1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct sock; 41 struct seq_file; 42 struct btf; 43 struct btf_type; 44 struct exception_table_entry; 45 struct seq_operations; 46 struct bpf_iter_aux_info; 47 struct bpf_local_storage; 48 struct bpf_local_storage_map; 49 struct kobject; 50 struct mem_cgroup; 51 struct module; 52 struct bpf_func_state; 53 struct ftrace_ops; 54 struct cgroup; 55 struct bpf_token; 56 struct user_namespace; 57 struct super_block; 58 struct inode; 59 60 extern struct idr btf_idr; 61 extern spinlock_t btf_idr_lock; 62 extern struct kobject *btf_kobj; 63 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 64 extern bool bpf_global_ma_set; 65 66 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 67 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 68 struct bpf_iter_aux_info *aux); 69 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 70 typedef unsigned int (*bpf_func_t)(const void *, 71 const struct bpf_insn *); 72 struct bpf_iter_seq_info { 73 const struct seq_operations *seq_ops; 74 bpf_iter_init_seq_priv_t init_seq_private; 75 bpf_iter_fini_seq_priv_t fini_seq_private; 76 u32 seq_priv_size; 77 }; 78 79 /* map is generic key/value storage optionally accessible by eBPF programs */ 80 struct bpf_map_ops { 81 /* funcs callable from userspace (via syscall) */ 82 int (*map_alloc_check)(union bpf_attr *attr); 83 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 84 void (*map_release)(struct bpf_map *map, struct file *map_file); 85 void (*map_free)(struct bpf_map *map); 86 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 87 void (*map_release_uref)(struct bpf_map *map); 88 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 89 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 90 union bpf_attr __user *uattr); 91 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 92 void *value, u64 flags); 93 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 94 const union bpf_attr *attr, 95 union bpf_attr __user *uattr); 96 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 97 const union bpf_attr *attr, 98 union bpf_attr __user *uattr); 99 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 100 union bpf_attr __user *uattr); 101 102 /* funcs callable from userspace and from eBPF programs */ 103 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 104 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 105 long (*map_delete_elem)(struct bpf_map *map, void *key); 106 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 107 long (*map_pop_elem)(struct bpf_map *map, void *value); 108 long (*map_peek_elem)(struct bpf_map *map, void *value); 109 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 110 111 /* funcs called by prog_array and perf_event_array map */ 112 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 113 int fd); 114 /* If need_defer is true, the implementation should guarantee that 115 * the to-be-put element is still alive before the bpf program, which 116 * may manipulate it, exists. 117 */ 118 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 119 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 120 u32 (*map_fd_sys_lookup_elem)(void *ptr); 121 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 122 struct seq_file *m); 123 int (*map_check_btf)(const struct bpf_map *map, 124 const struct btf *btf, 125 const struct btf_type *key_type, 126 const struct btf_type *value_type); 127 128 /* Prog poke tracking helpers. */ 129 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 130 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 132 struct bpf_prog *new); 133 134 /* Direct value access helpers. */ 135 int (*map_direct_value_addr)(const struct bpf_map *map, 136 u64 *imm, u32 off); 137 int (*map_direct_value_meta)(const struct bpf_map *map, 138 u64 imm, u32 *off); 139 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 140 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 141 struct poll_table_struct *pts); 142 143 /* Functions called by bpf_local_storage maps */ 144 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 145 void *owner, u32 size); 146 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 147 void *owner, u32 size); 148 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 149 150 /* Misc helpers.*/ 151 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 152 153 /* map_meta_equal must be implemented for maps that can be 154 * used as an inner map. It is a runtime check to ensure 155 * an inner map can be inserted to an outer map. 156 * 157 * Some properties of the inner map has been used during the 158 * verification time. When inserting an inner map at the runtime, 159 * map_meta_equal has to ensure the inserting map has the same 160 * properties that the verifier has used earlier. 161 */ 162 bool (*map_meta_equal)(const struct bpf_map *meta0, 163 const struct bpf_map *meta1); 164 165 166 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 167 struct bpf_func_state *caller, 168 struct bpf_func_state *callee); 169 long (*map_for_each_callback)(struct bpf_map *map, 170 bpf_callback_t callback_fn, 171 void *callback_ctx, u64 flags); 172 173 u64 (*map_mem_usage)(const struct bpf_map *map); 174 175 /* BTF id of struct allocated by map_alloc */ 176 int *map_btf_id; 177 178 /* bpf_iter info used to open a seq_file */ 179 const struct bpf_iter_seq_info *iter_seq_info; 180 }; 181 182 enum { 183 /* Support at most 10 fields in a BTF type */ 184 BTF_FIELDS_MAX = 10, 185 }; 186 187 enum btf_field_type { 188 BPF_SPIN_LOCK = (1 << 0), 189 BPF_TIMER = (1 << 1), 190 BPF_KPTR_UNREF = (1 << 2), 191 BPF_KPTR_REF = (1 << 3), 192 BPF_KPTR_PERCPU = (1 << 4), 193 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 194 BPF_LIST_HEAD = (1 << 5), 195 BPF_LIST_NODE = (1 << 6), 196 BPF_RB_ROOT = (1 << 7), 197 BPF_RB_NODE = (1 << 8), 198 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 199 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 200 BPF_REFCOUNT = (1 << 9), 201 }; 202 203 typedef void (*btf_dtor_kfunc_t)(void *); 204 205 struct btf_field_kptr { 206 struct btf *btf; 207 struct module *module; 208 /* dtor used if btf_is_kernel(btf), otherwise the type is 209 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 210 */ 211 btf_dtor_kfunc_t dtor; 212 u32 btf_id; 213 }; 214 215 struct btf_field_graph_root { 216 struct btf *btf; 217 u32 value_btf_id; 218 u32 node_offset; 219 struct btf_record *value_rec; 220 }; 221 222 struct btf_field { 223 u32 offset; 224 u32 size; 225 enum btf_field_type type; 226 union { 227 struct btf_field_kptr kptr; 228 struct btf_field_graph_root graph_root; 229 }; 230 }; 231 232 struct btf_record { 233 u32 cnt; 234 u32 field_mask; 235 int spin_lock_off; 236 int timer_off; 237 int refcount_off; 238 struct btf_field fields[]; 239 }; 240 241 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 242 struct bpf_rb_node_kern { 243 struct rb_node rb_node; 244 void *owner; 245 } __attribute__((aligned(8))); 246 247 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 248 struct bpf_list_node_kern { 249 struct list_head list_head; 250 void *owner; 251 } __attribute__((aligned(8))); 252 253 struct bpf_map { 254 /* The first two cachelines with read-mostly members of which some 255 * are also accessed in fast-path (e.g. ops, max_entries). 256 */ 257 const struct bpf_map_ops *ops ____cacheline_aligned; 258 struct bpf_map *inner_map_meta; 259 #ifdef CONFIG_SECURITY 260 void *security; 261 #endif 262 enum bpf_map_type map_type; 263 u32 key_size; 264 u32 value_size; 265 u32 max_entries; 266 u64 map_extra; /* any per-map-type extra fields */ 267 u32 map_flags; 268 u32 id; 269 struct btf_record *record; 270 int numa_node; 271 u32 btf_key_type_id; 272 u32 btf_value_type_id; 273 u32 btf_vmlinux_value_type_id; 274 struct btf *btf; 275 #ifdef CONFIG_MEMCG_KMEM 276 struct obj_cgroup *objcg; 277 #endif 278 char name[BPF_OBJ_NAME_LEN]; 279 /* The 3rd and 4th cacheline with misc members to avoid false sharing 280 * particularly with refcounting. 281 */ 282 atomic64_t refcnt ____cacheline_aligned; 283 atomic64_t usercnt; 284 /* rcu is used before freeing and work is only used during freeing */ 285 union { 286 struct work_struct work; 287 struct rcu_head rcu; 288 }; 289 struct mutex freeze_mutex; 290 atomic64_t writecnt; 291 /* 'Ownership' of program-containing map is claimed by the first program 292 * that is going to use this map or by the first program which FD is 293 * stored in the map to make sure that all callers and callees have the 294 * same prog type, JITed flag and xdp_has_frags flag. 295 */ 296 struct { 297 spinlock_t lock; 298 enum bpf_prog_type type; 299 bool jited; 300 bool xdp_has_frags; 301 } owner; 302 bool bypass_spec_v1; 303 bool frozen; /* write-once; write-protected by freeze_mutex */ 304 bool free_after_mult_rcu_gp; 305 bool free_after_rcu_gp; 306 atomic64_t sleepable_refcnt; 307 s64 __percpu *elem_count; 308 }; 309 310 static inline const char *btf_field_type_name(enum btf_field_type type) 311 { 312 switch (type) { 313 case BPF_SPIN_LOCK: 314 return "bpf_spin_lock"; 315 case BPF_TIMER: 316 return "bpf_timer"; 317 case BPF_KPTR_UNREF: 318 case BPF_KPTR_REF: 319 return "kptr"; 320 case BPF_KPTR_PERCPU: 321 return "percpu_kptr"; 322 case BPF_LIST_HEAD: 323 return "bpf_list_head"; 324 case BPF_LIST_NODE: 325 return "bpf_list_node"; 326 case BPF_RB_ROOT: 327 return "bpf_rb_root"; 328 case BPF_RB_NODE: 329 return "bpf_rb_node"; 330 case BPF_REFCOUNT: 331 return "bpf_refcount"; 332 default: 333 WARN_ON_ONCE(1); 334 return "unknown"; 335 } 336 } 337 338 static inline u32 btf_field_type_size(enum btf_field_type type) 339 { 340 switch (type) { 341 case BPF_SPIN_LOCK: 342 return sizeof(struct bpf_spin_lock); 343 case BPF_TIMER: 344 return sizeof(struct bpf_timer); 345 case BPF_KPTR_UNREF: 346 case BPF_KPTR_REF: 347 case BPF_KPTR_PERCPU: 348 return sizeof(u64); 349 case BPF_LIST_HEAD: 350 return sizeof(struct bpf_list_head); 351 case BPF_LIST_NODE: 352 return sizeof(struct bpf_list_node); 353 case BPF_RB_ROOT: 354 return sizeof(struct bpf_rb_root); 355 case BPF_RB_NODE: 356 return sizeof(struct bpf_rb_node); 357 case BPF_REFCOUNT: 358 return sizeof(struct bpf_refcount); 359 default: 360 WARN_ON_ONCE(1); 361 return 0; 362 } 363 } 364 365 static inline u32 btf_field_type_align(enum btf_field_type type) 366 { 367 switch (type) { 368 case BPF_SPIN_LOCK: 369 return __alignof__(struct bpf_spin_lock); 370 case BPF_TIMER: 371 return __alignof__(struct bpf_timer); 372 case BPF_KPTR_UNREF: 373 case BPF_KPTR_REF: 374 case BPF_KPTR_PERCPU: 375 return __alignof__(u64); 376 case BPF_LIST_HEAD: 377 return __alignof__(struct bpf_list_head); 378 case BPF_LIST_NODE: 379 return __alignof__(struct bpf_list_node); 380 case BPF_RB_ROOT: 381 return __alignof__(struct bpf_rb_root); 382 case BPF_RB_NODE: 383 return __alignof__(struct bpf_rb_node); 384 case BPF_REFCOUNT: 385 return __alignof__(struct bpf_refcount); 386 default: 387 WARN_ON_ONCE(1); 388 return 0; 389 } 390 } 391 392 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 393 { 394 memset(addr, 0, field->size); 395 396 switch (field->type) { 397 case BPF_REFCOUNT: 398 refcount_set((refcount_t *)addr, 1); 399 break; 400 case BPF_RB_NODE: 401 RB_CLEAR_NODE((struct rb_node *)addr); 402 break; 403 case BPF_LIST_HEAD: 404 case BPF_LIST_NODE: 405 INIT_LIST_HEAD((struct list_head *)addr); 406 break; 407 case BPF_RB_ROOT: 408 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 409 case BPF_SPIN_LOCK: 410 case BPF_TIMER: 411 case BPF_KPTR_UNREF: 412 case BPF_KPTR_REF: 413 case BPF_KPTR_PERCPU: 414 break; 415 default: 416 WARN_ON_ONCE(1); 417 return; 418 } 419 } 420 421 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 422 { 423 if (IS_ERR_OR_NULL(rec)) 424 return false; 425 return rec->field_mask & type; 426 } 427 428 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 429 { 430 int i; 431 432 if (IS_ERR_OR_NULL(rec)) 433 return; 434 for (i = 0; i < rec->cnt; i++) 435 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 436 } 437 438 /* 'dst' must be a temporary buffer and should not point to memory that is being 439 * used in parallel by a bpf program or bpf syscall, otherwise the access from 440 * the bpf program or bpf syscall may be corrupted by the reinitialization, 441 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 442 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 443 * program or bpf syscall. 444 */ 445 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 446 { 447 bpf_obj_init(map->record, dst); 448 } 449 450 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 451 * forced to use 'long' read/writes to try to atomically copy long counters. 452 * Best-effort only. No barriers here, since it _will_ race with concurrent 453 * updates from BPF programs. Called from bpf syscall and mostly used with 454 * size 8 or 16 bytes, so ask compiler to inline it. 455 */ 456 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 457 { 458 const long *lsrc = src; 459 long *ldst = dst; 460 461 size /= sizeof(long); 462 while (size--) 463 data_race(*ldst++ = *lsrc++); 464 } 465 466 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 467 static inline void bpf_obj_memcpy(struct btf_record *rec, 468 void *dst, void *src, u32 size, 469 bool long_memcpy) 470 { 471 u32 curr_off = 0; 472 int i; 473 474 if (IS_ERR_OR_NULL(rec)) { 475 if (long_memcpy) 476 bpf_long_memcpy(dst, src, round_up(size, 8)); 477 else 478 memcpy(dst, src, size); 479 return; 480 } 481 482 for (i = 0; i < rec->cnt; i++) { 483 u32 next_off = rec->fields[i].offset; 484 u32 sz = next_off - curr_off; 485 486 memcpy(dst + curr_off, src + curr_off, sz); 487 curr_off += rec->fields[i].size + sz; 488 } 489 memcpy(dst + curr_off, src + curr_off, size - curr_off); 490 } 491 492 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 493 { 494 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 495 } 496 497 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 498 { 499 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 500 } 501 502 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 503 { 504 u32 curr_off = 0; 505 int i; 506 507 if (IS_ERR_OR_NULL(rec)) { 508 memset(dst, 0, size); 509 return; 510 } 511 512 for (i = 0; i < rec->cnt; i++) { 513 u32 next_off = rec->fields[i].offset; 514 u32 sz = next_off - curr_off; 515 516 memset(dst + curr_off, 0, sz); 517 curr_off += rec->fields[i].size + sz; 518 } 519 memset(dst + curr_off, 0, size - curr_off); 520 } 521 522 static inline void zero_map_value(struct bpf_map *map, void *dst) 523 { 524 bpf_obj_memzero(map->record, dst, map->value_size); 525 } 526 527 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 528 bool lock_src); 529 void bpf_timer_cancel_and_free(void *timer); 530 void bpf_list_head_free(const struct btf_field *field, void *list_head, 531 struct bpf_spin_lock *spin_lock); 532 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 533 struct bpf_spin_lock *spin_lock); 534 535 536 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 537 538 struct bpf_offload_dev; 539 struct bpf_offloaded_map; 540 541 struct bpf_map_dev_ops { 542 int (*map_get_next_key)(struct bpf_offloaded_map *map, 543 void *key, void *next_key); 544 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 545 void *key, void *value); 546 int (*map_update_elem)(struct bpf_offloaded_map *map, 547 void *key, void *value, u64 flags); 548 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 549 }; 550 551 struct bpf_offloaded_map { 552 struct bpf_map map; 553 struct net_device *netdev; 554 const struct bpf_map_dev_ops *dev_ops; 555 void *dev_priv; 556 struct list_head offloads; 557 }; 558 559 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 560 { 561 return container_of(map, struct bpf_offloaded_map, map); 562 } 563 564 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 565 { 566 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 567 } 568 569 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 570 { 571 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 572 map->ops->map_seq_show_elem; 573 } 574 575 int map_check_no_btf(const struct bpf_map *map, 576 const struct btf *btf, 577 const struct btf_type *key_type, 578 const struct btf_type *value_type); 579 580 bool bpf_map_meta_equal(const struct bpf_map *meta0, 581 const struct bpf_map *meta1); 582 583 extern const struct bpf_map_ops bpf_map_offload_ops; 584 585 /* bpf_type_flag contains a set of flags that are applicable to the values of 586 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 587 * or a memory is read-only. We classify types into two categories: base types 588 * and extended types. Extended types are base types combined with a type flag. 589 * 590 * Currently there are no more than 32 base types in arg_type, ret_type and 591 * reg_types. 592 */ 593 #define BPF_BASE_TYPE_BITS 8 594 595 enum bpf_type_flag { 596 /* PTR may be NULL. */ 597 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 598 599 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 600 * compatible with both mutable and immutable memory. 601 */ 602 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 603 604 /* MEM points to BPF ring buffer reservation. */ 605 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 606 607 /* MEM is in user address space. */ 608 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 609 610 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 611 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 612 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 613 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 614 * to the specified cpu. 615 */ 616 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 617 618 /* Indicates that the argument will be released. */ 619 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 620 621 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 622 * unreferenced and referenced kptr loaded from map value using a load 623 * instruction, so that they can only be dereferenced but not escape the 624 * BPF program into the kernel (i.e. cannot be passed as arguments to 625 * kfunc or bpf helpers). 626 */ 627 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 628 629 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 630 631 /* DYNPTR points to memory local to the bpf program. */ 632 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 633 634 /* DYNPTR points to a kernel-produced ringbuf record. */ 635 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 636 637 /* Size is known at compile time. */ 638 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 639 640 /* MEM is of an allocated object of type in program BTF. This is used to 641 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 642 */ 643 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 644 645 /* PTR was passed from the kernel in a trusted context, and may be 646 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 647 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 648 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 649 * without invoking bpf_kptr_xchg(). What we really need to know is 650 * whether a pointer is safe to pass to a kfunc or BPF helper function. 651 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 652 * helpers, they do not cover all possible instances of unsafe 653 * pointers. For example, a pointer that was obtained from walking a 654 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 655 * fact that it may be NULL, invalid, etc. This is due to backwards 656 * compatibility requirements, as this was the behavior that was first 657 * introduced when kptrs were added. The behavior is now considered 658 * deprecated, and PTR_UNTRUSTED will eventually be removed. 659 * 660 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 661 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 662 * For example, pointers passed to tracepoint arguments are considered 663 * PTR_TRUSTED, as are pointers that are passed to struct_ops 664 * callbacks. As alluded to above, pointers that are obtained from 665 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 666 * struct task_struct *task is PTR_TRUSTED, then accessing 667 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 668 * in a BPF register. Similarly, pointers passed to certain programs 669 * types such as kretprobes are not guaranteed to be valid, as they may 670 * for example contain an object that was recently freed. 671 */ 672 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 673 674 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 675 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 676 677 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 678 * Currently only valid for linked-list and rbtree nodes. If the nodes 679 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 680 */ 681 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 682 683 /* DYNPTR points to sk_buff */ 684 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 685 686 /* DYNPTR points to xdp_buff */ 687 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 688 689 __BPF_TYPE_FLAG_MAX, 690 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 691 }; 692 693 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 694 | DYNPTR_TYPE_XDP) 695 696 /* Max number of base types. */ 697 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 698 699 /* Max number of all types. */ 700 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 701 702 /* function argument constraints */ 703 enum bpf_arg_type { 704 ARG_DONTCARE = 0, /* unused argument in helper function */ 705 706 /* the following constraints used to prototype 707 * bpf_map_lookup/update/delete_elem() functions 708 */ 709 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 710 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 711 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 712 713 /* Used to prototype bpf_memcmp() and other functions that access data 714 * on eBPF program stack 715 */ 716 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 717 718 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 719 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 720 721 ARG_PTR_TO_CTX, /* pointer to context */ 722 ARG_ANYTHING, /* any (initialized) argument is ok */ 723 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 724 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 725 ARG_PTR_TO_INT, /* pointer to int */ 726 ARG_PTR_TO_LONG, /* pointer to long */ 727 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 728 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 729 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 730 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 731 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 732 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 733 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 734 ARG_PTR_TO_STACK, /* pointer to stack */ 735 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 736 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 737 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 738 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 739 __BPF_ARG_TYPE_MAX, 740 741 /* Extended arg_types. */ 742 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 743 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 744 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 745 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 746 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 747 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 748 /* pointer to memory does not need to be initialized, helper function must fill 749 * all bytes or clear them in error case. 750 */ 751 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 752 /* Pointer to valid memory of size known at compile time. */ 753 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 754 755 /* This must be the last entry. Its purpose is to ensure the enum is 756 * wide enough to hold the higher bits reserved for bpf_type_flag. 757 */ 758 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 759 }; 760 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 761 762 /* type of values returned from helper functions */ 763 enum bpf_return_type { 764 RET_INTEGER, /* function returns integer */ 765 RET_VOID, /* function doesn't return anything */ 766 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 767 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 768 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 769 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 770 RET_PTR_TO_MEM, /* returns a pointer to memory */ 771 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 772 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 773 __BPF_RET_TYPE_MAX, 774 775 /* Extended ret_types. */ 776 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 777 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 778 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 779 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 780 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 781 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 782 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 783 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 784 785 /* This must be the last entry. Its purpose is to ensure the enum is 786 * wide enough to hold the higher bits reserved for bpf_type_flag. 787 */ 788 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 789 }; 790 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 791 792 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 793 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 794 * instructions after verifying 795 */ 796 struct bpf_func_proto { 797 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 798 bool gpl_only; 799 bool pkt_access; 800 bool might_sleep; 801 enum bpf_return_type ret_type; 802 union { 803 struct { 804 enum bpf_arg_type arg1_type; 805 enum bpf_arg_type arg2_type; 806 enum bpf_arg_type arg3_type; 807 enum bpf_arg_type arg4_type; 808 enum bpf_arg_type arg5_type; 809 }; 810 enum bpf_arg_type arg_type[5]; 811 }; 812 union { 813 struct { 814 u32 *arg1_btf_id; 815 u32 *arg2_btf_id; 816 u32 *arg3_btf_id; 817 u32 *arg4_btf_id; 818 u32 *arg5_btf_id; 819 }; 820 u32 *arg_btf_id[5]; 821 struct { 822 size_t arg1_size; 823 size_t arg2_size; 824 size_t arg3_size; 825 size_t arg4_size; 826 size_t arg5_size; 827 }; 828 size_t arg_size[5]; 829 }; 830 int *ret_btf_id; /* return value btf_id */ 831 bool (*allowed)(const struct bpf_prog *prog); 832 }; 833 834 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 835 * the first argument to eBPF programs. 836 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 837 */ 838 struct bpf_context; 839 840 enum bpf_access_type { 841 BPF_READ = 1, 842 BPF_WRITE = 2 843 }; 844 845 /* types of values stored in eBPF registers */ 846 /* Pointer types represent: 847 * pointer 848 * pointer + imm 849 * pointer + (u16) var 850 * pointer + (u16) var + imm 851 * if (range > 0) then [ptr, ptr + range - off) is safe to access 852 * if (id > 0) means that some 'var' was added 853 * if (off > 0) means that 'imm' was added 854 */ 855 enum bpf_reg_type { 856 NOT_INIT = 0, /* nothing was written into register */ 857 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 858 PTR_TO_CTX, /* reg points to bpf_context */ 859 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 860 PTR_TO_MAP_VALUE, /* reg points to map element value */ 861 PTR_TO_MAP_KEY, /* reg points to a map element key */ 862 PTR_TO_STACK, /* reg == frame_pointer + offset */ 863 PTR_TO_PACKET_META, /* skb->data - meta_len */ 864 PTR_TO_PACKET, /* reg points to skb->data */ 865 PTR_TO_PACKET_END, /* skb->data + headlen */ 866 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 867 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 868 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 869 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 870 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 871 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 872 /* PTR_TO_BTF_ID points to a kernel struct that does not need 873 * to be null checked by the BPF program. This does not imply the 874 * pointer is _not_ null and in practice this can easily be a null 875 * pointer when reading pointer chains. The assumption is program 876 * context will handle null pointer dereference typically via fault 877 * handling. The verifier must keep this in mind and can make no 878 * assumptions about null or non-null when doing branch analysis. 879 * Further, when passed into helpers the helpers can not, without 880 * additional context, assume the value is non-null. 881 */ 882 PTR_TO_BTF_ID, 883 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 884 * been checked for null. Used primarily to inform the verifier 885 * an explicit null check is required for this struct. 886 */ 887 PTR_TO_MEM, /* reg points to valid memory region */ 888 PTR_TO_BUF, /* reg points to a read/write buffer */ 889 PTR_TO_FUNC, /* reg points to a bpf program function */ 890 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 891 __BPF_REG_TYPE_MAX, 892 893 /* Extended reg_types. */ 894 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 895 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 896 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 897 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 898 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 899 900 /* This must be the last entry. Its purpose is to ensure the enum is 901 * wide enough to hold the higher bits reserved for bpf_type_flag. 902 */ 903 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 904 }; 905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 906 907 /* The information passed from prog-specific *_is_valid_access 908 * back to the verifier. 909 */ 910 struct bpf_insn_access_aux { 911 enum bpf_reg_type reg_type; 912 union { 913 int ctx_field_size; 914 struct { 915 struct btf *btf; 916 u32 btf_id; 917 }; 918 }; 919 struct bpf_verifier_log *log; /* for verbose logs */ 920 }; 921 922 static inline void 923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 924 { 925 aux->ctx_field_size = size; 926 } 927 928 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 929 { 930 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 931 } 932 933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 934 { 935 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 936 } 937 938 struct bpf_prog_ops { 939 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 940 union bpf_attr __user *uattr); 941 }; 942 943 struct bpf_reg_state; 944 struct bpf_verifier_ops { 945 /* return eBPF function prototype for verification */ 946 const struct bpf_func_proto * 947 (*get_func_proto)(enum bpf_func_id func_id, 948 const struct bpf_prog *prog); 949 950 /* return true if 'size' wide access at offset 'off' within bpf_context 951 * with 'type' (read or write) is allowed 952 */ 953 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 954 const struct bpf_prog *prog, 955 struct bpf_insn_access_aux *info); 956 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 957 const struct bpf_prog *prog); 958 int (*gen_ld_abs)(const struct bpf_insn *orig, 959 struct bpf_insn *insn_buf); 960 u32 (*convert_ctx_access)(enum bpf_access_type type, 961 const struct bpf_insn *src, 962 struct bpf_insn *dst, 963 struct bpf_prog *prog, u32 *target_size); 964 int (*btf_struct_access)(struct bpf_verifier_log *log, 965 const struct bpf_reg_state *reg, 966 int off, int size); 967 }; 968 969 struct bpf_prog_offload_ops { 970 /* verifier basic callbacks */ 971 int (*insn_hook)(struct bpf_verifier_env *env, 972 int insn_idx, int prev_insn_idx); 973 int (*finalize)(struct bpf_verifier_env *env); 974 /* verifier optimization callbacks (called after .finalize) */ 975 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 976 struct bpf_insn *insn); 977 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 978 /* program management callbacks */ 979 int (*prepare)(struct bpf_prog *prog); 980 int (*translate)(struct bpf_prog *prog); 981 void (*destroy)(struct bpf_prog *prog); 982 }; 983 984 struct bpf_prog_offload { 985 struct bpf_prog *prog; 986 struct net_device *netdev; 987 struct bpf_offload_dev *offdev; 988 void *dev_priv; 989 struct list_head offloads; 990 bool dev_state; 991 bool opt_failed; 992 void *jited_image; 993 u32 jited_len; 994 }; 995 996 enum bpf_cgroup_storage_type { 997 BPF_CGROUP_STORAGE_SHARED, 998 BPF_CGROUP_STORAGE_PERCPU, 999 __BPF_CGROUP_STORAGE_MAX 1000 }; 1001 1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1003 1004 /* The longest tracepoint has 12 args. 1005 * See include/trace/bpf_probe.h 1006 */ 1007 #define MAX_BPF_FUNC_ARGS 12 1008 1009 /* The maximum number of arguments passed through registers 1010 * a single function may have. 1011 */ 1012 #define MAX_BPF_FUNC_REG_ARGS 5 1013 1014 /* The argument is a structure. */ 1015 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1016 1017 /* The argument is signed. */ 1018 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1019 1020 struct btf_func_model { 1021 u8 ret_size; 1022 u8 ret_flags; 1023 u8 nr_args; 1024 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1025 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1026 }; 1027 1028 /* Restore arguments before returning from trampoline to let original function 1029 * continue executing. This flag is used for fentry progs when there are no 1030 * fexit progs. 1031 */ 1032 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1033 /* Call original function after fentry progs, but before fexit progs. 1034 * Makes sense for fentry/fexit, normal calls and indirect calls. 1035 */ 1036 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1037 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1038 * programs only. Should not be used with normal calls and indirect calls. 1039 */ 1040 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1041 /* Store IP address of the caller on the trampoline stack, 1042 * so it's available for trampoline's programs. 1043 */ 1044 #define BPF_TRAMP_F_IP_ARG BIT(3) 1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1046 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1047 1048 /* Get original function from stack instead of from provided direct address. 1049 * Makes sense for trampolines with fexit or fmod_ret programs. 1050 */ 1051 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1052 1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1054 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1055 */ 1056 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1057 1058 /* Indicate that current trampoline is in a tail call context. Then, it has to 1059 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1060 */ 1061 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1062 1063 /* 1064 * Indicate the trampoline should be suitable to receive indirect calls; 1065 * without this indirectly calling the generated code can result in #UD/#CP, 1066 * depending on the CFI options. 1067 * 1068 * Used by bpf_struct_ops. 1069 * 1070 * Incompatible with FENTRY usage, overloads @func_addr argument. 1071 */ 1072 #define BPF_TRAMP_F_INDIRECT BIT(8) 1073 1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1075 * bytes on x86. 1076 */ 1077 enum { 1078 #if defined(__s390x__) 1079 BPF_MAX_TRAMP_LINKS = 27, 1080 #else 1081 BPF_MAX_TRAMP_LINKS = 38, 1082 #endif 1083 }; 1084 1085 struct bpf_tramp_links { 1086 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1087 int nr_links; 1088 }; 1089 1090 struct bpf_tramp_run_ctx; 1091 1092 /* Different use cases for BPF trampoline: 1093 * 1. replace nop at the function entry (kprobe equivalent) 1094 * flags = BPF_TRAMP_F_RESTORE_REGS 1095 * fentry = a set of programs to run before returning from trampoline 1096 * 1097 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1098 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1099 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1100 * fentry = a set of program to run before calling original function 1101 * fexit = a set of program to run after original function 1102 * 1103 * 3. replace direct call instruction anywhere in the function body 1104 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1105 * With flags = 0 1106 * fentry = a set of programs to run before returning from trampoline 1107 * With flags = BPF_TRAMP_F_CALL_ORIG 1108 * orig_call = original callback addr or direct function addr 1109 * fentry = a set of program to run before calling original function 1110 * fexit = a set of program to run after original function 1111 */ 1112 struct bpf_tramp_image; 1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1114 const struct btf_func_model *m, u32 flags, 1115 struct bpf_tramp_links *tlinks, 1116 void *func_addr); 1117 void *arch_alloc_bpf_trampoline(unsigned int size); 1118 void arch_free_bpf_trampoline(void *image, unsigned int size); 1119 void arch_protect_bpf_trampoline(void *image, unsigned int size); 1120 void arch_unprotect_bpf_trampoline(void *image, unsigned int size); 1121 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1122 struct bpf_tramp_links *tlinks, void *func_addr); 1123 1124 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1125 struct bpf_tramp_run_ctx *run_ctx); 1126 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1127 struct bpf_tramp_run_ctx *run_ctx); 1128 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1129 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1130 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1131 struct bpf_tramp_run_ctx *run_ctx); 1132 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1133 struct bpf_tramp_run_ctx *run_ctx); 1134 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1135 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1136 1137 struct bpf_ksym { 1138 unsigned long start; 1139 unsigned long end; 1140 char name[KSYM_NAME_LEN]; 1141 struct list_head lnode; 1142 struct latch_tree_node tnode; 1143 bool prog; 1144 }; 1145 1146 enum bpf_tramp_prog_type { 1147 BPF_TRAMP_FENTRY, 1148 BPF_TRAMP_FEXIT, 1149 BPF_TRAMP_MODIFY_RETURN, 1150 BPF_TRAMP_MAX, 1151 BPF_TRAMP_REPLACE, /* more than MAX */ 1152 }; 1153 1154 struct bpf_tramp_image { 1155 void *image; 1156 int size; 1157 struct bpf_ksym ksym; 1158 struct percpu_ref pcref; 1159 void *ip_after_call; 1160 void *ip_epilogue; 1161 union { 1162 struct rcu_head rcu; 1163 struct work_struct work; 1164 }; 1165 }; 1166 1167 struct bpf_trampoline { 1168 /* hlist for trampoline_table */ 1169 struct hlist_node hlist; 1170 struct ftrace_ops *fops; 1171 /* serializes access to fields of this trampoline */ 1172 struct mutex mutex; 1173 refcount_t refcnt; 1174 u32 flags; 1175 u64 key; 1176 struct { 1177 struct btf_func_model model; 1178 void *addr; 1179 bool ftrace_managed; 1180 } func; 1181 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1182 * program by replacing one of its functions. func.addr is the address 1183 * of the function it replaced. 1184 */ 1185 struct bpf_prog *extension_prog; 1186 /* list of BPF programs using this trampoline */ 1187 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1188 /* Number of attached programs. A counter per kind. */ 1189 int progs_cnt[BPF_TRAMP_MAX]; 1190 /* Executable image of trampoline */ 1191 struct bpf_tramp_image *cur_image; 1192 }; 1193 1194 struct bpf_attach_target_info { 1195 struct btf_func_model fmodel; 1196 long tgt_addr; 1197 struct module *tgt_mod; 1198 const char *tgt_name; 1199 const struct btf_type *tgt_type; 1200 }; 1201 1202 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1203 1204 struct bpf_dispatcher_prog { 1205 struct bpf_prog *prog; 1206 refcount_t users; 1207 }; 1208 1209 struct bpf_dispatcher { 1210 /* dispatcher mutex */ 1211 struct mutex mutex; 1212 void *func; 1213 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1214 int num_progs; 1215 void *image; 1216 void *rw_image; 1217 u32 image_off; 1218 struct bpf_ksym ksym; 1219 #ifdef CONFIG_HAVE_STATIC_CALL 1220 struct static_call_key *sc_key; 1221 void *sc_tramp; 1222 #endif 1223 }; 1224 1225 #ifndef __bpfcall 1226 #define __bpfcall __nocfi 1227 #endif 1228 1229 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1230 const void *ctx, 1231 const struct bpf_insn *insnsi, 1232 bpf_func_t bpf_func) 1233 { 1234 return bpf_func(ctx, insnsi); 1235 } 1236 1237 /* the implementation of the opaque uapi struct bpf_dynptr */ 1238 struct bpf_dynptr_kern { 1239 void *data; 1240 /* Size represents the number of usable bytes of dynptr data. 1241 * If for example the offset is at 4 for a local dynptr whose data is 1242 * of type u64, the number of usable bytes is 4. 1243 * 1244 * The upper 8 bits are reserved. It is as follows: 1245 * Bits 0 - 23 = size 1246 * Bits 24 - 30 = dynptr type 1247 * Bit 31 = whether dynptr is read-only 1248 */ 1249 u32 size; 1250 u32 offset; 1251 } __aligned(8); 1252 1253 enum bpf_dynptr_type { 1254 BPF_DYNPTR_TYPE_INVALID, 1255 /* Points to memory that is local to the bpf program */ 1256 BPF_DYNPTR_TYPE_LOCAL, 1257 /* Underlying data is a ringbuf record */ 1258 BPF_DYNPTR_TYPE_RINGBUF, 1259 /* Underlying data is a sk_buff */ 1260 BPF_DYNPTR_TYPE_SKB, 1261 /* Underlying data is a xdp_buff */ 1262 BPF_DYNPTR_TYPE_XDP, 1263 }; 1264 1265 int bpf_dynptr_check_size(u32 size); 1266 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1267 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1268 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1269 1270 #ifdef CONFIG_BPF_JIT 1271 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1272 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1273 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1274 struct bpf_attach_target_info *tgt_info); 1275 void bpf_trampoline_put(struct bpf_trampoline *tr); 1276 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1277 1278 /* 1279 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1280 * indirection with a direct call to the bpf program. If the architecture does 1281 * not have STATIC_CALL, avoid a double-indirection. 1282 */ 1283 #ifdef CONFIG_HAVE_STATIC_CALL 1284 1285 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1286 .sc_key = &STATIC_CALL_KEY(_name), \ 1287 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1288 1289 #define __BPF_DISPATCHER_SC(name) \ 1290 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1291 1292 #define __BPF_DISPATCHER_CALL(name) \ 1293 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1294 1295 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1296 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1297 1298 #else 1299 #define __BPF_DISPATCHER_SC_INIT(name) 1300 #define __BPF_DISPATCHER_SC(name) 1301 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1302 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1303 #endif 1304 1305 #define BPF_DISPATCHER_INIT(_name) { \ 1306 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1307 .func = &_name##_func, \ 1308 .progs = {}, \ 1309 .num_progs = 0, \ 1310 .image = NULL, \ 1311 .image_off = 0, \ 1312 .ksym = { \ 1313 .name = #_name, \ 1314 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1315 }, \ 1316 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1317 } 1318 1319 #define DEFINE_BPF_DISPATCHER(name) \ 1320 __BPF_DISPATCHER_SC(name); \ 1321 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1322 const void *ctx, \ 1323 const struct bpf_insn *insnsi, \ 1324 bpf_func_t bpf_func) \ 1325 { \ 1326 return __BPF_DISPATCHER_CALL(name); \ 1327 } \ 1328 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1329 struct bpf_dispatcher bpf_dispatcher_##name = \ 1330 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1331 1332 #define DECLARE_BPF_DISPATCHER(name) \ 1333 unsigned int bpf_dispatcher_##name##_func( \ 1334 const void *ctx, \ 1335 const struct bpf_insn *insnsi, \ 1336 bpf_func_t bpf_func); \ 1337 extern struct bpf_dispatcher bpf_dispatcher_##name; 1338 1339 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1340 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1341 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1342 struct bpf_prog *to); 1343 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1344 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1345 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1346 void bpf_ksym_add(struct bpf_ksym *ksym); 1347 void bpf_ksym_del(struct bpf_ksym *ksym); 1348 int bpf_jit_charge_modmem(u32 size); 1349 void bpf_jit_uncharge_modmem(u32 size); 1350 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1351 #else 1352 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1353 struct bpf_trampoline *tr) 1354 { 1355 return -ENOTSUPP; 1356 } 1357 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1358 struct bpf_trampoline *tr) 1359 { 1360 return -ENOTSUPP; 1361 } 1362 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1363 struct bpf_attach_target_info *tgt_info) 1364 { 1365 return NULL; 1366 } 1367 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1368 #define DEFINE_BPF_DISPATCHER(name) 1369 #define DECLARE_BPF_DISPATCHER(name) 1370 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1371 #define BPF_DISPATCHER_PTR(name) NULL 1372 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1373 struct bpf_prog *from, 1374 struct bpf_prog *to) {} 1375 static inline bool is_bpf_image_address(unsigned long address) 1376 { 1377 return false; 1378 } 1379 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1380 { 1381 return false; 1382 } 1383 #endif 1384 1385 struct bpf_func_info_aux { 1386 u16 linkage; 1387 bool unreliable; 1388 bool called : 1; 1389 bool verified : 1; 1390 }; 1391 1392 enum bpf_jit_poke_reason { 1393 BPF_POKE_REASON_TAIL_CALL, 1394 }; 1395 1396 /* Descriptor of pokes pointing /into/ the JITed image. */ 1397 struct bpf_jit_poke_descriptor { 1398 void *tailcall_target; 1399 void *tailcall_bypass; 1400 void *bypass_addr; 1401 void *aux; 1402 union { 1403 struct { 1404 struct bpf_map *map; 1405 u32 key; 1406 } tail_call; 1407 }; 1408 bool tailcall_target_stable; 1409 u8 adj_off; 1410 u16 reason; 1411 u32 insn_idx; 1412 }; 1413 1414 /* reg_type info for ctx arguments */ 1415 struct bpf_ctx_arg_aux { 1416 u32 offset; 1417 enum bpf_reg_type reg_type; 1418 u32 btf_id; 1419 }; 1420 1421 struct btf_mod_pair { 1422 struct btf *btf; 1423 struct module *module; 1424 }; 1425 1426 struct bpf_kfunc_desc_tab; 1427 1428 struct bpf_prog_aux { 1429 atomic64_t refcnt; 1430 u32 used_map_cnt; 1431 u32 used_btf_cnt; 1432 u32 max_ctx_offset; 1433 u32 max_pkt_offset; 1434 u32 max_tp_access; 1435 u32 stack_depth; 1436 u32 id; 1437 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1438 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1439 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1440 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1441 u32 ctx_arg_info_size; 1442 u32 max_rdonly_access; 1443 u32 max_rdwr_access; 1444 struct btf *attach_btf; 1445 const struct bpf_ctx_arg_aux *ctx_arg_info; 1446 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1447 struct bpf_prog *dst_prog; 1448 struct bpf_trampoline *dst_trampoline; 1449 enum bpf_prog_type saved_dst_prog_type; 1450 enum bpf_attach_type saved_dst_attach_type; 1451 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1452 bool dev_bound; /* Program is bound to the netdev. */ 1453 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1454 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1455 bool attach_tracing_prog; /* true if tracing another tracing program */ 1456 bool func_proto_unreliable; 1457 bool sleepable; 1458 bool tail_call_reachable; 1459 bool xdp_has_frags; 1460 bool exception_cb; 1461 bool exception_boundary; 1462 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1463 const struct btf_type *attach_func_proto; 1464 /* function name for valid attach_btf_id */ 1465 const char *attach_func_name; 1466 struct bpf_prog **func; 1467 void *jit_data; /* JIT specific data. arch dependent */ 1468 struct bpf_jit_poke_descriptor *poke_tab; 1469 struct bpf_kfunc_desc_tab *kfunc_tab; 1470 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1471 u32 size_poke_tab; 1472 #ifdef CONFIG_FINEIBT 1473 struct bpf_ksym ksym_prefix; 1474 #endif 1475 struct bpf_ksym ksym; 1476 const struct bpf_prog_ops *ops; 1477 struct bpf_map **used_maps; 1478 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1479 struct btf_mod_pair *used_btfs; 1480 struct bpf_prog *prog; 1481 struct user_struct *user; 1482 u64 load_time; /* ns since boottime */ 1483 u32 verified_insns; 1484 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1485 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1486 char name[BPF_OBJ_NAME_LEN]; 1487 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1488 #ifdef CONFIG_SECURITY 1489 void *security; 1490 #endif 1491 struct bpf_token *token; 1492 struct bpf_prog_offload *offload; 1493 struct btf *btf; 1494 struct bpf_func_info *func_info; 1495 struct bpf_func_info_aux *func_info_aux; 1496 /* bpf_line_info loaded from userspace. linfo->insn_off 1497 * has the xlated insn offset. 1498 * Both the main and sub prog share the same linfo. 1499 * The subprog can access its first linfo by 1500 * using the linfo_idx. 1501 */ 1502 struct bpf_line_info *linfo; 1503 /* jited_linfo is the jited addr of the linfo. It has a 1504 * one to one mapping to linfo: 1505 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1506 * Both the main and sub prog share the same jited_linfo. 1507 * The subprog can access its first jited_linfo by 1508 * using the linfo_idx. 1509 */ 1510 void **jited_linfo; 1511 u32 func_info_cnt; 1512 u32 nr_linfo; 1513 /* subprog can use linfo_idx to access its first linfo and 1514 * jited_linfo. 1515 * main prog always has linfo_idx == 0 1516 */ 1517 u32 linfo_idx; 1518 struct module *mod; 1519 u32 num_exentries; 1520 struct exception_table_entry *extable; 1521 union { 1522 struct work_struct work; 1523 struct rcu_head rcu; 1524 }; 1525 }; 1526 1527 struct bpf_prog { 1528 u16 pages; /* Number of allocated pages */ 1529 u16 jited:1, /* Is our filter JIT'ed? */ 1530 jit_requested:1,/* archs need to JIT the prog */ 1531 gpl_compatible:1, /* Is filter GPL compatible? */ 1532 cb_access:1, /* Is control block accessed? */ 1533 dst_needed:1, /* Do we need dst entry? */ 1534 blinding_requested:1, /* needs constant blinding */ 1535 blinded:1, /* Was blinded */ 1536 is_func:1, /* program is a bpf function */ 1537 kprobe_override:1, /* Do we override a kprobe? */ 1538 has_callchain_buf:1, /* callchain buffer allocated? */ 1539 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1540 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1541 call_get_func_ip:1, /* Do we call get_func_ip() */ 1542 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1543 enum bpf_prog_type type; /* Type of BPF program */ 1544 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1545 u32 len; /* Number of filter blocks */ 1546 u32 jited_len; /* Size of jited insns in bytes */ 1547 u8 tag[BPF_TAG_SIZE]; 1548 struct bpf_prog_stats __percpu *stats; 1549 int __percpu *active; 1550 unsigned int (*bpf_func)(const void *ctx, 1551 const struct bpf_insn *insn); 1552 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1553 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1554 /* Instructions for interpreter */ 1555 union { 1556 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1557 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1558 }; 1559 }; 1560 1561 struct bpf_array_aux { 1562 /* Programs with direct jumps into programs part of this array. */ 1563 struct list_head poke_progs; 1564 struct bpf_map *map; 1565 struct mutex poke_mutex; 1566 struct work_struct work; 1567 }; 1568 1569 struct bpf_link { 1570 atomic64_t refcnt; 1571 u32 id; 1572 enum bpf_link_type type; 1573 const struct bpf_link_ops *ops; 1574 struct bpf_prog *prog; 1575 struct work_struct work; 1576 }; 1577 1578 struct bpf_link_ops { 1579 void (*release)(struct bpf_link *link); 1580 void (*dealloc)(struct bpf_link *link); 1581 int (*detach)(struct bpf_link *link); 1582 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1583 struct bpf_prog *old_prog); 1584 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1585 int (*fill_link_info)(const struct bpf_link *link, 1586 struct bpf_link_info *info); 1587 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1588 struct bpf_map *old_map); 1589 }; 1590 1591 struct bpf_tramp_link { 1592 struct bpf_link link; 1593 struct hlist_node tramp_hlist; 1594 u64 cookie; 1595 }; 1596 1597 struct bpf_shim_tramp_link { 1598 struct bpf_tramp_link link; 1599 struct bpf_trampoline *trampoline; 1600 }; 1601 1602 struct bpf_tracing_link { 1603 struct bpf_tramp_link link; 1604 enum bpf_attach_type attach_type; 1605 struct bpf_trampoline *trampoline; 1606 struct bpf_prog *tgt_prog; 1607 }; 1608 1609 struct bpf_link_primer { 1610 struct bpf_link *link; 1611 struct file *file; 1612 int fd; 1613 u32 id; 1614 }; 1615 1616 struct bpf_mount_opts { 1617 kuid_t uid; 1618 kgid_t gid; 1619 umode_t mode; 1620 1621 /* BPF token-related delegation options */ 1622 u64 delegate_cmds; 1623 u64 delegate_maps; 1624 u64 delegate_progs; 1625 u64 delegate_attachs; 1626 }; 1627 1628 struct bpf_token { 1629 struct work_struct work; 1630 atomic64_t refcnt; 1631 struct user_namespace *userns; 1632 u64 allowed_cmds; 1633 u64 allowed_maps; 1634 u64 allowed_progs; 1635 u64 allowed_attachs; 1636 #ifdef CONFIG_SECURITY 1637 void *security; 1638 #endif 1639 }; 1640 1641 struct bpf_struct_ops_value; 1642 struct btf_member; 1643 1644 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1645 /** 1646 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1647 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1648 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1649 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1650 * when determining whether the struct_ops progs in the 1651 * struct_ops map are valid. 1652 * @init: A callback that is invoked a single time, and before any other 1653 * callback, to initialize the structure. A nonzero return value means 1654 * the subsystem could not be initialized. 1655 * @check_member: When defined, a callback invoked by the verifier to allow 1656 * the subsystem to determine if an entry in the struct_ops map 1657 * is valid. A nonzero return value means that the map is 1658 * invalid and should be rejected by the verifier. 1659 * @init_member: A callback that is invoked for each member of the struct_ops 1660 * map to allow the subsystem to initialize the member. A nonzero 1661 * value means the member could not be initialized. This callback 1662 * is exclusive with the @type, @type_id, @value_type, and 1663 * @value_id fields. 1664 * @reg: A callback that is invoked when the struct_ops map has been 1665 * initialized and is being attached to. Zero means the struct_ops map 1666 * has been successfully registered and is live. A nonzero return value 1667 * means the struct_ops map could not be registered. 1668 * @unreg: A callback that is invoked when the struct_ops map should be 1669 * unregistered. 1670 * @update: A callback that is invoked when the live struct_ops map is being 1671 * updated to contain new values. This callback is only invoked when 1672 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1673 * it is assumed that the struct_ops map cannot be updated. 1674 * @validate: A callback that is invoked after all of the members have been 1675 * initialized. This callback should perform static checks on the 1676 * map, meaning that it should either fail or succeed 1677 * deterministically. A struct_ops map that has been validated may 1678 * not necessarily succeed in being registered if the call to @reg 1679 * fails. For example, a valid struct_ops map may be loaded, but 1680 * then fail to be registered due to there being another active 1681 * struct_ops map on the system in the subsystem already. For this 1682 * reason, if this callback is not defined, the check is skipped as 1683 * the struct_ops map will have final verification performed in 1684 * @reg. 1685 * @type: BTF type. 1686 * @value_type: Value type. 1687 * @name: The name of the struct bpf_struct_ops object. 1688 * @func_models: Func models 1689 * @type_id: BTF type id. 1690 * @value_id: BTF value id. 1691 */ 1692 struct bpf_struct_ops { 1693 const struct bpf_verifier_ops *verifier_ops; 1694 int (*init)(struct btf *btf); 1695 int (*check_member)(const struct btf_type *t, 1696 const struct btf_member *member, 1697 const struct bpf_prog *prog); 1698 int (*init_member)(const struct btf_type *t, 1699 const struct btf_member *member, 1700 void *kdata, const void *udata); 1701 int (*reg)(void *kdata); 1702 void (*unreg)(void *kdata); 1703 int (*update)(void *kdata, void *old_kdata); 1704 int (*validate)(void *kdata); 1705 void *cfi_stubs; 1706 struct module *owner; 1707 const char *name; 1708 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1709 }; 1710 1711 struct bpf_struct_ops_desc { 1712 struct bpf_struct_ops *st_ops; 1713 1714 const struct btf_type *type; 1715 const struct btf_type *value_type; 1716 u32 type_id; 1717 u32 value_id; 1718 }; 1719 1720 enum bpf_struct_ops_state { 1721 BPF_STRUCT_OPS_STATE_INIT, 1722 BPF_STRUCT_OPS_STATE_INUSE, 1723 BPF_STRUCT_OPS_STATE_TOBEFREE, 1724 BPF_STRUCT_OPS_STATE_READY, 1725 }; 1726 1727 struct bpf_struct_ops_common_value { 1728 refcount_t refcnt; 1729 enum bpf_struct_ops_state state; 1730 }; 1731 1732 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1733 /* This macro helps developer to register a struct_ops type and generate 1734 * type information correctly. Developers should use this macro to register 1735 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1736 */ 1737 #define register_bpf_struct_ops(st_ops, type) \ 1738 ({ \ 1739 struct bpf_struct_ops_##type { \ 1740 struct bpf_struct_ops_common_value common; \ 1741 struct type data ____cacheline_aligned_in_smp; \ 1742 }; \ 1743 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1744 __register_bpf_struct_ops(st_ops); \ 1745 }) 1746 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1747 bool bpf_struct_ops_get(const void *kdata); 1748 void bpf_struct_ops_put(const void *kdata); 1749 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1750 void *value); 1751 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1752 struct bpf_tramp_link *link, 1753 const struct btf_func_model *model, 1754 void *stub_func, 1755 void *image, void *image_end); 1756 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1757 { 1758 if (owner == BPF_MODULE_OWNER) 1759 return bpf_struct_ops_get(data); 1760 else 1761 return try_module_get(owner); 1762 } 1763 static inline void bpf_module_put(const void *data, struct module *owner) 1764 { 1765 if (owner == BPF_MODULE_OWNER) 1766 bpf_struct_ops_put(data); 1767 else 1768 module_put(owner); 1769 } 1770 int bpf_struct_ops_link_create(union bpf_attr *attr); 1771 1772 #ifdef CONFIG_NET 1773 /* Define it here to avoid the use of forward declaration */ 1774 struct bpf_dummy_ops_state { 1775 int val; 1776 }; 1777 1778 struct bpf_dummy_ops { 1779 int (*test_1)(struct bpf_dummy_ops_state *cb); 1780 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1781 char a3, unsigned long a4); 1782 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1783 }; 1784 1785 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1786 union bpf_attr __user *uattr); 1787 #endif 1788 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1789 struct btf *btf, 1790 struct bpf_verifier_log *log); 1791 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1792 #else 1793 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1794 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1795 { 1796 return try_module_get(owner); 1797 } 1798 static inline void bpf_module_put(const void *data, struct module *owner) 1799 { 1800 module_put(owner); 1801 } 1802 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1803 void *key, 1804 void *value) 1805 { 1806 return -EINVAL; 1807 } 1808 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1809 { 1810 return -EOPNOTSUPP; 1811 } 1812 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1813 { 1814 } 1815 1816 #endif 1817 1818 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1819 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1820 int cgroup_atype); 1821 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1822 #else 1823 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1824 int cgroup_atype) 1825 { 1826 return -EOPNOTSUPP; 1827 } 1828 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1829 { 1830 } 1831 #endif 1832 1833 struct bpf_array { 1834 struct bpf_map map; 1835 u32 elem_size; 1836 u32 index_mask; 1837 struct bpf_array_aux *aux; 1838 union { 1839 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1840 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1841 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1842 }; 1843 }; 1844 1845 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1846 #define MAX_TAIL_CALL_CNT 33 1847 1848 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1849 * It's enum to expose it (and thus make it discoverable) through BTF. 1850 */ 1851 enum { 1852 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1853 }; 1854 1855 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1856 BPF_F_RDONLY_PROG | \ 1857 BPF_F_WRONLY | \ 1858 BPF_F_WRONLY_PROG) 1859 1860 #define BPF_MAP_CAN_READ BIT(0) 1861 #define BPF_MAP_CAN_WRITE BIT(1) 1862 1863 /* Maximum number of user-producer ring buffer samples that can be drained in 1864 * a call to bpf_user_ringbuf_drain(). 1865 */ 1866 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1867 1868 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1869 { 1870 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1871 1872 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1873 * not possible. 1874 */ 1875 if (access_flags & BPF_F_RDONLY_PROG) 1876 return BPF_MAP_CAN_READ; 1877 else if (access_flags & BPF_F_WRONLY_PROG) 1878 return BPF_MAP_CAN_WRITE; 1879 else 1880 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1881 } 1882 1883 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1884 { 1885 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1886 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1887 } 1888 1889 struct bpf_event_entry { 1890 struct perf_event *event; 1891 struct file *perf_file; 1892 struct file *map_file; 1893 struct rcu_head rcu; 1894 }; 1895 1896 static inline bool map_type_contains_progs(struct bpf_map *map) 1897 { 1898 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1899 map->map_type == BPF_MAP_TYPE_DEVMAP || 1900 map->map_type == BPF_MAP_TYPE_CPUMAP; 1901 } 1902 1903 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1904 int bpf_prog_calc_tag(struct bpf_prog *fp); 1905 1906 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1907 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1908 1909 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1910 unsigned long off, unsigned long len); 1911 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1912 const struct bpf_insn *src, 1913 struct bpf_insn *dst, 1914 struct bpf_prog *prog, 1915 u32 *target_size); 1916 1917 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1918 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1919 1920 /* an array of programs to be executed under rcu_lock. 1921 * 1922 * Typical usage: 1923 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1924 * 1925 * the structure returned by bpf_prog_array_alloc() should be populated 1926 * with program pointers and the last pointer must be NULL. 1927 * The user has to keep refcnt on the program and make sure the program 1928 * is removed from the array before bpf_prog_put(). 1929 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1930 * since other cpus are walking the array of pointers in parallel. 1931 */ 1932 struct bpf_prog_array_item { 1933 struct bpf_prog *prog; 1934 union { 1935 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1936 u64 bpf_cookie; 1937 }; 1938 }; 1939 1940 struct bpf_prog_array { 1941 struct rcu_head rcu; 1942 struct bpf_prog_array_item items[]; 1943 }; 1944 1945 struct bpf_empty_prog_array { 1946 struct bpf_prog_array hdr; 1947 struct bpf_prog *null_prog; 1948 }; 1949 1950 /* to avoid allocating empty bpf_prog_array for cgroups that 1951 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1952 * It will not be modified the caller of bpf_prog_array_alloc() 1953 * (since caller requested prog_cnt == 0) 1954 * that pointer should be 'freed' by bpf_prog_array_free() 1955 */ 1956 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1957 1958 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1959 void bpf_prog_array_free(struct bpf_prog_array *progs); 1960 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1961 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1962 int bpf_prog_array_length(struct bpf_prog_array *progs); 1963 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1964 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1965 __u32 __user *prog_ids, u32 cnt); 1966 1967 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1968 struct bpf_prog *old_prog); 1969 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1970 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1971 struct bpf_prog *prog); 1972 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1973 u32 *prog_ids, u32 request_cnt, 1974 u32 *prog_cnt); 1975 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1976 struct bpf_prog *exclude_prog, 1977 struct bpf_prog *include_prog, 1978 u64 bpf_cookie, 1979 struct bpf_prog_array **new_array); 1980 1981 struct bpf_run_ctx {}; 1982 1983 struct bpf_cg_run_ctx { 1984 struct bpf_run_ctx run_ctx; 1985 const struct bpf_prog_array_item *prog_item; 1986 int retval; 1987 }; 1988 1989 struct bpf_trace_run_ctx { 1990 struct bpf_run_ctx run_ctx; 1991 u64 bpf_cookie; 1992 bool is_uprobe; 1993 }; 1994 1995 struct bpf_tramp_run_ctx { 1996 struct bpf_run_ctx run_ctx; 1997 u64 bpf_cookie; 1998 struct bpf_run_ctx *saved_run_ctx; 1999 }; 2000 2001 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2002 { 2003 struct bpf_run_ctx *old_ctx = NULL; 2004 2005 #ifdef CONFIG_BPF_SYSCALL 2006 old_ctx = current->bpf_ctx; 2007 current->bpf_ctx = new_ctx; 2008 #endif 2009 return old_ctx; 2010 } 2011 2012 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2013 { 2014 #ifdef CONFIG_BPF_SYSCALL 2015 current->bpf_ctx = old_ctx; 2016 #endif 2017 } 2018 2019 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2020 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2021 /* BPF program asks to set CN on the packet. */ 2022 #define BPF_RET_SET_CN (1 << 0) 2023 2024 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2025 2026 static __always_inline u32 2027 bpf_prog_run_array(const struct bpf_prog_array *array, 2028 const void *ctx, bpf_prog_run_fn run_prog) 2029 { 2030 const struct bpf_prog_array_item *item; 2031 const struct bpf_prog *prog; 2032 struct bpf_run_ctx *old_run_ctx; 2033 struct bpf_trace_run_ctx run_ctx; 2034 u32 ret = 1; 2035 2036 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2037 2038 if (unlikely(!array)) 2039 return ret; 2040 2041 run_ctx.is_uprobe = false; 2042 2043 migrate_disable(); 2044 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2045 item = &array->items[0]; 2046 while ((prog = READ_ONCE(item->prog))) { 2047 run_ctx.bpf_cookie = item->bpf_cookie; 2048 ret &= run_prog(prog, ctx); 2049 item++; 2050 } 2051 bpf_reset_run_ctx(old_run_ctx); 2052 migrate_enable(); 2053 return ret; 2054 } 2055 2056 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2057 * 2058 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2059 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2060 * in order to use the tasks_trace rcu grace period. 2061 * 2062 * When a non-sleepable program is inside the array, we take the rcu read 2063 * section and disable preemption for that program alone, so it can access 2064 * rcu-protected dynamically sized maps. 2065 */ 2066 static __always_inline u32 2067 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2068 const void *ctx, bpf_prog_run_fn run_prog) 2069 { 2070 const struct bpf_prog_array_item *item; 2071 const struct bpf_prog *prog; 2072 const struct bpf_prog_array *array; 2073 struct bpf_run_ctx *old_run_ctx; 2074 struct bpf_trace_run_ctx run_ctx; 2075 u32 ret = 1; 2076 2077 might_fault(); 2078 2079 rcu_read_lock_trace(); 2080 migrate_disable(); 2081 2082 run_ctx.is_uprobe = true; 2083 2084 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2085 if (unlikely(!array)) 2086 goto out; 2087 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2088 item = &array->items[0]; 2089 while ((prog = READ_ONCE(item->prog))) { 2090 if (!prog->aux->sleepable) 2091 rcu_read_lock(); 2092 2093 run_ctx.bpf_cookie = item->bpf_cookie; 2094 ret &= run_prog(prog, ctx); 2095 item++; 2096 2097 if (!prog->aux->sleepable) 2098 rcu_read_unlock(); 2099 } 2100 bpf_reset_run_ctx(old_run_ctx); 2101 out: 2102 migrate_enable(); 2103 rcu_read_unlock_trace(); 2104 return ret; 2105 } 2106 2107 #ifdef CONFIG_BPF_SYSCALL 2108 DECLARE_PER_CPU(int, bpf_prog_active); 2109 extern struct mutex bpf_stats_enabled_mutex; 2110 2111 /* 2112 * Block execution of BPF programs attached to instrumentation (perf, 2113 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2114 * these events can happen inside a region which holds a map bucket lock 2115 * and can deadlock on it. 2116 */ 2117 static inline void bpf_disable_instrumentation(void) 2118 { 2119 migrate_disable(); 2120 this_cpu_inc(bpf_prog_active); 2121 } 2122 2123 static inline void bpf_enable_instrumentation(void) 2124 { 2125 this_cpu_dec(bpf_prog_active); 2126 migrate_enable(); 2127 } 2128 2129 extern const struct super_operations bpf_super_ops; 2130 extern const struct file_operations bpf_map_fops; 2131 extern const struct file_operations bpf_prog_fops; 2132 extern const struct file_operations bpf_iter_fops; 2133 2134 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2135 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2136 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2137 #define BPF_MAP_TYPE(_id, _ops) \ 2138 extern const struct bpf_map_ops _ops; 2139 #define BPF_LINK_TYPE(_id, _name) 2140 #include <linux/bpf_types.h> 2141 #undef BPF_PROG_TYPE 2142 #undef BPF_MAP_TYPE 2143 #undef BPF_LINK_TYPE 2144 2145 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2146 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2147 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2148 2149 struct bpf_prog *bpf_prog_get(u32 ufd); 2150 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2151 bool attach_drv); 2152 void bpf_prog_add(struct bpf_prog *prog, int i); 2153 void bpf_prog_sub(struct bpf_prog *prog, int i); 2154 void bpf_prog_inc(struct bpf_prog *prog); 2155 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2156 void bpf_prog_put(struct bpf_prog *prog); 2157 2158 void bpf_prog_free_id(struct bpf_prog *prog); 2159 void bpf_map_free_id(struct bpf_map *map); 2160 2161 struct btf_field *btf_record_find(const struct btf_record *rec, 2162 u32 offset, u32 field_mask); 2163 void btf_record_free(struct btf_record *rec); 2164 void bpf_map_free_record(struct bpf_map *map); 2165 struct btf_record *btf_record_dup(const struct btf_record *rec); 2166 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2167 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2168 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2169 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2170 2171 struct bpf_map *bpf_map_get(u32 ufd); 2172 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2173 struct bpf_map *__bpf_map_get(struct fd f); 2174 void bpf_map_inc(struct bpf_map *map); 2175 void bpf_map_inc_with_uref(struct bpf_map *map); 2176 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2177 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2178 void bpf_map_put_with_uref(struct bpf_map *map); 2179 void bpf_map_put(struct bpf_map *map); 2180 void *bpf_map_area_alloc(u64 size, int numa_node); 2181 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2182 void bpf_map_area_free(void *base); 2183 bool bpf_map_write_active(const struct bpf_map *map); 2184 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2185 int generic_map_lookup_batch(struct bpf_map *map, 2186 const union bpf_attr *attr, 2187 union bpf_attr __user *uattr); 2188 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2189 const union bpf_attr *attr, 2190 union bpf_attr __user *uattr); 2191 int generic_map_delete_batch(struct bpf_map *map, 2192 const union bpf_attr *attr, 2193 union bpf_attr __user *uattr); 2194 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2195 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2196 2197 #ifdef CONFIG_MEMCG_KMEM 2198 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2199 int node); 2200 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2201 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2202 gfp_t flags); 2203 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2204 size_t align, gfp_t flags); 2205 #else 2206 static inline void * 2207 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2208 int node) 2209 { 2210 return kmalloc_node(size, flags, node); 2211 } 2212 2213 static inline void * 2214 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 2215 { 2216 return kzalloc(size, flags); 2217 } 2218 2219 static inline void * 2220 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 2221 { 2222 return kvcalloc(n, size, flags); 2223 } 2224 2225 static inline void __percpu * 2226 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 2227 gfp_t flags) 2228 { 2229 return __alloc_percpu_gfp(size, align, flags); 2230 } 2231 #endif 2232 2233 static inline int 2234 bpf_map_init_elem_count(struct bpf_map *map) 2235 { 2236 size_t size = sizeof(*map->elem_count), align = size; 2237 gfp_t flags = GFP_USER | __GFP_NOWARN; 2238 2239 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2240 if (!map->elem_count) 2241 return -ENOMEM; 2242 2243 return 0; 2244 } 2245 2246 static inline void 2247 bpf_map_free_elem_count(struct bpf_map *map) 2248 { 2249 free_percpu(map->elem_count); 2250 } 2251 2252 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2253 { 2254 this_cpu_inc(*map->elem_count); 2255 } 2256 2257 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2258 { 2259 this_cpu_dec(*map->elem_count); 2260 } 2261 2262 extern int sysctl_unprivileged_bpf_disabled; 2263 2264 bool bpf_token_capable(const struct bpf_token *token, int cap); 2265 2266 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2267 { 2268 return bpf_token_capable(token, CAP_PERFMON); 2269 } 2270 2271 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2272 { 2273 return bpf_token_capable(token, CAP_PERFMON); 2274 } 2275 2276 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2277 { 2278 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2279 } 2280 2281 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2282 { 2283 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2284 } 2285 2286 int bpf_map_new_fd(struct bpf_map *map, int flags); 2287 int bpf_prog_new_fd(struct bpf_prog *prog); 2288 2289 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2290 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2291 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2292 int bpf_link_settle(struct bpf_link_primer *primer); 2293 void bpf_link_cleanup(struct bpf_link_primer *primer); 2294 void bpf_link_inc(struct bpf_link *link); 2295 void bpf_link_put(struct bpf_link *link); 2296 int bpf_link_new_fd(struct bpf_link *link); 2297 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2298 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2299 2300 void bpf_token_inc(struct bpf_token *token); 2301 void bpf_token_put(struct bpf_token *token); 2302 int bpf_token_create(union bpf_attr *attr); 2303 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2304 2305 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2306 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2307 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2308 enum bpf_prog_type prog_type, 2309 enum bpf_attach_type attach_type); 2310 2311 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2312 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2313 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2314 umode_t mode); 2315 2316 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2317 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2318 extern int bpf_iter_ ## target(args); \ 2319 int __init bpf_iter_ ## target(args) { return 0; } 2320 2321 /* 2322 * The task type of iterators. 2323 * 2324 * For BPF task iterators, they can be parameterized with various 2325 * parameters to visit only some of tasks. 2326 * 2327 * BPF_TASK_ITER_ALL (default) 2328 * Iterate over resources of every task. 2329 * 2330 * BPF_TASK_ITER_TID 2331 * Iterate over resources of a task/tid. 2332 * 2333 * BPF_TASK_ITER_TGID 2334 * Iterate over resources of every task of a process / task group. 2335 */ 2336 enum bpf_iter_task_type { 2337 BPF_TASK_ITER_ALL = 0, 2338 BPF_TASK_ITER_TID, 2339 BPF_TASK_ITER_TGID, 2340 }; 2341 2342 struct bpf_iter_aux_info { 2343 /* for map_elem iter */ 2344 struct bpf_map *map; 2345 2346 /* for cgroup iter */ 2347 struct { 2348 struct cgroup *start; /* starting cgroup */ 2349 enum bpf_cgroup_iter_order order; 2350 } cgroup; 2351 struct { 2352 enum bpf_iter_task_type type; 2353 u32 pid; 2354 } task; 2355 }; 2356 2357 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2358 union bpf_iter_link_info *linfo, 2359 struct bpf_iter_aux_info *aux); 2360 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2361 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2362 struct seq_file *seq); 2363 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2364 struct bpf_link_info *info); 2365 typedef const struct bpf_func_proto * 2366 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2367 const struct bpf_prog *prog); 2368 2369 enum bpf_iter_feature { 2370 BPF_ITER_RESCHED = BIT(0), 2371 }; 2372 2373 #define BPF_ITER_CTX_ARG_MAX 2 2374 struct bpf_iter_reg { 2375 const char *target; 2376 bpf_iter_attach_target_t attach_target; 2377 bpf_iter_detach_target_t detach_target; 2378 bpf_iter_show_fdinfo_t show_fdinfo; 2379 bpf_iter_fill_link_info_t fill_link_info; 2380 bpf_iter_get_func_proto_t get_func_proto; 2381 u32 ctx_arg_info_size; 2382 u32 feature; 2383 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2384 const struct bpf_iter_seq_info *seq_info; 2385 }; 2386 2387 struct bpf_iter_meta { 2388 __bpf_md_ptr(struct seq_file *, seq); 2389 u64 session_id; 2390 u64 seq_num; 2391 }; 2392 2393 struct bpf_iter__bpf_map_elem { 2394 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2395 __bpf_md_ptr(struct bpf_map *, map); 2396 __bpf_md_ptr(void *, key); 2397 __bpf_md_ptr(void *, value); 2398 }; 2399 2400 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2401 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2402 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2403 const struct bpf_func_proto * 2404 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2405 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2406 int bpf_iter_new_fd(struct bpf_link *link); 2407 bool bpf_link_is_iter(struct bpf_link *link); 2408 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2409 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2410 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2411 struct seq_file *seq); 2412 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2413 struct bpf_link_info *info); 2414 2415 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2416 struct bpf_func_state *caller, 2417 struct bpf_func_state *callee); 2418 2419 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2420 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2421 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2422 u64 flags); 2423 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2424 u64 flags); 2425 2426 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2427 2428 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2429 void *key, void *value, u64 map_flags); 2430 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2431 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2432 void *key, void *value, u64 map_flags); 2433 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2434 2435 int bpf_get_file_flag(int flags); 2436 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2437 size_t actual_size); 2438 2439 /* verify correctness of eBPF program */ 2440 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2441 2442 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2443 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2444 #endif 2445 2446 struct btf *bpf_get_btf_vmlinux(void); 2447 2448 /* Map specifics */ 2449 struct xdp_frame; 2450 struct sk_buff; 2451 struct bpf_dtab_netdev; 2452 struct bpf_cpu_map_entry; 2453 2454 void __dev_flush(void); 2455 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2456 struct net_device *dev_rx); 2457 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2458 struct net_device *dev_rx); 2459 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2460 struct bpf_map *map, bool exclude_ingress); 2461 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2462 struct bpf_prog *xdp_prog); 2463 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2464 struct bpf_prog *xdp_prog, struct bpf_map *map, 2465 bool exclude_ingress); 2466 2467 void __cpu_map_flush(void); 2468 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2469 struct net_device *dev_rx); 2470 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2471 struct sk_buff *skb); 2472 2473 /* Return map's numa specified by userspace */ 2474 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2475 { 2476 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2477 attr->numa_node : NUMA_NO_NODE; 2478 } 2479 2480 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2481 int array_map_alloc_check(union bpf_attr *attr); 2482 2483 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2484 union bpf_attr __user *uattr); 2485 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2486 union bpf_attr __user *uattr); 2487 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2488 const union bpf_attr *kattr, 2489 union bpf_attr __user *uattr); 2490 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2491 const union bpf_attr *kattr, 2492 union bpf_attr __user *uattr); 2493 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2494 const union bpf_attr *kattr, 2495 union bpf_attr __user *uattr); 2496 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2497 const union bpf_attr *kattr, 2498 union bpf_attr __user *uattr); 2499 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2500 const union bpf_attr *kattr, 2501 union bpf_attr __user *uattr); 2502 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2503 const struct bpf_prog *prog, 2504 struct bpf_insn_access_aux *info); 2505 2506 static inline bool bpf_tracing_ctx_access(int off, int size, 2507 enum bpf_access_type type) 2508 { 2509 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2510 return false; 2511 if (type != BPF_READ) 2512 return false; 2513 if (off % size != 0) 2514 return false; 2515 return true; 2516 } 2517 2518 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2519 enum bpf_access_type type, 2520 const struct bpf_prog *prog, 2521 struct bpf_insn_access_aux *info) 2522 { 2523 if (!bpf_tracing_ctx_access(off, size, type)) 2524 return false; 2525 return btf_ctx_access(off, size, type, prog, info); 2526 } 2527 2528 int btf_struct_access(struct bpf_verifier_log *log, 2529 const struct bpf_reg_state *reg, 2530 int off, int size, enum bpf_access_type atype, 2531 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2532 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2533 const struct btf *btf, u32 id, int off, 2534 const struct btf *need_btf, u32 need_type_id, 2535 bool strict); 2536 2537 int btf_distill_func_proto(struct bpf_verifier_log *log, 2538 struct btf *btf, 2539 const struct btf_type *func_proto, 2540 const char *func_name, 2541 struct btf_func_model *m); 2542 2543 struct bpf_reg_state; 2544 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2545 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2546 struct btf *btf, const struct btf_type *t); 2547 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2548 int comp_idx, const char *tag_key); 2549 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2550 int comp_idx, const char *tag_key, int last_id); 2551 2552 struct bpf_prog *bpf_prog_by_id(u32 id); 2553 struct bpf_link *bpf_link_by_id(u32 id); 2554 2555 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2556 const struct bpf_prog *prog); 2557 void bpf_task_storage_free(struct task_struct *task); 2558 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2559 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2560 const struct btf_func_model * 2561 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2562 const struct bpf_insn *insn); 2563 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2564 u16 btf_fd_idx, u8 **func_addr); 2565 2566 struct bpf_core_ctx { 2567 struct bpf_verifier_log *log; 2568 const struct btf *btf; 2569 }; 2570 2571 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2572 const struct bpf_reg_state *reg, 2573 const char *field_name, u32 btf_id, const char *suffix); 2574 2575 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2576 const struct btf *reg_btf, u32 reg_id, 2577 const struct btf *arg_btf, u32 arg_id); 2578 2579 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2580 int relo_idx, void *insn); 2581 2582 static inline bool unprivileged_ebpf_enabled(void) 2583 { 2584 return !sysctl_unprivileged_bpf_disabled; 2585 } 2586 2587 /* Not all bpf prog type has the bpf_ctx. 2588 * For the bpf prog type that has initialized the bpf_ctx, 2589 * this function can be used to decide if a kernel function 2590 * is called by a bpf program. 2591 */ 2592 static inline bool has_current_bpf_ctx(void) 2593 { 2594 return !!current->bpf_ctx; 2595 } 2596 2597 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2598 2599 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2600 enum bpf_dynptr_type type, u32 offset, u32 size); 2601 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2602 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2603 2604 bool dev_check_flush(void); 2605 bool cpu_map_check_flush(void); 2606 #else /* !CONFIG_BPF_SYSCALL */ 2607 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2608 { 2609 return ERR_PTR(-EOPNOTSUPP); 2610 } 2611 2612 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2613 enum bpf_prog_type type, 2614 bool attach_drv) 2615 { 2616 return ERR_PTR(-EOPNOTSUPP); 2617 } 2618 2619 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2620 { 2621 } 2622 2623 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2624 { 2625 } 2626 2627 static inline void bpf_prog_put(struct bpf_prog *prog) 2628 { 2629 } 2630 2631 static inline void bpf_prog_inc(struct bpf_prog *prog) 2632 { 2633 } 2634 2635 static inline struct bpf_prog *__must_check 2636 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2637 { 2638 return ERR_PTR(-EOPNOTSUPP); 2639 } 2640 2641 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2642 const struct bpf_link_ops *ops, 2643 struct bpf_prog *prog) 2644 { 2645 } 2646 2647 static inline int bpf_link_prime(struct bpf_link *link, 2648 struct bpf_link_primer *primer) 2649 { 2650 return -EOPNOTSUPP; 2651 } 2652 2653 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2654 { 2655 return -EOPNOTSUPP; 2656 } 2657 2658 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2659 { 2660 } 2661 2662 static inline void bpf_link_inc(struct bpf_link *link) 2663 { 2664 } 2665 2666 static inline void bpf_link_put(struct bpf_link *link) 2667 { 2668 } 2669 2670 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2671 { 2672 return -EOPNOTSUPP; 2673 } 2674 2675 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2676 { 2677 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2678 } 2679 2680 static inline void bpf_token_inc(struct bpf_token *token) 2681 { 2682 } 2683 2684 static inline void bpf_token_put(struct bpf_token *token) 2685 { 2686 } 2687 2688 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2689 { 2690 return ERR_PTR(-EOPNOTSUPP); 2691 } 2692 2693 static inline void __dev_flush(void) 2694 { 2695 } 2696 2697 struct xdp_frame; 2698 struct bpf_dtab_netdev; 2699 struct bpf_cpu_map_entry; 2700 2701 static inline 2702 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2703 struct net_device *dev_rx) 2704 { 2705 return 0; 2706 } 2707 2708 static inline 2709 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2710 struct net_device *dev_rx) 2711 { 2712 return 0; 2713 } 2714 2715 static inline 2716 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2717 struct bpf_map *map, bool exclude_ingress) 2718 { 2719 return 0; 2720 } 2721 2722 struct sk_buff; 2723 2724 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2725 struct sk_buff *skb, 2726 struct bpf_prog *xdp_prog) 2727 { 2728 return 0; 2729 } 2730 2731 static inline 2732 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2733 struct bpf_prog *xdp_prog, struct bpf_map *map, 2734 bool exclude_ingress) 2735 { 2736 return 0; 2737 } 2738 2739 static inline void __cpu_map_flush(void) 2740 { 2741 } 2742 2743 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2744 struct xdp_frame *xdpf, 2745 struct net_device *dev_rx) 2746 { 2747 return 0; 2748 } 2749 2750 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2751 struct sk_buff *skb) 2752 { 2753 return -EOPNOTSUPP; 2754 } 2755 2756 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2757 enum bpf_prog_type type) 2758 { 2759 return ERR_PTR(-EOPNOTSUPP); 2760 } 2761 2762 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2763 const union bpf_attr *kattr, 2764 union bpf_attr __user *uattr) 2765 { 2766 return -ENOTSUPP; 2767 } 2768 2769 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2770 const union bpf_attr *kattr, 2771 union bpf_attr __user *uattr) 2772 { 2773 return -ENOTSUPP; 2774 } 2775 2776 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2777 const union bpf_attr *kattr, 2778 union bpf_attr __user *uattr) 2779 { 2780 return -ENOTSUPP; 2781 } 2782 2783 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2784 const union bpf_attr *kattr, 2785 union bpf_attr __user *uattr) 2786 { 2787 return -ENOTSUPP; 2788 } 2789 2790 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2791 const union bpf_attr *kattr, 2792 union bpf_attr __user *uattr) 2793 { 2794 return -ENOTSUPP; 2795 } 2796 2797 static inline void bpf_map_put(struct bpf_map *map) 2798 { 2799 } 2800 2801 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2802 { 2803 return ERR_PTR(-ENOTSUPP); 2804 } 2805 2806 static inline int btf_struct_access(struct bpf_verifier_log *log, 2807 const struct bpf_reg_state *reg, 2808 int off, int size, enum bpf_access_type atype, 2809 u32 *next_btf_id, enum bpf_type_flag *flag, 2810 const char **field_name) 2811 { 2812 return -EACCES; 2813 } 2814 2815 static inline const struct bpf_func_proto * 2816 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2817 { 2818 return NULL; 2819 } 2820 2821 static inline void bpf_task_storage_free(struct task_struct *task) 2822 { 2823 } 2824 2825 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2826 { 2827 return false; 2828 } 2829 2830 static inline const struct btf_func_model * 2831 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2832 const struct bpf_insn *insn) 2833 { 2834 return NULL; 2835 } 2836 2837 static inline int 2838 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2839 u16 btf_fd_idx, u8 **func_addr) 2840 { 2841 return -ENOTSUPP; 2842 } 2843 2844 static inline bool unprivileged_ebpf_enabled(void) 2845 { 2846 return false; 2847 } 2848 2849 static inline bool has_current_bpf_ctx(void) 2850 { 2851 return false; 2852 } 2853 2854 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2855 { 2856 } 2857 2858 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2859 { 2860 } 2861 2862 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2863 enum bpf_dynptr_type type, u32 offset, u32 size) 2864 { 2865 } 2866 2867 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2868 { 2869 } 2870 2871 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2872 { 2873 } 2874 #endif /* CONFIG_BPF_SYSCALL */ 2875 2876 static __always_inline int 2877 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2878 { 2879 int ret = -EFAULT; 2880 2881 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2882 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2883 if (unlikely(ret < 0)) 2884 memset(dst, 0, size); 2885 return ret; 2886 } 2887 2888 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2889 struct btf_mod_pair *used_btfs, u32 len); 2890 2891 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2892 enum bpf_prog_type type) 2893 { 2894 return bpf_prog_get_type_dev(ufd, type, false); 2895 } 2896 2897 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2898 struct bpf_map **used_maps, u32 len); 2899 2900 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2901 2902 int bpf_prog_offload_compile(struct bpf_prog *prog); 2903 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2904 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2905 struct bpf_prog *prog); 2906 2907 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2908 2909 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2910 int bpf_map_offload_update_elem(struct bpf_map *map, 2911 void *key, void *value, u64 flags); 2912 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2913 int bpf_map_offload_get_next_key(struct bpf_map *map, 2914 void *key, void *next_key); 2915 2916 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2917 2918 struct bpf_offload_dev * 2919 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2920 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2921 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2922 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2923 struct net_device *netdev); 2924 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2925 struct net_device *netdev); 2926 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2927 2928 void unpriv_ebpf_notify(int new_state); 2929 2930 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2931 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2932 struct bpf_prog_aux *prog_aux); 2933 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2934 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2935 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2936 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2937 2938 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2939 { 2940 return aux->dev_bound; 2941 } 2942 2943 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2944 { 2945 return aux->offload_requested; 2946 } 2947 2948 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2949 2950 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2951 { 2952 return unlikely(map->ops == &bpf_map_offload_ops); 2953 } 2954 2955 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2956 void bpf_map_offload_map_free(struct bpf_map *map); 2957 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2958 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2959 const union bpf_attr *kattr, 2960 union bpf_attr __user *uattr); 2961 2962 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2963 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2964 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2965 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2966 union bpf_attr __user *uattr); 2967 2968 void sock_map_unhash(struct sock *sk); 2969 void sock_map_destroy(struct sock *sk); 2970 void sock_map_close(struct sock *sk, long timeout); 2971 #else 2972 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2973 struct bpf_prog_aux *prog_aux) 2974 { 2975 return -EOPNOTSUPP; 2976 } 2977 2978 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 2979 u32 func_id) 2980 { 2981 return NULL; 2982 } 2983 2984 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 2985 union bpf_attr *attr) 2986 { 2987 return -EOPNOTSUPP; 2988 } 2989 2990 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 2991 struct bpf_prog *old_prog) 2992 { 2993 return -EOPNOTSUPP; 2994 } 2995 2996 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 2997 { 2998 } 2999 3000 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3001 { 3002 return false; 3003 } 3004 3005 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3006 { 3007 return false; 3008 } 3009 3010 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3011 { 3012 return false; 3013 } 3014 3015 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3016 { 3017 return false; 3018 } 3019 3020 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3021 { 3022 return ERR_PTR(-EOPNOTSUPP); 3023 } 3024 3025 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3026 { 3027 } 3028 3029 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3030 { 3031 return 0; 3032 } 3033 3034 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3035 const union bpf_attr *kattr, 3036 union bpf_attr __user *uattr) 3037 { 3038 return -ENOTSUPP; 3039 } 3040 3041 #ifdef CONFIG_BPF_SYSCALL 3042 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3043 struct bpf_prog *prog) 3044 { 3045 return -EINVAL; 3046 } 3047 3048 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3049 enum bpf_prog_type ptype) 3050 { 3051 return -EOPNOTSUPP; 3052 } 3053 3054 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3055 u64 flags) 3056 { 3057 return -EOPNOTSUPP; 3058 } 3059 3060 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3061 union bpf_attr __user *uattr) 3062 { 3063 return -EINVAL; 3064 } 3065 #endif /* CONFIG_BPF_SYSCALL */ 3066 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3067 3068 static __always_inline void 3069 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3070 { 3071 const struct bpf_prog_array_item *item; 3072 struct bpf_prog *prog; 3073 3074 if (unlikely(!array)) 3075 return; 3076 3077 item = &array->items[0]; 3078 while ((prog = READ_ONCE(item->prog))) { 3079 bpf_prog_inc_misses_counter(prog); 3080 item++; 3081 } 3082 } 3083 3084 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3085 void bpf_sk_reuseport_detach(struct sock *sk); 3086 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3087 void *value); 3088 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3089 void *value, u64 map_flags); 3090 #else 3091 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3092 { 3093 } 3094 3095 #ifdef CONFIG_BPF_SYSCALL 3096 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3097 void *key, void *value) 3098 { 3099 return -EOPNOTSUPP; 3100 } 3101 3102 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3103 void *key, void *value, 3104 u64 map_flags) 3105 { 3106 return -EOPNOTSUPP; 3107 } 3108 #endif /* CONFIG_BPF_SYSCALL */ 3109 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3110 3111 /* verifier prototypes for helper functions called from eBPF programs */ 3112 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3113 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3114 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3115 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3116 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3117 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3118 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3119 3120 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3121 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3122 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3123 extern const struct bpf_func_proto bpf_tail_call_proto; 3124 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3125 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3126 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3127 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3128 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3129 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3130 extern const struct bpf_func_proto bpf_get_stackid_proto; 3131 extern const struct bpf_func_proto bpf_get_stack_proto; 3132 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3133 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3134 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3135 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3136 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3137 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3138 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3139 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3140 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3141 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3142 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3143 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3144 extern const struct bpf_func_proto bpf_spin_lock_proto; 3145 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3146 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3147 extern const struct bpf_func_proto bpf_strtol_proto; 3148 extern const struct bpf_func_proto bpf_strtoul_proto; 3149 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3150 extern const struct bpf_func_proto bpf_jiffies64_proto; 3151 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3152 extern const struct bpf_func_proto bpf_event_output_data_proto; 3153 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3154 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3155 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3156 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3157 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3158 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3159 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3160 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3161 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3162 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3163 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3164 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3165 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3166 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3167 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3168 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3169 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3170 extern const struct bpf_func_proto bpf_snprintf_proto; 3171 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3172 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3173 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3174 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3175 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3176 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3177 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3178 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3179 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3180 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3181 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3182 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3183 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3184 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3185 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3186 extern const struct bpf_func_proto bpf_find_vma_proto; 3187 extern const struct bpf_func_proto bpf_loop_proto; 3188 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3189 extern const struct bpf_func_proto bpf_set_retval_proto; 3190 extern const struct bpf_func_proto bpf_get_retval_proto; 3191 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3192 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3193 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3194 3195 const struct bpf_func_proto *tracing_prog_func_proto( 3196 enum bpf_func_id func_id, const struct bpf_prog *prog); 3197 3198 /* Shared helpers among cBPF and eBPF. */ 3199 void bpf_user_rnd_init_once(void); 3200 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3201 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3202 3203 #if defined(CONFIG_NET) 3204 bool bpf_sock_common_is_valid_access(int off, int size, 3205 enum bpf_access_type type, 3206 struct bpf_insn_access_aux *info); 3207 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3208 struct bpf_insn_access_aux *info); 3209 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3210 const struct bpf_insn *si, 3211 struct bpf_insn *insn_buf, 3212 struct bpf_prog *prog, 3213 u32 *target_size); 3214 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3215 struct bpf_dynptr_kern *ptr); 3216 #else 3217 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3218 enum bpf_access_type type, 3219 struct bpf_insn_access_aux *info) 3220 { 3221 return false; 3222 } 3223 static inline bool bpf_sock_is_valid_access(int off, int size, 3224 enum bpf_access_type type, 3225 struct bpf_insn_access_aux *info) 3226 { 3227 return false; 3228 } 3229 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3230 const struct bpf_insn *si, 3231 struct bpf_insn *insn_buf, 3232 struct bpf_prog *prog, 3233 u32 *target_size) 3234 { 3235 return 0; 3236 } 3237 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3238 struct bpf_dynptr_kern *ptr) 3239 { 3240 return -EOPNOTSUPP; 3241 } 3242 #endif 3243 3244 #ifdef CONFIG_INET 3245 struct sk_reuseport_kern { 3246 struct sk_buff *skb; 3247 struct sock *sk; 3248 struct sock *selected_sk; 3249 struct sock *migrating_sk; 3250 void *data_end; 3251 u32 hash; 3252 u32 reuseport_id; 3253 bool bind_inany; 3254 }; 3255 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3256 struct bpf_insn_access_aux *info); 3257 3258 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3259 const struct bpf_insn *si, 3260 struct bpf_insn *insn_buf, 3261 struct bpf_prog *prog, 3262 u32 *target_size); 3263 3264 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3265 struct bpf_insn_access_aux *info); 3266 3267 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3268 const struct bpf_insn *si, 3269 struct bpf_insn *insn_buf, 3270 struct bpf_prog *prog, 3271 u32 *target_size); 3272 #else 3273 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3274 enum bpf_access_type type, 3275 struct bpf_insn_access_aux *info) 3276 { 3277 return false; 3278 } 3279 3280 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3281 const struct bpf_insn *si, 3282 struct bpf_insn *insn_buf, 3283 struct bpf_prog *prog, 3284 u32 *target_size) 3285 { 3286 return 0; 3287 } 3288 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3289 enum bpf_access_type type, 3290 struct bpf_insn_access_aux *info) 3291 { 3292 return false; 3293 } 3294 3295 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3296 const struct bpf_insn *si, 3297 struct bpf_insn *insn_buf, 3298 struct bpf_prog *prog, 3299 u32 *target_size) 3300 { 3301 return 0; 3302 } 3303 #endif /* CONFIG_INET */ 3304 3305 enum bpf_text_poke_type { 3306 BPF_MOD_CALL, 3307 BPF_MOD_JUMP, 3308 }; 3309 3310 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3311 void *addr1, void *addr2); 3312 3313 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3314 struct bpf_prog *new, struct bpf_prog *old); 3315 3316 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3317 int bpf_arch_text_invalidate(void *dst, size_t len); 3318 3319 struct btf_id_set; 3320 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3321 3322 #define MAX_BPRINTF_VARARGS 12 3323 #define MAX_BPRINTF_BUF 1024 3324 3325 struct bpf_bprintf_data { 3326 u32 *bin_args; 3327 char *buf; 3328 bool get_bin_args; 3329 bool get_buf; 3330 }; 3331 3332 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3333 u32 num_args, struct bpf_bprintf_data *data); 3334 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3335 3336 #ifdef CONFIG_BPF_LSM 3337 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3338 void bpf_cgroup_atype_put(int cgroup_atype); 3339 #else 3340 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3341 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3342 #endif /* CONFIG_BPF_LSM */ 3343 3344 struct key; 3345 3346 #ifdef CONFIG_KEYS 3347 struct bpf_key { 3348 struct key *key; 3349 bool has_ref; 3350 }; 3351 #endif /* CONFIG_KEYS */ 3352 3353 static inline bool type_is_alloc(u32 type) 3354 { 3355 return type & MEM_ALLOC; 3356 } 3357 3358 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3359 { 3360 if (memcg_bpf_enabled()) 3361 return flags | __GFP_ACCOUNT; 3362 return flags; 3363 } 3364 3365 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3366 { 3367 return prog->aux->func_idx != 0; 3368 } 3369 3370 #endif /* _LINUX_BPF_H */ 3371