xref: /linux-6.15/include/linux/bpf.h (revision da51bbcd)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60 
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66 
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 					struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 				   const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 	const struct seq_operations *seq_ops;
75 	bpf_iter_init_seq_priv_t init_seq_private;
76 	bpf_iter_fini_seq_priv_t fini_seq_private;
77 	u32 seq_priv_size;
78 };
79 
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 	/* funcs callable from userspace (via syscall) */
83 	int (*map_alloc_check)(union bpf_attr *attr);
84 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 	void (*map_release)(struct bpf_map *map, struct file *map_file);
86 	void (*map_free)(struct bpf_map *map);
87 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 	void (*map_release_uref)(struct bpf_map *map);
89 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 				union bpf_attr __user *uattr);
92 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 					  void *value, u64 flags);
94 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 					   const union bpf_attr *attr,
96 					   union bpf_attr __user *uattr);
97 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 				const union bpf_attr *attr,
99 				union bpf_attr __user *uattr);
100 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 
103 	/* funcs callable from userspace and from eBPF programs */
104 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 	long (*map_delete_elem)(struct bpf_map *map, void *key);
107 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 	long (*map_pop_elem)(struct bpf_map *map, void *value);
109 	long (*map_peek_elem)(struct bpf_map *map, void *value);
110 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111 
112 	/* funcs called by prog_array and perf_event_array map */
113 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 				int fd);
115 	/* If need_defer is true, the implementation should guarantee that
116 	 * the to-be-put element is still alive before the bpf program, which
117 	 * may manipulate it, exists.
118 	 */
119 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 				  struct seq_file *m);
124 	int (*map_check_btf)(const struct bpf_map *map,
125 			     const struct btf *btf,
126 			     const struct btf_type *key_type,
127 			     const struct btf_type *value_type);
128 
129 	/* Prog poke tracking helpers. */
130 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 			     struct bpf_prog *new);
134 
135 	/* Direct value access helpers. */
136 	int (*map_direct_value_addr)(const struct bpf_map *map,
137 				     u64 *imm, u32 off);
138 	int (*map_direct_value_meta)(const struct bpf_map *map,
139 				     u64 imm, u32 *off);
140 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 			     struct poll_table_struct *pts);
143 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 					       unsigned long len, unsigned long pgoff,
145 					       unsigned long flags);
146 
147 	/* Functions called by bpf_local_storage maps */
148 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 					void *owner, u32 size);
150 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 					   void *owner, u32 size);
152 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153 
154 	/* Misc helpers.*/
155 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156 
157 	/* map_meta_equal must be implemented for maps that can be
158 	 * used as an inner map.  It is a runtime check to ensure
159 	 * an inner map can be inserted to an outer map.
160 	 *
161 	 * Some properties of the inner map has been used during the
162 	 * verification time.  When inserting an inner map at the runtime,
163 	 * map_meta_equal has to ensure the inserting map has the same
164 	 * properties that the verifier has used earlier.
165 	 */
166 	bool (*map_meta_equal)(const struct bpf_map *meta0,
167 			       const struct bpf_map *meta1);
168 
169 
170 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 					      struct bpf_func_state *caller,
172 					      struct bpf_func_state *callee);
173 	long (*map_for_each_callback)(struct bpf_map *map,
174 				     bpf_callback_t callback_fn,
175 				     void *callback_ctx, u64 flags);
176 
177 	u64 (*map_mem_usage)(const struct bpf_map *map);
178 
179 	/* BTF id of struct allocated by map_alloc */
180 	int *map_btf_id;
181 
182 	/* bpf_iter info used to open a seq_file */
183 	const struct bpf_iter_seq_info *iter_seq_info;
184 };
185 
186 enum {
187 	/* Support at most 10 fields in a BTF type */
188 	BTF_FIELDS_MAX	   = 10,
189 };
190 
191 enum btf_field_type {
192 	BPF_SPIN_LOCK  = (1 << 0),
193 	BPF_TIMER      = (1 << 1),
194 	BPF_KPTR_UNREF = (1 << 2),
195 	BPF_KPTR_REF   = (1 << 3),
196 	BPF_KPTR_PERCPU = (1 << 4),
197 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 	BPF_LIST_HEAD  = (1 << 5),
199 	BPF_LIST_NODE  = (1 << 6),
200 	BPF_RB_ROOT    = (1 << 7),
201 	BPF_RB_NODE    = (1 << 8),
202 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 	BPF_REFCOUNT   = (1 << 9),
205 };
206 
207 typedef void (*btf_dtor_kfunc_t)(void *);
208 
209 struct btf_field_kptr {
210 	struct btf *btf;
211 	struct module *module;
212 	/* dtor used if btf_is_kernel(btf), otherwise the type is
213 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
214 	 */
215 	btf_dtor_kfunc_t dtor;
216 	u32 btf_id;
217 };
218 
219 struct btf_field_graph_root {
220 	struct btf *btf;
221 	u32 value_btf_id;
222 	u32 node_offset;
223 	struct btf_record *value_rec;
224 };
225 
226 struct btf_field {
227 	u32 offset;
228 	u32 size;
229 	enum btf_field_type type;
230 	union {
231 		struct btf_field_kptr kptr;
232 		struct btf_field_graph_root graph_root;
233 	};
234 };
235 
236 struct btf_record {
237 	u32 cnt;
238 	u32 field_mask;
239 	int spin_lock_off;
240 	int timer_off;
241 	int refcount_off;
242 	struct btf_field fields[];
243 };
244 
245 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
246 struct bpf_rb_node_kern {
247 	struct rb_node rb_node;
248 	void *owner;
249 } __attribute__((aligned(8)));
250 
251 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
252 struct bpf_list_node_kern {
253 	struct list_head list_head;
254 	void *owner;
255 } __attribute__((aligned(8)));
256 
257 struct bpf_map {
258 	const struct bpf_map_ops *ops;
259 	struct bpf_map *inner_map_meta;
260 #ifdef CONFIG_SECURITY
261 	void *security;
262 #endif
263 	enum bpf_map_type map_type;
264 	u32 key_size;
265 	u32 value_size;
266 	u32 max_entries;
267 	u64 map_extra; /* any per-map-type extra fields */
268 	u32 map_flags;
269 	u32 id;
270 	struct btf_record *record;
271 	int numa_node;
272 	u32 btf_key_type_id;
273 	u32 btf_value_type_id;
274 	u32 btf_vmlinux_value_type_id;
275 	struct btf *btf;
276 #ifdef CONFIG_MEMCG_KMEM
277 	struct obj_cgroup *objcg;
278 #endif
279 	char name[BPF_OBJ_NAME_LEN];
280 	struct mutex freeze_mutex;
281 	atomic64_t refcnt;
282 	atomic64_t usercnt;
283 	/* rcu is used before freeing and work is only used during freeing */
284 	union {
285 		struct work_struct work;
286 		struct rcu_head rcu;
287 	};
288 	atomic64_t writecnt;
289 	/* 'Ownership' of program-containing map is claimed by the first program
290 	 * that is going to use this map or by the first program which FD is
291 	 * stored in the map to make sure that all callers and callees have the
292 	 * same prog type, JITed flag and xdp_has_frags flag.
293 	 */
294 	struct {
295 		spinlock_t lock;
296 		enum bpf_prog_type type;
297 		bool jited;
298 		bool xdp_has_frags;
299 	} owner;
300 	bool bypass_spec_v1;
301 	bool frozen; /* write-once; write-protected by freeze_mutex */
302 	bool free_after_mult_rcu_gp;
303 	bool free_after_rcu_gp;
304 	atomic64_t sleepable_refcnt;
305 	s64 __percpu *elem_count;
306 };
307 
308 static inline const char *btf_field_type_name(enum btf_field_type type)
309 {
310 	switch (type) {
311 	case BPF_SPIN_LOCK:
312 		return "bpf_spin_lock";
313 	case BPF_TIMER:
314 		return "bpf_timer";
315 	case BPF_KPTR_UNREF:
316 	case BPF_KPTR_REF:
317 		return "kptr";
318 	case BPF_KPTR_PERCPU:
319 		return "percpu_kptr";
320 	case BPF_LIST_HEAD:
321 		return "bpf_list_head";
322 	case BPF_LIST_NODE:
323 		return "bpf_list_node";
324 	case BPF_RB_ROOT:
325 		return "bpf_rb_root";
326 	case BPF_RB_NODE:
327 		return "bpf_rb_node";
328 	case BPF_REFCOUNT:
329 		return "bpf_refcount";
330 	default:
331 		WARN_ON_ONCE(1);
332 		return "unknown";
333 	}
334 }
335 
336 static inline u32 btf_field_type_size(enum btf_field_type type)
337 {
338 	switch (type) {
339 	case BPF_SPIN_LOCK:
340 		return sizeof(struct bpf_spin_lock);
341 	case BPF_TIMER:
342 		return sizeof(struct bpf_timer);
343 	case BPF_KPTR_UNREF:
344 	case BPF_KPTR_REF:
345 	case BPF_KPTR_PERCPU:
346 		return sizeof(u64);
347 	case BPF_LIST_HEAD:
348 		return sizeof(struct bpf_list_head);
349 	case BPF_LIST_NODE:
350 		return sizeof(struct bpf_list_node);
351 	case BPF_RB_ROOT:
352 		return sizeof(struct bpf_rb_root);
353 	case BPF_RB_NODE:
354 		return sizeof(struct bpf_rb_node);
355 	case BPF_REFCOUNT:
356 		return sizeof(struct bpf_refcount);
357 	default:
358 		WARN_ON_ONCE(1);
359 		return 0;
360 	}
361 }
362 
363 static inline u32 btf_field_type_align(enum btf_field_type type)
364 {
365 	switch (type) {
366 	case BPF_SPIN_LOCK:
367 		return __alignof__(struct bpf_spin_lock);
368 	case BPF_TIMER:
369 		return __alignof__(struct bpf_timer);
370 	case BPF_KPTR_UNREF:
371 	case BPF_KPTR_REF:
372 	case BPF_KPTR_PERCPU:
373 		return __alignof__(u64);
374 	case BPF_LIST_HEAD:
375 		return __alignof__(struct bpf_list_head);
376 	case BPF_LIST_NODE:
377 		return __alignof__(struct bpf_list_node);
378 	case BPF_RB_ROOT:
379 		return __alignof__(struct bpf_rb_root);
380 	case BPF_RB_NODE:
381 		return __alignof__(struct bpf_rb_node);
382 	case BPF_REFCOUNT:
383 		return __alignof__(struct bpf_refcount);
384 	default:
385 		WARN_ON_ONCE(1);
386 		return 0;
387 	}
388 }
389 
390 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
391 {
392 	memset(addr, 0, field->size);
393 
394 	switch (field->type) {
395 	case BPF_REFCOUNT:
396 		refcount_set((refcount_t *)addr, 1);
397 		break;
398 	case BPF_RB_NODE:
399 		RB_CLEAR_NODE((struct rb_node *)addr);
400 		break;
401 	case BPF_LIST_HEAD:
402 	case BPF_LIST_NODE:
403 		INIT_LIST_HEAD((struct list_head *)addr);
404 		break;
405 	case BPF_RB_ROOT:
406 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
407 	case BPF_SPIN_LOCK:
408 	case BPF_TIMER:
409 	case BPF_KPTR_UNREF:
410 	case BPF_KPTR_REF:
411 	case BPF_KPTR_PERCPU:
412 		break;
413 	default:
414 		WARN_ON_ONCE(1);
415 		return;
416 	}
417 }
418 
419 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
420 {
421 	if (IS_ERR_OR_NULL(rec))
422 		return false;
423 	return rec->field_mask & type;
424 }
425 
426 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
427 {
428 	int i;
429 
430 	if (IS_ERR_OR_NULL(rec))
431 		return;
432 	for (i = 0; i < rec->cnt; i++)
433 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
434 }
435 
436 /* 'dst' must be a temporary buffer and should not point to memory that is being
437  * used in parallel by a bpf program or bpf syscall, otherwise the access from
438  * the bpf program or bpf syscall may be corrupted by the reinitialization,
439  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
440  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
441  * program or bpf syscall.
442  */
443 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
444 {
445 	bpf_obj_init(map->record, dst);
446 }
447 
448 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
449  * forced to use 'long' read/writes to try to atomically copy long counters.
450  * Best-effort only.  No barriers here, since it _will_ race with concurrent
451  * updates from BPF programs. Called from bpf syscall and mostly used with
452  * size 8 or 16 bytes, so ask compiler to inline it.
453  */
454 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
455 {
456 	const long *lsrc = src;
457 	long *ldst = dst;
458 
459 	size /= sizeof(long);
460 	while (size--)
461 		data_race(*ldst++ = *lsrc++);
462 }
463 
464 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
465 static inline void bpf_obj_memcpy(struct btf_record *rec,
466 				  void *dst, void *src, u32 size,
467 				  bool long_memcpy)
468 {
469 	u32 curr_off = 0;
470 	int i;
471 
472 	if (IS_ERR_OR_NULL(rec)) {
473 		if (long_memcpy)
474 			bpf_long_memcpy(dst, src, round_up(size, 8));
475 		else
476 			memcpy(dst, src, size);
477 		return;
478 	}
479 
480 	for (i = 0; i < rec->cnt; i++) {
481 		u32 next_off = rec->fields[i].offset;
482 		u32 sz = next_off - curr_off;
483 
484 		memcpy(dst + curr_off, src + curr_off, sz);
485 		curr_off += rec->fields[i].size + sz;
486 	}
487 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
488 }
489 
490 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
491 {
492 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
493 }
494 
495 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
496 {
497 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
498 }
499 
500 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
501 {
502 	u32 curr_off = 0;
503 	int i;
504 
505 	if (IS_ERR_OR_NULL(rec)) {
506 		memset(dst, 0, size);
507 		return;
508 	}
509 
510 	for (i = 0; i < rec->cnt; i++) {
511 		u32 next_off = rec->fields[i].offset;
512 		u32 sz = next_off - curr_off;
513 
514 		memset(dst + curr_off, 0, sz);
515 		curr_off += rec->fields[i].size + sz;
516 	}
517 	memset(dst + curr_off, 0, size - curr_off);
518 }
519 
520 static inline void zero_map_value(struct bpf_map *map, void *dst)
521 {
522 	bpf_obj_memzero(map->record, dst, map->value_size);
523 }
524 
525 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
526 			   bool lock_src);
527 void bpf_timer_cancel_and_free(void *timer);
528 void bpf_list_head_free(const struct btf_field *field, void *list_head,
529 			struct bpf_spin_lock *spin_lock);
530 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
531 		      struct bpf_spin_lock *spin_lock);
532 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
533 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
534 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
535 
536 struct bpf_offload_dev;
537 struct bpf_offloaded_map;
538 
539 struct bpf_map_dev_ops {
540 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
541 				void *key, void *next_key);
542 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
543 			       void *key, void *value);
544 	int (*map_update_elem)(struct bpf_offloaded_map *map,
545 			       void *key, void *value, u64 flags);
546 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
547 };
548 
549 struct bpf_offloaded_map {
550 	struct bpf_map map;
551 	struct net_device *netdev;
552 	const struct bpf_map_dev_ops *dev_ops;
553 	void *dev_priv;
554 	struct list_head offloads;
555 };
556 
557 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
558 {
559 	return container_of(map, struct bpf_offloaded_map, map);
560 }
561 
562 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
563 {
564 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
565 }
566 
567 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
568 {
569 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
570 		map->ops->map_seq_show_elem;
571 }
572 
573 int map_check_no_btf(const struct bpf_map *map,
574 		     const struct btf *btf,
575 		     const struct btf_type *key_type,
576 		     const struct btf_type *value_type);
577 
578 bool bpf_map_meta_equal(const struct bpf_map *meta0,
579 			const struct bpf_map *meta1);
580 
581 extern const struct bpf_map_ops bpf_map_offload_ops;
582 
583 /* bpf_type_flag contains a set of flags that are applicable to the values of
584  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
585  * or a memory is read-only. We classify types into two categories: base types
586  * and extended types. Extended types are base types combined with a type flag.
587  *
588  * Currently there are no more than 32 base types in arg_type, ret_type and
589  * reg_types.
590  */
591 #define BPF_BASE_TYPE_BITS	8
592 
593 enum bpf_type_flag {
594 	/* PTR may be NULL. */
595 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
596 
597 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
598 	 * compatible with both mutable and immutable memory.
599 	 */
600 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
601 
602 	/* MEM points to BPF ring buffer reservation. */
603 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
604 
605 	/* MEM is in user address space. */
606 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
607 
608 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
609 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
610 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
611 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
612 	 * to the specified cpu.
613 	 */
614 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
615 
616 	/* Indicates that the argument will be released. */
617 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
618 
619 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
620 	 * unreferenced and referenced kptr loaded from map value using a load
621 	 * instruction, so that they can only be dereferenced but not escape the
622 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
623 	 * kfunc or bpf helpers).
624 	 */
625 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
626 
627 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
628 
629 	/* DYNPTR points to memory local to the bpf program. */
630 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
631 
632 	/* DYNPTR points to a kernel-produced ringbuf record. */
633 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
634 
635 	/* Size is known at compile time. */
636 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
637 
638 	/* MEM is of an allocated object of type in program BTF. This is used to
639 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
640 	 */
641 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
642 
643 	/* PTR was passed from the kernel in a trusted context, and may be
644 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
645 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
646 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
647 	 * without invoking bpf_kptr_xchg(). What we really need to know is
648 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
649 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
650 	 * helpers, they do not cover all possible instances of unsafe
651 	 * pointers. For example, a pointer that was obtained from walking a
652 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
653 	 * fact that it may be NULL, invalid, etc. This is due to backwards
654 	 * compatibility requirements, as this was the behavior that was first
655 	 * introduced when kptrs were added. The behavior is now considered
656 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
657 	 *
658 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
659 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
660 	 * For example, pointers passed to tracepoint arguments are considered
661 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
662 	 * callbacks. As alluded to above, pointers that are obtained from
663 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
664 	 * struct task_struct *task is PTR_TRUSTED, then accessing
665 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
666 	 * in a BPF register. Similarly, pointers passed to certain programs
667 	 * types such as kretprobes are not guaranteed to be valid, as they may
668 	 * for example contain an object that was recently freed.
669 	 */
670 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
671 
672 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
673 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
674 
675 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
676 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
677 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
678 	 */
679 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
680 
681 	/* DYNPTR points to sk_buff */
682 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
683 
684 	/* DYNPTR points to xdp_buff */
685 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
686 
687 	__BPF_TYPE_FLAG_MAX,
688 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
689 };
690 
691 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
692 				 | DYNPTR_TYPE_XDP)
693 
694 /* Max number of base types. */
695 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
696 
697 /* Max number of all types. */
698 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
699 
700 /* function argument constraints */
701 enum bpf_arg_type {
702 	ARG_DONTCARE = 0,	/* unused argument in helper function */
703 
704 	/* the following constraints used to prototype
705 	 * bpf_map_lookup/update/delete_elem() functions
706 	 */
707 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
708 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
709 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
710 
711 	/* Used to prototype bpf_memcmp() and other functions that access data
712 	 * on eBPF program stack
713 	 */
714 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
715 	ARG_PTR_TO_ARENA,
716 
717 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
718 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
719 
720 	ARG_PTR_TO_CTX,		/* pointer to context */
721 	ARG_ANYTHING,		/* any (initialized) argument is ok */
722 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
723 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
724 	ARG_PTR_TO_INT,		/* pointer to int */
725 	ARG_PTR_TO_LONG,	/* pointer to long */
726 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
727 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
728 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
729 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
730 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
731 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
732 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
733 	ARG_PTR_TO_STACK,	/* pointer to stack */
734 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
735 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
736 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
737 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
738 	__BPF_ARG_TYPE_MAX,
739 
740 	/* Extended arg_types. */
741 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
742 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
743 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
744 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
745 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
746 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
747 	/* pointer to memory does not need to be initialized, helper function must fill
748 	 * all bytes or clear them in error case.
749 	 */
750 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
751 	/* Pointer to valid memory of size known at compile time. */
752 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
753 
754 	/* This must be the last entry. Its purpose is to ensure the enum is
755 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
756 	 */
757 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
758 };
759 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
760 
761 /* type of values returned from helper functions */
762 enum bpf_return_type {
763 	RET_INTEGER,			/* function returns integer */
764 	RET_VOID,			/* function doesn't return anything */
765 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
766 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
767 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
768 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
769 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
770 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
771 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
772 	__BPF_RET_TYPE_MAX,
773 
774 	/* Extended ret_types. */
775 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
776 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
777 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
778 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
779 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
780 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
781 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
782 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
783 
784 	/* This must be the last entry. Its purpose is to ensure the enum is
785 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
786 	 */
787 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
788 };
789 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
790 
791 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
792  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
793  * instructions after verifying
794  */
795 struct bpf_func_proto {
796 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
797 	bool gpl_only;
798 	bool pkt_access;
799 	bool might_sleep;
800 	enum bpf_return_type ret_type;
801 	union {
802 		struct {
803 			enum bpf_arg_type arg1_type;
804 			enum bpf_arg_type arg2_type;
805 			enum bpf_arg_type arg3_type;
806 			enum bpf_arg_type arg4_type;
807 			enum bpf_arg_type arg5_type;
808 		};
809 		enum bpf_arg_type arg_type[5];
810 	};
811 	union {
812 		struct {
813 			u32 *arg1_btf_id;
814 			u32 *arg2_btf_id;
815 			u32 *arg3_btf_id;
816 			u32 *arg4_btf_id;
817 			u32 *arg5_btf_id;
818 		};
819 		u32 *arg_btf_id[5];
820 		struct {
821 			size_t arg1_size;
822 			size_t arg2_size;
823 			size_t arg3_size;
824 			size_t arg4_size;
825 			size_t arg5_size;
826 		};
827 		size_t arg_size[5];
828 	};
829 	int *ret_btf_id; /* return value btf_id */
830 	bool (*allowed)(const struct bpf_prog *prog);
831 };
832 
833 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
834  * the first argument to eBPF programs.
835  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
836  */
837 struct bpf_context;
838 
839 enum bpf_access_type {
840 	BPF_READ = 1,
841 	BPF_WRITE = 2
842 };
843 
844 /* types of values stored in eBPF registers */
845 /* Pointer types represent:
846  * pointer
847  * pointer + imm
848  * pointer + (u16) var
849  * pointer + (u16) var + imm
850  * if (range > 0) then [ptr, ptr + range - off) is safe to access
851  * if (id > 0) means that some 'var' was added
852  * if (off > 0) means that 'imm' was added
853  */
854 enum bpf_reg_type {
855 	NOT_INIT = 0,		 /* nothing was written into register */
856 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
857 	PTR_TO_CTX,		 /* reg points to bpf_context */
858 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
859 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
860 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
861 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
862 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
863 	PTR_TO_PACKET,		 /* reg points to skb->data */
864 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
865 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
866 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
867 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
868 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
869 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
870 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
871 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
872 	 * to be null checked by the BPF program. This does not imply the
873 	 * pointer is _not_ null and in practice this can easily be a null
874 	 * pointer when reading pointer chains. The assumption is program
875 	 * context will handle null pointer dereference typically via fault
876 	 * handling. The verifier must keep this in mind and can make no
877 	 * assumptions about null or non-null when doing branch analysis.
878 	 * Further, when passed into helpers the helpers can not, without
879 	 * additional context, assume the value is non-null.
880 	 */
881 	PTR_TO_BTF_ID,
882 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
883 	 * been checked for null. Used primarily to inform the verifier
884 	 * an explicit null check is required for this struct.
885 	 */
886 	PTR_TO_MEM,		 /* reg points to valid memory region */
887 	PTR_TO_ARENA,
888 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
889 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
890 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
891 	__BPF_REG_TYPE_MAX,
892 
893 	/* Extended reg_types. */
894 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
895 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
896 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
897 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
898 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
899 
900 	/* This must be the last entry. Its purpose is to ensure the enum is
901 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
902 	 */
903 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
904 };
905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
906 
907 /* The information passed from prog-specific *_is_valid_access
908  * back to the verifier.
909  */
910 struct bpf_insn_access_aux {
911 	enum bpf_reg_type reg_type;
912 	union {
913 		int ctx_field_size;
914 		struct {
915 			struct btf *btf;
916 			u32 btf_id;
917 		};
918 	};
919 	struct bpf_verifier_log *log; /* for verbose logs */
920 };
921 
922 static inline void
923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
924 {
925 	aux->ctx_field_size = size;
926 }
927 
928 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
929 {
930 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
931 }
932 
933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
934 {
935 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
936 }
937 
938 struct bpf_prog_ops {
939 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
940 			union bpf_attr __user *uattr);
941 };
942 
943 struct bpf_reg_state;
944 struct bpf_verifier_ops {
945 	/* return eBPF function prototype for verification */
946 	const struct bpf_func_proto *
947 	(*get_func_proto)(enum bpf_func_id func_id,
948 			  const struct bpf_prog *prog);
949 
950 	/* return true if 'size' wide access at offset 'off' within bpf_context
951 	 * with 'type' (read or write) is allowed
952 	 */
953 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
954 				const struct bpf_prog *prog,
955 				struct bpf_insn_access_aux *info);
956 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
957 			    const struct bpf_prog *prog);
958 	int (*gen_ld_abs)(const struct bpf_insn *orig,
959 			  struct bpf_insn *insn_buf);
960 	u32 (*convert_ctx_access)(enum bpf_access_type type,
961 				  const struct bpf_insn *src,
962 				  struct bpf_insn *dst,
963 				  struct bpf_prog *prog, u32 *target_size);
964 	int (*btf_struct_access)(struct bpf_verifier_log *log,
965 				 const struct bpf_reg_state *reg,
966 				 int off, int size);
967 };
968 
969 struct bpf_prog_offload_ops {
970 	/* verifier basic callbacks */
971 	int (*insn_hook)(struct bpf_verifier_env *env,
972 			 int insn_idx, int prev_insn_idx);
973 	int (*finalize)(struct bpf_verifier_env *env);
974 	/* verifier optimization callbacks (called after .finalize) */
975 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
976 			    struct bpf_insn *insn);
977 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
978 	/* program management callbacks */
979 	int (*prepare)(struct bpf_prog *prog);
980 	int (*translate)(struct bpf_prog *prog);
981 	void (*destroy)(struct bpf_prog *prog);
982 };
983 
984 struct bpf_prog_offload {
985 	struct bpf_prog		*prog;
986 	struct net_device	*netdev;
987 	struct bpf_offload_dev	*offdev;
988 	void			*dev_priv;
989 	struct list_head	offloads;
990 	bool			dev_state;
991 	bool			opt_failed;
992 	void			*jited_image;
993 	u32			jited_len;
994 };
995 
996 enum bpf_cgroup_storage_type {
997 	BPF_CGROUP_STORAGE_SHARED,
998 	BPF_CGROUP_STORAGE_PERCPU,
999 	__BPF_CGROUP_STORAGE_MAX
1000 };
1001 
1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1003 
1004 /* The longest tracepoint has 12 args.
1005  * See include/trace/bpf_probe.h
1006  */
1007 #define MAX_BPF_FUNC_ARGS 12
1008 
1009 /* The maximum number of arguments passed through registers
1010  * a single function may have.
1011  */
1012 #define MAX_BPF_FUNC_REG_ARGS 5
1013 
1014 /* The argument is a structure. */
1015 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1016 
1017 /* The argument is signed. */
1018 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1019 
1020 struct btf_func_model {
1021 	u8 ret_size;
1022 	u8 ret_flags;
1023 	u8 nr_args;
1024 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1025 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1026 };
1027 
1028 /* Restore arguments before returning from trampoline to let original function
1029  * continue executing. This flag is used for fentry progs when there are no
1030  * fexit progs.
1031  */
1032 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1033 /* Call original function after fentry progs, but before fexit progs.
1034  * Makes sense for fentry/fexit, normal calls and indirect calls.
1035  */
1036 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1037 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1038  * programs only. Should not be used with normal calls and indirect calls.
1039  */
1040 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1041 /* Store IP address of the caller on the trampoline stack,
1042  * so it's available for trampoline's programs.
1043  */
1044 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1046 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1047 
1048 /* Get original function from stack instead of from provided direct address.
1049  * Makes sense for trampolines with fexit or fmod_ret programs.
1050  */
1051 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1052 
1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1054  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1055  */
1056 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1057 
1058 /* Indicate that current trampoline is in a tail call context. Then, it has to
1059  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1060  */
1061 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1062 
1063 /*
1064  * Indicate the trampoline should be suitable to receive indirect calls;
1065  * without this indirectly calling the generated code can result in #UD/#CP,
1066  * depending on the CFI options.
1067  *
1068  * Used by bpf_struct_ops.
1069  *
1070  * Incompatible with FENTRY usage, overloads @func_addr argument.
1071  */
1072 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1073 
1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1075  * bytes on x86.
1076  */
1077 enum {
1078 #if defined(__s390x__)
1079 	BPF_MAX_TRAMP_LINKS = 27,
1080 #else
1081 	BPF_MAX_TRAMP_LINKS = 38,
1082 #endif
1083 };
1084 
1085 struct bpf_tramp_links {
1086 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1087 	int nr_links;
1088 };
1089 
1090 struct bpf_tramp_run_ctx;
1091 
1092 /* Different use cases for BPF trampoline:
1093  * 1. replace nop at the function entry (kprobe equivalent)
1094  *    flags = BPF_TRAMP_F_RESTORE_REGS
1095  *    fentry = a set of programs to run before returning from trampoline
1096  *
1097  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1098  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1099  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1100  *    fentry = a set of program to run before calling original function
1101  *    fexit = a set of program to run after original function
1102  *
1103  * 3. replace direct call instruction anywhere in the function body
1104  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1105  *    With flags = 0
1106  *      fentry = a set of programs to run before returning from trampoline
1107  *    With flags = BPF_TRAMP_F_CALL_ORIG
1108  *      orig_call = original callback addr or direct function addr
1109  *      fentry = a set of program to run before calling original function
1110  *      fexit = a set of program to run after original function
1111  */
1112 struct bpf_tramp_image;
1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1114 				const struct btf_func_model *m, u32 flags,
1115 				struct bpf_tramp_links *tlinks,
1116 				void *func_addr);
1117 void *arch_alloc_bpf_trampoline(unsigned int size);
1118 void arch_free_bpf_trampoline(void *image, unsigned int size);
1119 void arch_protect_bpf_trampoline(void *image, unsigned int size);
1120 void arch_unprotect_bpf_trampoline(void *image, unsigned int size);
1121 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1122 			     struct bpf_tramp_links *tlinks, void *func_addr);
1123 
1124 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1125 					     struct bpf_tramp_run_ctx *run_ctx);
1126 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1127 					     struct bpf_tramp_run_ctx *run_ctx);
1128 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1129 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1130 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1131 				      struct bpf_tramp_run_ctx *run_ctx);
1132 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1133 				      struct bpf_tramp_run_ctx *run_ctx);
1134 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1135 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1136 
1137 struct bpf_ksym {
1138 	unsigned long		 start;
1139 	unsigned long		 end;
1140 	char			 name[KSYM_NAME_LEN];
1141 	struct list_head	 lnode;
1142 	struct latch_tree_node	 tnode;
1143 	bool			 prog;
1144 };
1145 
1146 enum bpf_tramp_prog_type {
1147 	BPF_TRAMP_FENTRY,
1148 	BPF_TRAMP_FEXIT,
1149 	BPF_TRAMP_MODIFY_RETURN,
1150 	BPF_TRAMP_MAX,
1151 	BPF_TRAMP_REPLACE, /* more than MAX */
1152 };
1153 
1154 struct bpf_tramp_image {
1155 	void *image;
1156 	int size;
1157 	struct bpf_ksym ksym;
1158 	struct percpu_ref pcref;
1159 	void *ip_after_call;
1160 	void *ip_epilogue;
1161 	union {
1162 		struct rcu_head rcu;
1163 		struct work_struct work;
1164 	};
1165 };
1166 
1167 struct bpf_trampoline {
1168 	/* hlist for trampoline_table */
1169 	struct hlist_node hlist;
1170 	struct ftrace_ops *fops;
1171 	/* serializes access to fields of this trampoline */
1172 	struct mutex mutex;
1173 	refcount_t refcnt;
1174 	u32 flags;
1175 	u64 key;
1176 	struct {
1177 		struct btf_func_model model;
1178 		void *addr;
1179 		bool ftrace_managed;
1180 	} func;
1181 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1182 	 * program by replacing one of its functions. func.addr is the address
1183 	 * of the function it replaced.
1184 	 */
1185 	struct bpf_prog *extension_prog;
1186 	/* list of BPF programs using this trampoline */
1187 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1188 	/* Number of attached programs. A counter per kind. */
1189 	int progs_cnt[BPF_TRAMP_MAX];
1190 	/* Executable image of trampoline */
1191 	struct bpf_tramp_image *cur_image;
1192 };
1193 
1194 struct bpf_attach_target_info {
1195 	struct btf_func_model fmodel;
1196 	long tgt_addr;
1197 	struct module *tgt_mod;
1198 	const char *tgt_name;
1199 	const struct btf_type *tgt_type;
1200 };
1201 
1202 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1203 
1204 struct bpf_dispatcher_prog {
1205 	struct bpf_prog *prog;
1206 	refcount_t users;
1207 };
1208 
1209 struct bpf_dispatcher {
1210 	/* dispatcher mutex */
1211 	struct mutex mutex;
1212 	void *func;
1213 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1214 	int num_progs;
1215 	void *image;
1216 	void *rw_image;
1217 	u32 image_off;
1218 	struct bpf_ksym ksym;
1219 #ifdef CONFIG_HAVE_STATIC_CALL
1220 	struct static_call_key *sc_key;
1221 	void *sc_tramp;
1222 #endif
1223 };
1224 
1225 #ifndef __bpfcall
1226 #define __bpfcall __nocfi
1227 #endif
1228 
1229 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1230 	const void *ctx,
1231 	const struct bpf_insn *insnsi,
1232 	bpf_func_t bpf_func)
1233 {
1234 	return bpf_func(ctx, insnsi);
1235 }
1236 
1237 /* the implementation of the opaque uapi struct bpf_dynptr */
1238 struct bpf_dynptr_kern {
1239 	void *data;
1240 	/* Size represents the number of usable bytes of dynptr data.
1241 	 * If for example the offset is at 4 for a local dynptr whose data is
1242 	 * of type u64, the number of usable bytes is 4.
1243 	 *
1244 	 * The upper 8 bits are reserved. It is as follows:
1245 	 * Bits 0 - 23 = size
1246 	 * Bits 24 - 30 = dynptr type
1247 	 * Bit 31 = whether dynptr is read-only
1248 	 */
1249 	u32 size;
1250 	u32 offset;
1251 } __aligned(8);
1252 
1253 enum bpf_dynptr_type {
1254 	BPF_DYNPTR_TYPE_INVALID,
1255 	/* Points to memory that is local to the bpf program */
1256 	BPF_DYNPTR_TYPE_LOCAL,
1257 	/* Underlying data is a ringbuf record */
1258 	BPF_DYNPTR_TYPE_RINGBUF,
1259 	/* Underlying data is a sk_buff */
1260 	BPF_DYNPTR_TYPE_SKB,
1261 	/* Underlying data is a xdp_buff */
1262 	BPF_DYNPTR_TYPE_XDP,
1263 };
1264 
1265 int bpf_dynptr_check_size(u32 size);
1266 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1267 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1268 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1269 
1270 #ifdef CONFIG_BPF_JIT
1271 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1272 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1273 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1274 					  struct bpf_attach_target_info *tgt_info);
1275 void bpf_trampoline_put(struct bpf_trampoline *tr);
1276 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1277 
1278 /*
1279  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1280  * indirection with a direct call to the bpf program. If the architecture does
1281  * not have STATIC_CALL, avoid a double-indirection.
1282  */
1283 #ifdef CONFIG_HAVE_STATIC_CALL
1284 
1285 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1286 	.sc_key = &STATIC_CALL_KEY(_name),			\
1287 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1288 
1289 #define __BPF_DISPATCHER_SC(name)				\
1290 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1291 
1292 #define __BPF_DISPATCHER_CALL(name)				\
1293 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1294 
1295 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1296 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1297 
1298 #else
1299 #define __BPF_DISPATCHER_SC_INIT(name)
1300 #define __BPF_DISPATCHER_SC(name)
1301 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1302 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1303 #endif
1304 
1305 #define BPF_DISPATCHER_INIT(_name) {				\
1306 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1307 	.func = &_name##_func,					\
1308 	.progs = {},						\
1309 	.num_progs = 0,						\
1310 	.image = NULL,						\
1311 	.image_off = 0,						\
1312 	.ksym = {						\
1313 		.name  = #_name,				\
1314 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1315 	},							\
1316 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1317 }
1318 
1319 #define DEFINE_BPF_DISPATCHER(name)					\
1320 	__BPF_DISPATCHER_SC(name);					\
1321 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1322 		const void *ctx,					\
1323 		const struct bpf_insn *insnsi,				\
1324 		bpf_func_t bpf_func)					\
1325 	{								\
1326 		return __BPF_DISPATCHER_CALL(name);			\
1327 	}								\
1328 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1329 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1330 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1331 
1332 #define DECLARE_BPF_DISPATCHER(name)					\
1333 	unsigned int bpf_dispatcher_##name##_func(			\
1334 		const void *ctx,					\
1335 		const struct bpf_insn *insnsi,				\
1336 		bpf_func_t bpf_func);					\
1337 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1338 
1339 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1340 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1341 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1342 				struct bpf_prog *to);
1343 /* Called only from JIT-enabled code, so there's no need for stubs. */
1344 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1345 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1346 void bpf_ksym_add(struct bpf_ksym *ksym);
1347 void bpf_ksym_del(struct bpf_ksym *ksym);
1348 int bpf_jit_charge_modmem(u32 size);
1349 void bpf_jit_uncharge_modmem(u32 size);
1350 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1351 #else
1352 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1353 					   struct bpf_trampoline *tr)
1354 {
1355 	return -ENOTSUPP;
1356 }
1357 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1358 					     struct bpf_trampoline *tr)
1359 {
1360 	return -ENOTSUPP;
1361 }
1362 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1363 							struct bpf_attach_target_info *tgt_info)
1364 {
1365 	return NULL;
1366 }
1367 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1368 #define DEFINE_BPF_DISPATCHER(name)
1369 #define DECLARE_BPF_DISPATCHER(name)
1370 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1371 #define BPF_DISPATCHER_PTR(name) NULL
1372 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1373 					      struct bpf_prog *from,
1374 					      struct bpf_prog *to) {}
1375 static inline bool is_bpf_image_address(unsigned long address)
1376 {
1377 	return false;
1378 }
1379 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1380 {
1381 	return false;
1382 }
1383 #endif
1384 
1385 struct bpf_func_info_aux {
1386 	u16 linkage;
1387 	bool unreliable;
1388 	bool called : 1;
1389 	bool verified : 1;
1390 };
1391 
1392 enum bpf_jit_poke_reason {
1393 	BPF_POKE_REASON_TAIL_CALL,
1394 };
1395 
1396 /* Descriptor of pokes pointing /into/ the JITed image. */
1397 struct bpf_jit_poke_descriptor {
1398 	void *tailcall_target;
1399 	void *tailcall_bypass;
1400 	void *bypass_addr;
1401 	void *aux;
1402 	union {
1403 		struct {
1404 			struct bpf_map *map;
1405 			u32 key;
1406 		} tail_call;
1407 	};
1408 	bool tailcall_target_stable;
1409 	u8 adj_off;
1410 	u16 reason;
1411 	u32 insn_idx;
1412 };
1413 
1414 /* reg_type info for ctx arguments */
1415 struct bpf_ctx_arg_aux {
1416 	u32 offset;
1417 	enum bpf_reg_type reg_type;
1418 	struct btf *btf;
1419 	u32 btf_id;
1420 };
1421 
1422 struct btf_mod_pair {
1423 	struct btf *btf;
1424 	struct module *module;
1425 };
1426 
1427 struct bpf_kfunc_desc_tab;
1428 
1429 struct bpf_prog_aux {
1430 	atomic64_t refcnt;
1431 	u32 used_map_cnt;
1432 	u32 used_btf_cnt;
1433 	u32 max_ctx_offset;
1434 	u32 max_pkt_offset;
1435 	u32 max_tp_access;
1436 	u32 stack_depth;
1437 	u32 id;
1438 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1439 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1440 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1441 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1442 	u32 ctx_arg_info_size;
1443 	u32 max_rdonly_access;
1444 	u32 max_rdwr_access;
1445 	struct btf *attach_btf;
1446 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1447 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1448 	struct bpf_prog *dst_prog;
1449 	struct bpf_trampoline *dst_trampoline;
1450 	enum bpf_prog_type saved_dst_prog_type;
1451 	enum bpf_attach_type saved_dst_attach_type;
1452 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1453 	bool dev_bound; /* Program is bound to the netdev. */
1454 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1455 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1456 	bool attach_tracing_prog; /* true if tracing another tracing program */
1457 	bool func_proto_unreliable;
1458 	bool tail_call_reachable;
1459 	bool xdp_has_frags;
1460 	bool exception_cb;
1461 	bool exception_boundary;
1462 	struct bpf_arena *arena;
1463 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1464 	const struct btf_type *attach_func_proto;
1465 	/* function name for valid attach_btf_id */
1466 	const char *attach_func_name;
1467 	struct bpf_prog **func;
1468 	void *jit_data; /* JIT specific data. arch dependent */
1469 	struct bpf_jit_poke_descriptor *poke_tab;
1470 	struct bpf_kfunc_desc_tab *kfunc_tab;
1471 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1472 	u32 size_poke_tab;
1473 #ifdef CONFIG_FINEIBT
1474 	struct bpf_ksym ksym_prefix;
1475 #endif
1476 	struct bpf_ksym ksym;
1477 	const struct bpf_prog_ops *ops;
1478 	struct bpf_map **used_maps;
1479 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1480 	struct btf_mod_pair *used_btfs;
1481 	struct bpf_prog *prog;
1482 	struct user_struct *user;
1483 	u64 load_time; /* ns since boottime */
1484 	u32 verified_insns;
1485 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1486 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1487 	char name[BPF_OBJ_NAME_LEN];
1488 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1489 #ifdef CONFIG_SECURITY
1490 	void *security;
1491 #endif
1492 	struct bpf_token *token;
1493 	struct bpf_prog_offload *offload;
1494 	struct btf *btf;
1495 	struct bpf_func_info *func_info;
1496 	struct bpf_func_info_aux *func_info_aux;
1497 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1498 	 * has the xlated insn offset.
1499 	 * Both the main and sub prog share the same linfo.
1500 	 * The subprog can access its first linfo by
1501 	 * using the linfo_idx.
1502 	 */
1503 	struct bpf_line_info *linfo;
1504 	/* jited_linfo is the jited addr of the linfo.  It has a
1505 	 * one to one mapping to linfo:
1506 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1507 	 * Both the main and sub prog share the same jited_linfo.
1508 	 * The subprog can access its first jited_linfo by
1509 	 * using the linfo_idx.
1510 	 */
1511 	void **jited_linfo;
1512 	u32 func_info_cnt;
1513 	u32 nr_linfo;
1514 	/* subprog can use linfo_idx to access its first linfo and
1515 	 * jited_linfo.
1516 	 * main prog always has linfo_idx == 0
1517 	 */
1518 	u32 linfo_idx;
1519 	struct module *mod;
1520 	u32 num_exentries;
1521 	struct exception_table_entry *extable;
1522 	union {
1523 		struct work_struct work;
1524 		struct rcu_head	rcu;
1525 	};
1526 };
1527 
1528 struct bpf_prog {
1529 	u16			pages;		/* Number of allocated pages */
1530 	u16			jited:1,	/* Is our filter JIT'ed? */
1531 				jit_requested:1,/* archs need to JIT the prog */
1532 				gpl_compatible:1, /* Is filter GPL compatible? */
1533 				cb_access:1,	/* Is control block accessed? */
1534 				dst_needed:1,	/* Do we need dst entry? */
1535 				blinding_requested:1, /* needs constant blinding */
1536 				blinded:1,	/* Was blinded */
1537 				is_func:1,	/* program is a bpf function */
1538 				kprobe_override:1, /* Do we override a kprobe? */
1539 				has_callchain_buf:1, /* callchain buffer allocated? */
1540 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1541 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1542 				call_get_func_ip:1, /* Do we call get_func_ip() */
1543 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1544 				sleepable:1;	/* BPF program is sleepable */
1545 	enum bpf_prog_type	type;		/* Type of BPF program */
1546 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1547 	u32			len;		/* Number of filter blocks */
1548 	u32			jited_len;	/* Size of jited insns in bytes */
1549 	u8			tag[BPF_TAG_SIZE];
1550 	struct bpf_prog_stats __percpu *stats;
1551 	int __percpu		*active;
1552 	unsigned int		(*bpf_func)(const void *ctx,
1553 					    const struct bpf_insn *insn);
1554 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1555 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1556 	/* Instructions for interpreter */
1557 	union {
1558 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1559 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1560 	};
1561 };
1562 
1563 struct bpf_array_aux {
1564 	/* Programs with direct jumps into programs part of this array. */
1565 	struct list_head poke_progs;
1566 	struct bpf_map *map;
1567 	struct mutex poke_mutex;
1568 	struct work_struct work;
1569 };
1570 
1571 struct bpf_link {
1572 	atomic64_t refcnt;
1573 	u32 id;
1574 	enum bpf_link_type type;
1575 	const struct bpf_link_ops *ops;
1576 	struct bpf_prog *prog;
1577 	struct work_struct work;
1578 };
1579 
1580 struct bpf_link_ops {
1581 	void (*release)(struct bpf_link *link);
1582 	void (*dealloc)(struct bpf_link *link);
1583 	int (*detach)(struct bpf_link *link);
1584 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1585 			   struct bpf_prog *old_prog);
1586 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1587 	int (*fill_link_info)(const struct bpf_link *link,
1588 			      struct bpf_link_info *info);
1589 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1590 			  struct bpf_map *old_map);
1591 };
1592 
1593 struct bpf_tramp_link {
1594 	struct bpf_link link;
1595 	struct hlist_node tramp_hlist;
1596 	u64 cookie;
1597 };
1598 
1599 struct bpf_shim_tramp_link {
1600 	struct bpf_tramp_link link;
1601 	struct bpf_trampoline *trampoline;
1602 };
1603 
1604 struct bpf_tracing_link {
1605 	struct bpf_tramp_link link;
1606 	enum bpf_attach_type attach_type;
1607 	struct bpf_trampoline *trampoline;
1608 	struct bpf_prog *tgt_prog;
1609 };
1610 
1611 struct bpf_link_primer {
1612 	struct bpf_link *link;
1613 	struct file *file;
1614 	int fd;
1615 	u32 id;
1616 };
1617 
1618 struct bpf_mount_opts {
1619 	kuid_t uid;
1620 	kgid_t gid;
1621 	umode_t mode;
1622 
1623 	/* BPF token-related delegation options */
1624 	u64 delegate_cmds;
1625 	u64 delegate_maps;
1626 	u64 delegate_progs;
1627 	u64 delegate_attachs;
1628 };
1629 
1630 struct bpf_token {
1631 	struct work_struct work;
1632 	atomic64_t refcnt;
1633 	struct user_namespace *userns;
1634 	u64 allowed_cmds;
1635 	u64 allowed_maps;
1636 	u64 allowed_progs;
1637 	u64 allowed_attachs;
1638 #ifdef CONFIG_SECURITY
1639 	void *security;
1640 #endif
1641 };
1642 
1643 struct bpf_struct_ops_value;
1644 struct btf_member;
1645 
1646 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1647 /**
1648  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1649  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1650  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1651  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1652  *		  when determining whether the struct_ops progs in the
1653  *		  struct_ops map are valid.
1654  * @init: A callback that is invoked a single time, and before any other
1655  *	  callback, to initialize the structure. A nonzero return value means
1656  *	  the subsystem could not be initialized.
1657  * @check_member: When defined, a callback invoked by the verifier to allow
1658  *		  the subsystem to determine if an entry in the struct_ops map
1659  *		  is valid. A nonzero return value means that the map is
1660  *		  invalid and should be rejected by the verifier.
1661  * @init_member: A callback that is invoked for each member of the struct_ops
1662  *		 map to allow the subsystem to initialize the member. A nonzero
1663  *		 value means the member could not be initialized. This callback
1664  *		 is exclusive with the @type, @type_id, @value_type, and
1665  *		 @value_id fields.
1666  * @reg: A callback that is invoked when the struct_ops map has been
1667  *	 initialized and is being attached to. Zero means the struct_ops map
1668  *	 has been successfully registered and is live. A nonzero return value
1669  *	 means the struct_ops map could not be registered.
1670  * @unreg: A callback that is invoked when the struct_ops map should be
1671  *	   unregistered.
1672  * @update: A callback that is invoked when the live struct_ops map is being
1673  *	    updated to contain new values. This callback is only invoked when
1674  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1675  *	    it is assumed that the struct_ops map cannot be updated.
1676  * @validate: A callback that is invoked after all of the members have been
1677  *	      initialized. This callback should perform static checks on the
1678  *	      map, meaning that it should either fail or succeed
1679  *	      deterministically. A struct_ops map that has been validated may
1680  *	      not necessarily succeed in being registered if the call to @reg
1681  *	      fails. For example, a valid struct_ops map may be loaded, but
1682  *	      then fail to be registered due to there being another active
1683  *	      struct_ops map on the system in the subsystem already. For this
1684  *	      reason, if this callback is not defined, the check is skipped as
1685  *	      the struct_ops map will have final verification performed in
1686  *	      @reg.
1687  * @type: BTF type.
1688  * @value_type: Value type.
1689  * @name: The name of the struct bpf_struct_ops object.
1690  * @func_models: Func models
1691  * @type_id: BTF type id.
1692  * @value_id: BTF value id.
1693  */
1694 struct bpf_struct_ops {
1695 	const struct bpf_verifier_ops *verifier_ops;
1696 	int (*init)(struct btf *btf);
1697 	int (*check_member)(const struct btf_type *t,
1698 			    const struct btf_member *member,
1699 			    const struct bpf_prog *prog);
1700 	int (*init_member)(const struct btf_type *t,
1701 			   const struct btf_member *member,
1702 			   void *kdata, const void *udata);
1703 	int (*reg)(void *kdata);
1704 	void (*unreg)(void *kdata);
1705 	int (*update)(void *kdata, void *old_kdata);
1706 	int (*validate)(void *kdata);
1707 	void *cfi_stubs;
1708 	struct module *owner;
1709 	const char *name;
1710 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1711 };
1712 
1713 /* Every member of a struct_ops type has an instance even a member is not
1714  * an operator (function pointer). The "info" field will be assigned to
1715  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1716  * argument information required by the verifier to verify the program.
1717  *
1718  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1719  * corresponding entry for an given argument.
1720  */
1721 struct bpf_struct_ops_arg_info {
1722 	struct bpf_ctx_arg_aux *info;
1723 	u32 cnt;
1724 };
1725 
1726 struct bpf_struct_ops_desc {
1727 	struct bpf_struct_ops *st_ops;
1728 
1729 	const struct btf_type *type;
1730 	const struct btf_type *value_type;
1731 	u32 type_id;
1732 	u32 value_id;
1733 
1734 	/* Collection of argument information for each member */
1735 	struct bpf_struct_ops_arg_info *arg_info;
1736 };
1737 
1738 enum bpf_struct_ops_state {
1739 	BPF_STRUCT_OPS_STATE_INIT,
1740 	BPF_STRUCT_OPS_STATE_INUSE,
1741 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1742 	BPF_STRUCT_OPS_STATE_READY,
1743 };
1744 
1745 struct bpf_struct_ops_common_value {
1746 	refcount_t refcnt;
1747 	enum bpf_struct_ops_state state;
1748 };
1749 
1750 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1751 /* This macro helps developer to register a struct_ops type and generate
1752  * type information correctly. Developers should use this macro to register
1753  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1754  */
1755 #define register_bpf_struct_ops(st_ops, type)				\
1756 	({								\
1757 		struct bpf_struct_ops_##type {				\
1758 			struct bpf_struct_ops_common_value common;	\
1759 			struct type data ____cacheline_aligned_in_smp;	\
1760 		};							\
1761 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1762 		__register_bpf_struct_ops(st_ops);			\
1763 	})
1764 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1765 bool bpf_struct_ops_get(const void *kdata);
1766 void bpf_struct_ops_put(const void *kdata);
1767 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1768 				       void *value);
1769 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1770 				      struct bpf_tramp_link *link,
1771 				      const struct btf_func_model *model,
1772 				      void *stub_func,
1773 				      void **image, u32 *image_off,
1774 				      bool allow_alloc);
1775 void bpf_struct_ops_image_free(void *image);
1776 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1777 {
1778 	if (owner == BPF_MODULE_OWNER)
1779 		return bpf_struct_ops_get(data);
1780 	else
1781 		return try_module_get(owner);
1782 }
1783 static inline void bpf_module_put(const void *data, struct module *owner)
1784 {
1785 	if (owner == BPF_MODULE_OWNER)
1786 		bpf_struct_ops_put(data);
1787 	else
1788 		module_put(owner);
1789 }
1790 int bpf_struct_ops_link_create(union bpf_attr *attr);
1791 
1792 #ifdef CONFIG_NET
1793 /* Define it here to avoid the use of forward declaration */
1794 struct bpf_dummy_ops_state {
1795 	int val;
1796 };
1797 
1798 struct bpf_dummy_ops {
1799 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1800 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1801 		      char a3, unsigned long a4);
1802 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1803 };
1804 
1805 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1806 			    union bpf_attr __user *uattr);
1807 #endif
1808 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1809 			     struct btf *btf,
1810 			     struct bpf_verifier_log *log);
1811 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1812 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1813 #else
1814 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1815 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1816 {
1817 	return try_module_get(owner);
1818 }
1819 static inline void bpf_module_put(const void *data, struct module *owner)
1820 {
1821 	module_put(owner);
1822 }
1823 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1824 						     void *key,
1825 						     void *value)
1826 {
1827 	return -EINVAL;
1828 }
1829 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1830 {
1831 	return -EOPNOTSUPP;
1832 }
1833 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1834 {
1835 }
1836 
1837 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1838 {
1839 }
1840 
1841 #endif
1842 
1843 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1844 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1845 				    int cgroup_atype);
1846 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1847 #else
1848 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1849 						  int cgroup_atype)
1850 {
1851 	return -EOPNOTSUPP;
1852 }
1853 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1854 {
1855 }
1856 #endif
1857 
1858 struct bpf_array {
1859 	struct bpf_map map;
1860 	u32 elem_size;
1861 	u32 index_mask;
1862 	struct bpf_array_aux *aux;
1863 	union {
1864 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1865 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1866 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1867 	};
1868 };
1869 
1870 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1871 #define MAX_TAIL_CALL_CNT 33
1872 
1873 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1874  * It's enum to expose it (and thus make it discoverable) through BTF.
1875  */
1876 enum {
1877 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1878 };
1879 
1880 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1881 				 BPF_F_RDONLY_PROG |	\
1882 				 BPF_F_WRONLY |		\
1883 				 BPF_F_WRONLY_PROG)
1884 
1885 #define BPF_MAP_CAN_READ	BIT(0)
1886 #define BPF_MAP_CAN_WRITE	BIT(1)
1887 
1888 /* Maximum number of user-producer ring buffer samples that can be drained in
1889  * a call to bpf_user_ringbuf_drain().
1890  */
1891 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1892 
1893 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1894 {
1895 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1896 
1897 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1898 	 * not possible.
1899 	 */
1900 	if (access_flags & BPF_F_RDONLY_PROG)
1901 		return BPF_MAP_CAN_READ;
1902 	else if (access_flags & BPF_F_WRONLY_PROG)
1903 		return BPF_MAP_CAN_WRITE;
1904 	else
1905 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1906 }
1907 
1908 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1909 {
1910 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1911 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1912 }
1913 
1914 struct bpf_event_entry {
1915 	struct perf_event *event;
1916 	struct file *perf_file;
1917 	struct file *map_file;
1918 	struct rcu_head rcu;
1919 };
1920 
1921 static inline bool map_type_contains_progs(struct bpf_map *map)
1922 {
1923 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1924 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1925 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1926 }
1927 
1928 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1929 int bpf_prog_calc_tag(struct bpf_prog *fp);
1930 
1931 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1932 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1933 
1934 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1935 					unsigned long off, unsigned long len);
1936 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1937 					const struct bpf_insn *src,
1938 					struct bpf_insn *dst,
1939 					struct bpf_prog *prog,
1940 					u32 *target_size);
1941 
1942 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1943 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1944 
1945 /* an array of programs to be executed under rcu_lock.
1946  *
1947  * Typical usage:
1948  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1949  *
1950  * the structure returned by bpf_prog_array_alloc() should be populated
1951  * with program pointers and the last pointer must be NULL.
1952  * The user has to keep refcnt on the program and make sure the program
1953  * is removed from the array before bpf_prog_put().
1954  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1955  * since other cpus are walking the array of pointers in parallel.
1956  */
1957 struct bpf_prog_array_item {
1958 	struct bpf_prog *prog;
1959 	union {
1960 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1961 		u64 bpf_cookie;
1962 	};
1963 };
1964 
1965 struct bpf_prog_array {
1966 	struct rcu_head rcu;
1967 	struct bpf_prog_array_item items[];
1968 };
1969 
1970 struct bpf_empty_prog_array {
1971 	struct bpf_prog_array hdr;
1972 	struct bpf_prog *null_prog;
1973 };
1974 
1975 /* to avoid allocating empty bpf_prog_array for cgroups that
1976  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1977  * It will not be modified the caller of bpf_prog_array_alloc()
1978  * (since caller requested prog_cnt == 0)
1979  * that pointer should be 'freed' by bpf_prog_array_free()
1980  */
1981 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1982 
1983 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1984 void bpf_prog_array_free(struct bpf_prog_array *progs);
1985 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1986 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1987 int bpf_prog_array_length(struct bpf_prog_array *progs);
1988 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1989 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1990 				__u32 __user *prog_ids, u32 cnt);
1991 
1992 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1993 				struct bpf_prog *old_prog);
1994 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1995 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1996 			     struct bpf_prog *prog);
1997 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1998 			     u32 *prog_ids, u32 request_cnt,
1999 			     u32 *prog_cnt);
2000 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2001 			struct bpf_prog *exclude_prog,
2002 			struct bpf_prog *include_prog,
2003 			u64 bpf_cookie,
2004 			struct bpf_prog_array **new_array);
2005 
2006 struct bpf_run_ctx {};
2007 
2008 struct bpf_cg_run_ctx {
2009 	struct bpf_run_ctx run_ctx;
2010 	const struct bpf_prog_array_item *prog_item;
2011 	int retval;
2012 };
2013 
2014 struct bpf_trace_run_ctx {
2015 	struct bpf_run_ctx run_ctx;
2016 	u64 bpf_cookie;
2017 	bool is_uprobe;
2018 };
2019 
2020 struct bpf_tramp_run_ctx {
2021 	struct bpf_run_ctx run_ctx;
2022 	u64 bpf_cookie;
2023 	struct bpf_run_ctx *saved_run_ctx;
2024 };
2025 
2026 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2027 {
2028 	struct bpf_run_ctx *old_ctx = NULL;
2029 
2030 #ifdef CONFIG_BPF_SYSCALL
2031 	old_ctx = current->bpf_ctx;
2032 	current->bpf_ctx = new_ctx;
2033 #endif
2034 	return old_ctx;
2035 }
2036 
2037 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2038 {
2039 #ifdef CONFIG_BPF_SYSCALL
2040 	current->bpf_ctx = old_ctx;
2041 #endif
2042 }
2043 
2044 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2045 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2046 /* BPF program asks to set CN on the packet. */
2047 #define BPF_RET_SET_CN						(1 << 0)
2048 
2049 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2050 
2051 static __always_inline u32
2052 bpf_prog_run_array(const struct bpf_prog_array *array,
2053 		   const void *ctx, bpf_prog_run_fn run_prog)
2054 {
2055 	const struct bpf_prog_array_item *item;
2056 	const struct bpf_prog *prog;
2057 	struct bpf_run_ctx *old_run_ctx;
2058 	struct bpf_trace_run_ctx run_ctx;
2059 	u32 ret = 1;
2060 
2061 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2062 
2063 	if (unlikely(!array))
2064 		return ret;
2065 
2066 	run_ctx.is_uprobe = false;
2067 
2068 	migrate_disable();
2069 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2070 	item = &array->items[0];
2071 	while ((prog = READ_ONCE(item->prog))) {
2072 		run_ctx.bpf_cookie = item->bpf_cookie;
2073 		ret &= run_prog(prog, ctx);
2074 		item++;
2075 	}
2076 	bpf_reset_run_ctx(old_run_ctx);
2077 	migrate_enable();
2078 	return ret;
2079 }
2080 
2081 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2082  *
2083  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2084  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2085  * in order to use the tasks_trace rcu grace period.
2086  *
2087  * When a non-sleepable program is inside the array, we take the rcu read
2088  * section and disable preemption for that program alone, so it can access
2089  * rcu-protected dynamically sized maps.
2090  */
2091 static __always_inline u32
2092 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2093 			  const void *ctx, bpf_prog_run_fn run_prog)
2094 {
2095 	const struct bpf_prog_array_item *item;
2096 	const struct bpf_prog *prog;
2097 	const struct bpf_prog_array *array;
2098 	struct bpf_run_ctx *old_run_ctx;
2099 	struct bpf_trace_run_ctx run_ctx;
2100 	u32 ret = 1;
2101 
2102 	might_fault();
2103 
2104 	rcu_read_lock_trace();
2105 	migrate_disable();
2106 
2107 	run_ctx.is_uprobe = true;
2108 
2109 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2110 	if (unlikely(!array))
2111 		goto out;
2112 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2113 	item = &array->items[0];
2114 	while ((prog = READ_ONCE(item->prog))) {
2115 		if (!prog->sleepable)
2116 			rcu_read_lock();
2117 
2118 		run_ctx.bpf_cookie = item->bpf_cookie;
2119 		ret &= run_prog(prog, ctx);
2120 		item++;
2121 
2122 		if (!prog->sleepable)
2123 			rcu_read_unlock();
2124 	}
2125 	bpf_reset_run_ctx(old_run_ctx);
2126 out:
2127 	migrate_enable();
2128 	rcu_read_unlock_trace();
2129 	return ret;
2130 }
2131 
2132 #ifdef CONFIG_BPF_SYSCALL
2133 DECLARE_PER_CPU(int, bpf_prog_active);
2134 extern struct mutex bpf_stats_enabled_mutex;
2135 
2136 /*
2137  * Block execution of BPF programs attached to instrumentation (perf,
2138  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2139  * these events can happen inside a region which holds a map bucket lock
2140  * and can deadlock on it.
2141  */
2142 static inline void bpf_disable_instrumentation(void)
2143 {
2144 	migrate_disable();
2145 	this_cpu_inc(bpf_prog_active);
2146 }
2147 
2148 static inline void bpf_enable_instrumentation(void)
2149 {
2150 	this_cpu_dec(bpf_prog_active);
2151 	migrate_enable();
2152 }
2153 
2154 extern const struct super_operations bpf_super_ops;
2155 extern const struct file_operations bpf_map_fops;
2156 extern const struct file_operations bpf_prog_fops;
2157 extern const struct file_operations bpf_iter_fops;
2158 
2159 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2160 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2161 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2162 #define BPF_MAP_TYPE(_id, _ops) \
2163 	extern const struct bpf_map_ops _ops;
2164 #define BPF_LINK_TYPE(_id, _name)
2165 #include <linux/bpf_types.h>
2166 #undef BPF_PROG_TYPE
2167 #undef BPF_MAP_TYPE
2168 #undef BPF_LINK_TYPE
2169 
2170 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2171 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2172 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2173 
2174 struct bpf_prog *bpf_prog_get(u32 ufd);
2175 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2176 				       bool attach_drv);
2177 void bpf_prog_add(struct bpf_prog *prog, int i);
2178 void bpf_prog_sub(struct bpf_prog *prog, int i);
2179 void bpf_prog_inc(struct bpf_prog *prog);
2180 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2181 void bpf_prog_put(struct bpf_prog *prog);
2182 
2183 void bpf_prog_free_id(struct bpf_prog *prog);
2184 void bpf_map_free_id(struct bpf_map *map);
2185 
2186 struct btf_field *btf_record_find(const struct btf_record *rec,
2187 				  u32 offset, u32 field_mask);
2188 void btf_record_free(struct btf_record *rec);
2189 void bpf_map_free_record(struct bpf_map *map);
2190 struct btf_record *btf_record_dup(const struct btf_record *rec);
2191 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2192 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2193 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2194 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2195 
2196 struct bpf_map *bpf_map_get(u32 ufd);
2197 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2198 struct bpf_map *__bpf_map_get(struct fd f);
2199 void bpf_map_inc(struct bpf_map *map);
2200 void bpf_map_inc_with_uref(struct bpf_map *map);
2201 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2202 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2203 void bpf_map_put_with_uref(struct bpf_map *map);
2204 void bpf_map_put(struct bpf_map *map);
2205 void *bpf_map_area_alloc(u64 size, int numa_node);
2206 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2207 void bpf_map_area_free(void *base);
2208 bool bpf_map_write_active(const struct bpf_map *map);
2209 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2210 int  generic_map_lookup_batch(struct bpf_map *map,
2211 			      const union bpf_attr *attr,
2212 			      union bpf_attr __user *uattr);
2213 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2214 			      const union bpf_attr *attr,
2215 			      union bpf_attr __user *uattr);
2216 int  generic_map_delete_batch(struct bpf_map *map,
2217 			      const union bpf_attr *attr,
2218 			      union bpf_attr __user *uattr);
2219 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2220 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2221 
2222 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2223 			unsigned long nr_pages, struct page **page_array);
2224 #ifdef CONFIG_MEMCG_KMEM
2225 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2226 			   int node);
2227 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2228 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2229 		       gfp_t flags);
2230 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2231 				    size_t align, gfp_t flags);
2232 #else
2233 static inline void *
2234 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2235 		     int node)
2236 {
2237 	return kmalloc_node(size, flags, node);
2238 }
2239 
2240 static inline void *
2241 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2242 {
2243 	return kzalloc(size, flags);
2244 }
2245 
2246 static inline void *
2247 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2248 {
2249 	return kvcalloc(n, size, flags);
2250 }
2251 
2252 static inline void __percpu *
2253 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2254 		     gfp_t flags)
2255 {
2256 	return __alloc_percpu_gfp(size, align, flags);
2257 }
2258 #endif
2259 
2260 static inline int
2261 bpf_map_init_elem_count(struct bpf_map *map)
2262 {
2263 	size_t size = sizeof(*map->elem_count), align = size;
2264 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2265 
2266 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2267 	if (!map->elem_count)
2268 		return -ENOMEM;
2269 
2270 	return 0;
2271 }
2272 
2273 static inline void
2274 bpf_map_free_elem_count(struct bpf_map *map)
2275 {
2276 	free_percpu(map->elem_count);
2277 }
2278 
2279 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2280 {
2281 	this_cpu_inc(*map->elem_count);
2282 }
2283 
2284 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2285 {
2286 	this_cpu_dec(*map->elem_count);
2287 }
2288 
2289 extern int sysctl_unprivileged_bpf_disabled;
2290 
2291 bool bpf_token_capable(const struct bpf_token *token, int cap);
2292 
2293 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2294 {
2295 	return bpf_token_capable(token, CAP_PERFMON);
2296 }
2297 
2298 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2299 {
2300 	return bpf_token_capable(token, CAP_PERFMON);
2301 }
2302 
2303 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2304 {
2305 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2306 }
2307 
2308 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2309 {
2310 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2311 }
2312 
2313 int bpf_map_new_fd(struct bpf_map *map, int flags);
2314 int bpf_prog_new_fd(struct bpf_prog *prog);
2315 
2316 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2317 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2318 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2319 int bpf_link_settle(struct bpf_link_primer *primer);
2320 void bpf_link_cleanup(struct bpf_link_primer *primer);
2321 void bpf_link_inc(struct bpf_link *link);
2322 void bpf_link_put(struct bpf_link *link);
2323 int bpf_link_new_fd(struct bpf_link *link);
2324 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2325 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2326 
2327 void bpf_token_inc(struct bpf_token *token);
2328 void bpf_token_put(struct bpf_token *token);
2329 int bpf_token_create(union bpf_attr *attr);
2330 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2331 
2332 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2333 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2334 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2335 			       enum bpf_prog_type prog_type,
2336 			       enum bpf_attach_type attach_type);
2337 
2338 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2339 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2340 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2341 			    umode_t mode);
2342 
2343 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2344 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2345 	extern int bpf_iter_ ## target(args);			\
2346 	int __init bpf_iter_ ## target(args) { return 0; }
2347 
2348 /*
2349  * The task type of iterators.
2350  *
2351  * For BPF task iterators, they can be parameterized with various
2352  * parameters to visit only some of tasks.
2353  *
2354  * BPF_TASK_ITER_ALL (default)
2355  *	Iterate over resources of every task.
2356  *
2357  * BPF_TASK_ITER_TID
2358  *	Iterate over resources of a task/tid.
2359  *
2360  * BPF_TASK_ITER_TGID
2361  *	Iterate over resources of every task of a process / task group.
2362  */
2363 enum bpf_iter_task_type {
2364 	BPF_TASK_ITER_ALL = 0,
2365 	BPF_TASK_ITER_TID,
2366 	BPF_TASK_ITER_TGID,
2367 };
2368 
2369 struct bpf_iter_aux_info {
2370 	/* for map_elem iter */
2371 	struct bpf_map *map;
2372 
2373 	/* for cgroup iter */
2374 	struct {
2375 		struct cgroup *start; /* starting cgroup */
2376 		enum bpf_cgroup_iter_order order;
2377 	} cgroup;
2378 	struct {
2379 		enum bpf_iter_task_type	type;
2380 		u32 pid;
2381 	} task;
2382 };
2383 
2384 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2385 					union bpf_iter_link_info *linfo,
2386 					struct bpf_iter_aux_info *aux);
2387 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2388 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2389 					struct seq_file *seq);
2390 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2391 					 struct bpf_link_info *info);
2392 typedef const struct bpf_func_proto *
2393 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2394 			     const struct bpf_prog *prog);
2395 
2396 enum bpf_iter_feature {
2397 	BPF_ITER_RESCHED	= BIT(0),
2398 };
2399 
2400 #define BPF_ITER_CTX_ARG_MAX 2
2401 struct bpf_iter_reg {
2402 	const char *target;
2403 	bpf_iter_attach_target_t attach_target;
2404 	bpf_iter_detach_target_t detach_target;
2405 	bpf_iter_show_fdinfo_t show_fdinfo;
2406 	bpf_iter_fill_link_info_t fill_link_info;
2407 	bpf_iter_get_func_proto_t get_func_proto;
2408 	u32 ctx_arg_info_size;
2409 	u32 feature;
2410 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2411 	const struct bpf_iter_seq_info *seq_info;
2412 };
2413 
2414 struct bpf_iter_meta {
2415 	__bpf_md_ptr(struct seq_file *, seq);
2416 	u64 session_id;
2417 	u64 seq_num;
2418 };
2419 
2420 struct bpf_iter__bpf_map_elem {
2421 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2422 	__bpf_md_ptr(struct bpf_map *, map);
2423 	__bpf_md_ptr(void *, key);
2424 	__bpf_md_ptr(void *, value);
2425 };
2426 
2427 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2428 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2429 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2430 const struct bpf_func_proto *
2431 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2432 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2433 int bpf_iter_new_fd(struct bpf_link *link);
2434 bool bpf_link_is_iter(struct bpf_link *link);
2435 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2436 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2437 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2438 			      struct seq_file *seq);
2439 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2440 				struct bpf_link_info *info);
2441 
2442 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2443 				   struct bpf_func_state *caller,
2444 				   struct bpf_func_state *callee);
2445 
2446 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2447 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2448 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2449 			   u64 flags);
2450 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2451 			    u64 flags);
2452 
2453 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2454 
2455 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2456 				 void *key, void *value, u64 map_flags);
2457 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2458 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2459 				void *key, void *value, u64 map_flags);
2460 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2461 
2462 int bpf_get_file_flag(int flags);
2463 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2464 			     size_t actual_size);
2465 
2466 /* verify correctness of eBPF program */
2467 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2468 
2469 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2470 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2471 #endif
2472 
2473 struct btf *bpf_get_btf_vmlinux(void);
2474 
2475 /* Map specifics */
2476 struct xdp_frame;
2477 struct sk_buff;
2478 struct bpf_dtab_netdev;
2479 struct bpf_cpu_map_entry;
2480 
2481 void __dev_flush(void);
2482 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2483 		    struct net_device *dev_rx);
2484 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2485 		    struct net_device *dev_rx);
2486 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2487 			  struct bpf_map *map, bool exclude_ingress);
2488 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2489 			     struct bpf_prog *xdp_prog);
2490 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2491 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2492 			   bool exclude_ingress);
2493 
2494 void __cpu_map_flush(void);
2495 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2496 		    struct net_device *dev_rx);
2497 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2498 			     struct sk_buff *skb);
2499 
2500 /* Return map's numa specified by userspace */
2501 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2502 {
2503 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2504 		attr->numa_node : NUMA_NO_NODE;
2505 }
2506 
2507 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2508 int array_map_alloc_check(union bpf_attr *attr);
2509 
2510 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2511 			  union bpf_attr __user *uattr);
2512 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2513 			  union bpf_attr __user *uattr);
2514 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2515 			      const union bpf_attr *kattr,
2516 			      union bpf_attr __user *uattr);
2517 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2518 				     const union bpf_attr *kattr,
2519 				     union bpf_attr __user *uattr);
2520 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2521 			     const union bpf_attr *kattr,
2522 			     union bpf_attr __user *uattr);
2523 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2524 				const union bpf_attr *kattr,
2525 				union bpf_attr __user *uattr);
2526 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2527 			 const union bpf_attr *kattr,
2528 			 union bpf_attr __user *uattr);
2529 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2530 		    const struct bpf_prog *prog,
2531 		    struct bpf_insn_access_aux *info);
2532 
2533 static inline bool bpf_tracing_ctx_access(int off, int size,
2534 					  enum bpf_access_type type)
2535 {
2536 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2537 		return false;
2538 	if (type != BPF_READ)
2539 		return false;
2540 	if (off % size != 0)
2541 		return false;
2542 	return true;
2543 }
2544 
2545 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2546 					      enum bpf_access_type type,
2547 					      const struct bpf_prog *prog,
2548 					      struct bpf_insn_access_aux *info)
2549 {
2550 	if (!bpf_tracing_ctx_access(off, size, type))
2551 		return false;
2552 	return btf_ctx_access(off, size, type, prog, info);
2553 }
2554 
2555 int btf_struct_access(struct bpf_verifier_log *log,
2556 		      const struct bpf_reg_state *reg,
2557 		      int off, int size, enum bpf_access_type atype,
2558 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2559 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2560 			  const struct btf *btf, u32 id, int off,
2561 			  const struct btf *need_btf, u32 need_type_id,
2562 			  bool strict);
2563 
2564 int btf_distill_func_proto(struct bpf_verifier_log *log,
2565 			   struct btf *btf,
2566 			   const struct btf_type *func_proto,
2567 			   const char *func_name,
2568 			   struct btf_func_model *m);
2569 
2570 struct bpf_reg_state;
2571 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2572 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2573 			 struct btf *btf, const struct btf_type *t);
2574 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2575 				    int comp_idx, const char *tag_key);
2576 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2577 			   int comp_idx, const char *tag_key, int last_id);
2578 
2579 struct bpf_prog *bpf_prog_by_id(u32 id);
2580 struct bpf_link *bpf_link_by_id(u32 id);
2581 
2582 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2583 						 const struct bpf_prog *prog);
2584 void bpf_task_storage_free(struct task_struct *task);
2585 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2586 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2587 const struct btf_func_model *
2588 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2589 			 const struct bpf_insn *insn);
2590 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2591 		       u16 btf_fd_idx, u8 **func_addr);
2592 
2593 struct bpf_core_ctx {
2594 	struct bpf_verifier_log *log;
2595 	const struct btf *btf;
2596 };
2597 
2598 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2599 				const struct bpf_reg_state *reg,
2600 				const char *field_name, u32 btf_id, const char *suffix);
2601 
2602 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2603 			       const struct btf *reg_btf, u32 reg_id,
2604 			       const struct btf *arg_btf, u32 arg_id);
2605 
2606 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2607 		   int relo_idx, void *insn);
2608 
2609 static inline bool unprivileged_ebpf_enabled(void)
2610 {
2611 	return !sysctl_unprivileged_bpf_disabled;
2612 }
2613 
2614 /* Not all bpf prog type has the bpf_ctx.
2615  * For the bpf prog type that has initialized the bpf_ctx,
2616  * this function can be used to decide if a kernel function
2617  * is called by a bpf program.
2618  */
2619 static inline bool has_current_bpf_ctx(void)
2620 {
2621 	return !!current->bpf_ctx;
2622 }
2623 
2624 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2625 
2626 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2627 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2628 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2629 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2630 
2631 bool dev_check_flush(void);
2632 bool cpu_map_check_flush(void);
2633 #else /* !CONFIG_BPF_SYSCALL */
2634 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2635 {
2636 	return ERR_PTR(-EOPNOTSUPP);
2637 }
2638 
2639 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2640 						     enum bpf_prog_type type,
2641 						     bool attach_drv)
2642 {
2643 	return ERR_PTR(-EOPNOTSUPP);
2644 }
2645 
2646 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2647 {
2648 }
2649 
2650 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2651 {
2652 }
2653 
2654 static inline void bpf_prog_put(struct bpf_prog *prog)
2655 {
2656 }
2657 
2658 static inline void bpf_prog_inc(struct bpf_prog *prog)
2659 {
2660 }
2661 
2662 static inline struct bpf_prog *__must_check
2663 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2664 {
2665 	return ERR_PTR(-EOPNOTSUPP);
2666 }
2667 
2668 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2669 				 const struct bpf_link_ops *ops,
2670 				 struct bpf_prog *prog)
2671 {
2672 }
2673 
2674 static inline int bpf_link_prime(struct bpf_link *link,
2675 				 struct bpf_link_primer *primer)
2676 {
2677 	return -EOPNOTSUPP;
2678 }
2679 
2680 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2681 {
2682 	return -EOPNOTSUPP;
2683 }
2684 
2685 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2686 {
2687 }
2688 
2689 static inline void bpf_link_inc(struct bpf_link *link)
2690 {
2691 }
2692 
2693 static inline void bpf_link_put(struct bpf_link *link)
2694 {
2695 }
2696 
2697 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2698 {
2699 	return -EOPNOTSUPP;
2700 }
2701 
2702 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2703 {
2704 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2705 }
2706 
2707 static inline void bpf_token_inc(struct bpf_token *token)
2708 {
2709 }
2710 
2711 static inline void bpf_token_put(struct bpf_token *token)
2712 {
2713 }
2714 
2715 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2716 {
2717 	return ERR_PTR(-EOPNOTSUPP);
2718 }
2719 
2720 static inline void __dev_flush(void)
2721 {
2722 }
2723 
2724 struct xdp_frame;
2725 struct bpf_dtab_netdev;
2726 struct bpf_cpu_map_entry;
2727 
2728 static inline
2729 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2730 		    struct net_device *dev_rx)
2731 {
2732 	return 0;
2733 }
2734 
2735 static inline
2736 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2737 		    struct net_device *dev_rx)
2738 {
2739 	return 0;
2740 }
2741 
2742 static inline
2743 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2744 			  struct bpf_map *map, bool exclude_ingress)
2745 {
2746 	return 0;
2747 }
2748 
2749 struct sk_buff;
2750 
2751 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2752 					   struct sk_buff *skb,
2753 					   struct bpf_prog *xdp_prog)
2754 {
2755 	return 0;
2756 }
2757 
2758 static inline
2759 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2760 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2761 			   bool exclude_ingress)
2762 {
2763 	return 0;
2764 }
2765 
2766 static inline void __cpu_map_flush(void)
2767 {
2768 }
2769 
2770 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2771 				  struct xdp_frame *xdpf,
2772 				  struct net_device *dev_rx)
2773 {
2774 	return 0;
2775 }
2776 
2777 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2778 					   struct sk_buff *skb)
2779 {
2780 	return -EOPNOTSUPP;
2781 }
2782 
2783 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2784 				enum bpf_prog_type type)
2785 {
2786 	return ERR_PTR(-EOPNOTSUPP);
2787 }
2788 
2789 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2790 					const union bpf_attr *kattr,
2791 					union bpf_attr __user *uattr)
2792 {
2793 	return -ENOTSUPP;
2794 }
2795 
2796 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2797 					const union bpf_attr *kattr,
2798 					union bpf_attr __user *uattr)
2799 {
2800 	return -ENOTSUPP;
2801 }
2802 
2803 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2804 					    const union bpf_attr *kattr,
2805 					    union bpf_attr __user *uattr)
2806 {
2807 	return -ENOTSUPP;
2808 }
2809 
2810 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2811 						   const union bpf_attr *kattr,
2812 						   union bpf_attr __user *uattr)
2813 {
2814 	return -ENOTSUPP;
2815 }
2816 
2817 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2818 					      const union bpf_attr *kattr,
2819 					      union bpf_attr __user *uattr)
2820 {
2821 	return -ENOTSUPP;
2822 }
2823 
2824 static inline void bpf_map_put(struct bpf_map *map)
2825 {
2826 }
2827 
2828 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2829 {
2830 	return ERR_PTR(-ENOTSUPP);
2831 }
2832 
2833 static inline int btf_struct_access(struct bpf_verifier_log *log,
2834 				    const struct bpf_reg_state *reg,
2835 				    int off, int size, enum bpf_access_type atype,
2836 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2837 				    const char **field_name)
2838 {
2839 	return -EACCES;
2840 }
2841 
2842 static inline const struct bpf_func_proto *
2843 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2844 {
2845 	return NULL;
2846 }
2847 
2848 static inline void bpf_task_storage_free(struct task_struct *task)
2849 {
2850 }
2851 
2852 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2853 {
2854 	return false;
2855 }
2856 
2857 static inline const struct btf_func_model *
2858 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2859 			 const struct bpf_insn *insn)
2860 {
2861 	return NULL;
2862 }
2863 
2864 static inline int
2865 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2866 		   u16 btf_fd_idx, u8 **func_addr)
2867 {
2868 	return -ENOTSUPP;
2869 }
2870 
2871 static inline bool unprivileged_ebpf_enabled(void)
2872 {
2873 	return false;
2874 }
2875 
2876 static inline bool has_current_bpf_ctx(void)
2877 {
2878 	return false;
2879 }
2880 
2881 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2882 {
2883 }
2884 
2885 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2886 {
2887 }
2888 
2889 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2890 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2891 {
2892 }
2893 
2894 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2895 {
2896 }
2897 
2898 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2899 {
2900 }
2901 #endif /* CONFIG_BPF_SYSCALL */
2902 
2903 static __always_inline int
2904 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2905 {
2906 	int ret = -EFAULT;
2907 
2908 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2909 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2910 	if (unlikely(ret < 0))
2911 		memset(dst, 0, size);
2912 	return ret;
2913 }
2914 
2915 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2916 			  struct btf_mod_pair *used_btfs, u32 len);
2917 
2918 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2919 						 enum bpf_prog_type type)
2920 {
2921 	return bpf_prog_get_type_dev(ufd, type, false);
2922 }
2923 
2924 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2925 			  struct bpf_map **used_maps, u32 len);
2926 
2927 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2928 
2929 int bpf_prog_offload_compile(struct bpf_prog *prog);
2930 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2931 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2932 			       struct bpf_prog *prog);
2933 
2934 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2935 
2936 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2937 int bpf_map_offload_update_elem(struct bpf_map *map,
2938 				void *key, void *value, u64 flags);
2939 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2940 int bpf_map_offload_get_next_key(struct bpf_map *map,
2941 				 void *key, void *next_key);
2942 
2943 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2944 
2945 struct bpf_offload_dev *
2946 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2947 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2948 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2949 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2950 				    struct net_device *netdev);
2951 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2952 				       struct net_device *netdev);
2953 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2954 
2955 void unpriv_ebpf_notify(int new_state);
2956 
2957 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2958 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2959 			      struct bpf_prog_aux *prog_aux);
2960 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2961 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2962 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2963 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2964 
2965 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2966 {
2967 	return aux->dev_bound;
2968 }
2969 
2970 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2971 {
2972 	return aux->offload_requested;
2973 }
2974 
2975 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2976 
2977 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2978 {
2979 	return unlikely(map->ops == &bpf_map_offload_ops);
2980 }
2981 
2982 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2983 void bpf_map_offload_map_free(struct bpf_map *map);
2984 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2985 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2986 			      const union bpf_attr *kattr,
2987 			      union bpf_attr __user *uattr);
2988 
2989 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2990 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2991 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2992 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2993 			    union bpf_attr __user *uattr);
2994 
2995 void sock_map_unhash(struct sock *sk);
2996 void sock_map_destroy(struct sock *sk);
2997 void sock_map_close(struct sock *sk, long timeout);
2998 #else
2999 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3000 					    struct bpf_prog_aux *prog_aux)
3001 {
3002 	return -EOPNOTSUPP;
3003 }
3004 
3005 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3006 						u32 func_id)
3007 {
3008 	return NULL;
3009 }
3010 
3011 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3012 					  union bpf_attr *attr)
3013 {
3014 	return -EOPNOTSUPP;
3015 }
3016 
3017 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3018 					     struct bpf_prog *old_prog)
3019 {
3020 	return -EOPNOTSUPP;
3021 }
3022 
3023 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3024 {
3025 }
3026 
3027 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3028 {
3029 	return false;
3030 }
3031 
3032 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3033 {
3034 	return false;
3035 }
3036 
3037 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3038 {
3039 	return false;
3040 }
3041 
3042 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3043 {
3044 	return false;
3045 }
3046 
3047 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3048 {
3049 	return ERR_PTR(-EOPNOTSUPP);
3050 }
3051 
3052 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3053 {
3054 }
3055 
3056 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3057 {
3058 	return 0;
3059 }
3060 
3061 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3062 					    const union bpf_attr *kattr,
3063 					    union bpf_attr __user *uattr)
3064 {
3065 	return -ENOTSUPP;
3066 }
3067 
3068 #ifdef CONFIG_BPF_SYSCALL
3069 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3070 				       struct bpf_prog *prog)
3071 {
3072 	return -EINVAL;
3073 }
3074 
3075 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3076 				       enum bpf_prog_type ptype)
3077 {
3078 	return -EOPNOTSUPP;
3079 }
3080 
3081 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3082 					   u64 flags)
3083 {
3084 	return -EOPNOTSUPP;
3085 }
3086 
3087 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3088 					  union bpf_attr __user *uattr)
3089 {
3090 	return -EINVAL;
3091 }
3092 #endif /* CONFIG_BPF_SYSCALL */
3093 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3094 
3095 static __always_inline void
3096 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3097 {
3098 	const struct bpf_prog_array_item *item;
3099 	struct bpf_prog *prog;
3100 
3101 	if (unlikely(!array))
3102 		return;
3103 
3104 	item = &array->items[0];
3105 	while ((prog = READ_ONCE(item->prog))) {
3106 		bpf_prog_inc_misses_counter(prog);
3107 		item++;
3108 	}
3109 }
3110 
3111 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3112 void bpf_sk_reuseport_detach(struct sock *sk);
3113 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3114 				       void *value);
3115 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3116 				       void *value, u64 map_flags);
3117 #else
3118 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3119 {
3120 }
3121 
3122 #ifdef CONFIG_BPF_SYSCALL
3123 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3124 						     void *key, void *value)
3125 {
3126 	return -EOPNOTSUPP;
3127 }
3128 
3129 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3130 						     void *key, void *value,
3131 						     u64 map_flags)
3132 {
3133 	return -EOPNOTSUPP;
3134 }
3135 #endif /* CONFIG_BPF_SYSCALL */
3136 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3137 
3138 /* verifier prototypes for helper functions called from eBPF programs */
3139 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3140 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3141 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3142 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3143 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3144 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3145 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3146 
3147 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3148 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3149 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3150 extern const struct bpf_func_proto bpf_tail_call_proto;
3151 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3152 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3153 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3154 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3155 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3156 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3157 extern const struct bpf_func_proto bpf_get_stackid_proto;
3158 extern const struct bpf_func_proto bpf_get_stack_proto;
3159 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3160 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3161 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3162 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3163 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3164 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3165 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3166 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3167 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3168 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3169 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3170 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3171 extern const struct bpf_func_proto bpf_spin_lock_proto;
3172 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3173 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3174 extern const struct bpf_func_proto bpf_strtol_proto;
3175 extern const struct bpf_func_proto bpf_strtoul_proto;
3176 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3177 extern const struct bpf_func_proto bpf_jiffies64_proto;
3178 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3179 extern const struct bpf_func_proto bpf_event_output_data_proto;
3180 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3181 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3182 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3183 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3184 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3185 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3186 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3187 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3188 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3189 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3190 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3191 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3192 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3193 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3194 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3195 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3196 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3197 extern const struct bpf_func_proto bpf_snprintf_proto;
3198 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3199 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3200 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3201 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3202 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3203 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3204 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3205 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3206 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3207 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3208 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3209 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3210 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3211 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3212 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3213 extern const struct bpf_func_proto bpf_find_vma_proto;
3214 extern const struct bpf_func_proto bpf_loop_proto;
3215 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3216 extern const struct bpf_func_proto bpf_set_retval_proto;
3217 extern const struct bpf_func_proto bpf_get_retval_proto;
3218 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3219 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3220 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3221 
3222 const struct bpf_func_proto *tracing_prog_func_proto(
3223   enum bpf_func_id func_id, const struct bpf_prog *prog);
3224 
3225 /* Shared helpers among cBPF and eBPF. */
3226 void bpf_user_rnd_init_once(void);
3227 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3228 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3229 
3230 #if defined(CONFIG_NET)
3231 bool bpf_sock_common_is_valid_access(int off, int size,
3232 				     enum bpf_access_type type,
3233 				     struct bpf_insn_access_aux *info);
3234 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3235 			      struct bpf_insn_access_aux *info);
3236 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3237 				const struct bpf_insn *si,
3238 				struct bpf_insn *insn_buf,
3239 				struct bpf_prog *prog,
3240 				u32 *target_size);
3241 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3242 			       struct bpf_dynptr_kern *ptr);
3243 #else
3244 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3245 						   enum bpf_access_type type,
3246 						   struct bpf_insn_access_aux *info)
3247 {
3248 	return false;
3249 }
3250 static inline bool bpf_sock_is_valid_access(int off, int size,
3251 					    enum bpf_access_type type,
3252 					    struct bpf_insn_access_aux *info)
3253 {
3254 	return false;
3255 }
3256 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3257 					      const struct bpf_insn *si,
3258 					      struct bpf_insn *insn_buf,
3259 					      struct bpf_prog *prog,
3260 					      u32 *target_size)
3261 {
3262 	return 0;
3263 }
3264 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3265 					     struct bpf_dynptr_kern *ptr)
3266 {
3267 	return -EOPNOTSUPP;
3268 }
3269 #endif
3270 
3271 #ifdef CONFIG_INET
3272 struct sk_reuseport_kern {
3273 	struct sk_buff *skb;
3274 	struct sock *sk;
3275 	struct sock *selected_sk;
3276 	struct sock *migrating_sk;
3277 	void *data_end;
3278 	u32 hash;
3279 	u32 reuseport_id;
3280 	bool bind_inany;
3281 };
3282 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3283 				  struct bpf_insn_access_aux *info);
3284 
3285 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3286 				    const struct bpf_insn *si,
3287 				    struct bpf_insn *insn_buf,
3288 				    struct bpf_prog *prog,
3289 				    u32 *target_size);
3290 
3291 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3292 				  struct bpf_insn_access_aux *info);
3293 
3294 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3295 				    const struct bpf_insn *si,
3296 				    struct bpf_insn *insn_buf,
3297 				    struct bpf_prog *prog,
3298 				    u32 *target_size);
3299 #else
3300 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3301 						enum bpf_access_type type,
3302 						struct bpf_insn_access_aux *info)
3303 {
3304 	return false;
3305 }
3306 
3307 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3308 						  const struct bpf_insn *si,
3309 						  struct bpf_insn *insn_buf,
3310 						  struct bpf_prog *prog,
3311 						  u32 *target_size)
3312 {
3313 	return 0;
3314 }
3315 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3316 						enum bpf_access_type type,
3317 						struct bpf_insn_access_aux *info)
3318 {
3319 	return false;
3320 }
3321 
3322 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3323 						  const struct bpf_insn *si,
3324 						  struct bpf_insn *insn_buf,
3325 						  struct bpf_prog *prog,
3326 						  u32 *target_size)
3327 {
3328 	return 0;
3329 }
3330 #endif /* CONFIG_INET */
3331 
3332 enum bpf_text_poke_type {
3333 	BPF_MOD_CALL,
3334 	BPF_MOD_JUMP,
3335 };
3336 
3337 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3338 		       void *addr1, void *addr2);
3339 
3340 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3341 			       struct bpf_prog *new, struct bpf_prog *old);
3342 
3343 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3344 int bpf_arch_text_invalidate(void *dst, size_t len);
3345 
3346 struct btf_id_set;
3347 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3348 
3349 #define MAX_BPRINTF_VARARGS		12
3350 #define MAX_BPRINTF_BUF			1024
3351 
3352 struct bpf_bprintf_data {
3353 	u32 *bin_args;
3354 	char *buf;
3355 	bool get_bin_args;
3356 	bool get_buf;
3357 };
3358 
3359 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3360 			u32 num_args, struct bpf_bprintf_data *data);
3361 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3362 
3363 #ifdef CONFIG_BPF_LSM
3364 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3365 void bpf_cgroup_atype_put(int cgroup_atype);
3366 #else
3367 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3368 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3369 #endif /* CONFIG_BPF_LSM */
3370 
3371 struct key;
3372 
3373 #ifdef CONFIG_KEYS
3374 struct bpf_key {
3375 	struct key *key;
3376 	bool has_ref;
3377 };
3378 #endif /* CONFIG_KEYS */
3379 
3380 static inline bool type_is_alloc(u32 type)
3381 {
3382 	return type & MEM_ALLOC;
3383 }
3384 
3385 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3386 {
3387 	if (memcg_bpf_enabled())
3388 		return flags | __GFP_ACCOUNT;
3389 	return flags;
3390 }
3391 
3392 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3393 {
3394 	return prog->aux->func_idx != 0;
3395 }
3396 
3397 #endif /* _LINUX_BPF_H */
3398