1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 10 fields in a BTF type */ 188 BTF_FIELDS_MAX = 10, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 }; 206 207 typedef void (*btf_dtor_kfunc_t)(void *); 208 209 struct btf_field_kptr { 210 struct btf *btf; 211 struct module *module; 212 /* dtor used if btf_is_kernel(btf), otherwise the type is 213 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 214 */ 215 btf_dtor_kfunc_t dtor; 216 u32 btf_id; 217 }; 218 219 struct btf_field_graph_root { 220 struct btf *btf; 221 u32 value_btf_id; 222 u32 node_offset; 223 struct btf_record *value_rec; 224 }; 225 226 struct btf_field { 227 u32 offset; 228 u32 size; 229 enum btf_field_type type; 230 union { 231 struct btf_field_kptr kptr; 232 struct btf_field_graph_root graph_root; 233 }; 234 }; 235 236 struct btf_record { 237 u32 cnt; 238 u32 field_mask; 239 int spin_lock_off; 240 int timer_off; 241 int refcount_off; 242 struct btf_field fields[]; 243 }; 244 245 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 246 struct bpf_rb_node_kern { 247 struct rb_node rb_node; 248 void *owner; 249 } __attribute__((aligned(8))); 250 251 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 252 struct bpf_list_node_kern { 253 struct list_head list_head; 254 void *owner; 255 } __attribute__((aligned(8))); 256 257 struct bpf_map { 258 const struct bpf_map_ops *ops; 259 struct bpf_map *inner_map_meta; 260 #ifdef CONFIG_SECURITY 261 void *security; 262 #endif 263 enum bpf_map_type map_type; 264 u32 key_size; 265 u32 value_size; 266 u32 max_entries; 267 u64 map_extra; /* any per-map-type extra fields */ 268 u32 map_flags; 269 u32 id; 270 struct btf_record *record; 271 int numa_node; 272 u32 btf_key_type_id; 273 u32 btf_value_type_id; 274 u32 btf_vmlinux_value_type_id; 275 struct btf *btf; 276 #ifdef CONFIG_MEMCG_KMEM 277 struct obj_cgroup *objcg; 278 #endif 279 char name[BPF_OBJ_NAME_LEN]; 280 struct mutex freeze_mutex; 281 atomic64_t refcnt; 282 atomic64_t usercnt; 283 /* rcu is used before freeing and work is only used during freeing */ 284 union { 285 struct work_struct work; 286 struct rcu_head rcu; 287 }; 288 atomic64_t writecnt; 289 /* 'Ownership' of program-containing map is claimed by the first program 290 * that is going to use this map or by the first program which FD is 291 * stored in the map to make sure that all callers and callees have the 292 * same prog type, JITed flag and xdp_has_frags flag. 293 */ 294 struct { 295 spinlock_t lock; 296 enum bpf_prog_type type; 297 bool jited; 298 bool xdp_has_frags; 299 } owner; 300 bool bypass_spec_v1; 301 bool frozen; /* write-once; write-protected by freeze_mutex */ 302 bool free_after_mult_rcu_gp; 303 bool free_after_rcu_gp; 304 atomic64_t sleepable_refcnt; 305 s64 __percpu *elem_count; 306 }; 307 308 static inline const char *btf_field_type_name(enum btf_field_type type) 309 { 310 switch (type) { 311 case BPF_SPIN_LOCK: 312 return "bpf_spin_lock"; 313 case BPF_TIMER: 314 return "bpf_timer"; 315 case BPF_KPTR_UNREF: 316 case BPF_KPTR_REF: 317 return "kptr"; 318 case BPF_KPTR_PERCPU: 319 return "percpu_kptr"; 320 case BPF_LIST_HEAD: 321 return "bpf_list_head"; 322 case BPF_LIST_NODE: 323 return "bpf_list_node"; 324 case BPF_RB_ROOT: 325 return "bpf_rb_root"; 326 case BPF_RB_NODE: 327 return "bpf_rb_node"; 328 case BPF_REFCOUNT: 329 return "bpf_refcount"; 330 default: 331 WARN_ON_ONCE(1); 332 return "unknown"; 333 } 334 } 335 336 static inline u32 btf_field_type_size(enum btf_field_type type) 337 { 338 switch (type) { 339 case BPF_SPIN_LOCK: 340 return sizeof(struct bpf_spin_lock); 341 case BPF_TIMER: 342 return sizeof(struct bpf_timer); 343 case BPF_KPTR_UNREF: 344 case BPF_KPTR_REF: 345 case BPF_KPTR_PERCPU: 346 return sizeof(u64); 347 case BPF_LIST_HEAD: 348 return sizeof(struct bpf_list_head); 349 case BPF_LIST_NODE: 350 return sizeof(struct bpf_list_node); 351 case BPF_RB_ROOT: 352 return sizeof(struct bpf_rb_root); 353 case BPF_RB_NODE: 354 return sizeof(struct bpf_rb_node); 355 case BPF_REFCOUNT: 356 return sizeof(struct bpf_refcount); 357 default: 358 WARN_ON_ONCE(1); 359 return 0; 360 } 361 } 362 363 static inline u32 btf_field_type_align(enum btf_field_type type) 364 { 365 switch (type) { 366 case BPF_SPIN_LOCK: 367 return __alignof__(struct bpf_spin_lock); 368 case BPF_TIMER: 369 return __alignof__(struct bpf_timer); 370 case BPF_KPTR_UNREF: 371 case BPF_KPTR_REF: 372 case BPF_KPTR_PERCPU: 373 return __alignof__(u64); 374 case BPF_LIST_HEAD: 375 return __alignof__(struct bpf_list_head); 376 case BPF_LIST_NODE: 377 return __alignof__(struct bpf_list_node); 378 case BPF_RB_ROOT: 379 return __alignof__(struct bpf_rb_root); 380 case BPF_RB_NODE: 381 return __alignof__(struct bpf_rb_node); 382 case BPF_REFCOUNT: 383 return __alignof__(struct bpf_refcount); 384 default: 385 WARN_ON_ONCE(1); 386 return 0; 387 } 388 } 389 390 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 391 { 392 memset(addr, 0, field->size); 393 394 switch (field->type) { 395 case BPF_REFCOUNT: 396 refcount_set((refcount_t *)addr, 1); 397 break; 398 case BPF_RB_NODE: 399 RB_CLEAR_NODE((struct rb_node *)addr); 400 break; 401 case BPF_LIST_HEAD: 402 case BPF_LIST_NODE: 403 INIT_LIST_HEAD((struct list_head *)addr); 404 break; 405 case BPF_RB_ROOT: 406 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 407 case BPF_SPIN_LOCK: 408 case BPF_TIMER: 409 case BPF_KPTR_UNREF: 410 case BPF_KPTR_REF: 411 case BPF_KPTR_PERCPU: 412 break; 413 default: 414 WARN_ON_ONCE(1); 415 return; 416 } 417 } 418 419 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 420 { 421 if (IS_ERR_OR_NULL(rec)) 422 return false; 423 return rec->field_mask & type; 424 } 425 426 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 427 { 428 int i; 429 430 if (IS_ERR_OR_NULL(rec)) 431 return; 432 for (i = 0; i < rec->cnt; i++) 433 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 434 } 435 436 /* 'dst' must be a temporary buffer and should not point to memory that is being 437 * used in parallel by a bpf program or bpf syscall, otherwise the access from 438 * the bpf program or bpf syscall may be corrupted by the reinitialization, 439 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 440 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 441 * program or bpf syscall. 442 */ 443 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 444 { 445 bpf_obj_init(map->record, dst); 446 } 447 448 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 449 * forced to use 'long' read/writes to try to atomically copy long counters. 450 * Best-effort only. No barriers here, since it _will_ race with concurrent 451 * updates from BPF programs. Called from bpf syscall and mostly used with 452 * size 8 or 16 bytes, so ask compiler to inline it. 453 */ 454 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 455 { 456 const long *lsrc = src; 457 long *ldst = dst; 458 459 size /= sizeof(long); 460 while (size--) 461 data_race(*ldst++ = *lsrc++); 462 } 463 464 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 465 static inline void bpf_obj_memcpy(struct btf_record *rec, 466 void *dst, void *src, u32 size, 467 bool long_memcpy) 468 { 469 u32 curr_off = 0; 470 int i; 471 472 if (IS_ERR_OR_NULL(rec)) { 473 if (long_memcpy) 474 bpf_long_memcpy(dst, src, round_up(size, 8)); 475 else 476 memcpy(dst, src, size); 477 return; 478 } 479 480 for (i = 0; i < rec->cnt; i++) { 481 u32 next_off = rec->fields[i].offset; 482 u32 sz = next_off - curr_off; 483 484 memcpy(dst + curr_off, src + curr_off, sz); 485 curr_off += rec->fields[i].size + sz; 486 } 487 memcpy(dst + curr_off, src + curr_off, size - curr_off); 488 } 489 490 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 491 { 492 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 493 } 494 495 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 496 { 497 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 498 } 499 500 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 501 { 502 u32 curr_off = 0; 503 int i; 504 505 if (IS_ERR_OR_NULL(rec)) { 506 memset(dst, 0, size); 507 return; 508 } 509 510 for (i = 0; i < rec->cnt; i++) { 511 u32 next_off = rec->fields[i].offset; 512 u32 sz = next_off - curr_off; 513 514 memset(dst + curr_off, 0, sz); 515 curr_off += rec->fields[i].size + sz; 516 } 517 memset(dst + curr_off, 0, size - curr_off); 518 } 519 520 static inline void zero_map_value(struct bpf_map *map, void *dst) 521 { 522 bpf_obj_memzero(map->record, dst, map->value_size); 523 } 524 525 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 526 bool lock_src); 527 void bpf_timer_cancel_and_free(void *timer); 528 void bpf_list_head_free(const struct btf_field *field, void *list_head, 529 struct bpf_spin_lock *spin_lock); 530 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 531 struct bpf_spin_lock *spin_lock); 532 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 533 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 534 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 535 536 struct bpf_offload_dev; 537 struct bpf_offloaded_map; 538 539 struct bpf_map_dev_ops { 540 int (*map_get_next_key)(struct bpf_offloaded_map *map, 541 void *key, void *next_key); 542 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 543 void *key, void *value); 544 int (*map_update_elem)(struct bpf_offloaded_map *map, 545 void *key, void *value, u64 flags); 546 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 547 }; 548 549 struct bpf_offloaded_map { 550 struct bpf_map map; 551 struct net_device *netdev; 552 const struct bpf_map_dev_ops *dev_ops; 553 void *dev_priv; 554 struct list_head offloads; 555 }; 556 557 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 558 { 559 return container_of(map, struct bpf_offloaded_map, map); 560 } 561 562 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 563 { 564 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 565 } 566 567 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 568 { 569 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 570 map->ops->map_seq_show_elem; 571 } 572 573 int map_check_no_btf(const struct bpf_map *map, 574 const struct btf *btf, 575 const struct btf_type *key_type, 576 const struct btf_type *value_type); 577 578 bool bpf_map_meta_equal(const struct bpf_map *meta0, 579 const struct bpf_map *meta1); 580 581 extern const struct bpf_map_ops bpf_map_offload_ops; 582 583 /* bpf_type_flag contains a set of flags that are applicable to the values of 584 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 585 * or a memory is read-only. We classify types into two categories: base types 586 * and extended types. Extended types are base types combined with a type flag. 587 * 588 * Currently there are no more than 32 base types in arg_type, ret_type and 589 * reg_types. 590 */ 591 #define BPF_BASE_TYPE_BITS 8 592 593 enum bpf_type_flag { 594 /* PTR may be NULL. */ 595 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 596 597 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 598 * compatible with both mutable and immutable memory. 599 */ 600 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 601 602 /* MEM points to BPF ring buffer reservation. */ 603 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 604 605 /* MEM is in user address space. */ 606 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 609 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 610 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 611 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 612 * to the specified cpu. 613 */ 614 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 615 616 /* Indicates that the argument will be released. */ 617 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 618 619 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 620 * unreferenced and referenced kptr loaded from map value using a load 621 * instruction, so that they can only be dereferenced but not escape the 622 * BPF program into the kernel (i.e. cannot be passed as arguments to 623 * kfunc or bpf helpers). 624 */ 625 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 626 627 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 628 629 /* DYNPTR points to memory local to the bpf program. */ 630 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 631 632 /* DYNPTR points to a kernel-produced ringbuf record. */ 633 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 634 635 /* Size is known at compile time. */ 636 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 637 638 /* MEM is of an allocated object of type in program BTF. This is used to 639 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 640 */ 641 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 642 643 /* PTR was passed from the kernel in a trusted context, and may be 644 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 645 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 646 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 647 * without invoking bpf_kptr_xchg(). What we really need to know is 648 * whether a pointer is safe to pass to a kfunc or BPF helper function. 649 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 650 * helpers, they do not cover all possible instances of unsafe 651 * pointers. For example, a pointer that was obtained from walking a 652 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 653 * fact that it may be NULL, invalid, etc. This is due to backwards 654 * compatibility requirements, as this was the behavior that was first 655 * introduced when kptrs were added. The behavior is now considered 656 * deprecated, and PTR_UNTRUSTED will eventually be removed. 657 * 658 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 659 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 660 * For example, pointers passed to tracepoint arguments are considered 661 * PTR_TRUSTED, as are pointers that are passed to struct_ops 662 * callbacks. As alluded to above, pointers that are obtained from 663 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 664 * struct task_struct *task is PTR_TRUSTED, then accessing 665 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 666 * in a BPF register. Similarly, pointers passed to certain programs 667 * types such as kretprobes are not guaranteed to be valid, as they may 668 * for example contain an object that was recently freed. 669 */ 670 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 671 672 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 673 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 674 675 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 676 * Currently only valid for linked-list and rbtree nodes. If the nodes 677 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 678 */ 679 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 680 681 /* DYNPTR points to sk_buff */ 682 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 683 684 /* DYNPTR points to xdp_buff */ 685 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 686 687 __BPF_TYPE_FLAG_MAX, 688 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 689 }; 690 691 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 692 | DYNPTR_TYPE_XDP) 693 694 /* Max number of base types. */ 695 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 696 697 /* Max number of all types. */ 698 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 699 700 /* function argument constraints */ 701 enum bpf_arg_type { 702 ARG_DONTCARE = 0, /* unused argument in helper function */ 703 704 /* the following constraints used to prototype 705 * bpf_map_lookup/update/delete_elem() functions 706 */ 707 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 708 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 709 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 710 711 /* Used to prototype bpf_memcmp() and other functions that access data 712 * on eBPF program stack 713 */ 714 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 715 ARG_PTR_TO_ARENA, 716 717 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 718 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 719 720 ARG_PTR_TO_CTX, /* pointer to context */ 721 ARG_ANYTHING, /* any (initialized) argument is ok */ 722 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 723 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 724 ARG_PTR_TO_INT, /* pointer to int */ 725 ARG_PTR_TO_LONG, /* pointer to long */ 726 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 727 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 728 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 729 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 730 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 731 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 732 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 733 ARG_PTR_TO_STACK, /* pointer to stack */ 734 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 735 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 736 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 737 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 738 __BPF_ARG_TYPE_MAX, 739 740 /* Extended arg_types. */ 741 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 742 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 743 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 744 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 745 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 746 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 747 /* pointer to memory does not need to be initialized, helper function must fill 748 * all bytes or clear them in error case. 749 */ 750 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 751 /* Pointer to valid memory of size known at compile time. */ 752 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 753 754 /* This must be the last entry. Its purpose is to ensure the enum is 755 * wide enough to hold the higher bits reserved for bpf_type_flag. 756 */ 757 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 758 }; 759 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 760 761 /* type of values returned from helper functions */ 762 enum bpf_return_type { 763 RET_INTEGER, /* function returns integer */ 764 RET_VOID, /* function doesn't return anything */ 765 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 766 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 767 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 768 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 769 RET_PTR_TO_MEM, /* returns a pointer to memory */ 770 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 771 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 772 __BPF_RET_TYPE_MAX, 773 774 /* Extended ret_types. */ 775 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 776 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 777 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 778 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 779 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 780 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 781 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 782 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 783 784 /* This must be the last entry. Its purpose is to ensure the enum is 785 * wide enough to hold the higher bits reserved for bpf_type_flag. 786 */ 787 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 788 }; 789 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 790 791 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 792 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 793 * instructions after verifying 794 */ 795 struct bpf_func_proto { 796 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 797 bool gpl_only; 798 bool pkt_access; 799 bool might_sleep; 800 enum bpf_return_type ret_type; 801 union { 802 struct { 803 enum bpf_arg_type arg1_type; 804 enum bpf_arg_type arg2_type; 805 enum bpf_arg_type arg3_type; 806 enum bpf_arg_type arg4_type; 807 enum bpf_arg_type arg5_type; 808 }; 809 enum bpf_arg_type arg_type[5]; 810 }; 811 union { 812 struct { 813 u32 *arg1_btf_id; 814 u32 *arg2_btf_id; 815 u32 *arg3_btf_id; 816 u32 *arg4_btf_id; 817 u32 *arg5_btf_id; 818 }; 819 u32 *arg_btf_id[5]; 820 struct { 821 size_t arg1_size; 822 size_t arg2_size; 823 size_t arg3_size; 824 size_t arg4_size; 825 size_t arg5_size; 826 }; 827 size_t arg_size[5]; 828 }; 829 int *ret_btf_id; /* return value btf_id */ 830 bool (*allowed)(const struct bpf_prog *prog); 831 }; 832 833 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 834 * the first argument to eBPF programs. 835 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 836 */ 837 struct bpf_context; 838 839 enum bpf_access_type { 840 BPF_READ = 1, 841 BPF_WRITE = 2 842 }; 843 844 /* types of values stored in eBPF registers */ 845 /* Pointer types represent: 846 * pointer 847 * pointer + imm 848 * pointer + (u16) var 849 * pointer + (u16) var + imm 850 * if (range > 0) then [ptr, ptr + range - off) is safe to access 851 * if (id > 0) means that some 'var' was added 852 * if (off > 0) means that 'imm' was added 853 */ 854 enum bpf_reg_type { 855 NOT_INIT = 0, /* nothing was written into register */ 856 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 857 PTR_TO_CTX, /* reg points to bpf_context */ 858 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 859 PTR_TO_MAP_VALUE, /* reg points to map element value */ 860 PTR_TO_MAP_KEY, /* reg points to a map element key */ 861 PTR_TO_STACK, /* reg == frame_pointer + offset */ 862 PTR_TO_PACKET_META, /* skb->data - meta_len */ 863 PTR_TO_PACKET, /* reg points to skb->data */ 864 PTR_TO_PACKET_END, /* skb->data + headlen */ 865 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 866 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 867 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 868 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 869 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 870 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 871 /* PTR_TO_BTF_ID points to a kernel struct that does not need 872 * to be null checked by the BPF program. This does not imply the 873 * pointer is _not_ null and in practice this can easily be a null 874 * pointer when reading pointer chains. The assumption is program 875 * context will handle null pointer dereference typically via fault 876 * handling. The verifier must keep this in mind and can make no 877 * assumptions about null or non-null when doing branch analysis. 878 * Further, when passed into helpers the helpers can not, without 879 * additional context, assume the value is non-null. 880 */ 881 PTR_TO_BTF_ID, 882 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 883 * been checked for null. Used primarily to inform the verifier 884 * an explicit null check is required for this struct. 885 */ 886 PTR_TO_MEM, /* reg points to valid memory region */ 887 PTR_TO_ARENA, 888 PTR_TO_BUF, /* reg points to a read/write buffer */ 889 PTR_TO_FUNC, /* reg points to a bpf program function */ 890 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 891 __BPF_REG_TYPE_MAX, 892 893 /* Extended reg_types. */ 894 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 895 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 896 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 897 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 898 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 899 900 /* This must be the last entry. Its purpose is to ensure the enum is 901 * wide enough to hold the higher bits reserved for bpf_type_flag. 902 */ 903 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 904 }; 905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 906 907 /* The information passed from prog-specific *_is_valid_access 908 * back to the verifier. 909 */ 910 struct bpf_insn_access_aux { 911 enum bpf_reg_type reg_type; 912 union { 913 int ctx_field_size; 914 struct { 915 struct btf *btf; 916 u32 btf_id; 917 }; 918 }; 919 struct bpf_verifier_log *log; /* for verbose logs */ 920 }; 921 922 static inline void 923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 924 { 925 aux->ctx_field_size = size; 926 } 927 928 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 929 { 930 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 931 } 932 933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 934 { 935 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 936 } 937 938 struct bpf_prog_ops { 939 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 940 union bpf_attr __user *uattr); 941 }; 942 943 struct bpf_reg_state; 944 struct bpf_verifier_ops { 945 /* return eBPF function prototype for verification */ 946 const struct bpf_func_proto * 947 (*get_func_proto)(enum bpf_func_id func_id, 948 const struct bpf_prog *prog); 949 950 /* return true if 'size' wide access at offset 'off' within bpf_context 951 * with 'type' (read or write) is allowed 952 */ 953 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 954 const struct bpf_prog *prog, 955 struct bpf_insn_access_aux *info); 956 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 957 const struct bpf_prog *prog); 958 int (*gen_ld_abs)(const struct bpf_insn *orig, 959 struct bpf_insn *insn_buf); 960 u32 (*convert_ctx_access)(enum bpf_access_type type, 961 const struct bpf_insn *src, 962 struct bpf_insn *dst, 963 struct bpf_prog *prog, u32 *target_size); 964 int (*btf_struct_access)(struct bpf_verifier_log *log, 965 const struct bpf_reg_state *reg, 966 int off, int size); 967 }; 968 969 struct bpf_prog_offload_ops { 970 /* verifier basic callbacks */ 971 int (*insn_hook)(struct bpf_verifier_env *env, 972 int insn_idx, int prev_insn_idx); 973 int (*finalize)(struct bpf_verifier_env *env); 974 /* verifier optimization callbacks (called after .finalize) */ 975 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 976 struct bpf_insn *insn); 977 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 978 /* program management callbacks */ 979 int (*prepare)(struct bpf_prog *prog); 980 int (*translate)(struct bpf_prog *prog); 981 void (*destroy)(struct bpf_prog *prog); 982 }; 983 984 struct bpf_prog_offload { 985 struct bpf_prog *prog; 986 struct net_device *netdev; 987 struct bpf_offload_dev *offdev; 988 void *dev_priv; 989 struct list_head offloads; 990 bool dev_state; 991 bool opt_failed; 992 void *jited_image; 993 u32 jited_len; 994 }; 995 996 enum bpf_cgroup_storage_type { 997 BPF_CGROUP_STORAGE_SHARED, 998 BPF_CGROUP_STORAGE_PERCPU, 999 __BPF_CGROUP_STORAGE_MAX 1000 }; 1001 1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1003 1004 /* The longest tracepoint has 12 args. 1005 * See include/trace/bpf_probe.h 1006 */ 1007 #define MAX_BPF_FUNC_ARGS 12 1008 1009 /* The maximum number of arguments passed through registers 1010 * a single function may have. 1011 */ 1012 #define MAX_BPF_FUNC_REG_ARGS 5 1013 1014 /* The argument is a structure. */ 1015 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1016 1017 /* The argument is signed. */ 1018 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1019 1020 struct btf_func_model { 1021 u8 ret_size; 1022 u8 ret_flags; 1023 u8 nr_args; 1024 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1025 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1026 }; 1027 1028 /* Restore arguments before returning from trampoline to let original function 1029 * continue executing. This flag is used for fentry progs when there are no 1030 * fexit progs. 1031 */ 1032 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1033 /* Call original function after fentry progs, but before fexit progs. 1034 * Makes sense for fentry/fexit, normal calls and indirect calls. 1035 */ 1036 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1037 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1038 * programs only. Should not be used with normal calls and indirect calls. 1039 */ 1040 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1041 /* Store IP address of the caller on the trampoline stack, 1042 * so it's available for trampoline's programs. 1043 */ 1044 #define BPF_TRAMP_F_IP_ARG BIT(3) 1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1046 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1047 1048 /* Get original function from stack instead of from provided direct address. 1049 * Makes sense for trampolines with fexit or fmod_ret programs. 1050 */ 1051 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1052 1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1054 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1055 */ 1056 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1057 1058 /* Indicate that current trampoline is in a tail call context. Then, it has to 1059 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1060 */ 1061 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1062 1063 /* 1064 * Indicate the trampoline should be suitable to receive indirect calls; 1065 * without this indirectly calling the generated code can result in #UD/#CP, 1066 * depending on the CFI options. 1067 * 1068 * Used by bpf_struct_ops. 1069 * 1070 * Incompatible with FENTRY usage, overloads @func_addr argument. 1071 */ 1072 #define BPF_TRAMP_F_INDIRECT BIT(8) 1073 1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1075 * bytes on x86. 1076 */ 1077 enum { 1078 #if defined(__s390x__) 1079 BPF_MAX_TRAMP_LINKS = 27, 1080 #else 1081 BPF_MAX_TRAMP_LINKS = 38, 1082 #endif 1083 }; 1084 1085 struct bpf_tramp_links { 1086 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1087 int nr_links; 1088 }; 1089 1090 struct bpf_tramp_run_ctx; 1091 1092 /* Different use cases for BPF trampoline: 1093 * 1. replace nop at the function entry (kprobe equivalent) 1094 * flags = BPF_TRAMP_F_RESTORE_REGS 1095 * fentry = a set of programs to run before returning from trampoline 1096 * 1097 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1098 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1099 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1100 * fentry = a set of program to run before calling original function 1101 * fexit = a set of program to run after original function 1102 * 1103 * 3. replace direct call instruction anywhere in the function body 1104 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1105 * With flags = 0 1106 * fentry = a set of programs to run before returning from trampoline 1107 * With flags = BPF_TRAMP_F_CALL_ORIG 1108 * orig_call = original callback addr or direct function addr 1109 * fentry = a set of program to run before calling original function 1110 * fexit = a set of program to run after original function 1111 */ 1112 struct bpf_tramp_image; 1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1114 const struct btf_func_model *m, u32 flags, 1115 struct bpf_tramp_links *tlinks, 1116 void *func_addr); 1117 void *arch_alloc_bpf_trampoline(unsigned int size); 1118 void arch_free_bpf_trampoline(void *image, unsigned int size); 1119 void arch_protect_bpf_trampoline(void *image, unsigned int size); 1120 void arch_unprotect_bpf_trampoline(void *image, unsigned int size); 1121 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1122 struct bpf_tramp_links *tlinks, void *func_addr); 1123 1124 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1125 struct bpf_tramp_run_ctx *run_ctx); 1126 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1127 struct bpf_tramp_run_ctx *run_ctx); 1128 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1129 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1130 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1131 struct bpf_tramp_run_ctx *run_ctx); 1132 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1133 struct bpf_tramp_run_ctx *run_ctx); 1134 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1135 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1136 1137 struct bpf_ksym { 1138 unsigned long start; 1139 unsigned long end; 1140 char name[KSYM_NAME_LEN]; 1141 struct list_head lnode; 1142 struct latch_tree_node tnode; 1143 bool prog; 1144 }; 1145 1146 enum bpf_tramp_prog_type { 1147 BPF_TRAMP_FENTRY, 1148 BPF_TRAMP_FEXIT, 1149 BPF_TRAMP_MODIFY_RETURN, 1150 BPF_TRAMP_MAX, 1151 BPF_TRAMP_REPLACE, /* more than MAX */ 1152 }; 1153 1154 struct bpf_tramp_image { 1155 void *image; 1156 int size; 1157 struct bpf_ksym ksym; 1158 struct percpu_ref pcref; 1159 void *ip_after_call; 1160 void *ip_epilogue; 1161 union { 1162 struct rcu_head rcu; 1163 struct work_struct work; 1164 }; 1165 }; 1166 1167 struct bpf_trampoline { 1168 /* hlist for trampoline_table */ 1169 struct hlist_node hlist; 1170 struct ftrace_ops *fops; 1171 /* serializes access to fields of this trampoline */ 1172 struct mutex mutex; 1173 refcount_t refcnt; 1174 u32 flags; 1175 u64 key; 1176 struct { 1177 struct btf_func_model model; 1178 void *addr; 1179 bool ftrace_managed; 1180 } func; 1181 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1182 * program by replacing one of its functions. func.addr is the address 1183 * of the function it replaced. 1184 */ 1185 struct bpf_prog *extension_prog; 1186 /* list of BPF programs using this trampoline */ 1187 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1188 /* Number of attached programs. A counter per kind. */ 1189 int progs_cnt[BPF_TRAMP_MAX]; 1190 /* Executable image of trampoline */ 1191 struct bpf_tramp_image *cur_image; 1192 }; 1193 1194 struct bpf_attach_target_info { 1195 struct btf_func_model fmodel; 1196 long tgt_addr; 1197 struct module *tgt_mod; 1198 const char *tgt_name; 1199 const struct btf_type *tgt_type; 1200 }; 1201 1202 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1203 1204 struct bpf_dispatcher_prog { 1205 struct bpf_prog *prog; 1206 refcount_t users; 1207 }; 1208 1209 struct bpf_dispatcher { 1210 /* dispatcher mutex */ 1211 struct mutex mutex; 1212 void *func; 1213 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1214 int num_progs; 1215 void *image; 1216 void *rw_image; 1217 u32 image_off; 1218 struct bpf_ksym ksym; 1219 #ifdef CONFIG_HAVE_STATIC_CALL 1220 struct static_call_key *sc_key; 1221 void *sc_tramp; 1222 #endif 1223 }; 1224 1225 #ifndef __bpfcall 1226 #define __bpfcall __nocfi 1227 #endif 1228 1229 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1230 const void *ctx, 1231 const struct bpf_insn *insnsi, 1232 bpf_func_t bpf_func) 1233 { 1234 return bpf_func(ctx, insnsi); 1235 } 1236 1237 /* the implementation of the opaque uapi struct bpf_dynptr */ 1238 struct bpf_dynptr_kern { 1239 void *data; 1240 /* Size represents the number of usable bytes of dynptr data. 1241 * If for example the offset is at 4 for a local dynptr whose data is 1242 * of type u64, the number of usable bytes is 4. 1243 * 1244 * The upper 8 bits are reserved. It is as follows: 1245 * Bits 0 - 23 = size 1246 * Bits 24 - 30 = dynptr type 1247 * Bit 31 = whether dynptr is read-only 1248 */ 1249 u32 size; 1250 u32 offset; 1251 } __aligned(8); 1252 1253 enum bpf_dynptr_type { 1254 BPF_DYNPTR_TYPE_INVALID, 1255 /* Points to memory that is local to the bpf program */ 1256 BPF_DYNPTR_TYPE_LOCAL, 1257 /* Underlying data is a ringbuf record */ 1258 BPF_DYNPTR_TYPE_RINGBUF, 1259 /* Underlying data is a sk_buff */ 1260 BPF_DYNPTR_TYPE_SKB, 1261 /* Underlying data is a xdp_buff */ 1262 BPF_DYNPTR_TYPE_XDP, 1263 }; 1264 1265 int bpf_dynptr_check_size(u32 size); 1266 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1267 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1268 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1269 1270 #ifdef CONFIG_BPF_JIT 1271 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1272 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1273 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1274 struct bpf_attach_target_info *tgt_info); 1275 void bpf_trampoline_put(struct bpf_trampoline *tr); 1276 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1277 1278 /* 1279 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1280 * indirection with a direct call to the bpf program. If the architecture does 1281 * not have STATIC_CALL, avoid a double-indirection. 1282 */ 1283 #ifdef CONFIG_HAVE_STATIC_CALL 1284 1285 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1286 .sc_key = &STATIC_CALL_KEY(_name), \ 1287 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1288 1289 #define __BPF_DISPATCHER_SC(name) \ 1290 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1291 1292 #define __BPF_DISPATCHER_CALL(name) \ 1293 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1294 1295 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1296 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1297 1298 #else 1299 #define __BPF_DISPATCHER_SC_INIT(name) 1300 #define __BPF_DISPATCHER_SC(name) 1301 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1302 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1303 #endif 1304 1305 #define BPF_DISPATCHER_INIT(_name) { \ 1306 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1307 .func = &_name##_func, \ 1308 .progs = {}, \ 1309 .num_progs = 0, \ 1310 .image = NULL, \ 1311 .image_off = 0, \ 1312 .ksym = { \ 1313 .name = #_name, \ 1314 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1315 }, \ 1316 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1317 } 1318 1319 #define DEFINE_BPF_DISPATCHER(name) \ 1320 __BPF_DISPATCHER_SC(name); \ 1321 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1322 const void *ctx, \ 1323 const struct bpf_insn *insnsi, \ 1324 bpf_func_t bpf_func) \ 1325 { \ 1326 return __BPF_DISPATCHER_CALL(name); \ 1327 } \ 1328 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1329 struct bpf_dispatcher bpf_dispatcher_##name = \ 1330 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1331 1332 #define DECLARE_BPF_DISPATCHER(name) \ 1333 unsigned int bpf_dispatcher_##name##_func( \ 1334 const void *ctx, \ 1335 const struct bpf_insn *insnsi, \ 1336 bpf_func_t bpf_func); \ 1337 extern struct bpf_dispatcher bpf_dispatcher_##name; 1338 1339 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1340 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1341 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1342 struct bpf_prog *to); 1343 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1344 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1345 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1346 void bpf_ksym_add(struct bpf_ksym *ksym); 1347 void bpf_ksym_del(struct bpf_ksym *ksym); 1348 int bpf_jit_charge_modmem(u32 size); 1349 void bpf_jit_uncharge_modmem(u32 size); 1350 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1351 #else 1352 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1353 struct bpf_trampoline *tr) 1354 { 1355 return -ENOTSUPP; 1356 } 1357 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1358 struct bpf_trampoline *tr) 1359 { 1360 return -ENOTSUPP; 1361 } 1362 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1363 struct bpf_attach_target_info *tgt_info) 1364 { 1365 return NULL; 1366 } 1367 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1368 #define DEFINE_BPF_DISPATCHER(name) 1369 #define DECLARE_BPF_DISPATCHER(name) 1370 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1371 #define BPF_DISPATCHER_PTR(name) NULL 1372 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1373 struct bpf_prog *from, 1374 struct bpf_prog *to) {} 1375 static inline bool is_bpf_image_address(unsigned long address) 1376 { 1377 return false; 1378 } 1379 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1380 { 1381 return false; 1382 } 1383 #endif 1384 1385 struct bpf_func_info_aux { 1386 u16 linkage; 1387 bool unreliable; 1388 bool called : 1; 1389 bool verified : 1; 1390 }; 1391 1392 enum bpf_jit_poke_reason { 1393 BPF_POKE_REASON_TAIL_CALL, 1394 }; 1395 1396 /* Descriptor of pokes pointing /into/ the JITed image. */ 1397 struct bpf_jit_poke_descriptor { 1398 void *tailcall_target; 1399 void *tailcall_bypass; 1400 void *bypass_addr; 1401 void *aux; 1402 union { 1403 struct { 1404 struct bpf_map *map; 1405 u32 key; 1406 } tail_call; 1407 }; 1408 bool tailcall_target_stable; 1409 u8 adj_off; 1410 u16 reason; 1411 u32 insn_idx; 1412 }; 1413 1414 /* reg_type info for ctx arguments */ 1415 struct bpf_ctx_arg_aux { 1416 u32 offset; 1417 enum bpf_reg_type reg_type; 1418 struct btf *btf; 1419 u32 btf_id; 1420 }; 1421 1422 struct btf_mod_pair { 1423 struct btf *btf; 1424 struct module *module; 1425 }; 1426 1427 struct bpf_kfunc_desc_tab; 1428 1429 struct bpf_prog_aux { 1430 atomic64_t refcnt; 1431 u32 used_map_cnt; 1432 u32 used_btf_cnt; 1433 u32 max_ctx_offset; 1434 u32 max_pkt_offset; 1435 u32 max_tp_access; 1436 u32 stack_depth; 1437 u32 id; 1438 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1439 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1440 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1441 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1442 u32 ctx_arg_info_size; 1443 u32 max_rdonly_access; 1444 u32 max_rdwr_access; 1445 struct btf *attach_btf; 1446 const struct bpf_ctx_arg_aux *ctx_arg_info; 1447 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1448 struct bpf_prog *dst_prog; 1449 struct bpf_trampoline *dst_trampoline; 1450 enum bpf_prog_type saved_dst_prog_type; 1451 enum bpf_attach_type saved_dst_attach_type; 1452 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1453 bool dev_bound; /* Program is bound to the netdev. */ 1454 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1455 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1456 bool attach_tracing_prog; /* true if tracing another tracing program */ 1457 bool func_proto_unreliable; 1458 bool tail_call_reachable; 1459 bool xdp_has_frags; 1460 bool exception_cb; 1461 bool exception_boundary; 1462 struct bpf_arena *arena; 1463 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1464 const struct btf_type *attach_func_proto; 1465 /* function name for valid attach_btf_id */ 1466 const char *attach_func_name; 1467 struct bpf_prog **func; 1468 void *jit_data; /* JIT specific data. arch dependent */ 1469 struct bpf_jit_poke_descriptor *poke_tab; 1470 struct bpf_kfunc_desc_tab *kfunc_tab; 1471 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1472 u32 size_poke_tab; 1473 #ifdef CONFIG_FINEIBT 1474 struct bpf_ksym ksym_prefix; 1475 #endif 1476 struct bpf_ksym ksym; 1477 const struct bpf_prog_ops *ops; 1478 struct bpf_map **used_maps; 1479 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1480 struct btf_mod_pair *used_btfs; 1481 struct bpf_prog *prog; 1482 struct user_struct *user; 1483 u64 load_time; /* ns since boottime */ 1484 u32 verified_insns; 1485 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1486 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1487 char name[BPF_OBJ_NAME_LEN]; 1488 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1489 #ifdef CONFIG_SECURITY 1490 void *security; 1491 #endif 1492 struct bpf_token *token; 1493 struct bpf_prog_offload *offload; 1494 struct btf *btf; 1495 struct bpf_func_info *func_info; 1496 struct bpf_func_info_aux *func_info_aux; 1497 /* bpf_line_info loaded from userspace. linfo->insn_off 1498 * has the xlated insn offset. 1499 * Both the main and sub prog share the same linfo. 1500 * The subprog can access its first linfo by 1501 * using the linfo_idx. 1502 */ 1503 struct bpf_line_info *linfo; 1504 /* jited_linfo is the jited addr of the linfo. It has a 1505 * one to one mapping to linfo: 1506 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1507 * Both the main and sub prog share the same jited_linfo. 1508 * The subprog can access its first jited_linfo by 1509 * using the linfo_idx. 1510 */ 1511 void **jited_linfo; 1512 u32 func_info_cnt; 1513 u32 nr_linfo; 1514 /* subprog can use linfo_idx to access its first linfo and 1515 * jited_linfo. 1516 * main prog always has linfo_idx == 0 1517 */ 1518 u32 linfo_idx; 1519 struct module *mod; 1520 u32 num_exentries; 1521 struct exception_table_entry *extable; 1522 union { 1523 struct work_struct work; 1524 struct rcu_head rcu; 1525 }; 1526 }; 1527 1528 struct bpf_prog { 1529 u16 pages; /* Number of allocated pages */ 1530 u16 jited:1, /* Is our filter JIT'ed? */ 1531 jit_requested:1,/* archs need to JIT the prog */ 1532 gpl_compatible:1, /* Is filter GPL compatible? */ 1533 cb_access:1, /* Is control block accessed? */ 1534 dst_needed:1, /* Do we need dst entry? */ 1535 blinding_requested:1, /* needs constant blinding */ 1536 blinded:1, /* Was blinded */ 1537 is_func:1, /* program is a bpf function */ 1538 kprobe_override:1, /* Do we override a kprobe? */ 1539 has_callchain_buf:1, /* callchain buffer allocated? */ 1540 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1541 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1542 call_get_func_ip:1, /* Do we call get_func_ip() */ 1543 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1544 sleepable:1; /* BPF program is sleepable */ 1545 enum bpf_prog_type type; /* Type of BPF program */ 1546 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1547 u32 len; /* Number of filter blocks */ 1548 u32 jited_len; /* Size of jited insns in bytes */ 1549 u8 tag[BPF_TAG_SIZE]; 1550 struct bpf_prog_stats __percpu *stats; 1551 int __percpu *active; 1552 unsigned int (*bpf_func)(const void *ctx, 1553 const struct bpf_insn *insn); 1554 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1555 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1556 /* Instructions for interpreter */ 1557 union { 1558 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1559 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1560 }; 1561 }; 1562 1563 struct bpf_array_aux { 1564 /* Programs with direct jumps into programs part of this array. */ 1565 struct list_head poke_progs; 1566 struct bpf_map *map; 1567 struct mutex poke_mutex; 1568 struct work_struct work; 1569 }; 1570 1571 struct bpf_link { 1572 atomic64_t refcnt; 1573 u32 id; 1574 enum bpf_link_type type; 1575 const struct bpf_link_ops *ops; 1576 struct bpf_prog *prog; 1577 struct work_struct work; 1578 }; 1579 1580 struct bpf_link_ops { 1581 void (*release)(struct bpf_link *link); 1582 void (*dealloc)(struct bpf_link *link); 1583 int (*detach)(struct bpf_link *link); 1584 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1585 struct bpf_prog *old_prog); 1586 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1587 int (*fill_link_info)(const struct bpf_link *link, 1588 struct bpf_link_info *info); 1589 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1590 struct bpf_map *old_map); 1591 }; 1592 1593 struct bpf_tramp_link { 1594 struct bpf_link link; 1595 struct hlist_node tramp_hlist; 1596 u64 cookie; 1597 }; 1598 1599 struct bpf_shim_tramp_link { 1600 struct bpf_tramp_link link; 1601 struct bpf_trampoline *trampoline; 1602 }; 1603 1604 struct bpf_tracing_link { 1605 struct bpf_tramp_link link; 1606 enum bpf_attach_type attach_type; 1607 struct bpf_trampoline *trampoline; 1608 struct bpf_prog *tgt_prog; 1609 }; 1610 1611 struct bpf_link_primer { 1612 struct bpf_link *link; 1613 struct file *file; 1614 int fd; 1615 u32 id; 1616 }; 1617 1618 struct bpf_mount_opts { 1619 kuid_t uid; 1620 kgid_t gid; 1621 umode_t mode; 1622 1623 /* BPF token-related delegation options */ 1624 u64 delegate_cmds; 1625 u64 delegate_maps; 1626 u64 delegate_progs; 1627 u64 delegate_attachs; 1628 }; 1629 1630 struct bpf_token { 1631 struct work_struct work; 1632 atomic64_t refcnt; 1633 struct user_namespace *userns; 1634 u64 allowed_cmds; 1635 u64 allowed_maps; 1636 u64 allowed_progs; 1637 u64 allowed_attachs; 1638 #ifdef CONFIG_SECURITY 1639 void *security; 1640 #endif 1641 }; 1642 1643 struct bpf_struct_ops_value; 1644 struct btf_member; 1645 1646 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1647 /** 1648 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1649 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1650 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1651 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1652 * when determining whether the struct_ops progs in the 1653 * struct_ops map are valid. 1654 * @init: A callback that is invoked a single time, and before any other 1655 * callback, to initialize the structure. A nonzero return value means 1656 * the subsystem could not be initialized. 1657 * @check_member: When defined, a callback invoked by the verifier to allow 1658 * the subsystem to determine if an entry in the struct_ops map 1659 * is valid. A nonzero return value means that the map is 1660 * invalid and should be rejected by the verifier. 1661 * @init_member: A callback that is invoked for each member of the struct_ops 1662 * map to allow the subsystem to initialize the member. A nonzero 1663 * value means the member could not be initialized. This callback 1664 * is exclusive with the @type, @type_id, @value_type, and 1665 * @value_id fields. 1666 * @reg: A callback that is invoked when the struct_ops map has been 1667 * initialized and is being attached to. Zero means the struct_ops map 1668 * has been successfully registered and is live. A nonzero return value 1669 * means the struct_ops map could not be registered. 1670 * @unreg: A callback that is invoked when the struct_ops map should be 1671 * unregistered. 1672 * @update: A callback that is invoked when the live struct_ops map is being 1673 * updated to contain new values. This callback is only invoked when 1674 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1675 * it is assumed that the struct_ops map cannot be updated. 1676 * @validate: A callback that is invoked after all of the members have been 1677 * initialized. This callback should perform static checks on the 1678 * map, meaning that it should either fail or succeed 1679 * deterministically. A struct_ops map that has been validated may 1680 * not necessarily succeed in being registered if the call to @reg 1681 * fails. For example, a valid struct_ops map may be loaded, but 1682 * then fail to be registered due to there being another active 1683 * struct_ops map on the system in the subsystem already. For this 1684 * reason, if this callback is not defined, the check is skipped as 1685 * the struct_ops map will have final verification performed in 1686 * @reg. 1687 * @type: BTF type. 1688 * @value_type: Value type. 1689 * @name: The name of the struct bpf_struct_ops object. 1690 * @func_models: Func models 1691 * @type_id: BTF type id. 1692 * @value_id: BTF value id. 1693 */ 1694 struct bpf_struct_ops { 1695 const struct bpf_verifier_ops *verifier_ops; 1696 int (*init)(struct btf *btf); 1697 int (*check_member)(const struct btf_type *t, 1698 const struct btf_member *member, 1699 const struct bpf_prog *prog); 1700 int (*init_member)(const struct btf_type *t, 1701 const struct btf_member *member, 1702 void *kdata, const void *udata); 1703 int (*reg)(void *kdata); 1704 void (*unreg)(void *kdata); 1705 int (*update)(void *kdata, void *old_kdata); 1706 int (*validate)(void *kdata); 1707 void *cfi_stubs; 1708 struct module *owner; 1709 const char *name; 1710 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1711 }; 1712 1713 /* Every member of a struct_ops type has an instance even a member is not 1714 * an operator (function pointer). The "info" field will be assigned to 1715 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1716 * argument information required by the verifier to verify the program. 1717 * 1718 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1719 * corresponding entry for an given argument. 1720 */ 1721 struct bpf_struct_ops_arg_info { 1722 struct bpf_ctx_arg_aux *info; 1723 u32 cnt; 1724 }; 1725 1726 struct bpf_struct_ops_desc { 1727 struct bpf_struct_ops *st_ops; 1728 1729 const struct btf_type *type; 1730 const struct btf_type *value_type; 1731 u32 type_id; 1732 u32 value_id; 1733 1734 /* Collection of argument information for each member */ 1735 struct bpf_struct_ops_arg_info *arg_info; 1736 }; 1737 1738 enum bpf_struct_ops_state { 1739 BPF_STRUCT_OPS_STATE_INIT, 1740 BPF_STRUCT_OPS_STATE_INUSE, 1741 BPF_STRUCT_OPS_STATE_TOBEFREE, 1742 BPF_STRUCT_OPS_STATE_READY, 1743 }; 1744 1745 struct bpf_struct_ops_common_value { 1746 refcount_t refcnt; 1747 enum bpf_struct_ops_state state; 1748 }; 1749 1750 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1751 /* This macro helps developer to register a struct_ops type and generate 1752 * type information correctly. Developers should use this macro to register 1753 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1754 */ 1755 #define register_bpf_struct_ops(st_ops, type) \ 1756 ({ \ 1757 struct bpf_struct_ops_##type { \ 1758 struct bpf_struct_ops_common_value common; \ 1759 struct type data ____cacheline_aligned_in_smp; \ 1760 }; \ 1761 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1762 __register_bpf_struct_ops(st_ops); \ 1763 }) 1764 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1765 bool bpf_struct_ops_get(const void *kdata); 1766 void bpf_struct_ops_put(const void *kdata); 1767 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1768 void *value); 1769 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1770 struct bpf_tramp_link *link, 1771 const struct btf_func_model *model, 1772 void *stub_func, 1773 void **image, u32 *image_off, 1774 bool allow_alloc); 1775 void bpf_struct_ops_image_free(void *image); 1776 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1777 { 1778 if (owner == BPF_MODULE_OWNER) 1779 return bpf_struct_ops_get(data); 1780 else 1781 return try_module_get(owner); 1782 } 1783 static inline void bpf_module_put(const void *data, struct module *owner) 1784 { 1785 if (owner == BPF_MODULE_OWNER) 1786 bpf_struct_ops_put(data); 1787 else 1788 module_put(owner); 1789 } 1790 int bpf_struct_ops_link_create(union bpf_attr *attr); 1791 1792 #ifdef CONFIG_NET 1793 /* Define it here to avoid the use of forward declaration */ 1794 struct bpf_dummy_ops_state { 1795 int val; 1796 }; 1797 1798 struct bpf_dummy_ops { 1799 int (*test_1)(struct bpf_dummy_ops_state *cb); 1800 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1801 char a3, unsigned long a4); 1802 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1803 }; 1804 1805 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1806 union bpf_attr __user *uattr); 1807 #endif 1808 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1809 struct btf *btf, 1810 struct bpf_verifier_log *log); 1811 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1812 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1813 #else 1814 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1815 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1816 { 1817 return try_module_get(owner); 1818 } 1819 static inline void bpf_module_put(const void *data, struct module *owner) 1820 { 1821 module_put(owner); 1822 } 1823 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1824 void *key, 1825 void *value) 1826 { 1827 return -EINVAL; 1828 } 1829 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1830 { 1831 return -EOPNOTSUPP; 1832 } 1833 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1834 { 1835 } 1836 1837 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1838 { 1839 } 1840 1841 #endif 1842 1843 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1844 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1845 int cgroup_atype); 1846 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1847 #else 1848 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1849 int cgroup_atype) 1850 { 1851 return -EOPNOTSUPP; 1852 } 1853 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1854 { 1855 } 1856 #endif 1857 1858 struct bpf_array { 1859 struct bpf_map map; 1860 u32 elem_size; 1861 u32 index_mask; 1862 struct bpf_array_aux *aux; 1863 union { 1864 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1865 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1866 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1867 }; 1868 }; 1869 1870 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1871 #define MAX_TAIL_CALL_CNT 33 1872 1873 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1874 * It's enum to expose it (and thus make it discoverable) through BTF. 1875 */ 1876 enum { 1877 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1878 }; 1879 1880 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1881 BPF_F_RDONLY_PROG | \ 1882 BPF_F_WRONLY | \ 1883 BPF_F_WRONLY_PROG) 1884 1885 #define BPF_MAP_CAN_READ BIT(0) 1886 #define BPF_MAP_CAN_WRITE BIT(1) 1887 1888 /* Maximum number of user-producer ring buffer samples that can be drained in 1889 * a call to bpf_user_ringbuf_drain(). 1890 */ 1891 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1892 1893 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1894 { 1895 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1896 1897 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1898 * not possible. 1899 */ 1900 if (access_flags & BPF_F_RDONLY_PROG) 1901 return BPF_MAP_CAN_READ; 1902 else if (access_flags & BPF_F_WRONLY_PROG) 1903 return BPF_MAP_CAN_WRITE; 1904 else 1905 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1906 } 1907 1908 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1909 { 1910 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1911 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1912 } 1913 1914 struct bpf_event_entry { 1915 struct perf_event *event; 1916 struct file *perf_file; 1917 struct file *map_file; 1918 struct rcu_head rcu; 1919 }; 1920 1921 static inline bool map_type_contains_progs(struct bpf_map *map) 1922 { 1923 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1924 map->map_type == BPF_MAP_TYPE_DEVMAP || 1925 map->map_type == BPF_MAP_TYPE_CPUMAP; 1926 } 1927 1928 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1929 int bpf_prog_calc_tag(struct bpf_prog *fp); 1930 1931 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1932 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1933 1934 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1935 unsigned long off, unsigned long len); 1936 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1937 const struct bpf_insn *src, 1938 struct bpf_insn *dst, 1939 struct bpf_prog *prog, 1940 u32 *target_size); 1941 1942 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1943 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1944 1945 /* an array of programs to be executed under rcu_lock. 1946 * 1947 * Typical usage: 1948 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1949 * 1950 * the structure returned by bpf_prog_array_alloc() should be populated 1951 * with program pointers and the last pointer must be NULL. 1952 * The user has to keep refcnt on the program and make sure the program 1953 * is removed from the array before bpf_prog_put(). 1954 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1955 * since other cpus are walking the array of pointers in parallel. 1956 */ 1957 struct bpf_prog_array_item { 1958 struct bpf_prog *prog; 1959 union { 1960 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1961 u64 bpf_cookie; 1962 }; 1963 }; 1964 1965 struct bpf_prog_array { 1966 struct rcu_head rcu; 1967 struct bpf_prog_array_item items[]; 1968 }; 1969 1970 struct bpf_empty_prog_array { 1971 struct bpf_prog_array hdr; 1972 struct bpf_prog *null_prog; 1973 }; 1974 1975 /* to avoid allocating empty bpf_prog_array for cgroups that 1976 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1977 * It will not be modified the caller of bpf_prog_array_alloc() 1978 * (since caller requested prog_cnt == 0) 1979 * that pointer should be 'freed' by bpf_prog_array_free() 1980 */ 1981 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1982 1983 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1984 void bpf_prog_array_free(struct bpf_prog_array *progs); 1985 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1986 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1987 int bpf_prog_array_length(struct bpf_prog_array *progs); 1988 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1989 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1990 __u32 __user *prog_ids, u32 cnt); 1991 1992 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1993 struct bpf_prog *old_prog); 1994 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1995 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1996 struct bpf_prog *prog); 1997 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1998 u32 *prog_ids, u32 request_cnt, 1999 u32 *prog_cnt); 2000 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2001 struct bpf_prog *exclude_prog, 2002 struct bpf_prog *include_prog, 2003 u64 bpf_cookie, 2004 struct bpf_prog_array **new_array); 2005 2006 struct bpf_run_ctx {}; 2007 2008 struct bpf_cg_run_ctx { 2009 struct bpf_run_ctx run_ctx; 2010 const struct bpf_prog_array_item *prog_item; 2011 int retval; 2012 }; 2013 2014 struct bpf_trace_run_ctx { 2015 struct bpf_run_ctx run_ctx; 2016 u64 bpf_cookie; 2017 bool is_uprobe; 2018 }; 2019 2020 struct bpf_tramp_run_ctx { 2021 struct bpf_run_ctx run_ctx; 2022 u64 bpf_cookie; 2023 struct bpf_run_ctx *saved_run_ctx; 2024 }; 2025 2026 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2027 { 2028 struct bpf_run_ctx *old_ctx = NULL; 2029 2030 #ifdef CONFIG_BPF_SYSCALL 2031 old_ctx = current->bpf_ctx; 2032 current->bpf_ctx = new_ctx; 2033 #endif 2034 return old_ctx; 2035 } 2036 2037 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2038 { 2039 #ifdef CONFIG_BPF_SYSCALL 2040 current->bpf_ctx = old_ctx; 2041 #endif 2042 } 2043 2044 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2045 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2046 /* BPF program asks to set CN on the packet. */ 2047 #define BPF_RET_SET_CN (1 << 0) 2048 2049 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2050 2051 static __always_inline u32 2052 bpf_prog_run_array(const struct bpf_prog_array *array, 2053 const void *ctx, bpf_prog_run_fn run_prog) 2054 { 2055 const struct bpf_prog_array_item *item; 2056 const struct bpf_prog *prog; 2057 struct bpf_run_ctx *old_run_ctx; 2058 struct bpf_trace_run_ctx run_ctx; 2059 u32 ret = 1; 2060 2061 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2062 2063 if (unlikely(!array)) 2064 return ret; 2065 2066 run_ctx.is_uprobe = false; 2067 2068 migrate_disable(); 2069 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2070 item = &array->items[0]; 2071 while ((prog = READ_ONCE(item->prog))) { 2072 run_ctx.bpf_cookie = item->bpf_cookie; 2073 ret &= run_prog(prog, ctx); 2074 item++; 2075 } 2076 bpf_reset_run_ctx(old_run_ctx); 2077 migrate_enable(); 2078 return ret; 2079 } 2080 2081 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2082 * 2083 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2084 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2085 * in order to use the tasks_trace rcu grace period. 2086 * 2087 * When a non-sleepable program is inside the array, we take the rcu read 2088 * section and disable preemption for that program alone, so it can access 2089 * rcu-protected dynamically sized maps. 2090 */ 2091 static __always_inline u32 2092 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2093 const void *ctx, bpf_prog_run_fn run_prog) 2094 { 2095 const struct bpf_prog_array_item *item; 2096 const struct bpf_prog *prog; 2097 const struct bpf_prog_array *array; 2098 struct bpf_run_ctx *old_run_ctx; 2099 struct bpf_trace_run_ctx run_ctx; 2100 u32 ret = 1; 2101 2102 might_fault(); 2103 2104 rcu_read_lock_trace(); 2105 migrate_disable(); 2106 2107 run_ctx.is_uprobe = true; 2108 2109 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2110 if (unlikely(!array)) 2111 goto out; 2112 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2113 item = &array->items[0]; 2114 while ((prog = READ_ONCE(item->prog))) { 2115 if (!prog->sleepable) 2116 rcu_read_lock(); 2117 2118 run_ctx.bpf_cookie = item->bpf_cookie; 2119 ret &= run_prog(prog, ctx); 2120 item++; 2121 2122 if (!prog->sleepable) 2123 rcu_read_unlock(); 2124 } 2125 bpf_reset_run_ctx(old_run_ctx); 2126 out: 2127 migrate_enable(); 2128 rcu_read_unlock_trace(); 2129 return ret; 2130 } 2131 2132 #ifdef CONFIG_BPF_SYSCALL 2133 DECLARE_PER_CPU(int, bpf_prog_active); 2134 extern struct mutex bpf_stats_enabled_mutex; 2135 2136 /* 2137 * Block execution of BPF programs attached to instrumentation (perf, 2138 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2139 * these events can happen inside a region which holds a map bucket lock 2140 * and can deadlock on it. 2141 */ 2142 static inline void bpf_disable_instrumentation(void) 2143 { 2144 migrate_disable(); 2145 this_cpu_inc(bpf_prog_active); 2146 } 2147 2148 static inline void bpf_enable_instrumentation(void) 2149 { 2150 this_cpu_dec(bpf_prog_active); 2151 migrate_enable(); 2152 } 2153 2154 extern const struct super_operations bpf_super_ops; 2155 extern const struct file_operations bpf_map_fops; 2156 extern const struct file_operations bpf_prog_fops; 2157 extern const struct file_operations bpf_iter_fops; 2158 2159 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2160 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2161 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2162 #define BPF_MAP_TYPE(_id, _ops) \ 2163 extern const struct bpf_map_ops _ops; 2164 #define BPF_LINK_TYPE(_id, _name) 2165 #include <linux/bpf_types.h> 2166 #undef BPF_PROG_TYPE 2167 #undef BPF_MAP_TYPE 2168 #undef BPF_LINK_TYPE 2169 2170 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2171 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2172 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2173 2174 struct bpf_prog *bpf_prog_get(u32 ufd); 2175 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2176 bool attach_drv); 2177 void bpf_prog_add(struct bpf_prog *prog, int i); 2178 void bpf_prog_sub(struct bpf_prog *prog, int i); 2179 void bpf_prog_inc(struct bpf_prog *prog); 2180 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2181 void bpf_prog_put(struct bpf_prog *prog); 2182 2183 void bpf_prog_free_id(struct bpf_prog *prog); 2184 void bpf_map_free_id(struct bpf_map *map); 2185 2186 struct btf_field *btf_record_find(const struct btf_record *rec, 2187 u32 offset, u32 field_mask); 2188 void btf_record_free(struct btf_record *rec); 2189 void bpf_map_free_record(struct bpf_map *map); 2190 struct btf_record *btf_record_dup(const struct btf_record *rec); 2191 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2192 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2193 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2194 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2195 2196 struct bpf_map *bpf_map_get(u32 ufd); 2197 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2198 struct bpf_map *__bpf_map_get(struct fd f); 2199 void bpf_map_inc(struct bpf_map *map); 2200 void bpf_map_inc_with_uref(struct bpf_map *map); 2201 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2202 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2203 void bpf_map_put_with_uref(struct bpf_map *map); 2204 void bpf_map_put(struct bpf_map *map); 2205 void *bpf_map_area_alloc(u64 size, int numa_node); 2206 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2207 void bpf_map_area_free(void *base); 2208 bool bpf_map_write_active(const struct bpf_map *map); 2209 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2210 int generic_map_lookup_batch(struct bpf_map *map, 2211 const union bpf_attr *attr, 2212 union bpf_attr __user *uattr); 2213 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2214 const union bpf_attr *attr, 2215 union bpf_attr __user *uattr); 2216 int generic_map_delete_batch(struct bpf_map *map, 2217 const union bpf_attr *attr, 2218 union bpf_attr __user *uattr); 2219 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2220 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2221 2222 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2223 unsigned long nr_pages, struct page **page_array); 2224 #ifdef CONFIG_MEMCG_KMEM 2225 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2226 int node); 2227 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2228 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2229 gfp_t flags); 2230 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2231 size_t align, gfp_t flags); 2232 #else 2233 static inline void * 2234 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2235 int node) 2236 { 2237 return kmalloc_node(size, flags, node); 2238 } 2239 2240 static inline void * 2241 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 2242 { 2243 return kzalloc(size, flags); 2244 } 2245 2246 static inline void * 2247 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 2248 { 2249 return kvcalloc(n, size, flags); 2250 } 2251 2252 static inline void __percpu * 2253 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 2254 gfp_t flags) 2255 { 2256 return __alloc_percpu_gfp(size, align, flags); 2257 } 2258 #endif 2259 2260 static inline int 2261 bpf_map_init_elem_count(struct bpf_map *map) 2262 { 2263 size_t size = sizeof(*map->elem_count), align = size; 2264 gfp_t flags = GFP_USER | __GFP_NOWARN; 2265 2266 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2267 if (!map->elem_count) 2268 return -ENOMEM; 2269 2270 return 0; 2271 } 2272 2273 static inline void 2274 bpf_map_free_elem_count(struct bpf_map *map) 2275 { 2276 free_percpu(map->elem_count); 2277 } 2278 2279 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2280 { 2281 this_cpu_inc(*map->elem_count); 2282 } 2283 2284 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2285 { 2286 this_cpu_dec(*map->elem_count); 2287 } 2288 2289 extern int sysctl_unprivileged_bpf_disabled; 2290 2291 bool bpf_token_capable(const struct bpf_token *token, int cap); 2292 2293 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2294 { 2295 return bpf_token_capable(token, CAP_PERFMON); 2296 } 2297 2298 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2299 { 2300 return bpf_token_capable(token, CAP_PERFMON); 2301 } 2302 2303 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2304 { 2305 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2306 } 2307 2308 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2309 { 2310 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2311 } 2312 2313 int bpf_map_new_fd(struct bpf_map *map, int flags); 2314 int bpf_prog_new_fd(struct bpf_prog *prog); 2315 2316 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2317 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2318 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2319 int bpf_link_settle(struct bpf_link_primer *primer); 2320 void bpf_link_cleanup(struct bpf_link_primer *primer); 2321 void bpf_link_inc(struct bpf_link *link); 2322 void bpf_link_put(struct bpf_link *link); 2323 int bpf_link_new_fd(struct bpf_link *link); 2324 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2325 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2326 2327 void bpf_token_inc(struct bpf_token *token); 2328 void bpf_token_put(struct bpf_token *token); 2329 int bpf_token_create(union bpf_attr *attr); 2330 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2331 2332 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2333 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2334 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2335 enum bpf_prog_type prog_type, 2336 enum bpf_attach_type attach_type); 2337 2338 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2339 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2340 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2341 umode_t mode); 2342 2343 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2344 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2345 extern int bpf_iter_ ## target(args); \ 2346 int __init bpf_iter_ ## target(args) { return 0; } 2347 2348 /* 2349 * The task type of iterators. 2350 * 2351 * For BPF task iterators, they can be parameterized with various 2352 * parameters to visit only some of tasks. 2353 * 2354 * BPF_TASK_ITER_ALL (default) 2355 * Iterate over resources of every task. 2356 * 2357 * BPF_TASK_ITER_TID 2358 * Iterate over resources of a task/tid. 2359 * 2360 * BPF_TASK_ITER_TGID 2361 * Iterate over resources of every task of a process / task group. 2362 */ 2363 enum bpf_iter_task_type { 2364 BPF_TASK_ITER_ALL = 0, 2365 BPF_TASK_ITER_TID, 2366 BPF_TASK_ITER_TGID, 2367 }; 2368 2369 struct bpf_iter_aux_info { 2370 /* for map_elem iter */ 2371 struct bpf_map *map; 2372 2373 /* for cgroup iter */ 2374 struct { 2375 struct cgroup *start; /* starting cgroup */ 2376 enum bpf_cgroup_iter_order order; 2377 } cgroup; 2378 struct { 2379 enum bpf_iter_task_type type; 2380 u32 pid; 2381 } task; 2382 }; 2383 2384 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2385 union bpf_iter_link_info *linfo, 2386 struct bpf_iter_aux_info *aux); 2387 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2388 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2389 struct seq_file *seq); 2390 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2391 struct bpf_link_info *info); 2392 typedef const struct bpf_func_proto * 2393 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2394 const struct bpf_prog *prog); 2395 2396 enum bpf_iter_feature { 2397 BPF_ITER_RESCHED = BIT(0), 2398 }; 2399 2400 #define BPF_ITER_CTX_ARG_MAX 2 2401 struct bpf_iter_reg { 2402 const char *target; 2403 bpf_iter_attach_target_t attach_target; 2404 bpf_iter_detach_target_t detach_target; 2405 bpf_iter_show_fdinfo_t show_fdinfo; 2406 bpf_iter_fill_link_info_t fill_link_info; 2407 bpf_iter_get_func_proto_t get_func_proto; 2408 u32 ctx_arg_info_size; 2409 u32 feature; 2410 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2411 const struct bpf_iter_seq_info *seq_info; 2412 }; 2413 2414 struct bpf_iter_meta { 2415 __bpf_md_ptr(struct seq_file *, seq); 2416 u64 session_id; 2417 u64 seq_num; 2418 }; 2419 2420 struct bpf_iter__bpf_map_elem { 2421 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2422 __bpf_md_ptr(struct bpf_map *, map); 2423 __bpf_md_ptr(void *, key); 2424 __bpf_md_ptr(void *, value); 2425 }; 2426 2427 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2428 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2429 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2430 const struct bpf_func_proto * 2431 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2432 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2433 int bpf_iter_new_fd(struct bpf_link *link); 2434 bool bpf_link_is_iter(struct bpf_link *link); 2435 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2436 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2437 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2438 struct seq_file *seq); 2439 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2440 struct bpf_link_info *info); 2441 2442 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2443 struct bpf_func_state *caller, 2444 struct bpf_func_state *callee); 2445 2446 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2447 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2448 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2449 u64 flags); 2450 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2451 u64 flags); 2452 2453 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2454 2455 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2456 void *key, void *value, u64 map_flags); 2457 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2458 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2459 void *key, void *value, u64 map_flags); 2460 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2461 2462 int bpf_get_file_flag(int flags); 2463 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2464 size_t actual_size); 2465 2466 /* verify correctness of eBPF program */ 2467 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2468 2469 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2470 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2471 #endif 2472 2473 struct btf *bpf_get_btf_vmlinux(void); 2474 2475 /* Map specifics */ 2476 struct xdp_frame; 2477 struct sk_buff; 2478 struct bpf_dtab_netdev; 2479 struct bpf_cpu_map_entry; 2480 2481 void __dev_flush(void); 2482 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2483 struct net_device *dev_rx); 2484 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2485 struct net_device *dev_rx); 2486 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2487 struct bpf_map *map, bool exclude_ingress); 2488 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2489 struct bpf_prog *xdp_prog); 2490 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2491 struct bpf_prog *xdp_prog, struct bpf_map *map, 2492 bool exclude_ingress); 2493 2494 void __cpu_map_flush(void); 2495 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2496 struct net_device *dev_rx); 2497 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2498 struct sk_buff *skb); 2499 2500 /* Return map's numa specified by userspace */ 2501 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2502 { 2503 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2504 attr->numa_node : NUMA_NO_NODE; 2505 } 2506 2507 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2508 int array_map_alloc_check(union bpf_attr *attr); 2509 2510 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2511 union bpf_attr __user *uattr); 2512 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2513 union bpf_attr __user *uattr); 2514 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2515 const union bpf_attr *kattr, 2516 union bpf_attr __user *uattr); 2517 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2518 const union bpf_attr *kattr, 2519 union bpf_attr __user *uattr); 2520 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2521 const union bpf_attr *kattr, 2522 union bpf_attr __user *uattr); 2523 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2524 const union bpf_attr *kattr, 2525 union bpf_attr __user *uattr); 2526 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2527 const union bpf_attr *kattr, 2528 union bpf_attr __user *uattr); 2529 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2530 const struct bpf_prog *prog, 2531 struct bpf_insn_access_aux *info); 2532 2533 static inline bool bpf_tracing_ctx_access(int off, int size, 2534 enum bpf_access_type type) 2535 { 2536 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2537 return false; 2538 if (type != BPF_READ) 2539 return false; 2540 if (off % size != 0) 2541 return false; 2542 return true; 2543 } 2544 2545 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2546 enum bpf_access_type type, 2547 const struct bpf_prog *prog, 2548 struct bpf_insn_access_aux *info) 2549 { 2550 if (!bpf_tracing_ctx_access(off, size, type)) 2551 return false; 2552 return btf_ctx_access(off, size, type, prog, info); 2553 } 2554 2555 int btf_struct_access(struct bpf_verifier_log *log, 2556 const struct bpf_reg_state *reg, 2557 int off, int size, enum bpf_access_type atype, 2558 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2559 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2560 const struct btf *btf, u32 id, int off, 2561 const struct btf *need_btf, u32 need_type_id, 2562 bool strict); 2563 2564 int btf_distill_func_proto(struct bpf_verifier_log *log, 2565 struct btf *btf, 2566 const struct btf_type *func_proto, 2567 const char *func_name, 2568 struct btf_func_model *m); 2569 2570 struct bpf_reg_state; 2571 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2572 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2573 struct btf *btf, const struct btf_type *t); 2574 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2575 int comp_idx, const char *tag_key); 2576 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2577 int comp_idx, const char *tag_key, int last_id); 2578 2579 struct bpf_prog *bpf_prog_by_id(u32 id); 2580 struct bpf_link *bpf_link_by_id(u32 id); 2581 2582 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2583 const struct bpf_prog *prog); 2584 void bpf_task_storage_free(struct task_struct *task); 2585 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2586 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2587 const struct btf_func_model * 2588 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2589 const struct bpf_insn *insn); 2590 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2591 u16 btf_fd_idx, u8 **func_addr); 2592 2593 struct bpf_core_ctx { 2594 struct bpf_verifier_log *log; 2595 const struct btf *btf; 2596 }; 2597 2598 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2599 const struct bpf_reg_state *reg, 2600 const char *field_name, u32 btf_id, const char *suffix); 2601 2602 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2603 const struct btf *reg_btf, u32 reg_id, 2604 const struct btf *arg_btf, u32 arg_id); 2605 2606 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2607 int relo_idx, void *insn); 2608 2609 static inline bool unprivileged_ebpf_enabled(void) 2610 { 2611 return !sysctl_unprivileged_bpf_disabled; 2612 } 2613 2614 /* Not all bpf prog type has the bpf_ctx. 2615 * For the bpf prog type that has initialized the bpf_ctx, 2616 * this function can be used to decide if a kernel function 2617 * is called by a bpf program. 2618 */ 2619 static inline bool has_current_bpf_ctx(void) 2620 { 2621 return !!current->bpf_ctx; 2622 } 2623 2624 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2625 2626 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2627 enum bpf_dynptr_type type, u32 offset, u32 size); 2628 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2629 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2630 2631 bool dev_check_flush(void); 2632 bool cpu_map_check_flush(void); 2633 #else /* !CONFIG_BPF_SYSCALL */ 2634 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2635 { 2636 return ERR_PTR(-EOPNOTSUPP); 2637 } 2638 2639 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2640 enum bpf_prog_type type, 2641 bool attach_drv) 2642 { 2643 return ERR_PTR(-EOPNOTSUPP); 2644 } 2645 2646 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2647 { 2648 } 2649 2650 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2651 { 2652 } 2653 2654 static inline void bpf_prog_put(struct bpf_prog *prog) 2655 { 2656 } 2657 2658 static inline void bpf_prog_inc(struct bpf_prog *prog) 2659 { 2660 } 2661 2662 static inline struct bpf_prog *__must_check 2663 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2664 { 2665 return ERR_PTR(-EOPNOTSUPP); 2666 } 2667 2668 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2669 const struct bpf_link_ops *ops, 2670 struct bpf_prog *prog) 2671 { 2672 } 2673 2674 static inline int bpf_link_prime(struct bpf_link *link, 2675 struct bpf_link_primer *primer) 2676 { 2677 return -EOPNOTSUPP; 2678 } 2679 2680 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2681 { 2682 return -EOPNOTSUPP; 2683 } 2684 2685 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2686 { 2687 } 2688 2689 static inline void bpf_link_inc(struct bpf_link *link) 2690 { 2691 } 2692 2693 static inline void bpf_link_put(struct bpf_link *link) 2694 { 2695 } 2696 2697 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2698 { 2699 return -EOPNOTSUPP; 2700 } 2701 2702 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2703 { 2704 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2705 } 2706 2707 static inline void bpf_token_inc(struct bpf_token *token) 2708 { 2709 } 2710 2711 static inline void bpf_token_put(struct bpf_token *token) 2712 { 2713 } 2714 2715 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2716 { 2717 return ERR_PTR(-EOPNOTSUPP); 2718 } 2719 2720 static inline void __dev_flush(void) 2721 { 2722 } 2723 2724 struct xdp_frame; 2725 struct bpf_dtab_netdev; 2726 struct bpf_cpu_map_entry; 2727 2728 static inline 2729 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2730 struct net_device *dev_rx) 2731 { 2732 return 0; 2733 } 2734 2735 static inline 2736 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2737 struct net_device *dev_rx) 2738 { 2739 return 0; 2740 } 2741 2742 static inline 2743 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2744 struct bpf_map *map, bool exclude_ingress) 2745 { 2746 return 0; 2747 } 2748 2749 struct sk_buff; 2750 2751 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2752 struct sk_buff *skb, 2753 struct bpf_prog *xdp_prog) 2754 { 2755 return 0; 2756 } 2757 2758 static inline 2759 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2760 struct bpf_prog *xdp_prog, struct bpf_map *map, 2761 bool exclude_ingress) 2762 { 2763 return 0; 2764 } 2765 2766 static inline void __cpu_map_flush(void) 2767 { 2768 } 2769 2770 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2771 struct xdp_frame *xdpf, 2772 struct net_device *dev_rx) 2773 { 2774 return 0; 2775 } 2776 2777 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2778 struct sk_buff *skb) 2779 { 2780 return -EOPNOTSUPP; 2781 } 2782 2783 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2784 enum bpf_prog_type type) 2785 { 2786 return ERR_PTR(-EOPNOTSUPP); 2787 } 2788 2789 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2790 const union bpf_attr *kattr, 2791 union bpf_attr __user *uattr) 2792 { 2793 return -ENOTSUPP; 2794 } 2795 2796 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2797 const union bpf_attr *kattr, 2798 union bpf_attr __user *uattr) 2799 { 2800 return -ENOTSUPP; 2801 } 2802 2803 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2804 const union bpf_attr *kattr, 2805 union bpf_attr __user *uattr) 2806 { 2807 return -ENOTSUPP; 2808 } 2809 2810 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2811 const union bpf_attr *kattr, 2812 union bpf_attr __user *uattr) 2813 { 2814 return -ENOTSUPP; 2815 } 2816 2817 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2818 const union bpf_attr *kattr, 2819 union bpf_attr __user *uattr) 2820 { 2821 return -ENOTSUPP; 2822 } 2823 2824 static inline void bpf_map_put(struct bpf_map *map) 2825 { 2826 } 2827 2828 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2829 { 2830 return ERR_PTR(-ENOTSUPP); 2831 } 2832 2833 static inline int btf_struct_access(struct bpf_verifier_log *log, 2834 const struct bpf_reg_state *reg, 2835 int off, int size, enum bpf_access_type atype, 2836 u32 *next_btf_id, enum bpf_type_flag *flag, 2837 const char **field_name) 2838 { 2839 return -EACCES; 2840 } 2841 2842 static inline const struct bpf_func_proto * 2843 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2844 { 2845 return NULL; 2846 } 2847 2848 static inline void bpf_task_storage_free(struct task_struct *task) 2849 { 2850 } 2851 2852 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2853 { 2854 return false; 2855 } 2856 2857 static inline const struct btf_func_model * 2858 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2859 const struct bpf_insn *insn) 2860 { 2861 return NULL; 2862 } 2863 2864 static inline int 2865 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2866 u16 btf_fd_idx, u8 **func_addr) 2867 { 2868 return -ENOTSUPP; 2869 } 2870 2871 static inline bool unprivileged_ebpf_enabled(void) 2872 { 2873 return false; 2874 } 2875 2876 static inline bool has_current_bpf_ctx(void) 2877 { 2878 return false; 2879 } 2880 2881 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2882 { 2883 } 2884 2885 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2886 { 2887 } 2888 2889 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2890 enum bpf_dynptr_type type, u32 offset, u32 size) 2891 { 2892 } 2893 2894 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2895 { 2896 } 2897 2898 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2899 { 2900 } 2901 #endif /* CONFIG_BPF_SYSCALL */ 2902 2903 static __always_inline int 2904 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2905 { 2906 int ret = -EFAULT; 2907 2908 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2909 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2910 if (unlikely(ret < 0)) 2911 memset(dst, 0, size); 2912 return ret; 2913 } 2914 2915 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2916 struct btf_mod_pair *used_btfs, u32 len); 2917 2918 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2919 enum bpf_prog_type type) 2920 { 2921 return bpf_prog_get_type_dev(ufd, type, false); 2922 } 2923 2924 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2925 struct bpf_map **used_maps, u32 len); 2926 2927 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2928 2929 int bpf_prog_offload_compile(struct bpf_prog *prog); 2930 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2931 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2932 struct bpf_prog *prog); 2933 2934 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2935 2936 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2937 int bpf_map_offload_update_elem(struct bpf_map *map, 2938 void *key, void *value, u64 flags); 2939 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2940 int bpf_map_offload_get_next_key(struct bpf_map *map, 2941 void *key, void *next_key); 2942 2943 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2944 2945 struct bpf_offload_dev * 2946 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2947 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2948 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2949 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2950 struct net_device *netdev); 2951 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2952 struct net_device *netdev); 2953 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2954 2955 void unpriv_ebpf_notify(int new_state); 2956 2957 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2958 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2959 struct bpf_prog_aux *prog_aux); 2960 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2961 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2962 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2963 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2964 2965 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2966 { 2967 return aux->dev_bound; 2968 } 2969 2970 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2971 { 2972 return aux->offload_requested; 2973 } 2974 2975 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2976 2977 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2978 { 2979 return unlikely(map->ops == &bpf_map_offload_ops); 2980 } 2981 2982 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2983 void bpf_map_offload_map_free(struct bpf_map *map); 2984 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2985 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2986 const union bpf_attr *kattr, 2987 union bpf_attr __user *uattr); 2988 2989 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2990 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2991 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2992 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2993 union bpf_attr __user *uattr); 2994 2995 void sock_map_unhash(struct sock *sk); 2996 void sock_map_destroy(struct sock *sk); 2997 void sock_map_close(struct sock *sk, long timeout); 2998 #else 2999 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3000 struct bpf_prog_aux *prog_aux) 3001 { 3002 return -EOPNOTSUPP; 3003 } 3004 3005 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3006 u32 func_id) 3007 { 3008 return NULL; 3009 } 3010 3011 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3012 union bpf_attr *attr) 3013 { 3014 return -EOPNOTSUPP; 3015 } 3016 3017 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3018 struct bpf_prog *old_prog) 3019 { 3020 return -EOPNOTSUPP; 3021 } 3022 3023 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3024 { 3025 } 3026 3027 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3028 { 3029 return false; 3030 } 3031 3032 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3033 { 3034 return false; 3035 } 3036 3037 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3038 { 3039 return false; 3040 } 3041 3042 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3043 { 3044 return false; 3045 } 3046 3047 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3048 { 3049 return ERR_PTR(-EOPNOTSUPP); 3050 } 3051 3052 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3053 { 3054 } 3055 3056 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3057 { 3058 return 0; 3059 } 3060 3061 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3062 const union bpf_attr *kattr, 3063 union bpf_attr __user *uattr) 3064 { 3065 return -ENOTSUPP; 3066 } 3067 3068 #ifdef CONFIG_BPF_SYSCALL 3069 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3070 struct bpf_prog *prog) 3071 { 3072 return -EINVAL; 3073 } 3074 3075 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3076 enum bpf_prog_type ptype) 3077 { 3078 return -EOPNOTSUPP; 3079 } 3080 3081 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3082 u64 flags) 3083 { 3084 return -EOPNOTSUPP; 3085 } 3086 3087 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3088 union bpf_attr __user *uattr) 3089 { 3090 return -EINVAL; 3091 } 3092 #endif /* CONFIG_BPF_SYSCALL */ 3093 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3094 3095 static __always_inline void 3096 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3097 { 3098 const struct bpf_prog_array_item *item; 3099 struct bpf_prog *prog; 3100 3101 if (unlikely(!array)) 3102 return; 3103 3104 item = &array->items[0]; 3105 while ((prog = READ_ONCE(item->prog))) { 3106 bpf_prog_inc_misses_counter(prog); 3107 item++; 3108 } 3109 } 3110 3111 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3112 void bpf_sk_reuseport_detach(struct sock *sk); 3113 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3114 void *value); 3115 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3116 void *value, u64 map_flags); 3117 #else 3118 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3119 { 3120 } 3121 3122 #ifdef CONFIG_BPF_SYSCALL 3123 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3124 void *key, void *value) 3125 { 3126 return -EOPNOTSUPP; 3127 } 3128 3129 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3130 void *key, void *value, 3131 u64 map_flags) 3132 { 3133 return -EOPNOTSUPP; 3134 } 3135 #endif /* CONFIG_BPF_SYSCALL */ 3136 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3137 3138 /* verifier prototypes for helper functions called from eBPF programs */ 3139 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3140 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3141 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3142 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3143 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3144 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3145 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3146 3147 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3148 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3149 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3150 extern const struct bpf_func_proto bpf_tail_call_proto; 3151 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3152 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3153 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3154 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3155 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3156 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3157 extern const struct bpf_func_proto bpf_get_stackid_proto; 3158 extern const struct bpf_func_proto bpf_get_stack_proto; 3159 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3160 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3161 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3162 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3163 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3164 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3165 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3166 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3167 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3168 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3169 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3170 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3171 extern const struct bpf_func_proto bpf_spin_lock_proto; 3172 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3173 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3174 extern const struct bpf_func_proto bpf_strtol_proto; 3175 extern const struct bpf_func_proto bpf_strtoul_proto; 3176 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3177 extern const struct bpf_func_proto bpf_jiffies64_proto; 3178 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3179 extern const struct bpf_func_proto bpf_event_output_data_proto; 3180 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3181 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3182 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3183 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3184 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3185 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3186 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3187 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3188 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3189 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3190 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3191 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3192 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3193 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3194 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3195 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3196 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3197 extern const struct bpf_func_proto bpf_snprintf_proto; 3198 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3199 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3200 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3201 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3202 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3203 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3204 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3205 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3206 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3207 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3208 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3209 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3210 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3211 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3212 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3213 extern const struct bpf_func_proto bpf_find_vma_proto; 3214 extern const struct bpf_func_proto bpf_loop_proto; 3215 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3216 extern const struct bpf_func_proto bpf_set_retval_proto; 3217 extern const struct bpf_func_proto bpf_get_retval_proto; 3218 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3219 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3220 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3221 3222 const struct bpf_func_proto *tracing_prog_func_proto( 3223 enum bpf_func_id func_id, const struct bpf_prog *prog); 3224 3225 /* Shared helpers among cBPF and eBPF. */ 3226 void bpf_user_rnd_init_once(void); 3227 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3228 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3229 3230 #if defined(CONFIG_NET) 3231 bool bpf_sock_common_is_valid_access(int off, int size, 3232 enum bpf_access_type type, 3233 struct bpf_insn_access_aux *info); 3234 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3235 struct bpf_insn_access_aux *info); 3236 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3237 const struct bpf_insn *si, 3238 struct bpf_insn *insn_buf, 3239 struct bpf_prog *prog, 3240 u32 *target_size); 3241 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3242 struct bpf_dynptr_kern *ptr); 3243 #else 3244 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3245 enum bpf_access_type type, 3246 struct bpf_insn_access_aux *info) 3247 { 3248 return false; 3249 } 3250 static inline bool bpf_sock_is_valid_access(int off, int size, 3251 enum bpf_access_type type, 3252 struct bpf_insn_access_aux *info) 3253 { 3254 return false; 3255 } 3256 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3257 const struct bpf_insn *si, 3258 struct bpf_insn *insn_buf, 3259 struct bpf_prog *prog, 3260 u32 *target_size) 3261 { 3262 return 0; 3263 } 3264 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3265 struct bpf_dynptr_kern *ptr) 3266 { 3267 return -EOPNOTSUPP; 3268 } 3269 #endif 3270 3271 #ifdef CONFIG_INET 3272 struct sk_reuseport_kern { 3273 struct sk_buff *skb; 3274 struct sock *sk; 3275 struct sock *selected_sk; 3276 struct sock *migrating_sk; 3277 void *data_end; 3278 u32 hash; 3279 u32 reuseport_id; 3280 bool bind_inany; 3281 }; 3282 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3283 struct bpf_insn_access_aux *info); 3284 3285 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3286 const struct bpf_insn *si, 3287 struct bpf_insn *insn_buf, 3288 struct bpf_prog *prog, 3289 u32 *target_size); 3290 3291 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3292 struct bpf_insn_access_aux *info); 3293 3294 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3295 const struct bpf_insn *si, 3296 struct bpf_insn *insn_buf, 3297 struct bpf_prog *prog, 3298 u32 *target_size); 3299 #else 3300 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3301 enum bpf_access_type type, 3302 struct bpf_insn_access_aux *info) 3303 { 3304 return false; 3305 } 3306 3307 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3308 const struct bpf_insn *si, 3309 struct bpf_insn *insn_buf, 3310 struct bpf_prog *prog, 3311 u32 *target_size) 3312 { 3313 return 0; 3314 } 3315 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3316 enum bpf_access_type type, 3317 struct bpf_insn_access_aux *info) 3318 { 3319 return false; 3320 } 3321 3322 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3323 const struct bpf_insn *si, 3324 struct bpf_insn *insn_buf, 3325 struct bpf_prog *prog, 3326 u32 *target_size) 3327 { 3328 return 0; 3329 } 3330 #endif /* CONFIG_INET */ 3331 3332 enum bpf_text_poke_type { 3333 BPF_MOD_CALL, 3334 BPF_MOD_JUMP, 3335 }; 3336 3337 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3338 void *addr1, void *addr2); 3339 3340 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3341 struct bpf_prog *new, struct bpf_prog *old); 3342 3343 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3344 int bpf_arch_text_invalidate(void *dst, size_t len); 3345 3346 struct btf_id_set; 3347 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3348 3349 #define MAX_BPRINTF_VARARGS 12 3350 #define MAX_BPRINTF_BUF 1024 3351 3352 struct bpf_bprintf_data { 3353 u32 *bin_args; 3354 char *buf; 3355 bool get_bin_args; 3356 bool get_buf; 3357 }; 3358 3359 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3360 u32 num_args, struct bpf_bprintf_data *data); 3361 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3362 3363 #ifdef CONFIG_BPF_LSM 3364 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3365 void bpf_cgroup_atype_put(int cgroup_atype); 3366 #else 3367 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3368 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3369 #endif /* CONFIG_BPF_LSM */ 3370 3371 struct key; 3372 3373 #ifdef CONFIG_KEYS 3374 struct bpf_key { 3375 struct key *key; 3376 bool has_ref; 3377 }; 3378 #endif /* CONFIG_KEYS */ 3379 3380 static inline bool type_is_alloc(u32 type) 3381 { 3382 return type & MEM_ALLOC; 3383 } 3384 3385 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3386 { 3387 if (memcg_bpf_enabled()) 3388 return flags | __GFP_ACCOUNT; 3389 return flags; 3390 } 3391 3392 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3393 { 3394 return prog->aux->func_idx != 0; 3395 } 3396 3397 #endif /* _LINUX_BPF_H */ 3398