1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/init.h> 31 32 struct bpf_verifier_env; 33 struct bpf_verifier_log; 34 struct perf_event; 35 struct bpf_prog; 36 struct bpf_prog_aux; 37 struct bpf_map; 38 struct sock; 39 struct seq_file; 40 struct btf; 41 struct btf_type; 42 struct exception_table_entry; 43 struct seq_operations; 44 struct bpf_iter_aux_info; 45 struct bpf_local_storage; 46 struct bpf_local_storage_map; 47 struct kobject; 48 struct mem_cgroup; 49 struct module; 50 struct bpf_func_state; 51 struct ftrace_ops; 52 struct cgroup; 53 54 extern struct idr btf_idr; 55 extern spinlock_t btf_idr_lock; 56 extern struct kobject *btf_kobj; 57 extern struct bpf_mem_alloc bpf_global_ma; 58 extern bool bpf_global_ma_set; 59 60 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 61 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 62 struct bpf_iter_aux_info *aux); 63 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 64 typedef unsigned int (*bpf_func_t)(const void *, 65 const struct bpf_insn *); 66 struct bpf_iter_seq_info { 67 const struct seq_operations *seq_ops; 68 bpf_iter_init_seq_priv_t init_seq_private; 69 bpf_iter_fini_seq_priv_t fini_seq_private; 70 u32 seq_priv_size; 71 }; 72 73 /* map is generic key/value storage optionally accessible by eBPF programs */ 74 struct bpf_map_ops { 75 /* funcs callable from userspace (via syscall) */ 76 int (*map_alloc_check)(union bpf_attr *attr); 77 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 78 void (*map_release)(struct bpf_map *map, struct file *map_file); 79 void (*map_free)(struct bpf_map *map); 80 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 81 void (*map_release_uref)(struct bpf_map *map); 82 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 83 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 84 union bpf_attr __user *uattr); 85 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 86 void *value, u64 flags); 87 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 88 const union bpf_attr *attr, 89 union bpf_attr __user *uattr); 90 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 91 const union bpf_attr *attr, 92 union bpf_attr __user *uattr); 93 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 94 union bpf_attr __user *uattr); 95 96 /* funcs callable from userspace and from eBPF programs */ 97 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 98 int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 99 int (*map_delete_elem)(struct bpf_map *map, void *key); 100 int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 101 int (*map_pop_elem)(struct bpf_map *map, void *value); 102 int (*map_peek_elem)(struct bpf_map *map, void *value); 103 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 104 105 /* funcs called by prog_array and perf_event_array map */ 106 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 107 int fd); 108 void (*map_fd_put_ptr)(void *ptr); 109 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 110 u32 (*map_fd_sys_lookup_elem)(void *ptr); 111 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 112 struct seq_file *m); 113 int (*map_check_btf)(const struct bpf_map *map, 114 const struct btf *btf, 115 const struct btf_type *key_type, 116 const struct btf_type *value_type); 117 118 /* Prog poke tracking helpers. */ 119 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 120 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 121 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 122 struct bpf_prog *new); 123 124 /* Direct value access helpers. */ 125 int (*map_direct_value_addr)(const struct bpf_map *map, 126 u64 *imm, u32 off); 127 int (*map_direct_value_meta)(const struct bpf_map *map, 128 u64 imm, u32 *off); 129 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 130 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 131 struct poll_table_struct *pts); 132 133 /* Functions called by bpf_local_storage maps */ 134 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 135 void *owner, u32 size); 136 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 137 void *owner, u32 size); 138 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 139 140 /* Misc helpers.*/ 141 int (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 142 143 /* map_meta_equal must be implemented for maps that can be 144 * used as an inner map. It is a runtime check to ensure 145 * an inner map can be inserted to an outer map. 146 * 147 * Some properties of the inner map has been used during the 148 * verification time. When inserting an inner map at the runtime, 149 * map_meta_equal has to ensure the inserting map has the same 150 * properties that the verifier has used earlier. 151 */ 152 bool (*map_meta_equal)(const struct bpf_map *meta0, 153 const struct bpf_map *meta1); 154 155 156 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 157 struct bpf_func_state *caller, 158 struct bpf_func_state *callee); 159 int (*map_for_each_callback)(struct bpf_map *map, 160 bpf_callback_t callback_fn, 161 void *callback_ctx, u64 flags); 162 163 /* BTF id of struct allocated by map_alloc */ 164 int *map_btf_id; 165 166 /* bpf_iter info used to open a seq_file */ 167 const struct bpf_iter_seq_info *iter_seq_info; 168 }; 169 170 enum { 171 /* Support at most 10 fields in a BTF type */ 172 BTF_FIELDS_MAX = 10, 173 }; 174 175 enum btf_field_type { 176 BPF_SPIN_LOCK = (1 << 0), 177 BPF_TIMER = (1 << 1), 178 BPF_KPTR_UNREF = (1 << 2), 179 BPF_KPTR_REF = (1 << 3), 180 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF, 181 BPF_LIST_HEAD = (1 << 4), 182 BPF_LIST_NODE = (1 << 5), 183 }; 184 185 struct btf_field_kptr { 186 struct btf *btf; 187 struct module *module; 188 btf_dtor_kfunc_t dtor; 189 u32 btf_id; 190 }; 191 192 struct btf_field_list_head { 193 struct btf *btf; 194 u32 value_btf_id; 195 u32 node_offset; 196 struct btf_record *value_rec; 197 }; 198 199 struct btf_field { 200 u32 offset; 201 enum btf_field_type type; 202 union { 203 struct btf_field_kptr kptr; 204 struct btf_field_list_head list_head; 205 }; 206 }; 207 208 struct btf_record { 209 u32 cnt; 210 u32 field_mask; 211 int spin_lock_off; 212 int timer_off; 213 struct btf_field fields[]; 214 }; 215 216 struct btf_field_offs { 217 u32 cnt; 218 u32 field_off[BTF_FIELDS_MAX]; 219 u8 field_sz[BTF_FIELDS_MAX]; 220 }; 221 222 struct bpf_map { 223 /* The first two cachelines with read-mostly members of which some 224 * are also accessed in fast-path (e.g. ops, max_entries). 225 */ 226 const struct bpf_map_ops *ops ____cacheline_aligned; 227 struct bpf_map *inner_map_meta; 228 #ifdef CONFIG_SECURITY 229 void *security; 230 #endif 231 enum bpf_map_type map_type; 232 u32 key_size; 233 u32 value_size; 234 u32 max_entries; 235 u64 map_extra; /* any per-map-type extra fields */ 236 u32 map_flags; 237 u32 id; 238 struct btf_record *record; 239 int numa_node; 240 u32 btf_key_type_id; 241 u32 btf_value_type_id; 242 u32 btf_vmlinux_value_type_id; 243 struct btf *btf; 244 #ifdef CONFIG_MEMCG_KMEM 245 struct obj_cgroup *objcg; 246 #endif 247 char name[BPF_OBJ_NAME_LEN]; 248 struct btf_field_offs *field_offs; 249 /* The 3rd and 4th cacheline with misc members to avoid false sharing 250 * particularly with refcounting. 251 */ 252 atomic64_t refcnt ____cacheline_aligned; 253 atomic64_t usercnt; 254 struct work_struct work; 255 struct mutex freeze_mutex; 256 atomic64_t writecnt; 257 /* 'Ownership' of program-containing map is claimed by the first program 258 * that is going to use this map or by the first program which FD is 259 * stored in the map to make sure that all callers and callees have the 260 * same prog type, JITed flag and xdp_has_frags flag. 261 */ 262 struct { 263 spinlock_t lock; 264 enum bpf_prog_type type; 265 bool jited; 266 bool xdp_has_frags; 267 } owner; 268 bool bypass_spec_v1; 269 bool frozen; /* write-once; write-protected by freeze_mutex */ 270 }; 271 272 static inline const char *btf_field_type_name(enum btf_field_type type) 273 { 274 switch (type) { 275 case BPF_SPIN_LOCK: 276 return "bpf_spin_lock"; 277 case BPF_TIMER: 278 return "bpf_timer"; 279 case BPF_KPTR_UNREF: 280 case BPF_KPTR_REF: 281 return "kptr"; 282 case BPF_LIST_HEAD: 283 return "bpf_list_head"; 284 case BPF_LIST_NODE: 285 return "bpf_list_node"; 286 default: 287 WARN_ON_ONCE(1); 288 return "unknown"; 289 } 290 } 291 292 static inline u32 btf_field_type_size(enum btf_field_type type) 293 { 294 switch (type) { 295 case BPF_SPIN_LOCK: 296 return sizeof(struct bpf_spin_lock); 297 case BPF_TIMER: 298 return sizeof(struct bpf_timer); 299 case BPF_KPTR_UNREF: 300 case BPF_KPTR_REF: 301 return sizeof(u64); 302 case BPF_LIST_HEAD: 303 return sizeof(struct bpf_list_head); 304 case BPF_LIST_NODE: 305 return sizeof(struct bpf_list_node); 306 default: 307 WARN_ON_ONCE(1); 308 return 0; 309 } 310 } 311 312 static inline u32 btf_field_type_align(enum btf_field_type type) 313 { 314 switch (type) { 315 case BPF_SPIN_LOCK: 316 return __alignof__(struct bpf_spin_lock); 317 case BPF_TIMER: 318 return __alignof__(struct bpf_timer); 319 case BPF_KPTR_UNREF: 320 case BPF_KPTR_REF: 321 return __alignof__(u64); 322 case BPF_LIST_HEAD: 323 return __alignof__(struct bpf_list_head); 324 case BPF_LIST_NODE: 325 return __alignof__(struct bpf_list_node); 326 default: 327 WARN_ON_ONCE(1); 328 return 0; 329 } 330 } 331 332 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 333 { 334 if (IS_ERR_OR_NULL(rec)) 335 return false; 336 return rec->field_mask & type; 337 } 338 339 static inline void bpf_obj_init(const struct btf_field_offs *foffs, void *obj) 340 { 341 int i; 342 343 if (!foffs) 344 return; 345 for (i = 0; i < foffs->cnt; i++) 346 memset(obj + foffs->field_off[i], 0, foffs->field_sz[i]); 347 } 348 349 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 350 { 351 bpf_obj_init(map->field_offs, dst); 352 } 353 354 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 355 * forced to use 'long' read/writes to try to atomically copy long counters. 356 * Best-effort only. No barriers here, since it _will_ race with concurrent 357 * updates from BPF programs. Called from bpf syscall and mostly used with 358 * size 8 or 16 bytes, so ask compiler to inline it. 359 */ 360 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 361 { 362 const long *lsrc = src; 363 long *ldst = dst; 364 365 size /= sizeof(long); 366 while (size--) 367 *ldst++ = *lsrc++; 368 } 369 370 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 371 static inline void bpf_obj_memcpy(struct btf_field_offs *foffs, 372 void *dst, void *src, u32 size, 373 bool long_memcpy) 374 { 375 u32 curr_off = 0; 376 int i; 377 378 if (likely(!foffs)) { 379 if (long_memcpy) 380 bpf_long_memcpy(dst, src, round_up(size, 8)); 381 else 382 memcpy(dst, src, size); 383 return; 384 } 385 386 for (i = 0; i < foffs->cnt; i++) { 387 u32 next_off = foffs->field_off[i]; 388 u32 sz = next_off - curr_off; 389 390 memcpy(dst + curr_off, src + curr_off, sz); 391 curr_off += foffs->field_sz[i] + sz; 392 } 393 memcpy(dst + curr_off, src + curr_off, size - curr_off); 394 } 395 396 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 397 { 398 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, false); 399 } 400 401 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 402 { 403 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, true); 404 } 405 406 static inline void bpf_obj_memzero(struct btf_field_offs *foffs, void *dst, u32 size) 407 { 408 u32 curr_off = 0; 409 int i; 410 411 if (likely(!foffs)) { 412 memset(dst, 0, size); 413 return; 414 } 415 416 for (i = 0; i < foffs->cnt; i++) { 417 u32 next_off = foffs->field_off[i]; 418 u32 sz = next_off - curr_off; 419 420 memset(dst + curr_off, 0, sz); 421 curr_off += foffs->field_sz[i] + sz; 422 } 423 memset(dst + curr_off, 0, size - curr_off); 424 } 425 426 static inline void zero_map_value(struct bpf_map *map, void *dst) 427 { 428 bpf_obj_memzero(map->field_offs, dst, map->value_size); 429 } 430 431 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 432 bool lock_src); 433 void bpf_timer_cancel_and_free(void *timer); 434 void bpf_list_head_free(const struct btf_field *field, void *list_head, 435 struct bpf_spin_lock *spin_lock); 436 437 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 438 439 struct bpf_offload_dev; 440 struct bpf_offloaded_map; 441 442 struct bpf_map_dev_ops { 443 int (*map_get_next_key)(struct bpf_offloaded_map *map, 444 void *key, void *next_key); 445 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 446 void *key, void *value); 447 int (*map_update_elem)(struct bpf_offloaded_map *map, 448 void *key, void *value, u64 flags); 449 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 450 }; 451 452 struct bpf_offloaded_map { 453 struct bpf_map map; 454 struct net_device *netdev; 455 const struct bpf_map_dev_ops *dev_ops; 456 void *dev_priv; 457 struct list_head offloads; 458 }; 459 460 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 461 { 462 return container_of(map, struct bpf_offloaded_map, map); 463 } 464 465 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 466 { 467 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 468 } 469 470 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 471 { 472 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 473 map->ops->map_seq_show_elem; 474 } 475 476 int map_check_no_btf(const struct bpf_map *map, 477 const struct btf *btf, 478 const struct btf_type *key_type, 479 const struct btf_type *value_type); 480 481 bool bpf_map_meta_equal(const struct bpf_map *meta0, 482 const struct bpf_map *meta1); 483 484 extern const struct bpf_map_ops bpf_map_offload_ops; 485 486 /* bpf_type_flag contains a set of flags that are applicable to the values of 487 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 488 * or a memory is read-only. We classify types into two categories: base types 489 * and extended types. Extended types are base types combined with a type flag. 490 * 491 * Currently there are no more than 32 base types in arg_type, ret_type and 492 * reg_types. 493 */ 494 #define BPF_BASE_TYPE_BITS 8 495 496 enum bpf_type_flag { 497 /* PTR may be NULL. */ 498 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 499 500 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 501 * compatible with both mutable and immutable memory. 502 */ 503 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 504 505 /* MEM points to BPF ring buffer reservation. */ 506 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 507 508 /* MEM is in user address space. */ 509 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 510 511 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 512 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 513 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 514 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 515 * to the specified cpu. 516 */ 517 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 518 519 /* Indicates that the argument will be released. */ 520 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 521 522 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 523 * unreferenced and referenced kptr loaded from map value using a load 524 * instruction, so that they can only be dereferenced but not escape the 525 * BPF program into the kernel (i.e. cannot be passed as arguments to 526 * kfunc or bpf helpers). 527 */ 528 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 529 530 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 531 532 /* DYNPTR points to memory local to the bpf program. */ 533 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 534 535 /* DYNPTR points to a kernel-produced ringbuf record. */ 536 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 537 538 /* Size is known at compile time. */ 539 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 540 541 /* MEM is of an allocated object of type in program BTF. This is used to 542 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 543 */ 544 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 545 546 /* PTR was passed from the kernel in a trusted context, and may be 547 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 548 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 549 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 550 * without invoking bpf_kptr_xchg(). What we really need to know is 551 * whether a pointer is safe to pass to a kfunc or BPF helper function. 552 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 553 * helpers, they do not cover all possible instances of unsafe 554 * pointers. For example, a pointer that was obtained from walking a 555 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 556 * fact that it may be NULL, invalid, etc. This is due to backwards 557 * compatibility requirements, as this was the behavior that was first 558 * introduced when kptrs were added. The behavior is now considered 559 * deprecated, and PTR_UNTRUSTED will eventually be removed. 560 * 561 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 562 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 563 * For example, pointers passed to tracepoint arguments are considered 564 * PTR_TRUSTED, as are pointers that are passed to struct_ops 565 * callbacks. As alluded to above, pointers that are obtained from 566 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 567 * struct task_struct *task is PTR_TRUSTED, then accessing 568 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 569 * in a BPF register. Similarly, pointers passed to certain programs 570 * types such as kretprobes are not guaranteed to be valid, as they may 571 * for example contain an object that was recently freed. 572 */ 573 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 574 575 __BPF_TYPE_FLAG_MAX, 576 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 577 }; 578 579 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF) 580 581 /* Max number of base types. */ 582 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 583 584 /* Max number of all types. */ 585 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 586 587 /* function argument constraints */ 588 enum bpf_arg_type { 589 ARG_DONTCARE = 0, /* unused argument in helper function */ 590 591 /* the following constraints used to prototype 592 * bpf_map_lookup/update/delete_elem() functions 593 */ 594 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 595 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 596 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 597 598 /* Used to prototype bpf_memcmp() and other functions that access data 599 * on eBPF program stack 600 */ 601 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 602 603 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 604 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 605 606 ARG_PTR_TO_CTX, /* pointer to context */ 607 ARG_ANYTHING, /* any (initialized) argument is ok */ 608 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 609 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 610 ARG_PTR_TO_INT, /* pointer to int */ 611 ARG_PTR_TO_LONG, /* pointer to long */ 612 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 613 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 614 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 615 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 616 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 617 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 618 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 619 ARG_PTR_TO_STACK, /* pointer to stack */ 620 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 621 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 622 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 623 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 624 __BPF_ARG_TYPE_MAX, 625 626 /* Extended arg_types. */ 627 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 628 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 629 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 630 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 631 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 632 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 633 /* pointer to memory does not need to be initialized, helper function must fill 634 * all bytes or clear them in error case. 635 */ 636 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 637 /* Pointer to valid memory of size known at compile time. */ 638 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 639 640 /* This must be the last entry. Its purpose is to ensure the enum is 641 * wide enough to hold the higher bits reserved for bpf_type_flag. 642 */ 643 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 644 }; 645 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 646 647 /* type of values returned from helper functions */ 648 enum bpf_return_type { 649 RET_INTEGER, /* function returns integer */ 650 RET_VOID, /* function doesn't return anything */ 651 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 652 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 653 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 654 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 655 RET_PTR_TO_MEM, /* returns a pointer to memory */ 656 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 657 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 658 __BPF_RET_TYPE_MAX, 659 660 /* Extended ret_types. */ 661 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 662 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 663 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 664 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 665 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 666 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 667 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 668 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 669 670 /* This must be the last entry. Its purpose is to ensure the enum is 671 * wide enough to hold the higher bits reserved for bpf_type_flag. 672 */ 673 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 674 }; 675 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 676 677 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 678 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 679 * instructions after verifying 680 */ 681 struct bpf_func_proto { 682 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 683 bool gpl_only; 684 bool pkt_access; 685 enum bpf_return_type ret_type; 686 union { 687 struct { 688 enum bpf_arg_type arg1_type; 689 enum bpf_arg_type arg2_type; 690 enum bpf_arg_type arg3_type; 691 enum bpf_arg_type arg4_type; 692 enum bpf_arg_type arg5_type; 693 }; 694 enum bpf_arg_type arg_type[5]; 695 }; 696 union { 697 struct { 698 u32 *arg1_btf_id; 699 u32 *arg2_btf_id; 700 u32 *arg3_btf_id; 701 u32 *arg4_btf_id; 702 u32 *arg5_btf_id; 703 }; 704 u32 *arg_btf_id[5]; 705 struct { 706 size_t arg1_size; 707 size_t arg2_size; 708 size_t arg3_size; 709 size_t arg4_size; 710 size_t arg5_size; 711 }; 712 size_t arg_size[5]; 713 }; 714 int *ret_btf_id; /* return value btf_id */ 715 bool (*allowed)(const struct bpf_prog *prog); 716 }; 717 718 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 719 * the first argument to eBPF programs. 720 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 721 */ 722 struct bpf_context; 723 724 enum bpf_access_type { 725 BPF_READ = 1, 726 BPF_WRITE = 2 727 }; 728 729 /* types of values stored in eBPF registers */ 730 /* Pointer types represent: 731 * pointer 732 * pointer + imm 733 * pointer + (u16) var 734 * pointer + (u16) var + imm 735 * if (range > 0) then [ptr, ptr + range - off) is safe to access 736 * if (id > 0) means that some 'var' was added 737 * if (off > 0) means that 'imm' was added 738 */ 739 enum bpf_reg_type { 740 NOT_INIT = 0, /* nothing was written into register */ 741 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 742 PTR_TO_CTX, /* reg points to bpf_context */ 743 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 744 PTR_TO_MAP_VALUE, /* reg points to map element value */ 745 PTR_TO_MAP_KEY, /* reg points to a map element key */ 746 PTR_TO_STACK, /* reg == frame_pointer + offset */ 747 PTR_TO_PACKET_META, /* skb->data - meta_len */ 748 PTR_TO_PACKET, /* reg points to skb->data */ 749 PTR_TO_PACKET_END, /* skb->data + headlen */ 750 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 751 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 752 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 753 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 754 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 755 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 756 /* PTR_TO_BTF_ID points to a kernel struct that does not need 757 * to be null checked by the BPF program. This does not imply the 758 * pointer is _not_ null and in practice this can easily be a null 759 * pointer when reading pointer chains. The assumption is program 760 * context will handle null pointer dereference typically via fault 761 * handling. The verifier must keep this in mind and can make no 762 * assumptions about null or non-null when doing branch analysis. 763 * Further, when passed into helpers the helpers can not, without 764 * additional context, assume the value is non-null. 765 */ 766 PTR_TO_BTF_ID, 767 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 768 * been checked for null. Used primarily to inform the verifier 769 * an explicit null check is required for this struct. 770 */ 771 PTR_TO_MEM, /* reg points to valid memory region */ 772 PTR_TO_BUF, /* reg points to a read/write buffer */ 773 PTR_TO_FUNC, /* reg points to a bpf program function */ 774 PTR_TO_DYNPTR, /* reg points to a dynptr */ 775 __BPF_REG_TYPE_MAX, 776 777 /* Extended reg_types. */ 778 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 779 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 780 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 781 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 782 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 783 784 /* This must be the last entry. Its purpose is to ensure the enum is 785 * wide enough to hold the higher bits reserved for bpf_type_flag. 786 */ 787 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 788 }; 789 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 790 791 /* The information passed from prog-specific *_is_valid_access 792 * back to the verifier. 793 */ 794 struct bpf_insn_access_aux { 795 enum bpf_reg_type reg_type; 796 union { 797 int ctx_field_size; 798 struct { 799 struct btf *btf; 800 u32 btf_id; 801 }; 802 }; 803 struct bpf_verifier_log *log; /* for verbose logs */ 804 }; 805 806 static inline void 807 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 808 { 809 aux->ctx_field_size = size; 810 } 811 812 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 813 { 814 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 815 insn->src_reg == BPF_PSEUDO_FUNC; 816 } 817 818 struct bpf_prog_ops { 819 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 820 union bpf_attr __user *uattr); 821 }; 822 823 struct bpf_reg_state; 824 struct bpf_verifier_ops { 825 /* return eBPF function prototype for verification */ 826 const struct bpf_func_proto * 827 (*get_func_proto)(enum bpf_func_id func_id, 828 const struct bpf_prog *prog); 829 830 /* return true if 'size' wide access at offset 'off' within bpf_context 831 * with 'type' (read or write) is allowed 832 */ 833 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 834 const struct bpf_prog *prog, 835 struct bpf_insn_access_aux *info); 836 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 837 const struct bpf_prog *prog); 838 int (*gen_ld_abs)(const struct bpf_insn *orig, 839 struct bpf_insn *insn_buf); 840 u32 (*convert_ctx_access)(enum bpf_access_type type, 841 const struct bpf_insn *src, 842 struct bpf_insn *dst, 843 struct bpf_prog *prog, u32 *target_size); 844 int (*btf_struct_access)(struct bpf_verifier_log *log, 845 const struct bpf_reg_state *reg, 846 int off, int size, enum bpf_access_type atype, 847 u32 *next_btf_id, enum bpf_type_flag *flag); 848 }; 849 850 struct bpf_prog_offload_ops { 851 /* verifier basic callbacks */ 852 int (*insn_hook)(struct bpf_verifier_env *env, 853 int insn_idx, int prev_insn_idx); 854 int (*finalize)(struct bpf_verifier_env *env); 855 /* verifier optimization callbacks (called after .finalize) */ 856 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 857 struct bpf_insn *insn); 858 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 859 /* program management callbacks */ 860 int (*prepare)(struct bpf_prog *prog); 861 int (*translate)(struct bpf_prog *prog); 862 void (*destroy)(struct bpf_prog *prog); 863 }; 864 865 struct bpf_prog_offload { 866 struct bpf_prog *prog; 867 struct net_device *netdev; 868 struct bpf_offload_dev *offdev; 869 void *dev_priv; 870 struct list_head offloads; 871 bool dev_state; 872 bool opt_failed; 873 void *jited_image; 874 u32 jited_len; 875 }; 876 877 enum bpf_cgroup_storage_type { 878 BPF_CGROUP_STORAGE_SHARED, 879 BPF_CGROUP_STORAGE_PERCPU, 880 __BPF_CGROUP_STORAGE_MAX 881 }; 882 883 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 884 885 /* The longest tracepoint has 12 args. 886 * See include/trace/bpf_probe.h 887 */ 888 #define MAX_BPF_FUNC_ARGS 12 889 890 /* The maximum number of arguments passed through registers 891 * a single function may have. 892 */ 893 #define MAX_BPF_FUNC_REG_ARGS 5 894 895 /* The argument is a structure. */ 896 #define BTF_FMODEL_STRUCT_ARG BIT(0) 897 898 struct btf_func_model { 899 u8 ret_size; 900 u8 nr_args; 901 u8 arg_size[MAX_BPF_FUNC_ARGS]; 902 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 903 }; 904 905 /* Restore arguments before returning from trampoline to let original function 906 * continue executing. This flag is used for fentry progs when there are no 907 * fexit progs. 908 */ 909 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 910 /* Call original function after fentry progs, but before fexit progs. 911 * Makes sense for fentry/fexit, normal calls and indirect calls. 912 */ 913 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 914 /* Skip current frame and return to parent. Makes sense for fentry/fexit 915 * programs only. Should not be used with normal calls and indirect calls. 916 */ 917 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 918 /* Store IP address of the caller on the trampoline stack, 919 * so it's available for trampoline's programs. 920 */ 921 #define BPF_TRAMP_F_IP_ARG BIT(3) 922 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 923 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 924 925 /* Get original function from stack instead of from provided direct address. 926 * Makes sense for trampolines with fexit or fmod_ret programs. 927 */ 928 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 929 930 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 931 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 932 */ 933 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 934 935 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 936 * bytes on x86. 937 */ 938 #define BPF_MAX_TRAMP_LINKS 38 939 940 struct bpf_tramp_links { 941 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 942 int nr_links; 943 }; 944 945 struct bpf_tramp_run_ctx; 946 947 /* Different use cases for BPF trampoline: 948 * 1. replace nop at the function entry (kprobe equivalent) 949 * flags = BPF_TRAMP_F_RESTORE_REGS 950 * fentry = a set of programs to run before returning from trampoline 951 * 952 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 953 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 954 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 955 * fentry = a set of program to run before calling original function 956 * fexit = a set of program to run after original function 957 * 958 * 3. replace direct call instruction anywhere in the function body 959 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 960 * With flags = 0 961 * fentry = a set of programs to run before returning from trampoline 962 * With flags = BPF_TRAMP_F_CALL_ORIG 963 * orig_call = original callback addr or direct function addr 964 * fentry = a set of program to run before calling original function 965 * fexit = a set of program to run after original function 966 */ 967 struct bpf_tramp_image; 968 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 969 const struct btf_func_model *m, u32 flags, 970 struct bpf_tramp_links *tlinks, 971 void *orig_call); 972 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 973 struct bpf_tramp_run_ctx *run_ctx); 974 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 975 struct bpf_tramp_run_ctx *run_ctx); 976 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 977 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 978 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 979 struct bpf_tramp_run_ctx *run_ctx); 980 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 981 struct bpf_tramp_run_ctx *run_ctx); 982 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 983 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 984 985 struct bpf_ksym { 986 unsigned long start; 987 unsigned long end; 988 char name[KSYM_NAME_LEN]; 989 struct list_head lnode; 990 struct latch_tree_node tnode; 991 bool prog; 992 }; 993 994 enum bpf_tramp_prog_type { 995 BPF_TRAMP_FENTRY, 996 BPF_TRAMP_FEXIT, 997 BPF_TRAMP_MODIFY_RETURN, 998 BPF_TRAMP_MAX, 999 BPF_TRAMP_REPLACE, /* more than MAX */ 1000 }; 1001 1002 struct bpf_tramp_image { 1003 void *image; 1004 struct bpf_ksym ksym; 1005 struct percpu_ref pcref; 1006 void *ip_after_call; 1007 void *ip_epilogue; 1008 union { 1009 struct rcu_head rcu; 1010 struct work_struct work; 1011 }; 1012 }; 1013 1014 struct bpf_trampoline { 1015 /* hlist for trampoline_table */ 1016 struct hlist_node hlist; 1017 struct ftrace_ops *fops; 1018 /* serializes access to fields of this trampoline */ 1019 struct mutex mutex; 1020 refcount_t refcnt; 1021 u32 flags; 1022 u64 key; 1023 struct { 1024 struct btf_func_model model; 1025 void *addr; 1026 bool ftrace_managed; 1027 } func; 1028 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1029 * program by replacing one of its functions. func.addr is the address 1030 * of the function it replaced. 1031 */ 1032 struct bpf_prog *extension_prog; 1033 /* list of BPF programs using this trampoline */ 1034 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1035 /* Number of attached programs. A counter per kind. */ 1036 int progs_cnt[BPF_TRAMP_MAX]; 1037 /* Executable image of trampoline */ 1038 struct bpf_tramp_image *cur_image; 1039 u64 selector; 1040 struct module *mod; 1041 }; 1042 1043 struct bpf_attach_target_info { 1044 struct btf_func_model fmodel; 1045 long tgt_addr; 1046 const char *tgt_name; 1047 const struct btf_type *tgt_type; 1048 }; 1049 1050 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1051 1052 struct bpf_dispatcher_prog { 1053 struct bpf_prog *prog; 1054 refcount_t users; 1055 }; 1056 1057 struct bpf_dispatcher { 1058 /* dispatcher mutex */ 1059 struct mutex mutex; 1060 void *func; 1061 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1062 int num_progs; 1063 void *image; 1064 void *rw_image; 1065 u32 image_off; 1066 struct bpf_ksym ksym; 1067 }; 1068 1069 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( 1070 const void *ctx, 1071 const struct bpf_insn *insnsi, 1072 bpf_func_t bpf_func) 1073 { 1074 return bpf_func(ctx, insnsi); 1075 } 1076 1077 #ifdef CONFIG_BPF_JIT 1078 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1079 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1080 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1081 struct bpf_attach_target_info *tgt_info); 1082 void bpf_trampoline_put(struct bpf_trampoline *tr); 1083 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1084 int __init bpf_arch_init_dispatcher_early(void *ip); 1085 1086 #define BPF_DISPATCHER_INIT(_name) { \ 1087 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1088 .func = &_name##_func, \ 1089 .progs = {}, \ 1090 .num_progs = 0, \ 1091 .image = NULL, \ 1092 .image_off = 0, \ 1093 .ksym = { \ 1094 .name = #_name, \ 1095 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1096 }, \ 1097 } 1098 1099 #define BPF_DISPATCHER_INIT_CALL(_name) \ 1100 static int __init _name##_init(void) \ 1101 { \ 1102 return bpf_arch_init_dispatcher_early(_name##_func); \ 1103 } \ 1104 early_initcall(_name##_init) 1105 1106 #ifdef CONFIG_X86_64 1107 #define BPF_DISPATCHER_ATTRIBUTES __attribute__((patchable_function_entry(5))) 1108 #else 1109 #define BPF_DISPATCHER_ATTRIBUTES 1110 #endif 1111 1112 #define DEFINE_BPF_DISPATCHER(name) \ 1113 notrace BPF_DISPATCHER_ATTRIBUTES \ 1114 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ 1115 const void *ctx, \ 1116 const struct bpf_insn *insnsi, \ 1117 bpf_func_t bpf_func) \ 1118 { \ 1119 return bpf_func(ctx, insnsi); \ 1120 } \ 1121 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1122 struct bpf_dispatcher bpf_dispatcher_##name = \ 1123 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); \ 1124 BPF_DISPATCHER_INIT_CALL(bpf_dispatcher_##name); 1125 1126 #define DECLARE_BPF_DISPATCHER(name) \ 1127 unsigned int bpf_dispatcher_##name##_func( \ 1128 const void *ctx, \ 1129 const struct bpf_insn *insnsi, \ 1130 bpf_func_t bpf_func); \ 1131 extern struct bpf_dispatcher bpf_dispatcher_##name; 1132 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1133 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1134 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1135 struct bpf_prog *to); 1136 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1137 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); 1138 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1139 void bpf_ksym_add(struct bpf_ksym *ksym); 1140 void bpf_ksym_del(struct bpf_ksym *ksym); 1141 int bpf_jit_charge_modmem(u32 size); 1142 void bpf_jit_uncharge_modmem(u32 size); 1143 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1144 #else 1145 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1146 struct bpf_trampoline *tr) 1147 { 1148 return -ENOTSUPP; 1149 } 1150 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1151 struct bpf_trampoline *tr) 1152 { 1153 return -ENOTSUPP; 1154 } 1155 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1156 struct bpf_attach_target_info *tgt_info) 1157 { 1158 return ERR_PTR(-EOPNOTSUPP); 1159 } 1160 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1161 #define DEFINE_BPF_DISPATCHER(name) 1162 #define DECLARE_BPF_DISPATCHER(name) 1163 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1164 #define BPF_DISPATCHER_PTR(name) NULL 1165 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1166 struct bpf_prog *from, 1167 struct bpf_prog *to) {} 1168 static inline bool is_bpf_image_address(unsigned long address) 1169 { 1170 return false; 1171 } 1172 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1173 { 1174 return false; 1175 } 1176 #endif 1177 1178 struct bpf_func_info_aux { 1179 u16 linkage; 1180 bool unreliable; 1181 }; 1182 1183 enum bpf_jit_poke_reason { 1184 BPF_POKE_REASON_TAIL_CALL, 1185 }; 1186 1187 /* Descriptor of pokes pointing /into/ the JITed image. */ 1188 struct bpf_jit_poke_descriptor { 1189 void *tailcall_target; 1190 void *tailcall_bypass; 1191 void *bypass_addr; 1192 void *aux; 1193 union { 1194 struct { 1195 struct bpf_map *map; 1196 u32 key; 1197 } tail_call; 1198 }; 1199 bool tailcall_target_stable; 1200 u8 adj_off; 1201 u16 reason; 1202 u32 insn_idx; 1203 }; 1204 1205 /* reg_type info for ctx arguments */ 1206 struct bpf_ctx_arg_aux { 1207 u32 offset; 1208 enum bpf_reg_type reg_type; 1209 u32 btf_id; 1210 }; 1211 1212 struct btf_mod_pair { 1213 struct btf *btf; 1214 struct module *module; 1215 }; 1216 1217 struct bpf_kfunc_desc_tab; 1218 1219 struct bpf_prog_aux { 1220 atomic64_t refcnt; 1221 u32 used_map_cnt; 1222 u32 used_btf_cnt; 1223 u32 max_ctx_offset; 1224 u32 max_pkt_offset; 1225 u32 max_tp_access; 1226 u32 stack_depth; 1227 u32 id; 1228 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1229 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1230 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1231 u32 ctx_arg_info_size; 1232 u32 max_rdonly_access; 1233 u32 max_rdwr_access; 1234 struct btf *attach_btf; 1235 const struct bpf_ctx_arg_aux *ctx_arg_info; 1236 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1237 struct bpf_prog *dst_prog; 1238 struct bpf_trampoline *dst_trampoline; 1239 enum bpf_prog_type saved_dst_prog_type; 1240 enum bpf_attach_type saved_dst_attach_type; 1241 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1242 bool offload_requested; 1243 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1244 bool func_proto_unreliable; 1245 bool sleepable; 1246 bool tail_call_reachable; 1247 bool xdp_has_frags; 1248 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1249 const struct btf_type *attach_func_proto; 1250 /* function name for valid attach_btf_id */ 1251 const char *attach_func_name; 1252 struct bpf_prog **func; 1253 void *jit_data; /* JIT specific data. arch dependent */ 1254 struct bpf_jit_poke_descriptor *poke_tab; 1255 struct bpf_kfunc_desc_tab *kfunc_tab; 1256 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1257 u32 size_poke_tab; 1258 struct bpf_ksym ksym; 1259 const struct bpf_prog_ops *ops; 1260 struct bpf_map **used_maps; 1261 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1262 struct btf_mod_pair *used_btfs; 1263 struct bpf_prog *prog; 1264 struct user_struct *user; 1265 u64 load_time; /* ns since boottime */ 1266 u32 verified_insns; 1267 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1268 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1269 char name[BPF_OBJ_NAME_LEN]; 1270 #ifdef CONFIG_SECURITY 1271 void *security; 1272 #endif 1273 struct bpf_prog_offload *offload; 1274 struct btf *btf; 1275 struct bpf_func_info *func_info; 1276 struct bpf_func_info_aux *func_info_aux; 1277 /* bpf_line_info loaded from userspace. linfo->insn_off 1278 * has the xlated insn offset. 1279 * Both the main and sub prog share the same linfo. 1280 * The subprog can access its first linfo by 1281 * using the linfo_idx. 1282 */ 1283 struct bpf_line_info *linfo; 1284 /* jited_linfo is the jited addr of the linfo. It has a 1285 * one to one mapping to linfo: 1286 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1287 * Both the main and sub prog share the same jited_linfo. 1288 * The subprog can access its first jited_linfo by 1289 * using the linfo_idx. 1290 */ 1291 void **jited_linfo; 1292 u32 func_info_cnt; 1293 u32 nr_linfo; 1294 /* subprog can use linfo_idx to access its first linfo and 1295 * jited_linfo. 1296 * main prog always has linfo_idx == 0 1297 */ 1298 u32 linfo_idx; 1299 u32 num_exentries; 1300 struct exception_table_entry *extable; 1301 union { 1302 struct work_struct work; 1303 struct rcu_head rcu; 1304 }; 1305 }; 1306 1307 struct bpf_prog { 1308 u16 pages; /* Number of allocated pages */ 1309 u16 jited:1, /* Is our filter JIT'ed? */ 1310 jit_requested:1,/* archs need to JIT the prog */ 1311 gpl_compatible:1, /* Is filter GPL compatible? */ 1312 cb_access:1, /* Is control block accessed? */ 1313 dst_needed:1, /* Do we need dst entry? */ 1314 blinding_requested:1, /* needs constant blinding */ 1315 blinded:1, /* Was blinded */ 1316 is_func:1, /* program is a bpf function */ 1317 kprobe_override:1, /* Do we override a kprobe? */ 1318 has_callchain_buf:1, /* callchain buffer allocated? */ 1319 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1320 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1321 call_get_func_ip:1, /* Do we call get_func_ip() */ 1322 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1323 enum bpf_prog_type type; /* Type of BPF program */ 1324 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1325 u32 len; /* Number of filter blocks */ 1326 u32 jited_len; /* Size of jited insns in bytes */ 1327 u8 tag[BPF_TAG_SIZE]; 1328 struct bpf_prog_stats __percpu *stats; 1329 int __percpu *active; 1330 unsigned int (*bpf_func)(const void *ctx, 1331 const struct bpf_insn *insn); 1332 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1333 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1334 /* Instructions for interpreter */ 1335 union { 1336 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1337 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1338 }; 1339 }; 1340 1341 struct bpf_array_aux { 1342 /* Programs with direct jumps into programs part of this array. */ 1343 struct list_head poke_progs; 1344 struct bpf_map *map; 1345 struct mutex poke_mutex; 1346 struct work_struct work; 1347 }; 1348 1349 struct bpf_link { 1350 atomic64_t refcnt; 1351 u32 id; 1352 enum bpf_link_type type; 1353 const struct bpf_link_ops *ops; 1354 struct bpf_prog *prog; 1355 struct work_struct work; 1356 }; 1357 1358 struct bpf_link_ops { 1359 void (*release)(struct bpf_link *link); 1360 void (*dealloc)(struct bpf_link *link); 1361 int (*detach)(struct bpf_link *link); 1362 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1363 struct bpf_prog *old_prog); 1364 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1365 int (*fill_link_info)(const struct bpf_link *link, 1366 struct bpf_link_info *info); 1367 }; 1368 1369 struct bpf_tramp_link { 1370 struct bpf_link link; 1371 struct hlist_node tramp_hlist; 1372 u64 cookie; 1373 }; 1374 1375 struct bpf_shim_tramp_link { 1376 struct bpf_tramp_link link; 1377 struct bpf_trampoline *trampoline; 1378 }; 1379 1380 struct bpf_tracing_link { 1381 struct bpf_tramp_link link; 1382 enum bpf_attach_type attach_type; 1383 struct bpf_trampoline *trampoline; 1384 struct bpf_prog *tgt_prog; 1385 }; 1386 1387 struct bpf_link_primer { 1388 struct bpf_link *link; 1389 struct file *file; 1390 int fd; 1391 u32 id; 1392 }; 1393 1394 struct bpf_struct_ops_value; 1395 struct btf_member; 1396 1397 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1398 struct bpf_struct_ops { 1399 const struct bpf_verifier_ops *verifier_ops; 1400 int (*init)(struct btf *btf); 1401 int (*check_member)(const struct btf_type *t, 1402 const struct btf_member *member); 1403 int (*init_member)(const struct btf_type *t, 1404 const struct btf_member *member, 1405 void *kdata, const void *udata); 1406 int (*reg)(void *kdata); 1407 void (*unreg)(void *kdata); 1408 const struct btf_type *type; 1409 const struct btf_type *value_type; 1410 const char *name; 1411 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1412 u32 type_id; 1413 u32 value_id; 1414 }; 1415 1416 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1417 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1418 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); 1419 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); 1420 bool bpf_struct_ops_get(const void *kdata); 1421 void bpf_struct_ops_put(const void *kdata); 1422 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1423 void *value); 1424 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1425 struct bpf_tramp_link *link, 1426 const struct btf_func_model *model, 1427 void *image, void *image_end); 1428 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1429 { 1430 if (owner == BPF_MODULE_OWNER) 1431 return bpf_struct_ops_get(data); 1432 else 1433 return try_module_get(owner); 1434 } 1435 static inline void bpf_module_put(const void *data, struct module *owner) 1436 { 1437 if (owner == BPF_MODULE_OWNER) 1438 bpf_struct_ops_put(data); 1439 else 1440 module_put(owner); 1441 } 1442 1443 #ifdef CONFIG_NET 1444 /* Define it here to avoid the use of forward declaration */ 1445 struct bpf_dummy_ops_state { 1446 int val; 1447 }; 1448 1449 struct bpf_dummy_ops { 1450 int (*test_1)(struct bpf_dummy_ops_state *cb); 1451 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1452 char a3, unsigned long a4); 1453 }; 1454 1455 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1456 union bpf_attr __user *uattr); 1457 #endif 1458 #else 1459 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) 1460 { 1461 return NULL; 1462 } 1463 static inline void bpf_struct_ops_init(struct btf *btf, 1464 struct bpf_verifier_log *log) 1465 { 1466 } 1467 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1468 { 1469 return try_module_get(owner); 1470 } 1471 static inline void bpf_module_put(const void *data, struct module *owner) 1472 { 1473 module_put(owner); 1474 } 1475 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1476 void *key, 1477 void *value) 1478 { 1479 return -EINVAL; 1480 } 1481 #endif 1482 1483 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1484 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1485 int cgroup_atype); 1486 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1487 #else 1488 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1489 int cgroup_atype) 1490 { 1491 return -EOPNOTSUPP; 1492 } 1493 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1494 { 1495 } 1496 #endif 1497 1498 struct bpf_array { 1499 struct bpf_map map; 1500 u32 elem_size; 1501 u32 index_mask; 1502 struct bpf_array_aux *aux; 1503 union { 1504 char value[0] __aligned(8); 1505 void *ptrs[0] __aligned(8); 1506 void __percpu *pptrs[0] __aligned(8); 1507 }; 1508 }; 1509 1510 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1511 #define MAX_TAIL_CALL_CNT 33 1512 1513 /* Maximum number of loops for bpf_loop */ 1514 #define BPF_MAX_LOOPS BIT(23) 1515 1516 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1517 BPF_F_RDONLY_PROG | \ 1518 BPF_F_WRONLY | \ 1519 BPF_F_WRONLY_PROG) 1520 1521 #define BPF_MAP_CAN_READ BIT(0) 1522 #define BPF_MAP_CAN_WRITE BIT(1) 1523 1524 /* Maximum number of user-producer ring buffer samples that can be drained in 1525 * a call to bpf_user_ringbuf_drain(). 1526 */ 1527 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1528 1529 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1530 { 1531 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1532 1533 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1534 * not possible. 1535 */ 1536 if (access_flags & BPF_F_RDONLY_PROG) 1537 return BPF_MAP_CAN_READ; 1538 else if (access_flags & BPF_F_WRONLY_PROG) 1539 return BPF_MAP_CAN_WRITE; 1540 else 1541 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1542 } 1543 1544 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1545 { 1546 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1547 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1548 } 1549 1550 struct bpf_event_entry { 1551 struct perf_event *event; 1552 struct file *perf_file; 1553 struct file *map_file; 1554 struct rcu_head rcu; 1555 }; 1556 1557 static inline bool map_type_contains_progs(struct bpf_map *map) 1558 { 1559 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1560 map->map_type == BPF_MAP_TYPE_DEVMAP || 1561 map->map_type == BPF_MAP_TYPE_CPUMAP; 1562 } 1563 1564 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1565 int bpf_prog_calc_tag(struct bpf_prog *fp); 1566 1567 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1568 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1569 1570 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1571 unsigned long off, unsigned long len); 1572 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1573 const struct bpf_insn *src, 1574 struct bpf_insn *dst, 1575 struct bpf_prog *prog, 1576 u32 *target_size); 1577 1578 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1579 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1580 1581 /* an array of programs to be executed under rcu_lock. 1582 * 1583 * Typical usage: 1584 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1585 * 1586 * the structure returned by bpf_prog_array_alloc() should be populated 1587 * with program pointers and the last pointer must be NULL. 1588 * The user has to keep refcnt on the program and make sure the program 1589 * is removed from the array before bpf_prog_put(). 1590 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1591 * since other cpus are walking the array of pointers in parallel. 1592 */ 1593 struct bpf_prog_array_item { 1594 struct bpf_prog *prog; 1595 union { 1596 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1597 u64 bpf_cookie; 1598 }; 1599 }; 1600 1601 struct bpf_prog_array { 1602 struct rcu_head rcu; 1603 struct bpf_prog_array_item items[]; 1604 }; 1605 1606 struct bpf_empty_prog_array { 1607 struct bpf_prog_array hdr; 1608 struct bpf_prog *null_prog; 1609 }; 1610 1611 /* to avoid allocating empty bpf_prog_array for cgroups that 1612 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1613 * It will not be modified the caller of bpf_prog_array_alloc() 1614 * (since caller requested prog_cnt == 0) 1615 * that pointer should be 'freed' by bpf_prog_array_free() 1616 */ 1617 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1618 1619 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1620 void bpf_prog_array_free(struct bpf_prog_array *progs); 1621 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1622 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1623 int bpf_prog_array_length(struct bpf_prog_array *progs); 1624 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1625 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1626 __u32 __user *prog_ids, u32 cnt); 1627 1628 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1629 struct bpf_prog *old_prog); 1630 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1631 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1632 struct bpf_prog *prog); 1633 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1634 u32 *prog_ids, u32 request_cnt, 1635 u32 *prog_cnt); 1636 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1637 struct bpf_prog *exclude_prog, 1638 struct bpf_prog *include_prog, 1639 u64 bpf_cookie, 1640 struct bpf_prog_array **new_array); 1641 1642 struct bpf_run_ctx {}; 1643 1644 struct bpf_cg_run_ctx { 1645 struct bpf_run_ctx run_ctx; 1646 const struct bpf_prog_array_item *prog_item; 1647 int retval; 1648 }; 1649 1650 struct bpf_trace_run_ctx { 1651 struct bpf_run_ctx run_ctx; 1652 u64 bpf_cookie; 1653 }; 1654 1655 struct bpf_tramp_run_ctx { 1656 struct bpf_run_ctx run_ctx; 1657 u64 bpf_cookie; 1658 struct bpf_run_ctx *saved_run_ctx; 1659 }; 1660 1661 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 1662 { 1663 struct bpf_run_ctx *old_ctx = NULL; 1664 1665 #ifdef CONFIG_BPF_SYSCALL 1666 old_ctx = current->bpf_ctx; 1667 current->bpf_ctx = new_ctx; 1668 #endif 1669 return old_ctx; 1670 } 1671 1672 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 1673 { 1674 #ifdef CONFIG_BPF_SYSCALL 1675 current->bpf_ctx = old_ctx; 1676 #endif 1677 } 1678 1679 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 1680 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 1681 /* BPF program asks to set CN on the packet. */ 1682 #define BPF_RET_SET_CN (1 << 0) 1683 1684 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 1685 1686 static __always_inline u32 1687 bpf_prog_run_array(const struct bpf_prog_array *array, 1688 const void *ctx, bpf_prog_run_fn run_prog) 1689 { 1690 const struct bpf_prog_array_item *item; 1691 const struct bpf_prog *prog; 1692 struct bpf_run_ctx *old_run_ctx; 1693 struct bpf_trace_run_ctx run_ctx; 1694 u32 ret = 1; 1695 1696 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 1697 1698 if (unlikely(!array)) 1699 return ret; 1700 1701 migrate_disable(); 1702 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1703 item = &array->items[0]; 1704 while ((prog = READ_ONCE(item->prog))) { 1705 run_ctx.bpf_cookie = item->bpf_cookie; 1706 ret &= run_prog(prog, ctx); 1707 item++; 1708 } 1709 bpf_reset_run_ctx(old_run_ctx); 1710 migrate_enable(); 1711 return ret; 1712 } 1713 1714 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 1715 * 1716 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 1717 * overall. As a result, we must use the bpf_prog_array_free_sleepable 1718 * in order to use the tasks_trace rcu grace period. 1719 * 1720 * When a non-sleepable program is inside the array, we take the rcu read 1721 * section and disable preemption for that program alone, so it can access 1722 * rcu-protected dynamically sized maps. 1723 */ 1724 static __always_inline u32 1725 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu, 1726 const void *ctx, bpf_prog_run_fn run_prog) 1727 { 1728 const struct bpf_prog_array_item *item; 1729 const struct bpf_prog *prog; 1730 const struct bpf_prog_array *array; 1731 struct bpf_run_ctx *old_run_ctx; 1732 struct bpf_trace_run_ctx run_ctx; 1733 u32 ret = 1; 1734 1735 might_fault(); 1736 1737 rcu_read_lock_trace(); 1738 migrate_disable(); 1739 1740 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 1741 if (unlikely(!array)) 1742 goto out; 1743 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1744 item = &array->items[0]; 1745 while ((prog = READ_ONCE(item->prog))) { 1746 if (!prog->aux->sleepable) 1747 rcu_read_lock(); 1748 1749 run_ctx.bpf_cookie = item->bpf_cookie; 1750 ret &= run_prog(prog, ctx); 1751 item++; 1752 1753 if (!prog->aux->sleepable) 1754 rcu_read_unlock(); 1755 } 1756 bpf_reset_run_ctx(old_run_ctx); 1757 out: 1758 migrate_enable(); 1759 rcu_read_unlock_trace(); 1760 return ret; 1761 } 1762 1763 #ifdef CONFIG_BPF_SYSCALL 1764 DECLARE_PER_CPU(int, bpf_prog_active); 1765 extern struct mutex bpf_stats_enabled_mutex; 1766 1767 /* 1768 * Block execution of BPF programs attached to instrumentation (perf, 1769 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 1770 * these events can happen inside a region which holds a map bucket lock 1771 * and can deadlock on it. 1772 */ 1773 static inline void bpf_disable_instrumentation(void) 1774 { 1775 migrate_disable(); 1776 this_cpu_inc(bpf_prog_active); 1777 } 1778 1779 static inline void bpf_enable_instrumentation(void) 1780 { 1781 this_cpu_dec(bpf_prog_active); 1782 migrate_enable(); 1783 } 1784 1785 extern const struct file_operations bpf_map_fops; 1786 extern const struct file_operations bpf_prog_fops; 1787 extern const struct file_operations bpf_iter_fops; 1788 1789 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 1790 extern const struct bpf_prog_ops _name ## _prog_ops; \ 1791 extern const struct bpf_verifier_ops _name ## _verifier_ops; 1792 #define BPF_MAP_TYPE(_id, _ops) \ 1793 extern const struct bpf_map_ops _ops; 1794 #define BPF_LINK_TYPE(_id, _name) 1795 #include <linux/bpf_types.h> 1796 #undef BPF_PROG_TYPE 1797 #undef BPF_MAP_TYPE 1798 #undef BPF_LINK_TYPE 1799 1800 extern const struct bpf_prog_ops bpf_offload_prog_ops; 1801 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 1802 extern const struct bpf_verifier_ops xdp_analyzer_ops; 1803 1804 struct bpf_prog *bpf_prog_get(u32 ufd); 1805 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 1806 bool attach_drv); 1807 void bpf_prog_add(struct bpf_prog *prog, int i); 1808 void bpf_prog_sub(struct bpf_prog *prog, int i); 1809 void bpf_prog_inc(struct bpf_prog *prog); 1810 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 1811 void bpf_prog_put(struct bpf_prog *prog); 1812 1813 void bpf_prog_free_id(struct bpf_prog *prog, bool do_idr_lock); 1814 void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock); 1815 1816 struct btf_field *btf_record_find(const struct btf_record *rec, 1817 u32 offset, enum btf_field_type type); 1818 void btf_record_free(struct btf_record *rec); 1819 void bpf_map_free_record(struct bpf_map *map); 1820 struct btf_record *btf_record_dup(const struct btf_record *rec); 1821 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 1822 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 1823 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 1824 1825 struct bpf_map *bpf_map_get(u32 ufd); 1826 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 1827 struct bpf_map *__bpf_map_get(struct fd f); 1828 void bpf_map_inc(struct bpf_map *map); 1829 void bpf_map_inc_with_uref(struct bpf_map *map); 1830 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 1831 void bpf_map_put_with_uref(struct bpf_map *map); 1832 void bpf_map_put(struct bpf_map *map); 1833 void *bpf_map_area_alloc(u64 size, int numa_node); 1834 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 1835 void bpf_map_area_free(void *base); 1836 bool bpf_map_write_active(const struct bpf_map *map); 1837 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 1838 int generic_map_lookup_batch(struct bpf_map *map, 1839 const union bpf_attr *attr, 1840 union bpf_attr __user *uattr); 1841 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 1842 const union bpf_attr *attr, 1843 union bpf_attr __user *uattr); 1844 int generic_map_delete_batch(struct bpf_map *map, 1845 const union bpf_attr *attr, 1846 union bpf_attr __user *uattr); 1847 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 1848 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 1849 1850 #ifdef CONFIG_MEMCG_KMEM 1851 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1852 int node); 1853 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 1854 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 1855 size_t align, gfp_t flags); 1856 #else 1857 static inline void * 1858 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1859 int node) 1860 { 1861 return kmalloc_node(size, flags, node); 1862 } 1863 1864 static inline void * 1865 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 1866 { 1867 return kzalloc(size, flags); 1868 } 1869 1870 static inline void __percpu * 1871 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 1872 gfp_t flags) 1873 { 1874 return __alloc_percpu_gfp(size, align, flags); 1875 } 1876 #endif 1877 1878 extern int sysctl_unprivileged_bpf_disabled; 1879 1880 static inline bool bpf_allow_ptr_leaks(void) 1881 { 1882 return perfmon_capable(); 1883 } 1884 1885 static inline bool bpf_allow_uninit_stack(void) 1886 { 1887 return perfmon_capable(); 1888 } 1889 1890 static inline bool bpf_allow_ptr_to_map_access(void) 1891 { 1892 return perfmon_capable(); 1893 } 1894 1895 static inline bool bpf_bypass_spec_v1(void) 1896 { 1897 return perfmon_capable(); 1898 } 1899 1900 static inline bool bpf_bypass_spec_v4(void) 1901 { 1902 return perfmon_capable(); 1903 } 1904 1905 int bpf_map_new_fd(struct bpf_map *map, int flags); 1906 int bpf_prog_new_fd(struct bpf_prog *prog); 1907 1908 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 1909 const struct bpf_link_ops *ops, struct bpf_prog *prog); 1910 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 1911 int bpf_link_settle(struct bpf_link_primer *primer); 1912 void bpf_link_cleanup(struct bpf_link_primer *primer); 1913 void bpf_link_inc(struct bpf_link *link); 1914 void bpf_link_put(struct bpf_link *link); 1915 int bpf_link_new_fd(struct bpf_link *link); 1916 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); 1917 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 1918 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 1919 1920 int bpf_obj_pin_user(u32 ufd, const char __user *pathname); 1921 int bpf_obj_get_user(const char __user *pathname, int flags); 1922 1923 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 1924 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 1925 extern int bpf_iter_ ## target(args); \ 1926 int __init bpf_iter_ ## target(args) { return 0; } 1927 1928 /* 1929 * The task type of iterators. 1930 * 1931 * For BPF task iterators, they can be parameterized with various 1932 * parameters to visit only some of tasks. 1933 * 1934 * BPF_TASK_ITER_ALL (default) 1935 * Iterate over resources of every task. 1936 * 1937 * BPF_TASK_ITER_TID 1938 * Iterate over resources of a task/tid. 1939 * 1940 * BPF_TASK_ITER_TGID 1941 * Iterate over resources of every task of a process / task group. 1942 */ 1943 enum bpf_iter_task_type { 1944 BPF_TASK_ITER_ALL = 0, 1945 BPF_TASK_ITER_TID, 1946 BPF_TASK_ITER_TGID, 1947 }; 1948 1949 struct bpf_iter_aux_info { 1950 /* for map_elem iter */ 1951 struct bpf_map *map; 1952 1953 /* for cgroup iter */ 1954 struct { 1955 struct cgroup *start; /* starting cgroup */ 1956 enum bpf_cgroup_iter_order order; 1957 } cgroup; 1958 struct { 1959 enum bpf_iter_task_type type; 1960 u32 pid; 1961 } task; 1962 }; 1963 1964 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 1965 union bpf_iter_link_info *linfo, 1966 struct bpf_iter_aux_info *aux); 1967 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 1968 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 1969 struct seq_file *seq); 1970 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 1971 struct bpf_link_info *info); 1972 typedef const struct bpf_func_proto * 1973 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 1974 const struct bpf_prog *prog); 1975 1976 enum bpf_iter_feature { 1977 BPF_ITER_RESCHED = BIT(0), 1978 }; 1979 1980 #define BPF_ITER_CTX_ARG_MAX 2 1981 struct bpf_iter_reg { 1982 const char *target; 1983 bpf_iter_attach_target_t attach_target; 1984 bpf_iter_detach_target_t detach_target; 1985 bpf_iter_show_fdinfo_t show_fdinfo; 1986 bpf_iter_fill_link_info_t fill_link_info; 1987 bpf_iter_get_func_proto_t get_func_proto; 1988 u32 ctx_arg_info_size; 1989 u32 feature; 1990 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 1991 const struct bpf_iter_seq_info *seq_info; 1992 }; 1993 1994 struct bpf_iter_meta { 1995 __bpf_md_ptr(struct seq_file *, seq); 1996 u64 session_id; 1997 u64 seq_num; 1998 }; 1999 2000 struct bpf_iter__bpf_map_elem { 2001 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2002 __bpf_md_ptr(struct bpf_map *, map); 2003 __bpf_md_ptr(void *, key); 2004 __bpf_md_ptr(void *, value); 2005 }; 2006 2007 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2008 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2009 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2010 const struct bpf_func_proto * 2011 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2012 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2013 int bpf_iter_new_fd(struct bpf_link *link); 2014 bool bpf_link_is_iter(struct bpf_link *link); 2015 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2016 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2017 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2018 struct seq_file *seq); 2019 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2020 struct bpf_link_info *info); 2021 2022 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2023 struct bpf_func_state *caller, 2024 struct bpf_func_state *callee); 2025 2026 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2027 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2028 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2029 u64 flags); 2030 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2031 u64 flags); 2032 2033 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2034 2035 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2036 void *key, void *value, u64 map_flags); 2037 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2038 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2039 void *key, void *value, u64 map_flags); 2040 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2041 2042 int bpf_get_file_flag(int flags); 2043 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2044 size_t actual_size); 2045 2046 /* verify correctness of eBPF program */ 2047 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr); 2048 2049 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2050 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2051 #endif 2052 2053 struct btf *bpf_get_btf_vmlinux(void); 2054 2055 /* Map specifics */ 2056 struct xdp_frame; 2057 struct sk_buff; 2058 struct bpf_dtab_netdev; 2059 struct bpf_cpu_map_entry; 2060 2061 void __dev_flush(void); 2062 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2063 struct net_device *dev_rx); 2064 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2065 struct net_device *dev_rx); 2066 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2067 struct bpf_map *map, bool exclude_ingress); 2068 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2069 struct bpf_prog *xdp_prog); 2070 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2071 struct bpf_prog *xdp_prog, struct bpf_map *map, 2072 bool exclude_ingress); 2073 2074 void __cpu_map_flush(void); 2075 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2076 struct net_device *dev_rx); 2077 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2078 struct sk_buff *skb); 2079 2080 /* Return map's numa specified by userspace */ 2081 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2082 { 2083 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2084 attr->numa_node : NUMA_NO_NODE; 2085 } 2086 2087 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2088 int array_map_alloc_check(union bpf_attr *attr); 2089 2090 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2091 union bpf_attr __user *uattr); 2092 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2093 union bpf_attr __user *uattr); 2094 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2095 const union bpf_attr *kattr, 2096 union bpf_attr __user *uattr); 2097 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2098 const union bpf_attr *kattr, 2099 union bpf_attr __user *uattr); 2100 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2101 const union bpf_attr *kattr, 2102 union bpf_attr __user *uattr); 2103 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2104 const union bpf_attr *kattr, 2105 union bpf_attr __user *uattr); 2106 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2107 const struct bpf_prog *prog, 2108 struct bpf_insn_access_aux *info); 2109 2110 static inline bool bpf_tracing_ctx_access(int off, int size, 2111 enum bpf_access_type type) 2112 { 2113 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2114 return false; 2115 if (type != BPF_READ) 2116 return false; 2117 if (off % size != 0) 2118 return false; 2119 return true; 2120 } 2121 2122 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2123 enum bpf_access_type type, 2124 const struct bpf_prog *prog, 2125 struct bpf_insn_access_aux *info) 2126 { 2127 if (!bpf_tracing_ctx_access(off, size, type)) 2128 return false; 2129 return btf_ctx_access(off, size, type, prog, info); 2130 } 2131 2132 int btf_struct_access(struct bpf_verifier_log *log, 2133 const struct bpf_reg_state *reg, 2134 int off, int size, enum bpf_access_type atype, 2135 u32 *next_btf_id, enum bpf_type_flag *flag); 2136 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2137 const struct btf *btf, u32 id, int off, 2138 const struct btf *need_btf, u32 need_type_id, 2139 bool strict); 2140 2141 int btf_distill_func_proto(struct bpf_verifier_log *log, 2142 struct btf *btf, 2143 const struct btf_type *func_proto, 2144 const char *func_name, 2145 struct btf_func_model *m); 2146 2147 struct bpf_reg_state; 2148 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 2149 struct bpf_reg_state *regs); 2150 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 2151 struct bpf_reg_state *regs); 2152 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 2153 struct bpf_reg_state *reg); 2154 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2155 struct btf *btf, const struct btf_type *t); 2156 2157 struct bpf_prog *bpf_prog_by_id(u32 id); 2158 struct bpf_link *bpf_link_by_id(u32 id); 2159 2160 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); 2161 void bpf_task_storage_free(struct task_struct *task); 2162 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2163 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2164 const struct btf_func_model * 2165 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2166 const struct bpf_insn *insn); 2167 struct bpf_core_ctx { 2168 struct bpf_verifier_log *log; 2169 const struct btf *btf; 2170 }; 2171 2172 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2173 int relo_idx, void *insn); 2174 2175 static inline bool unprivileged_ebpf_enabled(void) 2176 { 2177 return !sysctl_unprivileged_bpf_disabled; 2178 } 2179 2180 /* Not all bpf prog type has the bpf_ctx. 2181 * For the bpf prog type that has initialized the bpf_ctx, 2182 * this function can be used to decide if a kernel function 2183 * is called by a bpf program. 2184 */ 2185 static inline bool has_current_bpf_ctx(void) 2186 { 2187 return !!current->bpf_ctx; 2188 } 2189 2190 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2191 #else /* !CONFIG_BPF_SYSCALL */ 2192 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2193 { 2194 return ERR_PTR(-EOPNOTSUPP); 2195 } 2196 2197 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2198 enum bpf_prog_type type, 2199 bool attach_drv) 2200 { 2201 return ERR_PTR(-EOPNOTSUPP); 2202 } 2203 2204 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2205 { 2206 } 2207 2208 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2209 { 2210 } 2211 2212 static inline void bpf_prog_put(struct bpf_prog *prog) 2213 { 2214 } 2215 2216 static inline void bpf_prog_inc(struct bpf_prog *prog) 2217 { 2218 } 2219 2220 static inline struct bpf_prog *__must_check 2221 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2222 { 2223 return ERR_PTR(-EOPNOTSUPP); 2224 } 2225 2226 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2227 const struct bpf_link_ops *ops, 2228 struct bpf_prog *prog) 2229 { 2230 } 2231 2232 static inline int bpf_link_prime(struct bpf_link *link, 2233 struct bpf_link_primer *primer) 2234 { 2235 return -EOPNOTSUPP; 2236 } 2237 2238 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2239 { 2240 return -EOPNOTSUPP; 2241 } 2242 2243 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2244 { 2245 } 2246 2247 static inline void bpf_link_inc(struct bpf_link *link) 2248 { 2249 } 2250 2251 static inline void bpf_link_put(struct bpf_link *link) 2252 { 2253 } 2254 2255 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2256 { 2257 return -EOPNOTSUPP; 2258 } 2259 2260 static inline void __dev_flush(void) 2261 { 2262 } 2263 2264 struct xdp_frame; 2265 struct bpf_dtab_netdev; 2266 struct bpf_cpu_map_entry; 2267 2268 static inline 2269 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2270 struct net_device *dev_rx) 2271 { 2272 return 0; 2273 } 2274 2275 static inline 2276 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2277 struct net_device *dev_rx) 2278 { 2279 return 0; 2280 } 2281 2282 static inline 2283 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2284 struct bpf_map *map, bool exclude_ingress) 2285 { 2286 return 0; 2287 } 2288 2289 struct sk_buff; 2290 2291 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2292 struct sk_buff *skb, 2293 struct bpf_prog *xdp_prog) 2294 { 2295 return 0; 2296 } 2297 2298 static inline 2299 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2300 struct bpf_prog *xdp_prog, struct bpf_map *map, 2301 bool exclude_ingress) 2302 { 2303 return 0; 2304 } 2305 2306 static inline void __cpu_map_flush(void) 2307 { 2308 } 2309 2310 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2311 struct xdp_frame *xdpf, 2312 struct net_device *dev_rx) 2313 { 2314 return 0; 2315 } 2316 2317 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2318 struct sk_buff *skb) 2319 { 2320 return -EOPNOTSUPP; 2321 } 2322 2323 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2324 enum bpf_prog_type type) 2325 { 2326 return ERR_PTR(-EOPNOTSUPP); 2327 } 2328 2329 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2330 const union bpf_attr *kattr, 2331 union bpf_attr __user *uattr) 2332 { 2333 return -ENOTSUPP; 2334 } 2335 2336 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2337 const union bpf_attr *kattr, 2338 union bpf_attr __user *uattr) 2339 { 2340 return -ENOTSUPP; 2341 } 2342 2343 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2344 const union bpf_attr *kattr, 2345 union bpf_attr __user *uattr) 2346 { 2347 return -ENOTSUPP; 2348 } 2349 2350 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2351 const union bpf_attr *kattr, 2352 union bpf_attr __user *uattr) 2353 { 2354 return -ENOTSUPP; 2355 } 2356 2357 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2358 const union bpf_attr *kattr, 2359 union bpf_attr __user *uattr) 2360 { 2361 return -ENOTSUPP; 2362 } 2363 2364 static inline void bpf_map_put(struct bpf_map *map) 2365 { 2366 } 2367 2368 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2369 { 2370 return ERR_PTR(-ENOTSUPP); 2371 } 2372 2373 static inline int btf_struct_access(struct bpf_verifier_log *log, 2374 const struct bpf_reg_state *reg, 2375 int off, int size, enum bpf_access_type atype, 2376 u32 *next_btf_id, enum bpf_type_flag *flag) 2377 { 2378 return -EACCES; 2379 } 2380 2381 static inline const struct bpf_func_proto * 2382 bpf_base_func_proto(enum bpf_func_id func_id) 2383 { 2384 return NULL; 2385 } 2386 2387 static inline void bpf_task_storage_free(struct task_struct *task) 2388 { 2389 } 2390 2391 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2392 { 2393 return false; 2394 } 2395 2396 static inline const struct btf_func_model * 2397 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2398 const struct bpf_insn *insn) 2399 { 2400 return NULL; 2401 } 2402 2403 static inline bool unprivileged_ebpf_enabled(void) 2404 { 2405 return false; 2406 } 2407 2408 static inline bool has_current_bpf_ctx(void) 2409 { 2410 return false; 2411 } 2412 2413 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2414 { 2415 } 2416 2417 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2418 { 2419 } 2420 #endif /* CONFIG_BPF_SYSCALL */ 2421 2422 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2423 struct btf_mod_pair *used_btfs, u32 len); 2424 2425 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2426 enum bpf_prog_type type) 2427 { 2428 return bpf_prog_get_type_dev(ufd, type, false); 2429 } 2430 2431 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2432 struct bpf_map **used_maps, u32 len); 2433 2434 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2435 2436 int bpf_prog_offload_compile(struct bpf_prog *prog); 2437 void bpf_prog_offload_destroy(struct bpf_prog *prog); 2438 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2439 struct bpf_prog *prog); 2440 2441 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2442 2443 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2444 int bpf_map_offload_update_elem(struct bpf_map *map, 2445 void *key, void *value, u64 flags); 2446 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2447 int bpf_map_offload_get_next_key(struct bpf_map *map, 2448 void *key, void *next_key); 2449 2450 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2451 2452 struct bpf_offload_dev * 2453 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2454 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2455 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2456 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2457 struct net_device *netdev); 2458 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2459 struct net_device *netdev); 2460 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2461 2462 void unpriv_ebpf_notify(int new_state); 2463 2464 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2465 int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr); 2466 2467 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2468 { 2469 return aux->offload_requested; 2470 } 2471 2472 static inline bool bpf_map_is_dev_bound(struct bpf_map *map) 2473 { 2474 return unlikely(map->ops == &bpf_map_offload_ops); 2475 } 2476 2477 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2478 void bpf_map_offload_map_free(struct bpf_map *map); 2479 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2480 const union bpf_attr *kattr, 2481 union bpf_attr __user *uattr); 2482 2483 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2484 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2485 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2486 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2487 union bpf_attr __user *uattr); 2488 2489 void sock_map_unhash(struct sock *sk); 2490 void sock_map_destroy(struct sock *sk); 2491 void sock_map_close(struct sock *sk, long timeout); 2492 #else 2493 static inline int bpf_prog_offload_init(struct bpf_prog *prog, 2494 union bpf_attr *attr) 2495 { 2496 return -EOPNOTSUPP; 2497 } 2498 2499 static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux) 2500 { 2501 return false; 2502 } 2503 2504 static inline bool bpf_map_is_dev_bound(struct bpf_map *map) 2505 { 2506 return false; 2507 } 2508 2509 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 2510 { 2511 return ERR_PTR(-EOPNOTSUPP); 2512 } 2513 2514 static inline void bpf_map_offload_map_free(struct bpf_map *map) 2515 { 2516 } 2517 2518 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2519 const union bpf_attr *kattr, 2520 union bpf_attr __user *uattr) 2521 { 2522 return -ENOTSUPP; 2523 } 2524 2525 #ifdef CONFIG_BPF_SYSCALL 2526 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 2527 struct bpf_prog *prog) 2528 { 2529 return -EINVAL; 2530 } 2531 2532 static inline int sock_map_prog_detach(const union bpf_attr *attr, 2533 enum bpf_prog_type ptype) 2534 { 2535 return -EOPNOTSUPP; 2536 } 2537 2538 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 2539 u64 flags) 2540 { 2541 return -EOPNOTSUPP; 2542 } 2543 2544 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 2545 union bpf_attr __user *uattr) 2546 { 2547 return -EINVAL; 2548 } 2549 #endif /* CONFIG_BPF_SYSCALL */ 2550 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 2551 2552 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 2553 void bpf_sk_reuseport_detach(struct sock *sk); 2554 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 2555 void *value); 2556 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 2557 void *value, u64 map_flags); 2558 #else 2559 static inline void bpf_sk_reuseport_detach(struct sock *sk) 2560 { 2561 } 2562 2563 #ifdef CONFIG_BPF_SYSCALL 2564 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 2565 void *key, void *value) 2566 { 2567 return -EOPNOTSUPP; 2568 } 2569 2570 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 2571 void *key, void *value, 2572 u64 map_flags) 2573 { 2574 return -EOPNOTSUPP; 2575 } 2576 #endif /* CONFIG_BPF_SYSCALL */ 2577 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 2578 2579 /* verifier prototypes for helper functions called from eBPF programs */ 2580 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 2581 extern const struct bpf_func_proto bpf_map_update_elem_proto; 2582 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 2583 extern const struct bpf_func_proto bpf_map_push_elem_proto; 2584 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 2585 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 2586 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 2587 2588 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 2589 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 2590 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 2591 extern const struct bpf_func_proto bpf_tail_call_proto; 2592 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 2593 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 2594 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 2595 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 2596 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 2597 extern const struct bpf_func_proto bpf_get_current_comm_proto; 2598 extern const struct bpf_func_proto bpf_get_stackid_proto; 2599 extern const struct bpf_func_proto bpf_get_stack_proto; 2600 extern const struct bpf_func_proto bpf_get_task_stack_proto; 2601 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 2602 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 2603 extern const struct bpf_func_proto bpf_sock_map_update_proto; 2604 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 2605 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 2606 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 2607 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 2608 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 2609 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 2610 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 2611 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 2612 extern const struct bpf_func_proto bpf_spin_lock_proto; 2613 extern const struct bpf_func_proto bpf_spin_unlock_proto; 2614 extern const struct bpf_func_proto bpf_get_local_storage_proto; 2615 extern const struct bpf_func_proto bpf_strtol_proto; 2616 extern const struct bpf_func_proto bpf_strtoul_proto; 2617 extern const struct bpf_func_proto bpf_tcp_sock_proto; 2618 extern const struct bpf_func_proto bpf_jiffies64_proto; 2619 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 2620 extern const struct bpf_func_proto bpf_event_output_data_proto; 2621 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 2622 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 2623 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 2624 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 2625 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 2626 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 2627 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 2628 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 2629 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 2630 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 2631 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 2632 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 2633 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 2634 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 2635 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 2636 extern const struct bpf_func_proto bpf_copy_from_user_proto; 2637 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 2638 extern const struct bpf_func_proto bpf_snprintf_proto; 2639 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 2640 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 2641 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 2642 extern const struct bpf_func_proto bpf_sock_from_file_proto; 2643 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 2644 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 2645 extern const struct bpf_func_proto bpf_task_storage_get_proto; 2646 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 2647 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 2648 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 2649 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 2650 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 2651 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 2652 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 2653 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 2654 extern const struct bpf_func_proto bpf_find_vma_proto; 2655 extern const struct bpf_func_proto bpf_loop_proto; 2656 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 2657 extern const struct bpf_func_proto bpf_set_retval_proto; 2658 extern const struct bpf_func_proto bpf_get_retval_proto; 2659 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 2660 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 2661 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 2662 2663 const struct bpf_func_proto *tracing_prog_func_proto( 2664 enum bpf_func_id func_id, const struct bpf_prog *prog); 2665 2666 /* Shared helpers among cBPF and eBPF. */ 2667 void bpf_user_rnd_init_once(void); 2668 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2669 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2670 2671 #if defined(CONFIG_NET) 2672 bool bpf_sock_common_is_valid_access(int off, int size, 2673 enum bpf_access_type type, 2674 struct bpf_insn_access_aux *info); 2675 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2676 struct bpf_insn_access_aux *info); 2677 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2678 const struct bpf_insn *si, 2679 struct bpf_insn *insn_buf, 2680 struct bpf_prog *prog, 2681 u32 *target_size); 2682 #else 2683 static inline bool bpf_sock_common_is_valid_access(int off, int size, 2684 enum bpf_access_type type, 2685 struct bpf_insn_access_aux *info) 2686 { 2687 return false; 2688 } 2689 static inline bool bpf_sock_is_valid_access(int off, int size, 2690 enum bpf_access_type type, 2691 struct bpf_insn_access_aux *info) 2692 { 2693 return false; 2694 } 2695 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2696 const struct bpf_insn *si, 2697 struct bpf_insn *insn_buf, 2698 struct bpf_prog *prog, 2699 u32 *target_size) 2700 { 2701 return 0; 2702 } 2703 #endif 2704 2705 #ifdef CONFIG_INET 2706 struct sk_reuseport_kern { 2707 struct sk_buff *skb; 2708 struct sock *sk; 2709 struct sock *selected_sk; 2710 struct sock *migrating_sk; 2711 void *data_end; 2712 u32 hash; 2713 u32 reuseport_id; 2714 bool bind_inany; 2715 }; 2716 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2717 struct bpf_insn_access_aux *info); 2718 2719 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2720 const struct bpf_insn *si, 2721 struct bpf_insn *insn_buf, 2722 struct bpf_prog *prog, 2723 u32 *target_size); 2724 2725 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2726 struct bpf_insn_access_aux *info); 2727 2728 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2729 const struct bpf_insn *si, 2730 struct bpf_insn *insn_buf, 2731 struct bpf_prog *prog, 2732 u32 *target_size); 2733 #else 2734 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 2735 enum bpf_access_type type, 2736 struct bpf_insn_access_aux *info) 2737 { 2738 return false; 2739 } 2740 2741 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2742 const struct bpf_insn *si, 2743 struct bpf_insn *insn_buf, 2744 struct bpf_prog *prog, 2745 u32 *target_size) 2746 { 2747 return 0; 2748 } 2749 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 2750 enum bpf_access_type type, 2751 struct bpf_insn_access_aux *info) 2752 { 2753 return false; 2754 } 2755 2756 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2757 const struct bpf_insn *si, 2758 struct bpf_insn *insn_buf, 2759 struct bpf_prog *prog, 2760 u32 *target_size) 2761 { 2762 return 0; 2763 } 2764 #endif /* CONFIG_INET */ 2765 2766 enum bpf_text_poke_type { 2767 BPF_MOD_CALL, 2768 BPF_MOD_JUMP, 2769 }; 2770 2771 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2772 void *addr1, void *addr2); 2773 2774 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 2775 int bpf_arch_text_invalidate(void *dst, size_t len); 2776 2777 struct btf_id_set; 2778 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 2779 2780 #define MAX_BPRINTF_VARARGS 12 2781 2782 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 2783 u32 **bin_buf, u32 num_args); 2784 void bpf_bprintf_cleanup(void); 2785 2786 /* the implementation of the opaque uapi struct bpf_dynptr */ 2787 struct bpf_dynptr_kern { 2788 void *data; 2789 /* Size represents the number of usable bytes of dynptr data. 2790 * If for example the offset is at 4 for a local dynptr whose data is 2791 * of type u64, the number of usable bytes is 4. 2792 * 2793 * The upper 8 bits are reserved. It is as follows: 2794 * Bits 0 - 23 = size 2795 * Bits 24 - 30 = dynptr type 2796 * Bit 31 = whether dynptr is read-only 2797 */ 2798 u32 size; 2799 u32 offset; 2800 } __aligned(8); 2801 2802 enum bpf_dynptr_type { 2803 BPF_DYNPTR_TYPE_INVALID, 2804 /* Points to memory that is local to the bpf program */ 2805 BPF_DYNPTR_TYPE_LOCAL, 2806 /* Underlying data is a kernel-produced ringbuf record */ 2807 BPF_DYNPTR_TYPE_RINGBUF, 2808 }; 2809 2810 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2811 enum bpf_dynptr_type type, u32 offset, u32 size); 2812 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2813 int bpf_dynptr_check_size(u32 size); 2814 u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr); 2815 2816 #ifdef CONFIG_BPF_LSM 2817 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 2818 void bpf_cgroup_atype_put(int cgroup_atype); 2819 #else 2820 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 2821 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 2822 #endif /* CONFIG_BPF_LSM */ 2823 2824 struct key; 2825 2826 #ifdef CONFIG_KEYS 2827 struct bpf_key { 2828 struct key *key; 2829 bool has_ref; 2830 }; 2831 #endif /* CONFIG_KEYS */ 2832 2833 static inline bool type_is_alloc(u32 type) 2834 { 2835 return type & MEM_ALLOC; 2836 } 2837 2838 #endif /* _LINUX_BPF_H */ 2839