1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 33 struct bpf_verifier_env; 34 struct bpf_verifier_log; 35 struct perf_event; 36 struct bpf_prog; 37 struct bpf_prog_aux; 38 struct bpf_map; 39 struct sock; 40 struct seq_file; 41 struct btf; 42 struct btf_type; 43 struct exception_table_entry; 44 struct seq_operations; 45 struct bpf_iter_aux_info; 46 struct bpf_local_storage; 47 struct bpf_local_storage_map; 48 struct kobject; 49 struct mem_cgroup; 50 struct module; 51 struct bpf_func_state; 52 struct ftrace_ops; 53 struct cgroup; 54 55 extern struct idr btf_idr; 56 extern spinlock_t btf_idr_lock; 57 extern struct kobject *btf_kobj; 58 extern struct bpf_mem_alloc bpf_global_ma; 59 extern bool bpf_global_ma_set; 60 61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 63 struct bpf_iter_aux_info *aux); 64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 65 typedef unsigned int (*bpf_func_t)(const void *, 66 const struct bpf_insn *); 67 struct bpf_iter_seq_info { 68 const struct seq_operations *seq_ops; 69 bpf_iter_init_seq_priv_t init_seq_private; 70 bpf_iter_fini_seq_priv_t fini_seq_private; 71 u32 seq_priv_size; 72 }; 73 74 /* map is generic key/value storage optionally accessible by eBPF programs */ 75 struct bpf_map_ops { 76 /* funcs callable from userspace (via syscall) */ 77 int (*map_alloc_check)(union bpf_attr *attr); 78 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 79 void (*map_release)(struct bpf_map *map, struct file *map_file); 80 void (*map_free)(struct bpf_map *map); 81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 82 void (*map_release_uref)(struct bpf_map *map); 83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 85 union bpf_attr __user *uattr); 86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 87 void *value, u64 flags); 88 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 89 const union bpf_attr *attr, 90 union bpf_attr __user *uattr); 91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 92 const union bpf_attr *attr, 93 union bpf_attr __user *uattr); 94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 95 union bpf_attr __user *uattr); 96 97 /* funcs callable from userspace and from eBPF programs */ 98 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 99 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 100 long (*map_delete_elem)(struct bpf_map *map, void *key); 101 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 102 long (*map_pop_elem)(struct bpf_map *map, void *value); 103 long (*map_peek_elem)(struct bpf_map *map, void *value); 104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 105 106 /* funcs called by prog_array and perf_event_array map */ 107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 108 int fd); 109 void (*map_fd_put_ptr)(void *ptr); 110 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 111 u32 (*map_fd_sys_lookup_elem)(void *ptr); 112 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 113 struct seq_file *m); 114 int (*map_check_btf)(const struct bpf_map *map, 115 const struct btf *btf, 116 const struct btf_type *key_type, 117 const struct btf_type *value_type); 118 119 /* Prog poke tracking helpers. */ 120 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 121 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 122 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 123 struct bpf_prog *new); 124 125 /* Direct value access helpers. */ 126 int (*map_direct_value_addr)(const struct bpf_map *map, 127 u64 *imm, u32 off); 128 int (*map_direct_value_meta)(const struct bpf_map *map, 129 u64 imm, u32 *off); 130 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 131 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 132 struct poll_table_struct *pts); 133 134 /* Functions called by bpf_local_storage maps */ 135 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 136 void *owner, u32 size); 137 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 138 void *owner, u32 size); 139 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 140 141 /* Misc helpers.*/ 142 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 143 144 /* map_meta_equal must be implemented for maps that can be 145 * used as an inner map. It is a runtime check to ensure 146 * an inner map can be inserted to an outer map. 147 * 148 * Some properties of the inner map has been used during the 149 * verification time. When inserting an inner map at the runtime, 150 * map_meta_equal has to ensure the inserting map has the same 151 * properties that the verifier has used earlier. 152 */ 153 bool (*map_meta_equal)(const struct bpf_map *meta0, 154 const struct bpf_map *meta1); 155 156 157 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 158 struct bpf_func_state *caller, 159 struct bpf_func_state *callee); 160 long (*map_for_each_callback)(struct bpf_map *map, 161 bpf_callback_t callback_fn, 162 void *callback_ctx, u64 flags); 163 164 u64 (*map_mem_usage)(const struct bpf_map *map); 165 166 /* BTF id of struct allocated by map_alloc */ 167 int *map_btf_id; 168 169 /* bpf_iter info used to open a seq_file */ 170 const struct bpf_iter_seq_info *iter_seq_info; 171 }; 172 173 enum { 174 /* Support at most 10 fields in a BTF type */ 175 BTF_FIELDS_MAX = 10, 176 }; 177 178 enum btf_field_type { 179 BPF_SPIN_LOCK = (1 << 0), 180 BPF_TIMER = (1 << 1), 181 BPF_KPTR_UNREF = (1 << 2), 182 BPF_KPTR_REF = (1 << 3), 183 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF, 184 BPF_LIST_HEAD = (1 << 4), 185 BPF_LIST_NODE = (1 << 5), 186 BPF_RB_ROOT = (1 << 6), 187 BPF_RB_NODE = (1 << 7), 188 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD | 189 BPF_RB_NODE | BPF_RB_ROOT, 190 BPF_REFCOUNT = (1 << 8), 191 }; 192 193 typedef void (*btf_dtor_kfunc_t)(void *); 194 195 struct btf_field_kptr { 196 struct btf *btf; 197 struct module *module; 198 /* dtor used if btf_is_kernel(btf), otherwise the type is 199 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 200 */ 201 btf_dtor_kfunc_t dtor; 202 u32 btf_id; 203 }; 204 205 struct btf_field_graph_root { 206 struct btf *btf; 207 u32 value_btf_id; 208 u32 node_offset; 209 struct btf_record *value_rec; 210 }; 211 212 struct btf_field { 213 u32 offset; 214 u32 size; 215 enum btf_field_type type; 216 union { 217 struct btf_field_kptr kptr; 218 struct btf_field_graph_root graph_root; 219 }; 220 }; 221 222 struct btf_record { 223 u32 cnt; 224 u32 field_mask; 225 int spin_lock_off; 226 int timer_off; 227 int refcount_off; 228 struct btf_field fields[]; 229 }; 230 231 struct bpf_map { 232 /* The first two cachelines with read-mostly members of which some 233 * are also accessed in fast-path (e.g. ops, max_entries). 234 */ 235 const struct bpf_map_ops *ops ____cacheline_aligned; 236 struct bpf_map *inner_map_meta; 237 #ifdef CONFIG_SECURITY 238 void *security; 239 #endif 240 enum bpf_map_type map_type; 241 u32 key_size; 242 u32 value_size; 243 u32 max_entries; 244 u64 map_extra; /* any per-map-type extra fields */ 245 u32 map_flags; 246 u32 id; 247 struct btf_record *record; 248 int numa_node; 249 u32 btf_key_type_id; 250 u32 btf_value_type_id; 251 u32 btf_vmlinux_value_type_id; 252 struct btf *btf; 253 #ifdef CONFIG_MEMCG_KMEM 254 struct obj_cgroup *objcg; 255 #endif 256 char name[BPF_OBJ_NAME_LEN]; 257 /* The 3rd and 4th cacheline with misc members to avoid false sharing 258 * particularly with refcounting. 259 */ 260 atomic64_t refcnt ____cacheline_aligned; 261 atomic64_t usercnt; 262 struct work_struct work; 263 struct mutex freeze_mutex; 264 atomic64_t writecnt; 265 /* 'Ownership' of program-containing map is claimed by the first program 266 * that is going to use this map or by the first program which FD is 267 * stored in the map to make sure that all callers and callees have the 268 * same prog type, JITed flag and xdp_has_frags flag. 269 */ 270 struct { 271 spinlock_t lock; 272 enum bpf_prog_type type; 273 bool jited; 274 bool xdp_has_frags; 275 } owner; 276 bool bypass_spec_v1; 277 bool frozen; /* write-once; write-protected by freeze_mutex */ 278 }; 279 280 static inline const char *btf_field_type_name(enum btf_field_type type) 281 { 282 switch (type) { 283 case BPF_SPIN_LOCK: 284 return "bpf_spin_lock"; 285 case BPF_TIMER: 286 return "bpf_timer"; 287 case BPF_KPTR_UNREF: 288 case BPF_KPTR_REF: 289 return "kptr"; 290 case BPF_LIST_HEAD: 291 return "bpf_list_head"; 292 case BPF_LIST_NODE: 293 return "bpf_list_node"; 294 case BPF_RB_ROOT: 295 return "bpf_rb_root"; 296 case BPF_RB_NODE: 297 return "bpf_rb_node"; 298 case BPF_REFCOUNT: 299 return "bpf_refcount"; 300 default: 301 WARN_ON_ONCE(1); 302 return "unknown"; 303 } 304 } 305 306 static inline u32 btf_field_type_size(enum btf_field_type type) 307 { 308 switch (type) { 309 case BPF_SPIN_LOCK: 310 return sizeof(struct bpf_spin_lock); 311 case BPF_TIMER: 312 return sizeof(struct bpf_timer); 313 case BPF_KPTR_UNREF: 314 case BPF_KPTR_REF: 315 return sizeof(u64); 316 case BPF_LIST_HEAD: 317 return sizeof(struct bpf_list_head); 318 case BPF_LIST_NODE: 319 return sizeof(struct bpf_list_node); 320 case BPF_RB_ROOT: 321 return sizeof(struct bpf_rb_root); 322 case BPF_RB_NODE: 323 return sizeof(struct bpf_rb_node); 324 case BPF_REFCOUNT: 325 return sizeof(struct bpf_refcount); 326 default: 327 WARN_ON_ONCE(1); 328 return 0; 329 } 330 } 331 332 static inline u32 btf_field_type_align(enum btf_field_type type) 333 { 334 switch (type) { 335 case BPF_SPIN_LOCK: 336 return __alignof__(struct bpf_spin_lock); 337 case BPF_TIMER: 338 return __alignof__(struct bpf_timer); 339 case BPF_KPTR_UNREF: 340 case BPF_KPTR_REF: 341 return __alignof__(u64); 342 case BPF_LIST_HEAD: 343 return __alignof__(struct bpf_list_head); 344 case BPF_LIST_NODE: 345 return __alignof__(struct bpf_list_node); 346 case BPF_RB_ROOT: 347 return __alignof__(struct bpf_rb_root); 348 case BPF_RB_NODE: 349 return __alignof__(struct bpf_rb_node); 350 case BPF_REFCOUNT: 351 return __alignof__(struct bpf_refcount); 352 default: 353 WARN_ON_ONCE(1); 354 return 0; 355 } 356 } 357 358 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 359 { 360 memset(addr, 0, field->size); 361 362 switch (field->type) { 363 case BPF_REFCOUNT: 364 refcount_set((refcount_t *)addr, 1); 365 break; 366 case BPF_RB_NODE: 367 RB_CLEAR_NODE((struct rb_node *)addr); 368 break; 369 case BPF_LIST_HEAD: 370 case BPF_LIST_NODE: 371 INIT_LIST_HEAD((struct list_head *)addr); 372 break; 373 case BPF_RB_ROOT: 374 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 375 case BPF_SPIN_LOCK: 376 case BPF_TIMER: 377 case BPF_KPTR_UNREF: 378 case BPF_KPTR_REF: 379 break; 380 default: 381 WARN_ON_ONCE(1); 382 return; 383 } 384 } 385 386 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 387 { 388 if (IS_ERR_OR_NULL(rec)) 389 return false; 390 return rec->field_mask & type; 391 } 392 393 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 394 { 395 int i; 396 397 if (IS_ERR_OR_NULL(rec)) 398 return; 399 for (i = 0; i < rec->cnt; i++) 400 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 401 } 402 403 /* 'dst' must be a temporary buffer and should not point to memory that is being 404 * used in parallel by a bpf program or bpf syscall, otherwise the access from 405 * the bpf program or bpf syscall may be corrupted by the reinitialization, 406 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 407 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 408 * program or bpf syscall. 409 */ 410 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 411 { 412 bpf_obj_init(map->record, dst); 413 } 414 415 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 416 * forced to use 'long' read/writes to try to atomically copy long counters. 417 * Best-effort only. No barriers here, since it _will_ race with concurrent 418 * updates from BPF programs. Called from bpf syscall and mostly used with 419 * size 8 or 16 bytes, so ask compiler to inline it. 420 */ 421 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 422 { 423 const long *lsrc = src; 424 long *ldst = dst; 425 426 size /= sizeof(long); 427 while (size--) 428 *ldst++ = *lsrc++; 429 } 430 431 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 432 static inline void bpf_obj_memcpy(struct btf_record *rec, 433 void *dst, void *src, u32 size, 434 bool long_memcpy) 435 { 436 u32 curr_off = 0; 437 int i; 438 439 if (IS_ERR_OR_NULL(rec)) { 440 if (long_memcpy) 441 bpf_long_memcpy(dst, src, round_up(size, 8)); 442 else 443 memcpy(dst, src, size); 444 return; 445 } 446 447 for (i = 0; i < rec->cnt; i++) { 448 u32 next_off = rec->fields[i].offset; 449 u32 sz = next_off - curr_off; 450 451 memcpy(dst + curr_off, src + curr_off, sz); 452 curr_off += rec->fields[i].size + sz; 453 } 454 memcpy(dst + curr_off, src + curr_off, size - curr_off); 455 } 456 457 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 458 { 459 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 460 } 461 462 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 463 { 464 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 465 } 466 467 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 468 { 469 u32 curr_off = 0; 470 int i; 471 472 if (IS_ERR_OR_NULL(rec)) { 473 memset(dst, 0, size); 474 return; 475 } 476 477 for (i = 0; i < rec->cnt; i++) { 478 u32 next_off = rec->fields[i].offset; 479 u32 sz = next_off - curr_off; 480 481 memset(dst + curr_off, 0, sz); 482 curr_off += rec->fields[i].size + sz; 483 } 484 memset(dst + curr_off, 0, size - curr_off); 485 } 486 487 static inline void zero_map_value(struct bpf_map *map, void *dst) 488 { 489 bpf_obj_memzero(map->record, dst, map->value_size); 490 } 491 492 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 493 bool lock_src); 494 void bpf_timer_cancel_and_free(void *timer); 495 void bpf_list_head_free(const struct btf_field *field, void *list_head, 496 struct bpf_spin_lock *spin_lock); 497 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 498 struct bpf_spin_lock *spin_lock); 499 500 501 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 502 503 struct bpf_offload_dev; 504 struct bpf_offloaded_map; 505 506 struct bpf_map_dev_ops { 507 int (*map_get_next_key)(struct bpf_offloaded_map *map, 508 void *key, void *next_key); 509 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 510 void *key, void *value); 511 int (*map_update_elem)(struct bpf_offloaded_map *map, 512 void *key, void *value, u64 flags); 513 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 514 }; 515 516 struct bpf_offloaded_map { 517 struct bpf_map map; 518 struct net_device *netdev; 519 const struct bpf_map_dev_ops *dev_ops; 520 void *dev_priv; 521 struct list_head offloads; 522 }; 523 524 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 525 { 526 return container_of(map, struct bpf_offloaded_map, map); 527 } 528 529 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 530 { 531 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 532 } 533 534 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 535 { 536 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 537 map->ops->map_seq_show_elem; 538 } 539 540 int map_check_no_btf(const struct bpf_map *map, 541 const struct btf *btf, 542 const struct btf_type *key_type, 543 const struct btf_type *value_type); 544 545 bool bpf_map_meta_equal(const struct bpf_map *meta0, 546 const struct bpf_map *meta1); 547 548 extern const struct bpf_map_ops bpf_map_offload_ops; 549 550 /* bpf_type_flag contains a set of flags that are applicable to the values of 551 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 552 * or a memory is read-only. We classify types into two categories: base types 553 * and extended types. Extended types are base types combined with a type flag. 554 * 555 * Currently there are no more than 32 base types in arg_type, ret_type and 556 * reg_types. 557 */ 558 #define BPF_BASE_TYPE_BITS 8 559 560 enum bpf_type_flag { 561 /* PTR may be NULL. */ 562 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 563 564 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 565 * compatible with both mutable and immutable memory. 566 */ 567 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 568 569 /* MEM points to BPF ring buffer reservation. */ 570 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 571 572 /* MEM is in user address space. */ 573 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 574 575 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 576 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 577 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 578 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 579 * to the specified cpu. 580 */ 581 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 582 583 /* Indicates that the argument will be released. */ 584 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 585 586 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 587 * unreferenced and referenced kptr loaded from map value using a load 588 * instruction, so that they can only be dereferenced but not escape the 589 * BPF program into the kernel (i.e. cannot be passed as arguments to 590 * kfunc or bpf helpers). 591 */ 592 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 593 594 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 595 596 /* DYNPTR points to memory local to the bpf program. */ 597 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 598 599 /* DYNPTR points to a kernel-produced ringbuf record. */ 600 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 601 602 /* Size is known at compile time. */ 603 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 604 605 /* MEM is of an allocated object of type in program BTF. This is used to 606 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 607 */ 608 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 609 610 /* PTR was passed from the kernel in a trusted context, and may be 611 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 612 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 613 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 614 * without invoking bpf_kptr_xchg(). What we really need to know is 615 * whether a pointer is safe to pass to a kfunc or BPF helper function. 616 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 617 * helpers, they do not cover all possible instances of unsafe 618 * pointers. For example, a pointer that was obtained from walking a 619 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 620 * fact that it may be NULL, invalid, etc. This is due to backwards 621 * compatibility requirements, as this was the behavior that was first 622 * introduced when kptrs were added. The behavior is now considered 623 * deprecated, and PTR_UNTRUSTED will eventually be removed. 624 * 625 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 626 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 627 * For example, pointers passed to tracepoint arguments are considered 628 * PTR_TRUSTED, as are pointers that are passed to struct_ops 629 * callbacks. As alluded to above, pointers that are obtained from 630 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 631 * struct task_struct *task is PTR_TRUSTED, then accessing 632 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 633 * in a BPF register. Similarly, pointers passed to certain programs 634 * types such as kretprobes are not guaranteed to be valid, as they may 635 * for example contain an object that was recently freed. 636 */ 637 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 638 639 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 640 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 641 642 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 643 * Currently only valid for linked-list and rbtree nodes. 644 */ 645 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 646 647 /* DYNPTR points to sk_buff */ 648 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 649 650 /* DYNPTR points to xdp_buff */ 651 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 652 653 __BPF_TYPE_FLAG_MAX, 654 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 655 }; 656 657 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 658 | DYNPTR_TYPE_XDP) 659 660 /* Max number of base types. */ 661 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 662 663 /* Max number of all types. */ 664 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 665 666 /* function argument constraints */ 667 enum bpf_arg_type { 668 ARG_DONTCARE = 0, /* unused argument in helper function */ 669 670 /* the following constraints used to prototype 671 * bpf_map_lookup/update/delete_elem() functions 672 */ 673 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 674 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 675 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 676 677 /* Used to prototype bpf_memcmp() and other functions that access data 678 * on eBPF program stack 679 */ 680 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 681 682 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 683 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 684 685 ARG_PTR_TO_CTX, /* pointer to context */ 686 ARG_ANYTHING, /* any (initialized) argument is ok */ 687 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 688 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 689 ARG_PTR_TO_INT, /* pointer to int */ 690 ARG_PTR_TO_LONG, /* pointer to long */ 691 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 692 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 693 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 694 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 695 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 696 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 697 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 698 ARG_PTR_TO_STACK, /* pointer to stack */ 699 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 700 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 701 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 702 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 703 __BPF_ARG_TYPE_MAX, 704 705 /* Extended arg_types. */ 706 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 707 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 708 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 709 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 710 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 711 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 712 /* pointer to memory does not need to be initialized, helper function must fill 713 * all bytes or clear them in error case. 714 */ 715 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 716 /* Pointer to valid memory of size known at compile time. */ 717 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 718 719 /* This must be the last entry. Its purpose is to ensure the enum is 720 * wide enough to hold the higher bits reserved for bpf_type_flag. 721 */ 722 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 723 }; 724 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 725 726 /* type of values returned from helper functions */ 727 enum bpf_return_type { 728 RET_INTEGER, /* function returns integer */ 729 RET_VOID, /* function doesn't return anything */ 730 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 731 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 732 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 733 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 734 RET_PTR_TO_MEM, /* returns a pointer to memory */ 735 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 736 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 737 __BPF_RET_TYPE_MAX, 738 739 /* Extended ret_types. */ 740 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 741 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 742 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 743 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 744 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 745 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 746 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 747 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 748 749 /* This must be the last entry. Its purpose is to ensure the enum is 750 * wide enough to hold the higher bits reserved for bpf_type_flag. 751 */ 752 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 753 }; 754 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 755 756 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 757 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 758 * instructions after verifying 759 */ 760 struct bpf_func_proto { 761 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 762 bool gpl_only; 763 bool pkt_access; 764 bool might_sleep; 765 enum bpf_return_type ret_type; 766 union { 767 struct { 768 enum bpf_arg_type arg1_type; 769 enum bpf_arg_type arg2_type; 770 enum bpf_arg_type arg3_type; 771 enum bpf_arg_type arg4_type; 772 enum bpf_arg_type arg5_type; 773 }; 774 enum bpf_arg_type arg_type[5]; 775 }; 776 union { 777 struct { 778 u32 *arg1_btf_id; 779 u32 *arg2_btf_id; 780 u32 *arg3_btf_id; 781 u32 *arg4_btf_id; 782 u32 *arg5_btf_id; 783 }; 784 u32 *arg_btf_id[5]; 785 struct { 786 size_t arg1_size; 787 size_t arg2_size; 788 size_t arg3_size; 789 size_t arg4_size; 790 size_t arg5_size; 791 }; 792 size_t arg_size[5]; 793 }; 794 int *ret_btf_id; /* return value btf_id */ 795 bool (*allowed)(const struct bpf_prog *prog); 796 }; 797 798 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 799 * the first argument to eBPF programs. 800 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 801 */ 802 struct bpf_context; 803 804 enum bpf_access_type { 805 BPF_READ = 1, 806 BPF_WRITE = 2 807 }; 808 809 /* types of values stored in eBPF registers */ 810 /* Pointer types represent: 811 * pointer 812 * pointer + imm 813 * pointer + (u16) var 814 * pointer + (u16) var + imm 815 * if (range > 0) then [ptr, ptr + range - off) is safe to access 816 * if (id > 0) means that some 'var' was added 817 * if (off > 0) means that 'imm' was added 818 */ 819 enum bpf_reg_type { 820 NOT_INIT = 0, /* nothing was written into register */ 821 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 822 PTR_TO_CTX, /* reg points to bpf_context */ 823 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 824 PTR_TO_MAP_VALUE, /* reg points to map element value */ 825 PTR_TO_MAP_KEY, /* reg points to a map element key */ 826 PTR_TO_STACK, /* reg == frame_pointer + offset */ 827 PTR_TO_PACKET_META, /* skb->data - meta_len */ 828 PTR_TO_PACKET, /* reg points to skb->data */ 829 PTR_TO_PACKET_END, /* skb->data + headlen */ 830 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 831 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 832 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 833 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 834 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 835 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 836 /* PTR_TO_BTF_ID points to a kernel struct that does not need 837 * to be null checked by the BPF program. This does not imply the 838 * pointer is _not_ null and in practice this can easily be a null 839 * pointer when reading pointer chains. The assumption is program 840 * context will handle null pointer dereference typically via fault 841 * handling. The verifier must keep this in mind and can make no 842 * assumptions about null or non-null when doing branch analysis. 843 * Further, when passed into helpers the helpers can not, without 844 * additional context, assume the value is non-null. 845 */ 846 PTR_TO_BTF_ID, 847 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 848 * been checked for null. Used primarily to inform the verifier 849 * an explicit null check is required for this struct. 850 */ 851 PTR_TO_MEM, /* reg points to valid memory region */ 852 PTR_TO_BUF, /* reg points to a read/write buffer */ 853 PTR_TO_FUNC, /* reg points to a bpf program function */ 854 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 855 __BPF_REG_TYPE_MAX, 856 857 /* Extended reg_types. */ 858 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 859 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 860 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 861 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 862 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 863 864 /* This must be the last entry. Its purpose is to ensure the enum is 865 * wide enough to hold the higher bits reserved for bpf_type_flag. 866 */ 867 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 868 }; 869 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 870 871 /* The information passed from prog-specific *_is_valid_access 872 * back to the verifier. 873 */ 874 struct bpf_insn_access_aux { 875 enum bpf_reg_type reg_type; 876 union { 877 int ctx_field_size; 878 struct { 879 struct btf *btf; 880 u32 btf_id; 881 }; 882 }; 883 struct bpf_verifier_log *log; /* for verbose logs */ 884 }; 885 886 static inline void 887 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 888 { 889 aux->ctx_field_size = size; 890 } 891 892 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 893 { 894 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 895 insn->src_reg == BPF_PSEUDO_FUNC; 896 } 897 898 struct bpf_prog_ops { 899 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 900 union bpf_attr __user *uattr); 901 }; 902 903 struct bpf_reg_state; 904 struct bpf_verifier_ops { 905 /* return eBPF function prototype for verification */ 906 const struct bpf_func_proto * 907 (*get_func_proto)(enum bpf_func_id func_id, 908 const struct bpf_prog *prog); 909 910 /* return true if 'size' wide access at offset 'off' within bpf_context 911 * with 'type' (read or write) is allowed 912 */ 913 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 914 const struct bpf_prog *prog, 915 struct bpf_insn_access_aux *info); 916 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 917 const struct bpf_prog *prog); 918 int (*gen_ld_abs)(const struct bpf_insn *orig, 919 struct bpf_insn *insn_buf); 920 u32 (*convert_ctx_access)(enum bpf_access_type type, 921 const struct bpf_insn *src, 922 struct bpf_insn *dst, 923 struct bpf_prog *prog, u32 *target_size); 924 int (*btf_struct_access)(struct bpf_verifier_log *log, 925 const struct bpf_reg_state *reg, 926 int off, int size); 927 }; 928 929 struct bpf_prog_offload_ops { 930 /* verifier basic callbacks */ 931 int (*insn_hook)(struct bpf_verifier_env *env, 932 int insn_idx, int prev_insn_idx); 933 int (*finalize)(struct bpf_verifier_env *env); 934 /* verifier optimization callbacks (called after .finalize) */ 935 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 936 struct bpf_insn *insn); 937 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 938 /* program management callbacks */ 939 int (*prepare)(struct bpf_prog *prog); 940 int (*translate)(struct bpf_prog *prog); 941 void (*destroy)(struct bpf_prog *prog); 942 }; 943 944 struct bpf_prog_offload { 945 struct bpf_prog *prog; 946 struct net_device *netdev; 947 struct bpf_offload_dev *offdev; 948 void *dev_priv; 949 struct list_head offloads; 950 bool dev_state; 951 bool opt_failed; 952 void *jited_image; 953 u32 jited_len; 954 }; 955 956 enum bpf_cgroup_storage_type { 957 BPF_CGROUP_STORAGE_SHARED, 958 BPF_CGROUP_STORAGE_PERCPU, 959 __BPF_CGROUP_STORAGE_MAX 960 }; 961 962 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 963 964 /* The longest tracepoint has 12 args. 965 * See include/trace/bpf_probe.h 966 */ 967 #define MAX_BPF_FUNC_ARGS 12 968 969 /* The maximum number of arguments passed through registers 970 * a single function may have. 971 */ 972 #define MAX_BPF_FUNC_REG_ARGS 5 973 974 /* The argument is a structure. */ 975 #define BTF_FMODEL_STRUCT_ARG BIT(0) 976 977 /* The argument is signed. */ 978 #define BTF_FMODEL_SIGNED_ARG BIT(1) 979 980 struct btf_func_model { 981 u8 ret_size; 982 u8 ret_flags; 983 u8 nr_args; 984 u8 arg_size[MAX_BPF_FUNC_ARGS]; 985 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 986 }; 987 988 /* Restore arguments before returning from trampoline to let original function 989 * continue executing. This flag is used for fentry progs when there are no 990 * fexit progs. 991 */ 992 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 993 /* Call original function after fentry progs, but before fexit progs. 994 * Makes sense for fentry/fexit, normal calls and indirect calls. 995 */ 996 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 997 /* Skip current frame and return to parent. Makes sense for fentry/fexit 998 * programs only. Should not be used with normal calls and indirect calls. 999 */ 1000 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1001 /* Store IP address of the caller on the trampoline stack, 1002 * so it's available for trampoline's programs. 1003 */ 1004 #define BPF_TRAMP_F_IP_ARG BIT(3) 1005 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1006 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1007 1008 /* Get original function from stack instead of from provided direct address. 1009 * Makes sense for trampolines with fexit or fmod_ret programs. 1010 */ 1011 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1012 1013 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1014 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1015 */ 1016 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1017 1018 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1019 * bytes on x86. 1020 */ 1021 enum { 1022 #if defined(__s390x__) 1023 BPF_MAX_TRAMP_LINKS = 27, 1024 #else 1025 BPF_MAX_TRAMP_LINKS = 38, 1026 #endif 1027 }; 1028 1029 struct bpf_tramp_links { 1030 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1031 int nr_links; 1032 }; 1033 1034 struct bpf_tramp_run_ctx; 1035 1036 /* Different use cases for BPF trampoline: 1037 * 1. replace nop at the function entry (kprobe equivalent) 1038 * flags = BPF_TRAMP_F_RESTORE_REGS 1039 * fentry = a set of programs to run before returning from trampoline 1040 * 1041 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1042 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1043 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1044 * fentry = a set of program to run before calling original function 1045 * fexit = a set of program to run after original function 1046 * 1047 * 3. replace direct call instruction anywhere in the function body 1048 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1049 * With flags = 0 1050 * fentry = a set of programs to run before returning from trampoline 1051 * With flags = BPF_TRAMP_F_CALL_ORIG 1052 * orig_call = original callback addr or direct function addr 1053 * fentry = a set of program to run before calling original function 1054 * fexit = a set of program to run after original function 1055 */ 1056 struct bpf_tramp_image; 1057 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 1058 const struct btf_func_model *m, u32 flags, 1059 struct bpf_tramp_links *tlinks, 1060 void *orig_call); 1061 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1062 struct bpf_tramp_run_ctx *run_ctx); 1063 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1064 struct bpf_tramp_run_ctx *run_ctx); 1065 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1066 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1067 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1068 struct bpf_tramp_run_ctx *run_ctx); 1069 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1070 struct bpf_tramp_run_ctx *run_ctx); 1071 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1072 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1073 1074 struct bpf_ksym { 1075 unsigned long start; 1076 unsigned long end; 1077 char name[KSYM_NAME_LEN]; 1078 struct list_head lnode; 1079 struct latch_tree_node tnode; 1080 bool prog; 1081 }; 1082 1083 enum bpf_tramp_prog_type { 1084 BPF_TRAMP_FENTRY, 1085 BPF_TRAMP_FEXIT, 1086 BPF_TRAMP_MODIFY_RETURN, 1087 BPF_TRAMP_MAX, 1088 BPF_TRAMP_REPLACE, /* more than MAX */ 1089 }; 1090 1091 struct bpf_tramp_image { 1092 void *image; 1093 struct bpf_ksym ksym; 1094 struct percpu_ref pcref; 1095 void *ip_after_call; 1096 void *ip_epilogue; 1097 union { 1098 struct rcu_head rcu; 1099 struct work_struct work; 1100 }; 1101 }; 1102 1103 struct bpf_trampoline { 1104 /* hlist for trampoline_table */ 1105 struct hlist_node hlist; 1106 struct ftrace_ops *fops; 1107 /* serializes access to fields of this trampoline */ 1108 struct mutex mutex; 1109 refcount_t refcnt; 1110 u32 flags; 1111 u64 key; 1112 struct { 1113 struct btf_func_model model; 1114 void *addr; 1115 bool ftrace_managed; 1116 } func; 1117 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1118 * program by replacing one of its functions. func.addr is the address 1119 * of the function it replaced. 1120 */ 1121 struct bpf_prog *extension_prog; 1122 /* list of BPF programs using this trampoline */ 1123 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1124 /* Number of attached programs. A counter per kind. */ 1125 int progs_cnt[BPF_TRAMP_MAX]; 1126 /* Executable image of trampoline */ 1127 struct bpf_tramp_image *cur_image; 1128 struct module *mod; 1129 }; 1130 1131 struct bpf_attach_target_info { 1132 struct btf_func_model fmodel; 1133 long tgt_addr; 1134 struct module *tgt_mod; 1135 const char *tgt_name; 1136 const struct btf_type *tgt_type; 1137 }; 1138 1139 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1140 1141 struct bpf_dispatcher_prog { 1142 struct bpf_prog *prog; 1143 refcount_t users; 1144 }; 1145 1146 struct bpf_dispatcher { 1147 /* dispatcher mutex */ 1148 struct mutex mutex; 1149 void *func; 1150 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1151 int num_progs; 1152 void *image; 1153 void *rw_image; 1154 u32 image_off; 1155 struct bpf_ksym ksym; 1156 #ifdef CONFIG_HAVE_STATIC_CALL 1157 struct static_call_key *sc_key; 1158 void *sc_tramp; 1159 #endif 1160 }; 1161 1162 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( 1163 const void *ctx, 1164 const struct bpf_insn *insnsi, 1165 bpf_func_t bpf_func) 1166 { 1167 return bpf_func(ctx, insnsi); 1168 } 1169 1170 /* the implementation of the opaque uapi struct bpf_dynptr */ 1171 struct bpf_dynptr_kern { 1172 void *data; 1173 /* Size represents the number of usable bytes of dynptr data. 1174 * If for example the offset is at 4 for a local dynptr whose data is 1175 * of type u64, the number of usable bytes is 4. 1176 * 1177 * The upper 8 bits are reserved. It is as follows: 1178 * Bits 0 - 23 = size 1179 * Bits 24 - 30 = dynptr type 1180 * Bit 31 = whether dynptr is read-only 1181 */ 1182 u32 size; 1183 u32 offset; 1184 } __aligned(8); 1185 1186 enum bpf_dynptr_type { 1187 BPF_DYNPTR_TYPE_INVALID, 1188 /* Points to memory that is local to the bpf program */ 1189 BPF_DYNPTR_TYPE_LOCAL, 1190 /* Underlying data is a ringbuf record */ 1191 BPF_DYNPTR_TYPE_RINGBUF, 1192 /* Underlying data is a sk_buff */ 1193 BPF_DYNPTR_TYPE_SKB, 1194 /* Underlying data is a xdp_buff */ 1195 BPF_DYNPTR_TYPE_XDP, 1196 }; 1197 1198 int bpf_dynptr_check_size(u32 size); 1199 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1200 1201 #ifdef CONFIG_BPF_JIT 1202 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1203 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1204 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1205 struct bpf_attach_target_info *tgt_info); 1206 void bpf_trampoline_put(struct bpf_trampoline *tr); 1207 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1208 1209 /* 1210 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1211 * indirection with a direct call to the bpf program. If the architecture does 1212 * not have STATIC_CALL, avoid a double-indirection. 1213 */ 1214 #ifdef CONFIG_HAVE_STATIC_CALL 1215 1216 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1217 .sc_key = &STATIC_CALL_KEY(_name), \ 1218 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1219 1220 #define __BPF_DISPATCHER_SC(name) \ 1221 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1222 1223 #define __BPF_DISPATCHER_CALL(name) \ 1224 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1225 1226 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1227 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1228 1229 #else 1230 #define __BPF_DISPATCHER_SC_INIT(name) 1231 #define __BPF_DISPATCHER_SC(name) 1232 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1233 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1234 #endif 1235 1236 #define BPF_DISPATCHER_INIT(_name) { \ 1237 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1238 .func = &_name##_func, \ 1239 .progs = {}, \ 1240 .num_progs = 0, \ 1241 .image = NULL, \ 1242 .image_off = 0, \ 1243 .ksym = { \ 1244 .name = #_name, \ 1245 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1246 }, \ 1247 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1248 } 1249 1250 #define DEFINE_BPF_DISPATCHER(name) \ 1251 __BPF_DISPATCHER_SC(name); \ 1252 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ 1253 const void *ctx, \ 1254 const struct bpf_insn *insnsi, \ 1255 bpf_func_t bpf_func) \ 1256 { \ 1257 return __BPF_DISPATCHER_CALL(name); \ 1258 } \ 1259 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1260 struct bpf_dispatcher bpf_dispatcher_##name = \ 1261 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1262 1263 #define DECLARE_BPF_DISPATCHER(name) \ 1264 unsigned int bpf_dispatcher_##name##_func( \ 1265 const void *ctx, \ 1266 const struct bpf_insn *insnsi, \ 1267 bpf_func_t bpf_func); \ 1268 extern struct bpf_dispatcher bpf_dispatcher_##name; 1269 1270 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1271 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1272 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1273 struct bpf_prog *to); 1274 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1275 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); 1276 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1277 void bpf_ksym_add(struct bpf_ksym *ksym); 1278 void bpf_ksym_del(struct bpf_ksym *ksym); 1279 int bpf_jit_charge_modmem(u32 size); 1280 void bpf_jit_uncharge_modmem(u32 size); 1281 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1282 #else 1283 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1284 struct bpf_trampoline *tr) 1285 { 1286 return -ENOTSUPP; 1287 } 1288 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1289 struct bpf_trampoline *tr) 1290 { 1291 return -ENOTSUPP; 1292 } 1293 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1294 struct bpf_attach_target_info *tgt_info) 1295 { 1296 return ERR_PTR(-EOPNOTSUPP); 1297 } 1298 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1299 #define DEFINE_BPF_DISPATCHER(name) 1300 #define DECLARE_BPF_DISPATCHER(name) 1301 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1302 #define BPF_DISPATCHER_PTR(name) NULL 1303 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1304 struct bpf_prog *from, 1305 struct bpf_prog *to) {} 1306 static inline bool is_bpf_image_address(unsigned long address) 1307 { 1308 return false; 1309 } 1310 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1311 { 1312 return false; 1313 } 1314 #endif 1315 1316 struct bpf_func_info_aux { 1317 u16 linkage; 1318 bool unreliable; 1319 }; 1320 1321 enum bpf_jit_poke_reason { 1322 BPF_POKE_REASON_TAIL_CALL, 1323 }; 1324 1325 /* Descriptor of pokes pointing /into/ the JITed image. */ 1326 struct bpf_jit_poke_descriptor { 1327 void *tailcall_target; 1328 void *tailcall_bypass; 1329 void *bypass_addr; 1330 void *aux; 1331 union { 1332 struct { 1333 struct bpf_map *map; 1334 u32 key; 1335 } tail_call; 1336 }; 1337 bool tailcall_target_stable; 1338 u8 adj_off; 1339 u16 reason; 1340 u32 insn_idx; 1341 }; 1342 1343 /* reg_type info for ctx arguments */ 1344 struct bpf_ctx_arg_aux { 1345 u32 offset; 1346 enum bpf_reg_type reg_type; 1347 u32 btf_id; 1348 }; 1349 1350 struct btf_mod_pair { 1351 struct btf *btf; 1352 struct module *module; 1353 }; 1354 1355 struct bpf_kfunc_desc_tab; 1356 1357 struct bpf_prog_aux { 1358 atomic64_t refcnt; 1359 u32 used_map_cnt; 1360 u32 used_btf_cnt; 1361 u32 max_ctx_offset; 1362 u32 max_pkt_offset; 1363 u32 max_tp_access; 1364 u32 stack_depth; 1365 u32 id; 1366 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1367 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1368 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1369 u32 ctx_arg_info_size; 1370 u32 max_rdonly_access; 1371 u32 max_rdwr_access; 1372 struct btf *attach_btf; 1373 const struct bpf_ctx_arg_aux *ctx_arg_info; 1374 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1375 struct bpf_prog *dst_prog; 1376 struct bpf_trampoline *dst_trampoline; 1377 enum bpf_prog_type saved_dst_prog_type; 1378 enum bpf_attach_type saved_dst_attach_type; 1379 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1380 bool dev_bound; /* Program is bound to the netdev. */ 1381 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1382 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1383 bool func_proto_unreliable; 1384 bool sleepable; 1385 bool tail_call_reachable; 1386 bool xdp_has_frags; 1387 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1388 const struct btf_type *attach_func_proto; 1389 /* function name for valid attach_btf_id */ 1390 const char *attach_func_name; 1391 struct bpf_prog **func; 1392 void *jit_data; /* JIT specific data. arch dependent */ 1393 struct bpf_jit_poke_descriptor *poke_tab; 1394 struct bpf_kfunc_desc_tab *kfunc_tab; 1395 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1396 u32 size_poke_tab; 1397 struct bpf_ksym ksym; 1398 const struct bpf_prog_ops *ops; 1399 struct bpf_map **used_maps; 1400 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1401 struct btf_mod_pair *used_btfs; 1402 struct bpf_prog *prog; 1403 struct user_struct *user; 1404 u64 load_time; /* ns since boottime */ 1405 u32 verified_insns; 1406 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1407 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1408 char name[BPF_OBJ_NAME_LEN]; 1409 #ifdef CONFIG_SECURITY 1410 void *security; 1411 #endif 1412 struct bpf_prog_offload *offload; 1413 struct btf *btf; 1414 struct bpf_func_info *func_info; 1415 struct bpf_func_info_aux *func_info_aux; 1416 /* bpf_line_info loaded from userspace. linfo->insn_off 1417 * has the xlated insn offset. 1418 * Both the main and sub prog share the same linfo. 1419 * The subprog can access its first linfo by 1420 * using the linfo_idx. 1421 */ 1422 struct bpf_line_info *linfo; 1423 /* jited_linfo is the jited addr of the linfo. It has a 1424 * one to one mapping to linfo: 1425 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1426 * Both the main and sub prog share the same jited_linfo. 1427 * The subprog can access its first jited_linfo by 1428 * using the linfo_idx. 1429 */ 1430 void **jited_linfo; 1431 u32 func_info_cnt; 1432 u32 nr_linfo; 1433 /* subprog can use linfo_idx to access its first linfo and 1434 * jited_linfo. 1435 * main prog always has linfo_idx == 0 1436 */ 1437 u32 linfo_idx; 1438 struct module *mod; 1439 u32 num_exentries; 1440 struct exception_table_entry *extable; 1441 union { 1442 struct work_struct work; 1443 struct rcu_head rcu; 1444 }; 1445 }; 1446 1447 struct bpf_prog { 1448 u16 pages; /* Number of allocated pages */ 1449 u16 jited:1, /* Is our filter JIT'ed? */ 1450 jit_requested:1,/* archs need to JIT the prog */ 1451 gpl_compatible:1, /* Is filter GPL compatible? */ 1452 cb_access:1, /* Is control block accessed? */ 1453 dst_needed:1, /* Do we need dst entry? */ 1454 blinding_requested:1, /* needs constant blinding */ 1455 blinded:1, /* Was blinded */ 1456 is_func:1, /* program is a bpf function */ 1457 kprobe_override:1, /* Do we override a kprobe? */ 1458 has_callchain_buf:1, /* callchain buffer allocated? */ 1459 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1460 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1461 call_get_func_ip:1, /* Do we call get_func_ip() */ 1462 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1463 enum bpf_prog_type type; /* Type of BPF program */ 1464 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1465 u32 len; /* Number of filter blocks */ 1466 u32 jited_len; /* Size of jited insns in bytes */ 1467 u8 tag[BPF_TAG_SIZE]; 1468 struct bpf_prog_stats __percpu *stats; 1469 int __percpu *active; 1470 unsigned int (*bpf_func)(const void *ctx, 1471 const struct bpf_insn *insn); 1472 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1473 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1474 /* Instructions for interpreter */ 1475 union { 1476 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1477 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1478 }; 1479 }; 1480 1481 struct bpf_array_aux { 1482 /* Programs with direct jumps into programs part of this array. */ 1483 struct list_head poke_progs; 1484 struct bpf_map *map; 1485 struct mutex poke_mutex; 1486 struct work_struct work; 1487 }; 1488 1489 struct bpf_link { 1490 atomic64_t refcnt; 1491 u32 id; 1492 enum bpf_link_type type; 1493 const struct bpf_link_ops *ops; 1494 struct bpf_prog *prog; 1495 struct work_struct work; 1496 }; 1497 1498 struct bpf_link_ops { 1499 void (*release)(struct bpf_link *link); 1500 void (*dealloc)(struct bpf_link *link); 1501 int (*detach)(struct bpf_link *link); 1502 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1503 struct bpf_prog *old_prog); 1504 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1505 int (*fill_link_info)(const struct bpf_link *link, 1506 struct bpf_link_info *info); 1507 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1508 struct bpf_map *old_map); 1509 }; 1510 1511 struct bpf_tramp_link { 1512 struct bpf_link link; 1513 struct hlist_node tramp_hlist; 1514 u64 cookie; 1515 }; 1516 1517 struct bpf_shim_tramp_link { 1518 struct bpf_tramp_link link; 1519 struct bpf_trampoline *trampoline; 1520 }; 1521 1522 struct bpf_tracing_link { 1523 struct bpf_tramp_link link; 1524 enum bpf_attach_type attach_type; 1525 struct bpf_trampoline *trampoline; 1526 struct bpf_prog *tgt_prog; 1527 }; 1528 1529 struct bpf_link_primer { 1530 struct bpf_link *link; 1531 struct file *file; 1532 int fd; 1533 u32 id; 1534 }; 1535 1536 struct bpf_struct_ops_value; 1537 struct btf_member; 1538 1539 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1540 struct bpf_struct_ops { 1541 const struct bpf_verifier_ops *verifier_ops; 1542 int (*init)(struct btf *btf); 1543 int (*check_member)(const struct btf_type *t, 1544 const struct btf_member *member, 1545 const struct bpf_prog *prog); 1546 int (*init_member)(const struct btf_type *t, 1547 const struct btf_member *member, 1548 void *kdata, const void *udata); 1549 int (*reg)(void *kdata); 1550 void (*unreg)(void *kdata); 1551 int (*update)(void *kdata, void *old_kdata); 1552 int (*validate)(void *kdata); 1553 const struct btf_type *type; 1554 const struct btf_type *value_type; 1555 const char *name; 1556 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1557 u32 type_id; 1558 u32 value_id; 1559 }; 1560 1561 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1562 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1563 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); 1564 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); 1565 bool bpf_struct_ops_get(const void *kdata); 1566 void bpf_struct_ops_put(const void *kdata); 1567 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1568 void *value); 1569 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1570 struct bpf_tramp_link *link, 1571 const struct btf_func_model *model, 1572 void *image, void *image_end); 1573 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1574 { 1575 if (owner == BPF_MODULE_OWNER) 1576 return bpf_struct_ops_get(data); 1577 else 1578 return try_module_get(owner); 1579 } 1580 static inline void bpf_module_put(const void *data, struct module *owner) 1581 { 1582 if (owner == BPF_MODULE_OWNER) 1583 bpf_struct_ops_put(data); 1584 else 1585 module_put(owner); 1586 } 1587 int bpf_struct_ops_link_create(union bpf_attr *attr); 1588 1589 #ifdef CONFIG_NET 1590 /* Define it here to avoid the use of forward declaration */ 1591 struct bpf_dummy_ops_state { 1592 int val; 1593 }; 1594 1595 struct bpf_dummy_ops { 1596 int (*test_1)(struct bpf_dummy_ops_state *cb); 1597 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1598 char a3, unsigned long a4); 1599 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1600 }; 1601 1602 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1603 union bpf_attr __user *uattr); 1604 #endif 1605 #else 1606 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) 1607 { 1608 return NULL; 1609 } 1610 static inline void bpf_struct_ops_init(struct btf *btf, 1611 struct bpf_verifier_log *log) 1612 { 1613 } 1614 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1615 { 1616 return try_module_get(owner); 1617 } 1618 static inline void bpf_module_put(const void *data, struct module *owner) 1619 { 1620 module_put(owner); 1621 } 1622 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1623 void *key, 1624 void *value) 1625 { 1626 return -EINVAL; 1627 } 1628 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1629 { 1630 return -EOPNOTSUPP; 1631 } 1632 1633 #endif 1634 1635 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1636 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1637 int cgroup_atype); 1638 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1639 #else 1640 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1641 int cgroup_atype) 1642 { 1643 return -EOPNOTSUPP; 1644 } 1645 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1646 { 1647 } 1648 #endif 1649 1650 struct bpf_array { 1651 struct bpf_map map; 1652 u32 elem_size; 1653 u32 index_mask; 1654 struct bpf_array_aux *aux; 1655 union { 1656 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1657 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1658 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1659 }; 1660 }; 1661 1662 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1663 #define MAX_TAIL_CALL_CNT 33 1664 1665 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1666 * It's enum to expose it (and thus make it discoverable) through BTF. 1667 */ 1668 enum { 1669 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1670 }; 1671 1672 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1673 BPF_F_RDONLY_PROG | \ 1674 BPF_F_WRONLY | \ 1675 BPF_F_WRONLY_PROG) 1676 1677 #define BPF_MAP_CAN_READ BIT(0) 1678 #define BPF_MAP_CAN_WRITE BIT(1) 1679 1680 /* Maximum number of user-producer ring buffer samples that can be drained in 1681 * a call to bpf_user_ringbuf_drain(). 1682 */ 1683 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1684 1685 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1686 { 1687 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1688 1689 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1690 * not possible. 1691 */ 1692 if (access_flags & BPF_F_RDONLY_PROG) 1693 return BPF_MAP_CAN_READ; 1694 else if (access_flags & BPF_F_WRONLY_PROG) 1695 return BPF_MAP_CAN_WRITE; 1696 else 1697 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1698 } 1699 1700 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1701 { 1702 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1703 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1704 } 1705 1706 struct bpf_event_entry { 1707 struct perf_event *event; 1708 struct file *perf_file; 1709 struct file *map_file; 1710 struct rcu_head rcu; 1711 }; 1712 1713 static inline bool map_type_contains_progs(struct bpf_map *map) 1714 { 1715 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1716 map->map_type == BPF_MAP_TYPE_DEVMAP || 1717 map->map_type == BPF_MAP_TYPE_CPUMAP; 1718 } 1719 1720 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1721 int bpf_prog_calc_tag(struct bpf_prog *fp); 1722 1723 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1724 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1725 1726 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1727 unsigned long off, unsigned long len); 1728 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1729 const struct bpf_insn *src, 1730 struct bpf_insn *dst, 1731 struct bpf_prog *prog, 1732 u32 *target_size); 1733 1734 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1735 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1736 1737 /* an array of programs to be executed under rcu_lock. 1738 * 1739 * Typical usage: 1740 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1741 * 1742 * the structure returned by bpf_prog_array_alloc() should be populated 1743 * with program pointers and the last pointer must be NULL. 1744 * The user has to keep refcnt on the program and make sure the program 1745 * is removed from the array before bpf_prog_put(). 1746 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1747 * since other cpus are walking the array of pointers in parallel. 1748 */ 1749 struct bpf_prog_array_item { 1750 struct bpf_prog *prog; 1751 union { 1752 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1753 u64 bpf_cookie; 1754 }; 1755 }; 1756 1757 struct bpf_prog_array { 1758 struct rcu_head rcu; 1759 struct bpf_prog_array_item items[]; 1760 }; 1761 1762 struct bpf_empty_prog_array { 1763 struct bpf_prog_array hdr; 1764 struct bpf_prog *null_prog; 1765 }; 1766 1767 /* to avoid allocating empty bpf_prog_array for cgroups that 1768 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1769 * It will not be modified the caller of bpf_prog_array_alloc() 1770 * (since caller requested prog_cnt == 0) 1771 * that pointer should be 'freed' by bpf_prog_array_free() 1772 */ 1773 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1774 1775 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1776 void bpf_prog_array_free(struct bpf_prog_array *progs); 1777 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1778 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1779 int bpf_prog_array_length(struct bpf_prog_array *progs); 1780 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1781 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1782 __u32 __user *prog_ids, u32 cnt); 1783 1784 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1785 struct bpf_prog *old_prog); 1786 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1787 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1788 struct bpf_prog *prog); 1789 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1790 u32 *prog_ids, u32 request_cnt, 1791 u32 *prog_cnt); 1792 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1793 struct bpf_prog *exclude_prog, 1794 struct bpf_prog *include_prog, 1795 u64 bpf_cookie, 1796 struct bpf_prog_array **new_array); 1797 1798 struct bpf_run_ctx {}; 1799 1800 struct bpf_cg_run_ctx { 1801 struct bpf_run_ctx run_ctx; 1802 const struct bpf_prog_array_item *prog_item; 1803 int retval; 1804 }; 1805 1806 struct bpf_trace_run_ctx { 1807 struct bpf_run_ctx run_ctx; 1808 u64 bpf_cookie; 1809 }; 1810 1811 struct bpf_tramp_run_ctx { 1812 struct bpf_run_ctx run_ctx; 1813 u64 bpf_cookie; 1814 struct bpf_run_ctx *saved_run_ctx; 1815 }; 1816 1817 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 1818 { 1819 struct bpf_run_ctx *old_ctx = NULL; 1820 1821 #ifdef CONFIG_BPF_SYSCALL 1822 old_ctx = current->bpf_ctx; 1823 current->bpf_ctx = new_ctx; 1824 #endif 1825 return old_ctx; 1826 } 1827 1828 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 1829 { 1830 #ifdef CONFIG_BPF_SYSCALL 1831 current->bpf_ctx = old_ctx; 1832 #endif 1833 } 1834 1835 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 1836 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 1837 /* BPF program asks to set CN on the packet. */ 1838 #define BPF_RET_SET_CN (1 << 0) 1839 1840 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 1841 1842 static __always_inline u32 1843 bpf_prog_run_array(const struct bpf_prog_array *array, 1844 const void *ctx, bpf_prog_run_fn run_prog) 1845 { 1846 const struct bpf_prog_array_item *item; 1847 const struct bpf_prog *prog; 1848 struct bpf_run_ctx *old_run_ctx; 1849 struct bpf_trace_run_ctx run_ctx; 1850 u32 ret = 1; 1851 1852 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 1853 1854 if (unlikely(!array)) 1855 return ret; 1856 1857 migrate_disable(); 1858 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1859 item = &array->items[0]; 1860 while ((prog = READ_ONCE(item->prog))) { 1861 run_ctx.bpf_cookie = item->bpf_cookie; 1862 ret &= run_prog(prog, ctx); 1863 item++; 1864 } 1865 bpf_reset_run_ctx(old_run_ctx); 1866 migrate_enable(); 1867 return ret; 1868 } 1869 1870 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 1871 * 1872 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 1873 * overall. As a result, we must use the bpf_prog_array_free_sleepable 1874 * in order to use the tasks_trace rcu grace period. 1875 * 1876 * When a non-sleepable program is inside the array, we take the rcu read 1877 * section and disable preemption for that program alone, so it can access 1878 * rcu-protected dynamically sized maps. 1879 */ 1880 static __always_inline u32 1881 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu, 1882 const void *ctx, bpf_prog_run_fn run_prog) 1883 { 1884 const struct bpf_prog_array_item *item; 1885 const struct bpf_prog *prog; 1886 const struct bpf_prog_array *array; 1887 struct bpf_run_ctx *old_run_ctx; 1888 struct bpf_trace_run_ctx run_ctx; 1889 u32 ret = 1; 1890 1891 might_fault(); 1892 1893 rcu_read_lock_trace(); 1894 migrate_disable(); 1895 1896 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 1897 if (unlikely(!array)) 1898 goto out; 1899 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1900 item = &array->items[0]; 1901 while ((prog = READ_ONCE(item->prog))) { 1902 if (!prog->aux->sleepable) 1903 rcu_read_lock(); 1904 1905 run_ctx.bpf_cookie = item->bpf_cookie; 1906 ret &= run_prog(prog, ctx); 1907 item++; 1908 1909 if (!prog->aux->sleepable) 1910 rcu_read_unlock(); 1911 } 1912 bpf_reset_run_ctx(old_run_ctx); 1913 out: 1914 migrate_enable(); 1915 rcu_read_unlock_trace(); 1916 return ret; 1917 } 1918 1919 #ifdef CONFIG_BPF_SYSCALL 1920 DECLARE_PER_CPU(int, bpf_prog_active); 1921 extern struct mutex bpf_stats_enabled_mutex; 1922 1923 /* 1924 * Block execution of BPF programs attached to instrumentation (perf, 1925 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 1926 * these events can happen inside a region which holds a map bucket lock 1927 * and can deadlock on it. 1928 */ 1929 static inline void bpf_disable_instrumentation(void) 1930 { 1931 migrate_disable(); 1932 this_cpu_inc(bpf_prog_active); 1933 } 1934 1935 static inline void bpf_enable_instrumentation(void) 1936 { 1937 this_cpu_dec(bpf_prog_active); 1938 migrate_enable(); 1939 } 1940 1941 extern const struct file_operations bpf_map_fops; 1942 extern const struct file_operations bpf_prog_fops; 1943 extern const struct file_operations bpf_iter_fops; 1944 1945 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 1946 extern const struct bpf_prog_ops _name ## _prog_ops; \ 1947 extern const struct bpf_verifier_ops _name ## _verifier_ops; 1948 #define BPF_MAP_TYPE(_id, _ops) \ 1949 extern const struct bpf_map_ops _ops; 1950 #define BPF_LINK_TYPE(_id, _name) 1951 #include <linux/bpf_types.h> 1952 #undef BPF_PROG_TYPE 1953 #undef BPF_MAP_TYPE 1954 #undef BPF_LINK_TYPE 1955 1956 extern const struct bpf_prog_ops bpf_offload_prog_ops; 1957 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 1958 extern const struct bpf_verifier_ops xdp_analyzer_ops; 1959 1960 struct bpf_prog *bpf_prog_get(u32 ufd); 1961 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 1962 bool attach_drv); 1963 void bpf_prog_add(struct bpf_prog *prog, int i); 1964 void bpf_prog_sub(struct bpf_prog *prog, int i); 1965 void bpf_prog_inc(struct bpf_prog *prog); 1966 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 1967 void bpf_prog_put(struct bpf_prog *prog); 1968 1969 void bpf_prog_free_id(struct bpf_prog *prog); 1970 void bpf_map_free_id(struct bpf_map *map); 1971 1972 struct btf_field *btf_record_find(const struct btf_record *rec, 1973 u32 offset, u32 field_mask); 1974 void btf_record_free(struct btf_record *rec); 1975 void bpf_map_free_record(struct bpf_map *map); 1976 struct btf_record *btf_record_dup(const struct btf_record *rec); 1977 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 1978 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 1979 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 1980 1981 struct bpf_map *bpf_map_get(u32 ufd); 1982 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 1983 struct bpf_map *__bpf_map_get(struct fd f); 1984 void bpf_map_inc(struct bpf_map *map); 1985 void bpf_map_inc_with_uref(struct bpf_map *map); 1986 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 1987 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 1988 void bpf_map_put_with_uref(struct bpf_map *map); 1989 void bpf_map_put(struct bpf_map *map); 1990 void *bpf_map_area_alloc(u64 size, int numa_node); 1991 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 1992 void bpf_map_area_free(void *base); 1993 bool bpf_map_write_active(const struct bpf_map *map); 1994 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 1995 int generic_map_lookup_batch(struct bpf_map *map, 1996 const union bpf_attr *attr, 1997 union bpf_attr __user *uattr); 1998 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 1999 const union bpf_attr *attr, 2000 union bpf_attr __user *uattr); 2001 int generic_map_delete_batch(struct bpf_map *map, 2002 const union bpf_attr *attr, 2003 union bpf_attr __user *uattr); 2004 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2005 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2006 2007 #ifdef CONFIG_MEMCG_KMEM 2008 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2009 int node); 2010 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2011 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2012 gfp_t flags); 2013 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2014 size_t align, gfp_t flags); 2015 #else 2016 static inline void * 2017 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2018 int node) 2019 { 2020 return kmalloc_node(size, flags, node); 2021 } 2022 2023 static inline void * 2024 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 2025 { 2026 return kzalloc(size, flags); 2027 } 2028 2029 static inline void * 2030 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 2031 { 2032 return kvcalloc(n, size, flags); 2033 } 2034 2035 static inline void __percpu * 2036 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 2037 gfp_t flags) 2038 { 2039 return __alloc_percpu_gfp(size, align, flags); 2040 } 2041 #endif 2042 2043 extern int sysctl_unprivileged_bpf_disabled; 2044 2045 static inline bool bpf_allow_ptr_leaks(void) 2046 { 2047 return perfmon_capable(); 2048 } 2049 2050 static inline bool bpf_allow_uninit_stack(void) 2051 { 2052 return perfmon_capable(); 2053 } 2054 2055 static inline bool bpf_bypass_spec_v1(void) 2056 { 2057 return perfmon_capable(); 2058 } 2059 2060 static inline bool bpf_bypass_spec_v4(void) 2061 { 2062 return perfmon_capable(); 2063 } 2064 2065 int bpf_map_new_fd(struct bpf_map *map, int flags); 2066 int bpf_prog_new_fd(struct bpf_prog *prog); 2067 2068 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2069 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2070 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2071 int bpf_link_settle(struct bpf_link_primer *primer); 2072 void bpf_link_cleanup(struct bpf_link_primer *primer); 2073 void bpf_link_inc(struct bpf_link *link); 2074 void bpf_link_put(struct bpf_link *link); 2075 int bpf_link_new_fd(struct bpf_link *link); 2076 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); 2077 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2078 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2079 2080 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2081 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2082 2083 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2084 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2085 extern int bpf_iter_ ## target(args); \ 2086 int __init bpf_iter_ ## target(args) { return 0; } 2087 2088 /* 2089 * The task type of iterators. 2090 * 2091 * For BPF task iterators, they can be parameterized with various 2092 * parameters to visit only some of tasks. 2093 * 2094 * BPF_TASK_ITER_ALL (default) 2095 * Iterate over resources of every task. 2096 * 2097 * BPF_TASK_ITER_TID 2098 * Iterate over resources of a task/tid. 2099 * 2100 * BPF_TASK_ITER_TGID 2101 * Iterate over resources of every task of a process / task group. 2102 */ 2103 enum bpf_iter_task_type { 2104 BPF_TASK_ITER_ALL = 0, 2105 BPF_TASK_ITER_TID, 2106 BPF_TASK_ITER_TGID, 2107 }; 2108 2109 struct bpf_iter_aux_info { 2110 /* for map_elem iter */ 2111 struct bpf_map *map; 2112 2113 /* for cgroup iter */ 2114 struct { 2115 struct cgroup *start; /* starting cgroup */ 2116 enum bpf_cgroup_iter_order order; 2117 } cgroup; 2118 struct { 2119 enum bpf_iter_task_type type; 2120 u32 pid; 2121 } task; 2122 }; 2123 2124 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2125 union bpf_iter_link_info *linfo, 2126 struct bpf_iter_aux_info *aux); 2127 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2128 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2129 struct seq_file *seq); 2130 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2131 struct bpf_link_info *info); 2132 typedef const struct bpf_func_proto * 2133 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2134 const struct bpf_prog *prog); 2135 2136 enum bpf_iter_feature { 2137 BPF_ITER_RESCHED = BIT(0), 2138 }; 2139 2140 #define BPF_ITER_CTX_ARG_MAX 2 2141 struct bpf_iter_reg { 2142 const char *target; 2143 bpf_iter_attach_target_t attach_target; 2144 bpf_iter_detach_target_t detach_target; 2145 bpf_iter_show_fdinfo_t show_fdinfo; 2146 bpf_iter_fill_link_info_t fill_link_info; 2147 bpf_iter_get_func_proto_t get_func_proto; 2148 u32 ctx_arg_info_size; 2149 u32 feature; 2150 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2151 const struct bpf_iter_seq_info *seq_info; 2152 }; 2153 2154 struct bpf_iter_meta { 2155 __bpf_md_ptr(struct seq_file *, seq); 2156 u64 session_id; 2157 u64 seq_num; 2158 }; 2159 2160 struct bpf_iter__bpf_map_elem { 2161 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2162 __bpf_md_ptr(struct bpf_map *, map); 2163 __bpf_md_ptr(void *, key); 2164 __bpf_md_ptr(void *, value); 2165 }; 2166 2167 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2168 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2169 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2170 const struct bpf_func_proto * 2171 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2172 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2173 int bpf_iter_new_fd(struct bpf_link *link); 2174 bool bpf_link_is_iter(struct bpf_link *link); 2175 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2176 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2177 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2178 struct seq_file *seq); 2179 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2180 struct bpf_link_info *info); 2181 2182 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2183 struct bpf_func_state *caller, 2184 struct bpf_func_state *callee); 2185 2186 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2187 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2188 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2189 u64 flags); 2190 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2191 u64 flags); 2192 2193 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2194 2195 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2196 void *key, void *value, u64 map_flags); 2197 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2198 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2199 void *key, void *value, u64 map_flags); 2200 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2201 2202 int bpf_get_file_flag(int flags); 2203 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2204 size_t actual_size); 2205 2206 /* verify correctness of eBPF program */ 2207 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2208 2209 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2210 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2211 #endif 2212 2213 struct btf *bpf_get_btf_vmlinux(void); 2214 2215 /* Map specifics */ 2216 struct xdp_frame; 2217 struct sk_buff; 2218 struct bpf_dtab_netdev; 2219 struct bpf_cpu_map_entry; 2220 2221 void __dev_flush(void); 2222 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2223 struct net_device *dev_rx); 2224 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2225 struct net_device *dev_rx); 2226 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2227 struct bpf_map *map, bool exclude_ingress); 2228 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2229 struct bpf_prog *xdp_prog); 2230 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2231 struct bpf_prog *xdp_prog, struct bpf_map *map, 2232 bool exclude_ingress); 2233 2234 void __cpu_map_flush(void); 2235 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2236 struct net_device *dev_rx); 2237 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2238 struct sk_buff *skb); 2239 2240 /* Return map's numa specified by userspace */ 2241 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2242 { 2243 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2244 attr->numa_node : NUMA_NO_NODE; 2245 } 2246 2247 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2248 int array_map_alloc_check(union bpf_attr *attr); 2249 2250 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2251 union bpf_attr __user *uattr); 2252 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2253 union bpf_attr __user *uattr); 2254 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2255 const union bpf_attr *kattr, 2256 union bpf_attr __user *uattr); 2257 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2258 const union bpf_attr *kattr, 2259 union bpf_attr __user *uattr); 2260 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2261 const union bpf_attr *kattr, 2262 union bpf_attr __user *uattr); 2263 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2264 const union bpf_attr *kattr, 2265 union bpf_attr __user *uattr); 2266 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2267 const union bpf_attr *kattr, 2268 union bpf_attr __user *uattr); 2269 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2270 const struct bpf_prog *prog, 2271 struct bpf_insn_access_aux *info); 2272 2273 static inline bool bpf_tracing_ctx_access(int off, int size, 2274 enum bpf_access_type type) 2275 { 2276 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2277 return false; 2278 if (type != BPF_READ) 2279 return false; 2280 if (off % size != 0) 2281 return false; 2282 return true; 2283 } 2284 2285 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2286 enum bpf_access_type type, 2287 const struct bpf_prog *prog, 2288 struct bpf_insn_access_aux *info) 2289 { 2290 if (!bpf_tracing_ctx_access(off, size, type)) 2291 return false; 2292 return btf_ctx_access(off, size, type, prog, info); 2293 } 2294 2295 int btf_struct_access(struct bpf_verifier_log *log, 2296 const struct bpf_reg_state *reg, 2297 int off, int size, enum bpf_access_type atype, 2298 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2299 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2300 const struct btf *btf, u32 id, int off, 2301 const struct btf *need_btf, u32 need_type_id, 2302 bool strict); 2303 2304 int btf_distill_func_proto(struct bpf_verifier_log *log, 2305 struct btf *btf, 2306 const struct btf_type *func_proto, 2307 const char *func_name, 2308 struct btf_func_model *m); 2309 2310 struct bpf_reg_state; 2311 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 2312 struct bpf_reg_state *regs); 2313 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 2314 struct bpf_reg_state *regs); 2315 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 2316 struct bpf_reg_state *reg); 2317 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2318 struct btf *btf, const struct btf_type *t); 2319 2320 struct bpf_prog *bpf_prog_by_id(u32 id); 2321 struct bpf_link *bpf_link_by_id(u32 id); 2322 2323 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); 2324 void bpf_task_storage_free(struct task_struct *task); 2325 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2326 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2327 const struct btf_func_model * 2328 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2329 const struct bpf_insn *insn); 2330 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2331 u16 btf_fd_idx, u8 **func_addr); 2332 2333 struct bpf_core_ctx { 2334 struct bpf_verifier_log *log; 2335 const struct btf *btf; 2336 }; 2337 2338 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2339 const struct bpf_reg_state *reg, 2340 const char *field_name, u32 btf_id, const char *suffix); 2341 2342 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2343 const struct btf *reg_btf, u32 reg_id, 2344 const struct btf *arg_btf, u32 arg_id); 2345 2346 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2347 int relo_idx, void *insn); 2348 2349 static inline bool unprivileged_ebpf_enabled(void) 2350 { 2351 return !sysctl_unprivileged_bpf_disabled; 2352 } 2353 2354 /* Not all bpf prog type has the bpf_ctx. 2355 * For the bpf prog type that has initialized the bpf_ctx, 2356 * this function can be used to decide if a kernel function 2357 * is called by a bpf program. 2358 */ 2359 static inline bool has_current_bpf_ctx(void) 2360 { 2361 return !!current->bpf_ctx; 2362 } 2363 2364 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2365 2366 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2367 enum bpf_dynptr_type type, u32 offset, u32 size); 2368 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2369 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2370 #else /* !CONFIG_BPF_SYSCALL */ 2371 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2372 { 2373 return ERR_PTR(-EOPNOTSUPP); 2374 } 2375 2376 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2377 enum bpf_prog_type type, 2378 bool attach_drv) 2379 { 2380 return ERR_PTR(-EOPNOTSUPP); 2381 } 2382 2383 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2384 { 2385 } 2386 2387 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2388 { 2389 } 2390 2391 static inline void bpf_prog_put(struct bpf_prog *prog) 2392 { 2393 } 2394 2395 static inline void bpf_prog_inc(struct bpf_prog *prog) 2396 { 2397 } 2398 2399 static inline struct bpf_prog *__must_check 2400 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2401 { 2402 return ERR_PTR(-EOPNOTSUPP); 2403 } 2404 2405 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2406 const struct bpf_link_ops *ops, 2407 struct bpf_prog *prog) 2408 { 2409 } 2410 2411 static inline int bpf_link_prime(struct bpf_link *link, 2412 struct bpf_link_primer *primer) 2413 { 2414 return -EOPNOTSUPP; 2415 } 2416 2417 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2418 { 2419 return -EOPNOTSUPP; 2420 } 2421 2422 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2423 { 2424 } 2425 2426 static inline void bpf_link_inc(struct bpf_link *link) 2427 { 2428 } 2429 2430 static inline void bpf_link_put(struct bpf_link *link) 2431 { 2432 } 2433 2434 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2435 { 2436 return -EOPNOTSUPP; 2437 } 2438 2439 static inline void __dev_flush(void) 2440 { 2441 } 2442 2443 struct xdp_frame; 2444 struct bpf_dtab_netdev; 2445 struct bpf_cpu_map_entry; 2446 2447 static inline 2448 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2449 struct net_device *dev_rx) 2450 { 2451 return 0; 2452 } 2453 2454 static inline 2455 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2456 struct net_device *dev_rx) 2457 { 2458 return 0; 2459 } 2460 2461 static inline 2462 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2463 struct bpf_map *map, bool exclude_ingress) 2464 { 2465 return 0; 2466 } 2467 2468 struct sk_buff; 2469 2470 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2471 struct sk_buff *skb, 2472 struct bpf_prog *xdp_prog) 2473 { 2474 return 0; 2475 } 2476 2477 static inline 2478 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2479 struct bpf_prog *xdp_prog, struct bpf_map *map, 2480 bool exclude_ingress) 2481 { 2482 return 0; 2483 } 2484 2485 static inline void __cpu_map_flush(void) 2486 { 2487 } 2488 2489 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2490 struct xdp_frame *xdpf, 2491 struct net_device *dev_rx) 2492 { 2493 return 0; 2494 } 2495 2496 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2497 struct sk_buff *skb) 2498 { 2499 return -EOPNOTSUPP; 2500 } 2501 2502 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2503 enum bpf_prog_type type) 2504 { 2505 return ERR_PTR(-EOPNOTSUPP); 2506 } 2507 2508 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2509 const union bpf_attr *kattr, 2510 union bpf_attr __user *uattr) 2511 { 2512 return -ENOTSUPP; 2513 } 2514 2515 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2516 const union bpf_attr *kattr, 2517 union bpf_attr __user *uattr) 2518 { 2519 return -ENOTSUPP; 2520 } 2521 2522 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2523 const union bpf_attr *kattr, 2524 union bpf_attr __user *uattr) 2525 { 2526 return -ENOTSUPP; 2527 } 2528 2529 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2530 const union bpf_attr *kattr, 2531 union bpf_attr __user *uattr) 2532 { 2533 return -ENOTSUPP; 2534 } 2535 2536 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2537 const union bpf_attr *kattr, 2538 union bpf_attr __user *uattr) 2539 { 2540 return -ENOTSUPP; 2541 } 2542 2543 static inline void bpf_map_put(struct bpf_map *map) 2544 { 2545 } 2546 2547 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2548 { 2549 return ERR_PTR(-ENOTSUPP); 2550 } 2551 2552 static inline int btf_struct_access(struct bpf_verifier_log *log, 2553 const struct bpf_reg_state *reg, 2554 int off, int size, enum bpf_access_type atype, 2555 u32 *next_btf_id, enum bpf_type_flag *flag, 2556 const char **field_name) 2557 { 2558 return -EACCES; 2559 } 2560 2561 static inline const struct bpf_func_proto * 2562 bpf_base_func_proto(enum bpf_func_id func_id) 2563 { 2564 return NULL; 2565 } 2566 2567 static inline void bpf_task_storage_free(struct task_struct *task) 2568 { 2569 } 2570 2571 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2572 { 2573 return false; 2574 } 2575 2576 static inline const struct btf_func_model * 2577 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2578 const struct bpf_insn *insn) 2579 { 2580 return NULL; 2581 } 2582 2583 static inline int 2584 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2585 u16 btf_fd_idx, u8 **func_addr) 2586 { 2587 return -ENOTSUPP; 2588 } 2589 2590 static inline bool unprivileged_ebpf_enabled(void) 2591 { 2592 return false; 2593 } 2594 2595 static inline bool has_current_bpf_ctx(void) 2596 { 2597 return false; 2598 } 2599 2600 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2601 { 2602 } 2603 2604 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2605 { 2606 } 2607 2608 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2609 enum bpf_dynptr_type type, u32 offset, u32 size) 2610 { 2611 } 2612 2613 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2614 { 2615 } 2616 2617 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2618 { 2619 } 2620 #endif /* CONFIG_BPF_SYSCALL */ 2621 2622 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2623 struct btf_mod_pair *used_btfs, u32 len); 2624 2625 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2626 enum bpf_prog_type type) 2627 { 2628 return bpf_prog_get_type_dev(ufd, type, false); 2629 } 2630 2631 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2632 struct bpf_map **used_maps, u32 len); 2633 2634 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2635 2636 int bpf_prog_offload_compile(struct bpf_prog *prog); 2637 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2638 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2639 struct bpf_prog *prog); 2640 2641 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2642 2643 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2644 int bpf_map_offload_update_elem(struct bpf_map *map, 2645 void *key, void *value, u64 flags); 2646 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2647 int bpf_map_offload_get_next_key(struct bpf_map *map, 2648 void *key, void *next_key); 2649 2650 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2651 2652 struct bpf_offload_dev * 2653 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2654 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2655 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2656 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2657 struct net_device *netdev); 2658 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2659 struct net_device *netdev); 2660 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2661 2662 void unpriv_ebpf_notify(int new_state); 2663 2664 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2665 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2666 struct bpf_prog_aux *prog_aux); 2667 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2668 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2669 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2670 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2671 2672 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2673 { 2674 return aux->dev_bound; 2675 } 2676 2677 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2678 { 2679 return aux->offload_requested; 2680 } 2681 2682 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2683 2684 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2685 { 2686 return unlikely(map->ops == &bpf_map_offload_ops); 2687 } 2688 2689 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2690 void bpf_map_offload_map_free(struct bpf_map *map); 2691 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2692 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2693 const union bpf_attr *kattr, 2694 union bpf_attr __user *uattr); 2695 2696 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2697 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2698 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2699 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2700 union bpf_attr __user *uattr); 2701 2702 void sock_map_unhash(struct sock *sk); 2703 void sock_map_destroy(struct sock *sk); 2704 void sock_map_close(struct sock *sk, long timeout); 2705 #else 2706 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2707 struct bpf_prog_aux *prog_aux) 2708 { 2709 return -EOPNOTSUPP; 2710 } 2711 2712 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 2713 u32 func_id) 2714 { 2715 return NULL; 2716 } 2717 2718 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 2719 union bpf_attr *attr) 2720 { 2721 return -EOPNOTSUPP; 2722 } 2723 2724 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 2725 struct bpf_prog *old_prog) 2726 { 2727 return -EOPNOTSUPP; 2728 } 2729 2730 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 2731 { 2732 } 2733 2734 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2735 { 2736 return false; 2737 } 2738 2739 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 2740 { 2741 return false; 2742 } 2743 2744 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 2745 { 2746 return false; 2747 } 2748 2749 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2750 { 2751 return false; 2752 } 2753 2754 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 2755 { 2756 return ERR_PTR(-EOPNOTSUPP); 2757 } 2758 2759 static inline void bpf_map_offload_map_free(struct bpf_map *map) 2760 { 2761 } 2762 2763 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 2764 { 2765 return 0; 2766 } 2767 2768 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2769 const union bpf_attr *kattr, 2770 union bpf_attr __user *uattr) 2771 { 2772 return -ENOTSUPP; 2773 } 2774 2775 #ifdef CONFIG_BPF_SYSCALL 2776 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 2777 struct bpf_prog *prog) 2778 { 2779 return -EINVAL; 2780 } 2781 2782 static inline int sock_map_prog_detach(const union bpf_attr *attr, 2783 enum bpf_prog_type ptype) 2784 { 2785 return -EOPNOTSUPP; 2786 } 2787 2788 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 2789 u64 flags) 2790 { 2791 return -EOPNOTSUPP; 2792 } 2793 2794 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 2795 union bpf_attr __user *uattr) 2796 { 2797 return -EINVAL; 2798 } 2799 #endif /* CONFIG_BPF_SYSCALL */ 2800 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 2801 2802 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 2803 void bpf_sk_reuseport_detach(struct sock *sk); 2804 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 2805 void *value); 2806 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 2807 void *value, u64 map_flags); 2808 #else 2809 static inline void bpf_sk_reuseport_detach(struct sock *sk) 2810 { 2811 } 2812 2813 #ifdef CONFIG_BPF_SYSCALL 2814 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 2815 void *key, void *value) 2816 { 2817 return -EOPNOTSUPP; 2818 } 2819 2820 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 2821 void *key, void *value, 2822 u64 map_flags) 2823 { 2824 return -EOPNOTSUPP; 2825 } 2826 #endif /* CONFIG_BPF_SYSCALL */ 2827 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 2828 2829 /* verifier prototypes for helper functions called from eBPF programs */ 2830 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 2831 extern const struct bpf_func_proto bpf_map_update_elem_proto; 2832 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 2833 extern const struct bpf_func_proto bpf_map_push_elem_proto; 2834 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 2835 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 2836 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 2837 2838 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 2839 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 2840 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 2841 extern const struct bpf_func_proto bpf_tail_call_proto; 2842 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 2843 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 2844 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 2845 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 2846 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 2847 extern const struct bpf_func_proto bpf_get_current_comm_proto; 2848 extern const struct bpf_func_proto bpf_get_stackid_proto; 2849 extern const struct bpf_func_proto bpf_get_stack_proto; 2850 extern const struct bpf_func_proto bpf_get_task_stack_proto; 2851 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 2852 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 2853 extern const struct bpf_func_proto bpf_sock_map_update_proto; 2854 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 2855 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 2856 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 2857 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 2858 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 2859 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 2860 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 2861 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 2862 extern const struct bpf_func_proto bpf_spin_lock_proto; 2863 extern const struct bpf_func_proto bpf_spin_unlock_proto; 2864 extern const struct bpf_func_proto bpf_get_local_storage_proto; 2865 extern const struct bpf_func_proto bpf_strtol_proto; 2866 extern const struct bpf_func_proto bpf_strtoul_proto; 2867 extern const struct bpf_func_proto bpf_tcp_sock_proto; 2868 extern const struct bpf_func_proto bpf_jiffies64_proto; 2869 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 2870 extern const struct bpf_func_proto bpf_event_output_data_proto; 2871 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 2872 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 2873 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 2874 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 2875 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 2876 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 2877 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 2878 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 2879 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 2880 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 2881 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 2882 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 2883 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 2884 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 2885 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 2886 extern const struct bpf_func_proto bpf_copy_from_user_proto; 2887 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 2888 extern const struct bpf_func_proto bpf_snprintf_proto; 2889 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 2890 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 2891 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 2892 extern const struct bpf_func_proto bpf_sock_from_file_proto; 2893 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 2894 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 2895 extern const struct bpf_func_proto bpf_task_storage_get_proto; 2896 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 2897 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 2898 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 2899 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 2900 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 2901 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 2902 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 2903 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 2904 extern const struct bpf_func_proto bpf_find_vma_proto; 2905 extern const struct bpf_func_proto bpf_loop_proto; 2906 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 2907 extern const struct bpf_func_proto bpf_set_retval_proto; 2908 extern const struct bpf_func_proto bpf_get_retval_proto; 2909 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 2910 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 2911 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 2912 2913 const struct bpf_func_proto *tracing_prog_func_proto( 2914 enum bpf_func_id func_id, const struct bpf_prog *prog); 2915 2916 /* Shared helpers among cBPF and eBPF. */ 2917 void bpf_user_rnd_init_once(void); 2918 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2919 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2920 2921 #if defined(CONFIG_NET) 2922 bool bpf_sock_common_is_valid_access(int off, int size, 2923 enum bpf_access_type type, 2924 struct bpf_insn_access_aux *info); 2925 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2926 struct bpf_insn_access_aux *info); 2927 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2928 const struct bpf_insn *si, 2929 struct bpf_insn *insn_buf, 2930 struct bpf_prog *prog, 2931 u32 *target_size); 2932 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 2933 struct bpf_dynptr_kern *ptr); 2934 #else 2935 static inline bool bpf_sock_common_is_valid_access(int off, int size, 2936 enum bpf_access_type type, 2937 struct bpf_insn_access_aux *info) 2938 { 2939 return false; 2940 } 2941 static inline bool bpf_sock_is_valid_access(int off, int size, 2942 enum bpf_access_type type, 2943 struct bpf_insn_access_aux *info) 2944 { 2945 return false; 2946 } 2947 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2948 const struct bpf_insn *si, 2949 struct bpf_insn *insn_buf, 2950 struct bpf_prog *prog, 2951 u32 *target_size) 2952 { 2953 return 0; 2954 } 2955 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 2956 struct bpf_dynptr_kern *ptr) 2957 { 2958 return -EOPNOTSUPP; 2959 } 2960 #endif 2961 2962 #ifdef CONFIG_INET 2963 struct sk_reuseport_kern { 2964 struct sk_buff *skb; 2965 struct sock *sk; 2966 struct sock *selected_sk; 2967 struct sock *migrating_sk; 2968 void *data_end; 2969 u32 hash; 2970 u32 reuseport_id; 2971 bool bind_inany; 2972 }; 2973 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2974 struct bpf_insn_access_aux *info); 2975 2976 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2977 const struct bpf_insn *si, 2978 struct bpf_insn *insn_buf, 2979 struct bpf_prog *prog, 2980 u32 *target_size); 2981 2982 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2983 struct bpf_insn_access_aux *info); 2984 2985 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2986 const struct bpf_insn *si, 2987 struct bpf_insn *insn_buf, 2988 struct bpf_prog *prog, 2989 u32 *target_size); 2990 #else 2991 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 2992 enum bpf_access_type type, 2993 struct bpf_insn_access_aux *info) 2994 { 2995 return false; 2996 } 2997 2998 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2999 const struct bpf_insn *si, 3000 struct bpf_insn *insn_buf, 3001 struct bpf_prog *prog, 3002 u32 *target_size) 3003 { 3004 return 0; 3005 } 3006 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3007 enum bpf_access_type type, 3008 struct bpf_insn_access_aux *info) 3009 { 3010 return false; 3011 } 3012 3013 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3014 const struct bpf_insn *si, 3015 struct bpf_insn *insn_buf, 3016 struct bpf_prog *prog, 3017 u32 *target_size) 3018 { 3019 return 0; 3020 } 3021 #endif /* CONFIG_INET */ 3022 3023 enum bpf_text_poke_type { 3024 BPF_MOD_CALL, 3025 BPF_MOD_JUMP, 3026 }; 3027 3028 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3029 void *addr1, void *addr2); 3030 3031 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3032 int bpf_arch_text_invalidate(void *dst, size_t len); 3033 3034 struct btf_id_set; 3035 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3036 3037 #define MAX_BPRINTF_VARARGS 12 3038 #define MAX_BPRINTF_BUF 1024 3039 3040 struct bpf_bprintf_data { 3041 u32 *bin_args; 3042 char *buf; 3043 bool get_bin_args; 3044 bool get_buf; 3045 }; 3046 3047 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3048 u32 num_args, struct bpf_bprintf_data *data); 3049 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3050 3051 #ifdef CONFIG_BPF_LSM 3052 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3053 void bpf_cgroup_atype_put(int cgroup_atype); 3054 #else 3055 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3056 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3057 #endif /* CONFIG_BPF_LSM */ 3058 3059 struct key; 3060 3061 #ifdef CONFIG_KEYS 3062 struct bpf_key { 3063 struct key *key; 3064 bool has_ref; 3065 }; 3066 #endif /* CONFIG_KEYS */ 3067 3068 static inline bool type_is_alloc(u32 type) 3069 { 3070 return type & MEM_ALLOC; 3071 } 3072 3073 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3074 { 3075 if (memcg_bpf_enabled()) 3076 return flags | __GFP_ACCOUNT; 3077 return flags; 3078 } 3079 3080 #endif /* _LINUX_BPF_H */ 3081