);
2238 #ifdef CONFIG_MEMCG_KMEM
2239 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2240 			   int node);
2241 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2242 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2243 		       gfp_t flags);
2244 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2245 				    size_t align, gfp_t flags);
2246 #else
2247 #define bpf_map_kmalloc_node(_map, _size, _flags, _node)	\
2248 		kmalloc_node(_size, _flags, _node)
2249 #define bpf_map_kzalloc(_map, _size, _flags)			\
2250 		kzalloc(_size, _flags)
2251 #define bpf_map_kvcalloc(_map, _n, _size, _flags)		\
2252 		kvcalloc(_n, _size, _flags)
2253 #define bpf_map_alloc_percpu(_map, _size, _align, _flags)	\
2254 		__alloc_percpu_gfp(_size, _align, _flags)
2255 #endif
2256 
2257 static inline int
2258 bpf_map_init_elem_count(struct bpf_map *map)
2259 {
2260 	size_t size = sizeof(*map->elem_count), align = size;
2261 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2262 
2263 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2264 	if (!map->elem_count)
2265 		return -ENOMEM;
2266 
2267 	return 0;
2268 }
2269 
2270 static inline void
2271 bpf_map_free_elem_count(struct bpf_map *map)
2272 {
2273 	free_percpu(map->elem_count);
2274 }
2275 
2276 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2277 {
2278 	this_cpu_inc(*map->elem_count);
2279 }
2280 
2281 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2282 {
2283 	this_cpu_dec(*map->elem_count);
2284 }
2285 
2286 extern int sysctl_unprivileged_bpf_disabled;
2287 
2288 bool bpf_token_capable(const struct bpf_token *token, int cap);
2289 
2290 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2291 {
2292 	return bpf_token_capable(token, CAP_PERFMON);
2293 }
2294 
2295 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2296 {
2297 	return bpf_token_capable(token, CAP_PERFMON);
2298 }
2299 
2300 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2301 {
2302 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2303 }
2304 
2305 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2306 {
2307 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2308 }
2309 
2310 int bpf_map_new_fd(struct bpf_map *map, int flags);
2311 int bpf_prog_new_fd(struct bpf_prog *prog);
2312 
2313 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2314 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2315 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2316 int bpf_link_settle(struct bpf_link_primer *primer);
2317 void bpf_link_cleanup(struct bpf_link_primer *primer);
2318 void bpf_link_inc(struct bpf_link *link);
2319 void bpf_link_put(struct bpf_link *link);
2320 int bpf_link_new_fd(struct bpf_link *link);
2321 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2322 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2323 
2324 void bpf_token_inc(struct bpf_token *token);
2325 void bpf_token_put(struct bpf_token *token);
2326 int bpf_token_create(union bpf_attr *attr);
2327 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2328 
2329 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2330 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2331 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2332 			       enum bpf_prog_type prog_type,
2333 			       enum bpf_attach_type attach_type);
2334 
2335 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2336 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2337 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2338 			    umode_t mode);
2339 
2340 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2341 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2342 	extern int bpf_iter_ ## target(args);			\
2343 	int __init bpf_iter_ ## target(args) { return 0; }
2344 
2345 /*
2346  * The task type of iterators.
2347  *
2348  * For BPF task iterators, they can be parameterized with various
2349  * parameters to visit only some of tasks.
2350  *
2351  * BPF_TASK_ITER_ALL (default)
2352  *	Iterate over resources of every task.
2353  *
2354  * BPF_TASK_ITER_TID
2355  *	Iterate over resources of a task/tid.
2356  *
2357  * BPF_TASK_ITER_TGID
2358  *	Iterate over resources of every task of a process / task group.
2359  */
2360 enum bpf_iter_task_type {
2361 	BPF_TASK_ITER_ALL = 0,
2362 	BPF_TASK_ITER_TID,
2363 	BPF_TASK_ITER_TGID,
2364 };
2365 
2366 struct bpf_iter_aux_info {
2367 	/* for map_elem iter */
2368 	struct bpf_map *map;
2369 
2370 	/* for cgroup iter */
2371 	struct {
2372 		struct cgroup *start; /* starting cgroup */
2373 		enum bpf_cgroup_iter_order order;
2374 	} cgroup;
2375 	struct {
2376 		enum bpf_iter_task_type	type;
2377 		u32 pid;
2378 	} task;
2379 };
2380 
2381 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2382 					union bpf_iter_link_info *linfo,
2383 					struct bpf_iter_aux_info *aux);
2384 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2385 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2386 					struct seq_file *seq);
2387 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2388 					 struct bpf_link_info *info);
2389 typedef const struct bpf_func_proto *
2390 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2391 			     const struct bpf_prog *prog);
2392 
2393 enum bpf_iter_feature {
2394 	BPF_ITER_RESCHED	= BIT(0),
2395 };
2396 
2397 #define BPF_ITER_CTX_ARG_MAX 2
2398 struct bpf_iter_reg {
2399 	const char *target;
2400 	bpf_iter_attach_target_t attach_target;
2401 	bpf_iter_detach_target_t detach_target;
2402 	bpf_iter_show_fdinfo_t show_fdinfo;
2403 	bpf_iter_fill_link_info_t fill_link_info;
2404 	bpf_iter_get_func_proto_t get_func_proto;
2405 	u32 ctx_arg_info_size;
2406 	u32 feature;
2407 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2408 	const struct bpf_iter_seq_info *seq_info;
2409 };
2410 
2411 struct bpf_iter_meta {
2412 	__bpf_md_ptr(struct seq_file *, seq);
2413 	u64 session_id;
2414 	u64 seq_num;
2415 };
2416 
2417 struct bpf_iter__bpf_map_elem {
2418 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2419 	__bpf_md_ptr(struct bpf_map *, map);
2420 	__bpf_md_ptr(void *, key);
2421 	__bpf_md_ptr(void *, value);
2422 };
2423 
2424 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2425 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2426 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2427 const struct bpf_func_proto *
2428 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2429 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2430 int bpf_iter_new_fd(struct bpf_link *link);
2431 bool bpf_link_is_iter(struct bpf_link *link);
2432 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2433 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2434 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2435 			      struct seq_file *seq);
2436 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2437 				struct bpf_link_info *info);
2438 
2439 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2440 				   struct bpf_func_state *caller,
2441 				   struct bpf_func_state *callee);
2442 
2443 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2444 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2445 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2446 			   u64 flags);
2447 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2448 			    u64 flags);
2449 
2450 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2451 
2452 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2453 				 void *key, void *value, u64 map_flags);
2454 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2455 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2456 				void *key, void *value, u64 map_flags);
2457 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2458 
2459 int bpf_get_file_flag(int flags);
2460 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2461 			     size_t actual_size);
2462 
2463 /* verify correctness of eBPF program */
2464 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2465 
2466 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2467 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2468 #endif
2469 
2470 struct btf *bpf_get_btf_vmlinux(void);
2471 
2472 /* Map specifics */
2473 struct xdp_frame;
2474 struct sk_buff;
2475 struct bpf_dtab_netdev;
2476 struct bpf_cpu_map_entry;
2477 
2478 void __dev_flush(void);
2479 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2480 		    struct net_device *dev_rx);
2481 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2482 		    struct net_device *dev_rx);
2483 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2484 			  struct bpf_map *map, bool exclude_ingress);
2485 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2486 			     struct bpf_prog *xdp_prog);
2487 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2488 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2489 			   bool exclude_ingress);
2490 
2491 void __cpu_map_flush(void);
2492 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2493 		    struct net_device *dev_rx);
2494 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2495 			     struct sk_buff *skb);
2496 
2497 /* Return map's numa specified by userspace */
2498 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2499 {
2500 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2501 		attr->numa_node : NUMA_NO_NODE;
2502 }
2503 
2504 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2505 int array_map_alloc_check(union bpf_attr *attr);
2506 
2507 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2508 			  union bpf_attr __user *uattr);
2509 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2510 			  union bpf_attr __user *uattr);
2511 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2512 			      const union bpf_attr *kattr,
2513 			      union bpf_attr __user *uattr);
2514 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2515 				     const union bpf_attr *kattr,
2516 				     union bpf_attr __user *uattr);
2517 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2518 			     const union bpf_attr *kattr,
2519 			     union bpf_attr __user *uattr);
2520 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2521 				const union bpf_attr *kattr,
2522 				union bpf_attr __user *uattr);
2523 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2524 			 const union bpf_attr *kattr,
2525 			 union bpf_attr __user *uattr);
2526 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2527 		    const struct bpf_prog *prog,
2528 		    struct bpf_insn_access_aux *info);
2529 
2530 static inline bool bpf_tracing_ctx_access(int off, int size,
2531 					  enum bpf_access_type type)
2532 {
2533 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2534 		return false;
2535 	if (type != BPF_READ)
2536 		return false;
2537 	if (off % size != 0)
2538 		return false;
2539 	return true;
2540 }
2541 
2542 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2543 					      enum bpf_access_type type,
2544 					      const struct bpf_prog *prog,
2545 					      struct bpf_insn_access_aux *info)
2546 {
2547 	if (!bpf_tracing_ctx_access(off, size, type))
2548 		return false;
2549 	return btf_ctx_access(off, size, type, prog, info);
2550 }
2551 
2552 int btf_struct_access(struct bpf_verifier_log *log,
2553 		      const struct bpf_reg_state *reg,
2554 		      int off, int size, enum bpf_access_type atype,
2555 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2556 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2557 			  const struct btf *btf, u32 id, int off,
2558 			  const struct btf *need_btf, u32 need_type_id,
2559 			  bool strict);
2560 
2561 int btf_distill_func_proto(struct bpf_verifier_log *log,
2562 			   struct btf *btf,
2563 			   const struct btf_type *func_proto,
2564 			   const char *func_name,
2565 			   struct btf_func_model *m);
2566 
2567 struct bpf_reg_state;
2568 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2569 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2570 			 struct btf *btf, const struct btf_type *t);
2571 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2572 				    int comp_idx, const char *tag_key);
2573 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2574 			   int comp_idx, const char *tag_key, int last_id);
2575 
2576 struct bpf_prog *bpf_prog_by_id(u32 id);
2577 struct bpf_link *bpf_link_by_id(u32 id);
2578 
2579 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2580 						 const struct bpf_prog *prog);
2581 void bpf_task_storage_free(struct task_struct *task);
2582 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2583 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2584 const struct btf_func_model *
2585 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2586 			 const struct bpf_insn *insn);
2587 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2588 		       u16 btf_fd_idx, u8 **func_addr);
2589 
2590 struct bpf_core_ctx {
2591 	struct bpf_verifier_log *log;
2592 	const struct btf *btf;
2593 };
2594 
2595 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2596 				const struct bpf_reg_state *reg,
2597 				const char *field_name, u32 btf_id, const char *suffix);
2598 
2599 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2600 			       const struct btf *reg_btf, u32 reg_id,
2601 			       const struct btf *arg_btf, u32 arg_id);
2602 
2603 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2604 		   int relo_idx, void *insn);
2605 
2606 static inline bool unprivileged_ebpf_enabled(void)
2607 {
2608 	return !sysctl_unprivileged_bpf_disabled;
2609 }
2610 
2611 /* Not all bpf prog type has the bpf_ctx.
2612  * For the bpf prog type that has initialized the bpf_ctx,
2613  * this function can be used to decide if a kernel function
2614  * is called by a bpf program.
2615  */
2616 static inline bool has_current_bpf_ctx(void)
2617 {
2618 	return !!current->bpf_ctx;
2619 }
2620 
2621 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2622 
2623 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2624 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2625 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2626 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2627 
2628 bool dev_check_flush(void);
2629 bool cpu_map_check_flush(void);
2630 #else /* !CONFIG_BPF_SYSCALL */
2631 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2632 {
2633 	return ERR_PTR(-EOPNOTSUPP);
2634 }
2635 
2636 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2637 						     enum bpf_prog_type type,
2638 						     bool attach_drv)
2639 {
2640 	return ERR_PTR(-EOPNOTSUPP);
2641 }
2642 
2643 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2644 {
2645 }
2646 
2647 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2648 {
2649 }
2650 
2651 static inline void bpf_prog_put(struct bpf_prog *prog)
2652 {
2653 }
2654 
2655 static inline void bpf_prog_inc(struct bpf_prog *prog)
2656 {
2657 }
2658 
2659 static inline struct bpf_prog *__must_check
2660 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2661 {
2662 	return ERR_PTR(-EOPNOTSUPP);
2663 }
2664 
2665 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2666 				 const struct bpf_link_ops *ops,
2667 				 struct bpf_prog *prog)
2668 {
2669 }
2670 
2671 static inline int bpf_link_prime(struct bpf_link *link,
2672 				 struct bpf_link_primer *primer)
2673 {
2674 	return -EOPNOTSUPP;
2675 }
2676 
2677 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2678 {
2679 	return -EOPNOTSUPP;
2680 }
2681 
2682 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2683 {
2684 }
2685 
2686 static inline void bpf_link_inc(struct bpf_link *link)
2687 {
2688 }
2689 
2690 static inline void bpf_link_put(struct bpf_link *link)
2691 {
2692 }
2693 
2694 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2695 {
2696 	return -EOPNOTSUPP;
2697 }
2698 
2699 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2700 {
2701 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2702 }
2703 
2704 static inline void bpf_token_inc(struct bpf_token *token)
2705 {
2706 }
2707 
2708 static inline void bpf_token_put(struct bpf_token *token)
2709 {
2710 }
2711 
2712 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2713 {
2714 	return ERR_PTR(-EOPNOTSUPP);
2715 }
2716 
2717 static inline void __dev_flush(void)
2718 {
2719 }
2720 
2721 struct xdp_frame;
2722 struct bpf_dtab_netdev;
2723 struct bpf_cpu_map_entry;
2724 
2725 static inline
2726 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2727 		    struct net_device *dev_rx)
2728 {
2729 	return 0;
2730 }
2731 
2732 static inline
2733 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2734 		    struct net_device *dev_rx)
2735 {
2736 	return 0;
2737 }
2738 
2739 static inline
2740 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2741 			  struct bpf_map *map, bool exclude_ingress)
2742 {
2743 	return 0;
2744 }
2745 
2746 struct sk_buff;
2747 
2748 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2749 					   struct sk_buff *skb,
2750 					   struct bpf_prog *xdp_prog)
2751 {
2752 	return 0;
2753 }
2754 
2755 static inline
2756 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2757 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2758 			   bool exclude_ingress)
2759 {
2760 	return 0;
2761 }
2762 
2763 static inline void __cpu_map_flush(void)
2764 {
2765 }
2766 
2767 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2768 				  struct xdp_frame *xdpf,
2769 				  struct net_device *dev_rx)
2770 {
2771 	return 0;
2772 }
2773 
2774 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2775 					   struct sk_buff *skb)
2776 {
2777 	return -EOPNOTSUPP;
2778 }
2779 
2780 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2781 				enum bpf_prog_type type)
2782 {
2783 	return ERR_PTR(-EOPNOTSUPP);
2784 }
2785 
2786 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2787 					const union bpf_attr *kattr,
2788 					union bpf_attr __user *uattr)
2789 {
2790 	return -ENOTSUPP;
2791 }
2792 
2793 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2794 					const union bpf_attr *kattr,
2795 					union bpf_attr __user *uattr)
2796 {
2797 	return -ENOTSUPP;
2798 }
2799 
2800 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2801 					    const union bpf_attr *kattr,
2802 					    union bpf_attr __user *uattr)
2803 {
2804 	return -ENOTSUPP;
2805 }
2806 
2807 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2808 						   const union bpf_attr *kattr,
2809 						   union bpf_attr __user *uattr)
2810 {
2811 	return -ENOTSUPP;
2812 }
2813 
2814 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2815 					      const union bpf_attr *kattr,
2816 					      union bpf_attr __user *uattr)
2817 {
2818 	return -ENOTSUPP;
2819 }
2820 
2821 static inline void bpf_map_put(struct bpf_map *map)
2822 {
2823 }
2824 
2825 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2826 {
2827 	return ERR_PTR(-ENOTSUPP);
2828 }
2829 
2830 static inline int btf_struct_access(struct bpf_verifier_log *log,
2831 				    const struct bpf_reg_state *reg,
2832 				    int off, int size, enum bpf_access_type atype,
2833 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2834 				    const char **field_name)
2835 {
2836 	return -EACCES;
2837 }
2838 
2839 static inline const struct bpf_func_proto *
2840 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2841 {
2842 	return NULL;
2843 }
2844 
2845 static inline void bpf_task_storage_free(struct task_struct *task)
2846 {
2847 }
2848 
2849 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2850 {
2851 	return false;
2852 }
2853 
2854 static inline const struct btf_func_model *
2855 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2856 			 const struct bpf_insn *insn)
2857 {
2858 	return NULL;
2859 }
2860 
2861 static inline int
2862 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2863 		   u16 btf_fd_idx, u8 **func_addr)
2864 {
2865 	return -ENOTSUPP;
2866 }
2867 
2868 static inline bool unprivileged_ebpf_enabled(void)
2869 {
2870 	return false;
2871 }
2872 
2873 static inline bool has_current_bpf_ctx(void)
2874 {
2875 	return false;
2876 }
2877 
2878 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2879 {
2880 }
2881 
2882 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2883 {
2884 }
2885 
2886 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2887 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2888 {
2889 }
2890 
2891 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2892 {
2893 }
2894 
2895 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2896 {
2897 }
2898 #endif /* CONFIG_BPF_SYSCALL */
2899 
2900 static __always_inline int
2901 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2902 {
2903 	int ret = -EFAULT;
2904 
2905 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2906 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2907 	if (unlikely(ret < 0))
2908 		memset(dst, 0, size);
2909 	return ret;
2910 }
2911 
2912 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2913 			  struct btf_mod_pair *used_btfs, u32 len);
2914 
2915 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2916 						 enum bpf_prog_type type)
2917 {
2918 	return bpf_prog_get_type_dev(ufd, type, false);
2919 }
2920 
2921 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2922 			  struct bpf_map **used_maps, u32 len);
2923 
2924 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2925 
2926 int bpf_prog_offload_compile(struct bpf_prog *prog);
2927 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2928 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2929 			       struct bpf_prog *prog);
2930 
2931 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2932 
2933 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2934 int bpf_map_offload_update_elem(struct bpf_map *map,
2935 				void *key, void *value, u64 flags);
2936 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2937 int bpf_map_offload_get_next_key(struct bpf_map *map,
2938 				 void *key, void *next_key);
2939 
2940 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2941 
2942 struct bpf_offload_dev *
2943 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2944 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2945 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2946 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2947 				    struct net_device *netdev);
2948 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2949 				       struct net_device *netdev);
2950 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2951 
2952 void unpriv_ebpf_notify(int new_state);
2953 
2954 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2955 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2956 			      struct bpf_prog_aux *prog_aux);
2957 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2958 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2959 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2960 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2961 
2962 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2963 {
2964 	return aux->dev_bound;
2965 }
2966 
2967 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2968 {
2969 	return aux->offload_requested;
2970 }
2971 
2972 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2973 
2974 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2975 {
2976 	return unlikely(map->ops == &bpf_map_offload_ops);
2977 }
2978 
2979 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2980 void bpf_map_offload_map_free(struct bpf_map *map);
2981 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2982 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2983 			      const union bpf_attr *kattr,
2984 			      union bpf_attr __user *uattr);
2985 
2986 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2987 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2988 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2989 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2990 			    union bpf_attr __user *uattr);
2991 
2992 void sock_map_unhash(struct sock *sk);
2993 void sock_map_destroy(struct sock *sk);
2994 void sock_map_close(struct sock *sk, long timeout);
2995 #else
2996 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2997 					    struct bpf_prog_aux *prog_aux)
2998 {
2999 	return -EOPNOTSUPP;
3000 }
3001 
3002 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3003 						u32 func_id)
3004 {
3005 	return NULL;
3006 }
3007 
3008 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3009 					  union bpf_attr *attr)
3010 {
3011 	return -EOPNOTSUPP;
3012 }
3013 
3014 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3015 					     struct bpf_prog *old_prog)
3016 {
3017 	return -EOPNOTSUPP;
3018 }
3019 
3020 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3021 {
3022 }
3023 
3024 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3025 {
3026 	return false;
3027 }
3028 
3029 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3030 {
3031 	return false;
3032 }
3033 
3034 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3035 {
3036 	return false;
3037 }
3038 
3039 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3040 {
3041 	return false;
3042 }
3043 
3044 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3045 {
3046 	return ERR_PTR(-EOPNOTSUPP);
3047 }
3048 
3049 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3050 {
3051 }
3052 
3053 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3054 {
3055 	return 0;
3056 }
3057 
3058 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3059 					    const union bpf_attr *kattr,
3060 					    union bpf_attr __user *uattr)
3061 {
3062 	return -ENOTSUPP;
3063 }
3064 
3065 #ifdef CONFIG_BPF_SYSCALL
3066 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3067 				       struct bpf_prog *prog)
3068 {
3069 	return -EINVAL;
3070 }
3071 
3072 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3073 				       enum bpf_prog_type ptype)
3074 {
3075 	return -EOPNOTSUPP;
3076 }
3077 
3078 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3079 					   u64 flags)
3080 {
3081 	return -EOPNOTSUPP;
3082 }
3083 
3084 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3085 					  union bpf_attr __user *uattr)
3086 {
3087 	return -EINVAL;
3088 }
3089 #endif /* CONFIG_BPF_SYSCALL */
3090 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3091 
3092 static __always_inline void
3093 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3094 {
3095 	const struct bpf_prog_array_item *item;
3096 	struct bpf_prog *prog;
3097 
3098 	if (unlikely(!array))
3099 		return;
3100 
3101 	item = &array->items[0];
3102 	while ((prog = READ_ONCE(item->prog))) {
3103 		bpf_prog_inc_misses_counter(prog);
3104 		item++;
3105 	}
3106 }
3107 
3108 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3109 void bpf_sk_reuseport_detach(struct sock *sk);
3110 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3111 				       void *value);
3112 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3113 				       void *value, u64 map_flags);
3114 #else
3115 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3116 {
3117 }
3118 
3119 #ifdef CONFIG_BPF_SYSCALL
3120 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3121 						     void *key, void *value)
3122 {
3123 	return -EOPNOTSUPP;
3124 }
3125 
3126 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3127 						     void *key, void *value,
3128 						     u64 map_flags)
3129 {
3130 	return -EOPNOTSUPP;
3131 }
3132 #endif /* CONFIG_BPF_SYSCALL */
3133 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3134 
3135 /* verifier prototypes for helper functions called from eBPF programs */
3136 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3137 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3138 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3139 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3140 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3141 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3142 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3143 
3144 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3145 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3146 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3147 extern const struct bpf_func_proto bpf_tail_call_proto;
3148 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3149 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3150 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3151 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3152 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3153 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3154 extern const struct bpf_func_proto bpf_get_stackid_proto;
3155 extern const struct bpf_func_proto bpf_get_stack_proto;
3156 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3157 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3158 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3159 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3160 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3161 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3162 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3163 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3164 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3165 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3166 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3167 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3168 extern const struct bpf_func_proto bpf_spin_lock_proto;
3169 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3170 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3171 extern const struct bpf_func_proto bpf_strtol_proto;
3172 extern const struct bpf_func_proto bpf_strtoul_proto;
3173 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3174 extern const struct bpf_func_proto bpf_jiffies64_proto;
3175 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3176 extern const struct bpf_func_proto bpf_event_output_data_proto;
3177 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3178 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3179 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3180 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3181 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3182 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3183 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3184 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3185 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3186 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3187 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3188 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3189 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3190 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3191 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3192 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3193 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3194 extern const struct bpf_func_proto bpf_snprintf_proto;
3195 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3196 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3197 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3198 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3199 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3200 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3201 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3202 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3203 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3204 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3205 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3206 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3207 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3208 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3209 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3210 extern const struct bpf_func_proto bpf_find_vma_proto;
3211 extern const struct bpf_func_proto bpf_loop_proto;
3212 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3213 extern const struct bpf_func_proto bpf_set_retval_proto;
3214 extern const struct bpf_func_proto bpf_get_retval_proto;
3215 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3216 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3217 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3218 
3219 const struct bpf_func_proto *tracing_prog_func_proto(
3220   enum bpf_func_id func_id, const struct bpf_prog *prog);
3221 
3222 /* Shared helpers among cBPF and eBPF. */
3223 void bpf_user_rnd_init_once(void);
3224 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3225 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3226 
3227 #if defined(CONFIG_NET)
3228 bool bpf_sock_common_is_valid_access(int off, int size,
3229 				     enum bpf_access_type type,
3230 				     struct bpf_insn_access_aux *info);
3231 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3232 			      struct bpf_insn_access_aux *info);
3233 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3234 				const struct bpf_insn *si,
3235 				struct bpf_insn *insn_buf,
3236 				struct bpf_prog *prog,
3237 				u32 *target_size);
3238 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3239 			       struct bpf_dynptr_kern *ptr);
3240 #else
3241 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3242 						   enum bpf_access_type type,
3243 						   struct bpf_insn_access_aux *info)
3244 {
3245 	return false;
3246 }
3247 static inline bool bpf_sock_is_valid_access(int off, int size,
3248 					    enum bpf_access_type type,
3249 					    struct bpf_insn_access_aux *info)
3250 {
3251 	return false;
3252 }
3253 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3254 					      const struct bpf_insn *si,
3255 					      struct bpf_insn *insn_buf,
3256 					      struct bpf_prog *prog,
3257 					      u32 *target_size)
3258 {
3259 	return 0;
3260 }
3261 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3262 					     struct bpf_dynptr_kern *ptr)
3263 {
3264 	return -EOPNOTSUPP;
3265 }
3266 #endif
3267 
3268 #ifdef CONFIG_INET
3269 struct sk_reuseport_kern {
3270 	struct sk_buff *skb;
3271 	struct sock *sk;
3272 	struct sock *selected_sk;
3273 	struct sock *migrating_sk;
3274 	void *data_end;
3275 	u32 hash;
3276 	u32 reuseport_id;
3277 	bool bind_inany;
3278 };
3279 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3280 				  struct bpf_insn_access_aux *info);
3281 
3282 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3283 				    const struct bpf_insn *si,
3284 				    struct bpf_insn *insn_buf,
3285 				    struct bpf_prog *prog,
3286 				    u32 *target_size);
3287 
3288 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3289 				  struct bpf_insn_access_aux *info);
3290 
3291 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3292 				    const struct bpf_insn *si,
3293 				    struct bpf_insn *insn_buf,
3294 				    struct bpf_prog *prog,
3295 				    u32 *target_size);
3296 #else
3297 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3298 						enum bpf_access_type type,
3299 						struct bpf_insn_access_aux *info)
3300 {
3301 	return false;
3302 }
3303 
3304 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3305 						  const struct bpf_insn *si,
3306 						  struct bpf_insn *insn_buf,
3307 						  struct bpf_prog *prog,
3308 						  u32 *target_size)
3309 {
3310 	return 0;
3311 }
3312 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3313 						enum bpf_access_type type,
3314 						struct bpf_insn_access_aux *info)
3315 {
3316 	return false;
3317 }
3318 
3319 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3320 						  const struct bpf_insn *si,
3321 						  struct bpf_insn *insn_buf,
3322 						  struct bpf_prog *prog,
3323 						  u32 *target_size)
3324 {
3325 	return 0;
3326 }
3327 #endif /* CONFIG_INET */
3328 
3329 enum bpf_text_poke_type {
3330 	BPF_MOD_CALL,
3331 	BPF_MOD_JUMP,
3332 };
3333 
3334 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3335 		       void *addr1, void *addr2);
3336 
3337 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3338 			       struct bpf_prog *new, struct bpf_prog *old);
3339 
3340 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3341 int bpf_arch_text_invalidate(void *dst, size_t len);
3342 
3343 struct btf_id_set;
3344 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3345 
3346 #define MAX_BPRINTF_VARARGS		12
3347 #define MAX_BPRINTF_BUF			1024
3348 
3349 struct bpf_bprintf_data {
3350 	u32 *bin_args;
3351 	char *buf;
3352 	bool get_bin_args;
3353 	bool get_buf;
3354 };
3355 
3356 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3357 			u32 num_args, struct bpf_bprintf_data *data);
3358 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3359 
3360 #ifdef CONFIG_BPF_LSM
3361 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3362 void bpf_cgroup_atype_put(int cgroup_atype);
3363 #else
3364 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3365 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3366 #endif /* CONFIG_BPF_LSM */
3367 
3368 struct key;
3369 
3370 #ifdef CONFIG_KEYS
3371 struct bpf_key {
3372 	struct key *key;
3373 	bool has_ref;
3374 };
3375 #endif /* CONFIG_KEYS */
3376 
3377 static inline bool type_is_alloc(u32 type)
3378 {
3379 	return type & MEM_ALLOC;
3380 }
3381 
3382 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3383 {
3384 	if (memcg_bpf_enabled())
3385 		return flags | __GFP_ACCOUNT;
3386 	return flags;
3387 }
3388 
3389 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3390 {
3391 	return prog->aux->func_idx != 0;
3392 }
3393 
3394 #endif /* _LINUX_BPF_H */
3395