xref: /linux-6.15/include/linux/bpf.h (revision aaee477e)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54 
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
59 extern bool bpf_global_ma_set;
60 
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 					struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 				   const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 	const struct seq_operations *seq_ops;
69 	bpf_iter_init_seq_priv_t init_seq_private;
70 	bpf_iter_fini_seq_priv_t fini_seq_private;
71 	u32 seq_priv_size;
72 };
73 
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 	/* funcs callable from userspace (via syscall) */
77 	int (*map_alloc_check)(union bpf_attr *attr);
78 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 	void (*map_release)(struct bpf_map *map, struct file *map_file);
80 	void (*map_free)(struct bpf_map *map);
81 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 	void (*map_release_uref)(struct bpf_map *map);
83 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 				union bpf_attr __user *uattr);
86 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 					  void *value, u64 flags);
88 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 					   const union bpf_attr *attr,
90 					   union bpf_attr __user *uattr);
91 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 				const union bpf_attr *attr,
93 				union bpf_attr __user *uattr);
94 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 				union bpf_attr __user *uattr);
96 
97 	/* funcs callable from userspace and from eBPF programs */
98 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 	long (*map_delete_elem)(struct bpf_map *map, void *key);
101 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 	long (*map_pop_elem)(struct bpf_map *map, void *value);
103 	long (*map_peek_elem)(struct bpf_map *map, void *value);
104 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105 
106 	/* funcs called by prog_array and perf_event_array map */
107 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 				int fd);
109 	void (*map_fd_put_ptr)(void *ptr);
110 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 				  struct seq_file *m);
114 	int (*map_check_btf)(const struct bpf_map *map,
115 			     const struct btf *btf,
116 			     const struct btf_type *key_type,
117 			     const struct btf_type *value_type);
118 
119 	/* Prog poke tracking helpers. */
120 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 			     struct bpf_prog *new);
124 
125 	/* Direct value access helpers. */
126 	int (*map_direct_value_addr)(const struct bpf_map *map,
127 				     u64 *imm, u32 off);
128 	int (*map_direct_value_meta)(const struct bpf_map *map,
129 				     u64 imm, u32 *off);
130 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 			     struct poll_table_struct *pts);
133 
134 	/* Functions called by bpf_local_storage maps */
135 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 					void *owner, u32 size);
137 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 					   void *owner, u32 size);
139 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140 
141 	/* Misc helpers.*/
142 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143 
144 	/* map_meta_equal must be implemented for maps that can be
145 	 * used as an inner map.  It is a runtime check to ensure
146 	 * an inner map can be inserted to an outer map.
147 	 *
148 	 * Some properties of the inner map has been used during the
149 	 * verification time.  When inserting an inner map at the runtime,
150 	 * map_meta_equal has to ensure the inserting map has the same
151 	 * properties that the verifier has used earlier.
152 	 */
153 	bool (*map_meta_equal)(const struct bpf_map *meta0,
154 			       const struct bpf_map *meta1);
155 
156 
157 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 					      struct bpf_func_state *caller,
159 					      struct bpf_func_state *callee);
160 	long (*map_for_each_callback)(struct bpf_map *map,
161 				     bpf_callback_t callback_fn,
162 				     void *callback_ctx, u64 flags);
163 
164 	u64 (*map_mem_usage)(const struct bpf_map *map);
165 
166 	/* BTF id of struct allocated by map_alloc */
167 	int *map_btf_id;
168 
169 	/* bpf_iter info used to open a seq_file */
170 	const struct bpf_iter_seq_info *iter_seq_info;
171 };
172 
173 enum {
174 	/* Support at most 10 fields in a BTF type */
175 	BTF_FIELDS_MAX	   = 10,
176 };
177 
178 enum btf_field_type {
179 	BPF_SPIN_LOCK  = (1 << 0),
180 	BPF_TIMER      = (1 << 1),
181 	BPF_KPTR_UNREF = (1 << 2),
182 	BPF_KPTR_REF   = (1 << 3),
183 	BPF_KPTR_PERCPU = (1 << 4),
184 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
185 	BPF_LIST_HEAD  = (1 << 5),
186 	BPF_LIST_NODE  = (1 << 6),
187 	BPF_RB_ROOT    = (1 << 7),
188 	BPF_RB_NODE    = (1 << 8),
189 	BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
190 				 BPF_RB_NODE | BPF_RB_ROOT,
191 	BPF_REFCOUNT   = (1 << 9),
192 };
193 
194 typedef void (*btf_dtor_kfunc_t)(void *);
195 
196 struct btf_field_kptr {
197 	struct btf *btf;
198 	struct module *module;
199 	/* dtor used if btf_is_kernel(btf), otherwise the type is
200 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
201 	 */
202 	btf_dtor_kfunc_t dtor;
203 	u32 btf_id;
204 };
205 
206 struct btf_field_graph_root {
207 	struct btf *btf;
208 	u32 value_btf_id;
209 	u32 node_offset;
210 	struct btf_record *value_rec;
211 };
212 
213 struct btf_field {
214 	u32 offset;
215 	u32 size;
216 	enum btf_field_type type;
217 	union {
218 		struct btf_field_kptr kptr;
219 		struct btf_field_graph_root graph_root;
220 	};
221 };
222 
223 struct btf_record {
224 	u32 cnt;
225 	u32 field_mask;
226 	int spin_lock_off;
227 	int timer_off;
228 	int refcount_off;
229 	struct btf_field fields[];
230 };
231 
232 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
233 struct bpf_rb_node_kern {
234 	struct rb_node rb_node;
235 	void *owner;
236 } __attribute__((aligned(8)));
237 
238 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
239 struct bpf_list_node_kern {
240 	struct list_head list_head;
241 	void *owner;
242 } __attribute__((aligned(8)));
243 
244 struct bpf_map {
245 	/* The first two cachelines with read-mostly members of which some
246 	 * are also accessed in fast-path (e.g. ops, max_entries).
247 	 */
248 	const struct bpf_map_ops *ops ____cacheline_aligned;
249 	struct bpf_map *inner_map_meta;
250 #ifdef CONFIG_SECURITY
251 	void *security;
252 #endif
253 	enum bpf_map_type map_type;
254 	u32 key_size;
255 	u32 value_size;
256 	u32 max_entries;
257 	u64 map_extra; /* any per-map-type extra fields */
258 	u32 map_flags;
259 	u32 id;
260 	struct btf_record *record;
261 	int numa_node;
262 	u32 btf_key_type_id;
263 	u32 btf_value_type_id;
264 	u32 btf_vmlinux_value_type_id;
265 	struct btf *btf;
266 #ifdef CONFIG_MEMCG_KMEM
267 	struct obj_cgroup *objcg;
268 #endif
269 	char name[BPF_OBJ_NAME_LEN];
270 	/* The 3rd and 4th cacheline with misc members to avoid false sharing
271 	 * particularly with refcounting.
272 	 */
273 	atomic64_t refcnt ____cacheline_aligned;
274 	atomic64_t usercnt;
275 	struct work_struct work;
276 	struct mutex freeze_mutex;
277 	atomic64_t writecnt;
278 	/* 'Ownership' of program-containing map is claimed by the first program
279 	 * that is going to use this map or by the first program which FD is
280 	 * stored in the map to make sure that all callers and callees have the
281 	 * same prog type, JITed flag and xdp_has_frags flag.
282 	 */
283 	struct {
284 		spinlock_t lock;
285 		enum bpf_prog_type type;
286 		bool jited;
287 		bool xdp_has_frags;
288 	} owner;
289 	bool bypass_spec_v1;
290 	bool frozen; /* write-once; write-protected by freeze_mutex */
291 	s64 __percpu *elem_count;
292 };
293 
294 static inline const char *btf_field_type_name(enum btf_field_type type)
295 {
296 	switch (type) {
297 	case BPF_SPIN_LOCK:
298 		return "bpf_spin_lock";
299 	case BPF_TIMER:
300 		return "bpf_timer";
301 	case BPF_KPTR_UNREF:
302 	case BPF_KPTR_REF:
303 		return "kptr";
304 	case BPF_KPTR_PERCPU:
305 		return "percpu_kptr";
306 	case BPF_LIST_HEAD:
307 		return "bpf_list_head";
308 	case BPF_LIST_NODE:
309 		return "bpf_list_node";
310 	case BPF_RB_ROOT:
311 		return "bpf_rb_root";
312 	case BPF_RB_NODE:
313 		return "bpf_rb_node";
314 	case BPF_REFCOUNT:
315 		return "bpf_refcount";
316 	default:
317 		WARN_ON_ONCE(1);
318 		return "unknown";
319 	}
320 }
321 
322 static inline u32 btf_field_type_size(enum btf_field_type type)
323 {
324 	switch (type) {
325 	case BPF_SPIN_LOCK:
326 		return sizeof(struct bpf_spin_lock);
327 	case BPF_TIMER:
328 		return sizeof(struct bpf_timer);
329 	case BPF_KPTR_UNREF:
330 	case BPF_KPTR_REF:
331 	case BPF_KPTR_PERCPU:
332 		return sizeof(u64);
333 	case BPF_LIST_HEAD:
334 		return sizeof(struct bpf_list_head);
335 	case BPF_LIST_NODE:
336 		return sizeof(struct bpf_list_node);
337 	case BPF_RB_ROOT:
338 		return sizeof(struct bpf_rb_root);
339 	case BPF_RB_NODE:
340 		return sizeof(struct bpf_rb_node);
341 	case BPF_REFCOUNT:
342 		return sizeof(struct bpf_refcount);
343 	default:
344 		WARN_ON_ONCE(1);
345 		return 0;
346 	}
347 }
348 
349 static inline u32 btf_field_type_align(enum btf_field_type type)
350 {
351 	switch (type) {
352 	case BPF_SPIN_LOCK:
353 		return __alignof__(struct bpf_spin_lock);
354 	case BPF_TIMER:
355 		return __alignof__(struct bpf_timer);
356 	case BPF_KPTR_UNREF:
357 	case BPF_KPTR_REF:
358 	case BPF_KPTR_PERCPU:
359 		return __alignof__(u64);
360 	case BPF_LIST_HEAD:
361 		return __alignof__(struct bpf_list_head);
362 	case BPF_LIST_NODE:
363 		return __alignof__(struct bpf_list_node);
364 	case BPF_RB_ROOT:
365 		return __alignof__(struct bpf_rb_root);
366 	case BPF_RB_NODE:
367 		return __alignof__(struct bpf_rb_node);
368 	case BPF_REFCOUNT:
369 		return __alignof__(struct bpf_refcount);
370 	default:
371 		WARN_ON_ONCE(1);
372 		return 0;
373 	}
374 }
375 
376 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
377 {
378 	memset(addr, 0, field->size);
379 
380 	switch (field->type) {
381 	case BPF_REFCOUNT:
382 		refcount_set((refcount_t *)addr, 1);
383 		break;
384 	case BPF_RB_NODE:
385 		RB_CLEAR_NODE((struct rb_node *)addr);
386 		break;
387 	case BPF_LIST_HEAD:
388 	case BPF_LIST_NODE:
389 		INIT_LIST_HEAD((struct list_head *)addr);
390 		break;
391 	case BPF_RB_ROOT:
392 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
393 	case BPF_SPIN_LOCK:
394 	case BPF_TIMER:
395 	case BPF_KPTR_UNREF:
396 	case BPF_KPTR_REF:
397 	case BPF_KPTR_PERCPU:
398 		break;
399 	default:
400 		WARN_ON_ONCE(1);
401 		return;
402 	}
403 }
404 
405 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
406 {
407 	if (IS_ERR_OR_NULL(rec))
408 		return false;
409 	return rec->field_mask & type;
410 }
411 
412 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
413 {
414 	int i;
415 
416 	if (IS_ERR_OR_NULL(rec))
417 		return;
418 	for (i = 0; i < rec->cnt; i++)
419 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
420 }
421 
422 /* 'dst' must be a temporary buffer and should not point to memory that is being
423  * used in parallel by a bpf program or bpf syscall, otherwise the access from
424  * the bpf program or bpf syscall may be corrupted by the reinitialization,
425  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
426  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
427  * program or bpf syscall.
428  */
429 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
430 {
431 	bpf_obj_init(map->record, dst);
432 }
433 
434 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
435  * forced to use 'long' read/writes to try to atomically copy long counters.
436  * Best-effort only.  No barriers here, since it _will_ race with concurrent
437  * updates from BPF programs. Called from bpf syscall and mostly used with
438  * size 8 or 16 bytes, so ask compiler to inline it.
439  */
440 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
441 {
442 	const long *lsrc = src;
443 	long *ldst = dst;
444 
445 	size /= sizeof(long);
446 	while (size--)
447 		data_race(*ldst++ = *lsrc++);
448 }
449 
450 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
451 static inline void bpf_obj_memcpy(struct btf_record *rec,
452 				  void *dst, void *src, u32 size,
453 				  bool long_memcpy)
454 {
455 	u32 curr_off = 0;
456 	int i;
457 
458 	if (IS_ERR_OR_NULL(rec)) {
459 		if (long_memcpy)
460 			bpf_long_memcpy(dst, src, round_up(size, 8));
461 		else
462 			memcpy(dst, src, size);
463 		return;
464 	}
465 
466 	for (i = 0; i < rec->cnt; i++) {
467 		u32 next_off = rec->fields[i].offset;
468 		u32 sz = next_off - curr_off;
469 
470 		memcpy(dst + curr_off, src + curr_off, sz);
471 		curr_off += rec->fields[i].size + sz;
472 	}
473 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
474 }
475 
476 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
477 {
478 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
479 }
480 
481 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
482 {
483 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
484 }
485 
486 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
487 {
488 	u32 curr_off = 0;
489 	int i;
490 
491 	if (IS_ERR_OR_NULL(rec)) {
492 		memset(dst, 0, size);
493 		return;
494 	}
495 
496 	for (i = 0; i < rec->cnt; i++) {
497 		u32 next_off = rec->fields[i].offset;
498 		u32 sz = next_off - curr_off;
499 
500 		memset(dst + curr_off, 0, sz);
501 		curr_off += rec->fields[i].size + sz;
502 	}
503 	memset(dst + curr_off, 0, size - curr_off);
504 }
505 
506 static inline void zero_map_value(struct bpf_map *map, void *dst)
507 {
508 	bpf_obj_memzero(map->record, dst, map->value_size);
509 }
510 
511 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
512 			   bool lock_src);
513 void bpf_timer_cancel_and_free(void *timer);
514 void bpf_list_head_free(const struct btf_field *field, void *list_head,
515 			struct bpf_spin_lock *spin_lock);
516 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
517 		      struct bpf_spin_lock *spin_lock);
518 
519 
520 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
521 
522 struct bpf_offload_dev;
523 struct bpf_offloaded_map;
524 
525 struct bpf_map_dev_ops {
526 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
527 				void *key, void *next_key);
528 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
529 			       void *key, void *value);
530 	int (*map_update_elem)(struct bpf_offloaded_map *map,
531 			       void *key, void *value, u64 flags);
532 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
533 };
534 
535 struct bpf_offloaded_map {
536 	struct bpf_map map;
537 	struct net_device *netdev;
538 	const struct bpf_map_dev_ops *dev_ops;
539 	void *dev_priv;
540 	struct list_head offloads;
541 };
542 
543 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
544 {
545 	return container_of(map, struct bpf_offloaded_map, map);
546 }
547 
548 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
549 {
550 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
551 }
552 
553 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
554 {
555 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
556 		map->ops->map_seq_show_elem;
557 }
558 
559 int map_check_no_btf(const struct bpf_map *map,
560 		     const struct btf *btf,
561 		     const struct btf_type *key_type,
562 		     const struct btf_type *value_type);
563 
564 bool bpf_map_meta_equal(const struct bpf_map *meta0,
565 			const struct bpf_map *meta1);
566 
567 extern const struct bpf_map_ops bpf_map_offload_ops;
568 
569 /* bpf_type_flag contains a set of flags that are applicable to the values of
570  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
571  * or a memory is read-only. We classify types into two categories: base types
572  * and extended types. Extended types are base types combined with a type flag.
573  *
574  * Currently there are no more than 32 base types in arg_type, ret_type and
575  * reg_types.
576  */
577 #define BPF_BASE_TYPE_BITS	8
578 
579 enum bpf_type_flag {
580 	/* PTR may be NULL. */
581 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
582 
583 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
584 	 * compatible with both mutable and immutable memory.
585 	 */
586 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
587 
588 	/* MEM points to BPF ring buffer reservation. */
589 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
590 
591 	/* MEM is in user address space. */
592 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
593 
594 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
595 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
596 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
597 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
598 	 * to the specified cpu.
599 	 */
600 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
601 
602 	/* Indicates that the argument will be released. */
603 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
604 
605 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
606 	 * unreferenced and referenced kptr loaded from map value using a load
607 	 * instruction, so that they can only be dereferenced but not escape the
608 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
609 	 * kfunc or bpf helpers).
610 	 */
611 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
612 
613 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
614 
615 	/* DYNPTR points to memory local to the bpf program. */
616 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
617 
618 	/* DYNPTR points to a kernel-produced ringbuf record. */
619 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
620 
621 	/* Size is known at compile time. */
622 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
623 
624 	/* MEM is of an allocated object of type in program BTF. This is used to
625 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
626 	 */
627 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
628 
629 	/* PTR was passed from the kernel in a trusted context, and may be
630 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
631 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
632 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
633 	 * without invoking bpf_kptr_xchg(). What we really need to know is
634 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
635 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
636 	 * helpers, they do not cover all possible instances of unsafe
637 	 * pointers. For example, a pointer that was obtained from walking a
638 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
639 	 * fact that it may be NULL, invalid, etc. This is due to backwards
640 	 * compatibility requirements, as this was the behavior that was first
641 	 * introduced when kptrs were added. The behavior is now considered
642 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
643 	 *
644 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
645 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
646 	 * For example, pointers passed to tracepoint arguments are considered
647 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
648 	 * callbacks. As alluded to above, pointers that are obtained from
649 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
650 	 * struct task_struct *task is PTR_TRUSTED, then accessing
651 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
652 	 * in a BPF register. Similarly, pointers passed to certain programs
653 	 * types such as kretprobes are not guaranteed to be valid, as they may
654 	 * for example contain an object that was recently freed.
655 	 */
656 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
657 
658 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
659 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
660 
661 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
662 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
663 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
664 	 */
665 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
666 
667 	/* DYNPTR points to sk_buff */
668 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
669 
670 	/* DYNPTR points to xdp_buff */
671 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
672 
673 	__BPF_TYPE_FLAG_MAX,
674 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
675 };
676 
677 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
678 				 | DYNPTR_TYPE_XDP)
679 
680 /* Max number of base types. */
681 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
682 
683 /* Max number of all types. */
684 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
685 
686 /* function argument constraints */
687 enum bpf_arg_type {
688 	ARG_DONTCARE = 0,	/* unused argument in helper function */
689 
690 	/* the following constraints used to prototype
691 	 * bpf_map_lookup/update/delete_elem() functions
692 	 */
693 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
694 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
695 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
696 
697 	/* Used to prototype bpf_memcmp() and other functions that access data
698 	 * on eBPF program stack
699 	 */
700 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
701 
702 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
703 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
704 
705 	ARG_PTR_TO_CTX,		/* pointer to context */
706 	ARG_ANYTHING,		/* any (initialized) argument is ok */
707 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
708 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
709 	ARG_PTR_TO_INT,		/* pointer to int */
710 	ARG_PTR_TO_LONG,	/* pointer to long */
711 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
712 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
713 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
714 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
715 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
716 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
717 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
718 	ARG_PTR_TO_STACK,	/* pointer to stack */
719 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
720 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
721 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
722 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
723 	__BPF_ARG_TYPE_MAX,
724 
725 	/* Extended arg_types. */
726 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
727 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
728 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
729 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
730 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
731 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
732 	/* pointer to memory does not need to be initialized, helper function must fill
733 	 * all bytes or clear them in error case.
734 	 */
735 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
736 	/* Pointer to valid memory of size known at compile time. */
737 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
738 
739 	/* This must be the last entry. Its purpose is to ensure the enum is
740 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
741 	 */
742 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
743 };
744 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
745 
746 /* type of values returned from helper functions */
747 enum bpf_return_type {
748 	RET_INTEGER,			/* function returns integer */
749 	RET_VOID,			/* function doesn't return anything */
750 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
751 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
752 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
753 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
754 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
755 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
756 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
757 	__BPF_RET_TYPE_MAX,
758 
759 	/* Extended ret_types. */
760 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
761 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
762 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
763 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
764 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
765 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
766 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
767 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
768 
769 	/* This must be the last entry. Its purpose is to ensure the enum is
770 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
771 	 */
772 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
773 };
774 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
775 
776 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
777  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
778  * instructions after verifying
779  */
780 struct bpf_func_proto {
781 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
782 	bool gpl_only;
783 	bool pkt_access;
784 	bool might_sleep;
785 	enum bpf_return_type ret_type;
786 	union {
787 		struct {
788 			enum bpf_arg_type arg1_type;
789 			enum bpf_arg_type arg2_type;
790 			enum bpf_arg_type arg3_type;
791 			enum bpf_arg_type arg4_type;
792 			enum bpf_arg_type arg5_type;
793 		};
794 		enum bpf_arg_type arg_type[5];
795 	};
796 	union {
797 		struct {
798 			u32 *arg1_btf_id;
799 			u32 *arg2_btf_id;
800 			u32 *arg3_btf_id;
801 			u32 *arg4_btf_id;
802 			u32 *arg5_btf_id;
803 		};
804 		u32 *arg_btf_id[5];
805 		struct {
806 			size_t arg1_size;
807 			size_t arg2_size;
808 			size_t arg3_size;
809 			size_t arg4_size;
810 			size_t arg5_size;
811 		};
812 		size_t arg_size[5];
813 	};
814 	int *ret_btf_id; /* return value btf_id */
815 	bool (*allowed)(const struct bpf_prog *prog);
816 };
817 
818 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
819  * the first argument to eBPF programs.
820  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
821  */
822 struct bpf_context;
823 
824 enum bpf_access_type {
825 	BPF_READ = 1,
826 	BPF_WRITE = 2
827 };
828 
829 /* types of values stored in eBPF registers */
830 /* Pointer types represent:
831  * pointer
832  * pointer + imm
833  * pointer + (u16) var
834  * pointer + (u16) var + imm
835  * if (range > 0) then [ptr, ptr + range - off) is safe to access
836  * if (id > 0) means that some 'var' was added
837  * if (off > 0) means that 'imm' was added
838  */
839 enum bpf_reg_type {
840 	NOT_INIT = 0,		 /* nothing was written into register */
841 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
842 	PTR_TO_CTX,		 /* reg points to bpf_context */
843 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
844 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
845 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
846 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
847 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
848 	PTR_TO_PACKET,		 /* reg points to skb->data */
849 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
850 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
851 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
852 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
853 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
854 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
855 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
856 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
857 	 * to be null checked by the BPF program. This does not imply the
858 	 * pointer is _not_ null and in practice this can easily be a null
859 	 * pointer when reading pointer chains. The assumption is program
860 	 * context will handle null pointer dereference typically via fault
861 	 * handling. The verifier must keep this in mind and can make no
862 	 * assumptions about null or non-null when doing branch analysis.
863 	 * Further, when passed into helpers the helpers can not, without
864 	 * additional context, assume the value is non-null.
865 	 */
866 	PTR_TO_BTF_ID,
867 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
868 	 * been checked for null. Used primarily to inform the verifier
869 	 * an explicit null check is required for this struct.
870 	 */
871 	PTR_TO_MEM,		 /* reg points to valid memory region */
872 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
873 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
874 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
875 	__BPF_REG_TYPE_MAX,
876 
877 	/* Extended reg_types. */
878 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
879 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
880 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
881 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
882 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
883 
884 	/* This must be the last entry. Its purpose is to ensure the enum is
885 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
886 	 */
887 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
888 };
889 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
890 
891 /* The information passed from prog-specific *_is_valid_access
892  * back to the verifier.
893  */
894 struct bpf_insn_access_aux {
895 	enum bpf_reg_type reg_type;
896 	union {
897 		int ctx_field_size;
898 		struct {
899 			struct btf *btf;
900 			u32 btf_id;
901 		};
902 	};
903 	struct bpf_verifier_log *log; /* for verbose logs */
904 };
905 
906 static inline void
907 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
908 {
909 	aux->ctx_field_size = size;
910 }
911 
912 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
913 {
914 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
915 }
916 
917 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
918 {
919 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
920 }
921 
922 struct bpf_prog_ops {
923 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
924 			union bpf_attr __user *uattr);
925 };
926 
927 struct bpf_reg_state;
928 struct bpf_verifier_ops {
929 	/* return eBPF function prototype for verification */
930 	const struct bpf_func_proto *
931 	(*get_func_proto)(enum bpf_func_id func_id,
932 			  const struct bpf_prog *prog);
933 
934 	/* return true if 'size' wide access at offset 'off' within bpf_context
935 	 * with 'type' (read or write) is allowed
936 	 */
937 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
938 				const struct bpf_prog *prog,
939 				struct bpf_insn_access_aux *info);
940 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
941 			    const struct bpf_prog *prog);
942 	int (*gen_ld_abs)(const struct bpf_insn *orig,
943 			  struct bpf_insn *insn_buf);
944 	u32 (*convert_ctx_access)(enum bpf_access_type type,
945 				  const struct bpf_insn *src,
946 				  struct bpf_insn *dst,
947 				  struct bpf_prog *prog, u32 *target_size);
948 	int (*btf_struct_access)(struct bpf_verifier_log *log,
949 				 const struct bpf_reg_state *reg,
950 				 int off, int size);
951 };
952 
953 struct bpf_prog_offload_ops {
954 	/* verifier basic callbacks */
955 	int (*insn_hook)(struct bpf_verifier_env *env,
956 			 int insn_idx, int prev_insn_idx);
957 	int (*finalize)(struct bpf_verifier_env *env);
958 	/* verifier optimization callbacks (called after .finalize) */
959 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
960 			    struct bpf_insn *insn);
961 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
962 	/* program management callbacks */
963 	int (*prepare)(struct bpf_prog *prog);
964 	int (*translate)(struct bpf_prog *prog);
965 	void (*destroy)(struct bpf_prog *prog);
966 };
967 
968 struct bpf_prog_offload {
969 	struct bpf_prog		*prog;
970 	struct net_device	*netdev;
971 	struct bpf_offload_dev	*offdev;
972 	void			*dev_priv;
973 	struct list_head	offloads;
974 	bool			dev_state;
975 	bool			opt_failed;
976 	void			*jited_image;
977 	u32			jited_len;
978 };
979 
980 enum bpf_cgroup_storage_type {
981 	BPF_CGROUP_STORAGE_SHARED,
982 	BPF_CGROUP_STORAGE_PERCPU,
983 	__BPF_CGROUP_STORAGE_MAX
984 };
985 
986 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
987 
988 /* The longest tracepoint has 12 args.
989  * See include/trace/bpf_probe.h
990  */
991 #define MAX_BPF_FUNC_ARGS 12
992 
993 /* The maximum number of arguments passed through registers
994  * a single function may have.
995  */
996 #define MAX_BPF_FUNC_REG_ARGS 5
997 
998 /* The argument is a structure. */
999 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1000 
1001 /* The argument is signed. */
1002 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1003 
1004 struct btf_func_model {
1005 	u8 ret_size;
1006 	u8 ret_flags;
1007 	u8 nr_args;
1008 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1009 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1010 };
1011 
1012 /* Restore arguments before returning from trampoline to let original function
1013  * continue executing. This flag is used for fentry progs when there are no
1014  * fexit progs.
1015  */
1016 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1017 /* Call original function after fentry progs, but before fexit progs.
1018  * Makes sense for fentry/fexit, normal calls and indirect calls.
1019  */
1020 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1021 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1022  * programs only. Should not be used with normal calls and indirect calls.
1023  */
1024 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1025 /* Store IP address of the caller on the trampoline stack,
1026  * so it's available for trampoline's programs.
1027  */
1028 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1029 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1030 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1031 
1032 /* Get original function from stack instead of from provided direct address.
1033  * Makes sense for trampolines with fexit or fmod_ret programs.
1034  */
1035 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1036 
1037 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1038  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1039  */
1040 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1041 
1042 /* Indicate that current trampoline is in a tail call context. Then, it has to
1043  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1044  */
1045 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1046 
1047 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1048  * bytes on x86.
1049  */
1050 enum {
1051 #if defined(__s390x__)
1052 	BPF_MAX_TRAMP_LINKS = 27,
1053 #else
1054 	BPF_MAX_TRAMP_LINKS = 38,
1055 #endif
1056 };
1057 
1058 struct bpf_tramp_links {
1059 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1060 	int nr_links;
1061 };
1062 
1063 struct bpf_tramp_run_ctx;
1064 
1065 /* Different use cases for BPF trampoline:
1066  * 1. replace nop at the function entry (kprobe equivalent)
1067  *    flags = BPF_TRAMP_F_RESTORE_REGS
1068  *    fentry = a set of programs to run before returning from trampoline
1069  *
1070  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1071  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1072  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1073  *    fentry = a set of program to run before calling original function
1074  *    fexit = a set of program to run after original function
1075  *
1076  * 3. replace direct call instruction anywhere in the function body
1077  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1078  *    With flags = 0
1079  *      fentry = a set of programs to run before returning from trampoline
1080  *    With flags = BPF_TRAMP_F_CALL_ORIG
1081  *      orig_call = original callback addr or direct function addr
1082  *      fentry = a set of program to run before calling original function
1083  *      fexit = a set of program to run after original function
1084  */
1085 struct bpf_tramp_image;
1086 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1087 				const struct btf_func_model *m, u32 flags,
1088 				struct bpf_tramp_links *tlinks,
1089 				void *orig_call);
1090 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1091 					     struct bpf_tramp_run_ctx *run_ctx);
1092 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1093 					     struct bpf_tramp_run_ctx *run_ctx);
1094 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1095 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1096 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1097 				      struct bpf_tramp_run_ctx *run_ctx);
1098 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1099 				      struct bpf_tramp_run_ctx *run_ctx);
1100 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1101 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1102 
1103 struct bpf_ksym {
1104 	unsigned long		 start;
1105 	unsigned long		 end;
1106 	char			 name[KSYM_NAME_LEN];
1107 	struct list_head	 lnode;
1108 	struct latch_tree_node	 tnode;
1109 	bool			 prog;
1110 };
1111 
1112 enum bpf_tramp_prog_type {
1113 	BPF_TRAMP_FENTRY,
1114 	BPF_TRAMP_FEXIT,
1115 	BPF_TRAMP_MODIFY_RETURN,
1116 	BPF_TRAMP_MAX,
1117 	BPF_TRAMP_REPLACE, /* more than MAX */
1118 };
1119 
1120 struct bpf_tramp_image {
1121 	void *image;
1122 	struct bpf_ksym ksym;
1123 	struct percpu_ref pcref;
1124 	void *ip_after_call;
1125 	void *ip_epilogue;
1126 	union {
1127 		struct rcu_head rcu;
1128 		struct work_struct work;
1129 	};
1130 };
1131 
1132 struct bpf_trampoline {
1133 	/* hlist for trampoline_table */
1134 	struct hlist_node hlist;
1135 	struct ftrace_ops *fops;
1136 	/* serializes access to fields of this trampoline */
1137 	struct mutex mutex;
1138 	refcount_t refcnt;
1139 	u32 flags;
1140 	u64 key;
1141 	struct {
1142 		struct btf_func_model model;
1143 		void *addr;
1144 		bool ftrace_managed;
1145 	} func;
1146 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1147 	 * program by replacing one of its functions. func.addr is the address
1148 	 * of the function it replaced.
1149 	 */
1150 	struct bpf_prog *extension_prog;
1151 	/* list of BPF programs using this trampoline */
1152 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1153 	/* Number of attached programs. A counter per kind. */
1154 	int progs_cnt[BPF_TRAMP_MAX];
1155 	/* Executable image of trampoline */
1156 	struct bpf_tramp_image *cur_image;
1157 	struct module *mod;
1158 };
1159 
1160 struct bpf_attach_target_info {
1161 	struct btf_func_model fmodel;
1162 	long tgt_addr;
1163 	struct module *tgt_mod;
1164 	const char *tgt_name;
1165 	const struct btf_type *tgt_type;
1166 };
1167 
1168 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1169 
1170 struct bpf_dispatcher_prog {
1171 	struct bpf_prog *prog;
1172 	refcount_t users;
1173 };
1174 
1175 struct bpf_dispatcher {
1176 	/* dispatcher mutex */
1177 	struct mutex mutex;
1178 	void *func;
1179 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1180 	int num_progs;
1181 	void *image;
1182 	void *rw_image;
1183 	u32 image_off;
1184 	struct bpf_ksym ksym;
1185 #ifdef CONFIG_HAVE_STATIC_CALL
1186 	struct static_call_key *sc_key;
1187 	void *sc_tramp;
1188 #endif
1189 };
1190 
1191 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1192 	const void *ctx,
1193 	const struct bpf_insn *insnsi,
1194 	bpf_func_t bpf_func)
1195 {
1196 	return bpf_func(ctx, insnsi);
1197 }
1198 
1199 /* the implementation of the opaque uapi struct bpf_dynptr */
1200 struct bpf_dynptr_kern {
1201 	void *data;
1202 	/* Size represents the number of usable bytes of dynptr data.
1203 	 * If for example the offset is at 4 for a local dynptr whose data is
1204 	 * of type u64, the number of usable bytes is 4.
1205 	 *
1206 	 * The upper 8 bits are reserved. It is as follows:
1207 	 * Bits 0 - 23 = size
1208 	 * Bits 24 - 30 = dynptr type
1209 	 * Bit 31 = whether dynptr is read-only
1210 	 */
1211 	u32 size;
1212 	u32 offset;
1213 } __aligned(8);
1214 
1215 enum bpf_dynptr_type {
1216 	BPF_DYNPTR_TYPE_INVALID,
1217 	/* Points to memory that is local to the bpf program */
1218 	BPF_DYNPTR_TYPE_LOCAL,
1219 	/* Underlying data is a ringbuf record */
1220 	BPF_DYNPTR_TYPE_RINGBUF,
1221 	/* Underlying data is a sk_buff */
1222 	BPF_DYNPTR_TYPE_SKB,
1223 	/* Underlying data is a xdp_buff */
1224 	BPF_DYNPTR_TYPE_XDP,
1225 };
1226 
1227 int bpf_dynptr_check_size(u32 size);
1228 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1229 
1230 #ifdef CONFIG_BPF_JIT
1231 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1232 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1233 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1234 					  struct bpf_attach_target_info *tgt_info);
1235 void bpf_trampoline_put(struct bpf_trampoline *tr);
1236 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1237 
1238 /*
1239  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1240  * indirection with a direct call to the bpf program. If the architecture does
1241  * not have STATIC_CALL, avoid a double-indirection.
1242  */
1243 #ifdef CONFIG_HAVE_STATIC_CALL
1244 
1245 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1246 	.sc_key = &STATIC_CALL_KEY(_name),			\
1247 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1248 
1249 #define __BPF_DISPATCHER_SC(name)				\
1250 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1251 
1252 #define __BPF_DISPATCHER_CALL(name)				\
1253 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1254 
1255 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1256 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1257 
1258 #else
1259 #define __BPF_DISPATCHER_SC_INIT(name)
1260 #define __BPF_DISPATCHER_SC(name)
1261 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1262 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1263 #endif
1264 
1265 #define BPF_DISPATCHER_INIT(_name) {				\
1266 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1267 	.func = &_name##_func,					\
1268 	.progs = {},						\
1269 	.num_progs = 0,						\
1270 	.image = NULL,						\
1271 	.image_off = 0,						\
1272 	.ksym = {						\
1273 		.name  = #_name,				\
1274 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1275 	},							\
1276 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1277 }
1278 
1279 #define DEFINE_BPF_DISPATCHER(name)					\
1280 	__BPF_DISPATCHER_SC(name);					\
1281 	noinline __nocfi unsigned int bpf_dispatcher_##name##_func(	\
1282 		const void *ctx,					\
1283 		const struct bpf_insn *insnsi,				\
1284 		bpf_func_t bpf_func)					\
1285 	{								\
1286 		return __BPF_DISPATCHER_CALL(name);			\
1287 	}								\
1288 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1289 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1290 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1291 
1292 #define DECLARE_BPF_DISPATCHER(name)					\
1293 	unsigned int bpf_dispatcher_##name##_func(			\
1294 		const void *ctx,					\
1295 		const struct bpf_insn *insnsi,				\
1296 		bpf_func_t bpf_func);					\
1297 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1298 
1299 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1300 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1301 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1302 				struct bpf_prog *to);
1303 /* Called only from JIT-enabled code, so there's no need for stubs. */
1304 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1305 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1306 void bpf_ksym_add(struct bpf_ksym *ksym);
1307 void bpf_ksym_del(struct bpf_ksym *ksym);
1308 int bpf_jit_charge_modmem(u32 size);
1309 void bpf_jit_uncharge_modmem(u32 size);
1310 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1311 #else
1312 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1313 					   struct bpf_trampoline *tr)
1314 {
1315 	return -ENOTSUPP;
1316 }
1317 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1318 					     struct bpf_trampoline *tr)
1319 {
1320 	return -ENOTSUPP;
1321 }
1322 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1323 							struct bpf_attach_target_info *tgt_info)
1324 {
1325 	return NULL;
1326 }
1327 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1328 #define DEFINE_BPF_DISPATCHER(name)
1329 #define DECLARE_BPF_DISPATCHER(name)
1330 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1331 #define BPF_DISPATCHER_PTR(name) NULL
1332 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1333 					      struct bpf_prog *from,
1334 					      struct bpf_prog *to) {}
1335 static inline bool is_bpf_image_address(unsigned long address)
1336 {
1337 	return false;
1338 }
1339 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1340 {
1341 	return false;
1342 }
1343 #endif
1344 
1345 struct bpf_func_info_aux {
1346 	u16 linkage;
1347 	bool unreliable;
1348 };
1349 
1350 enum bpf_jit_poke_reason {
1351 	BPF_POKE_REASON_TAIL_CALL,
1352 };
1353 
1354 /* Descriptor of pokes pointing /into/ the JITed image. */
1355 struct bpf_jit_poke_descriptor {
1356 	void *tailcall_target;
1357 	void *tailcall_bypass;
1358 	void *bypass_addr;
1359 	void *aux;
1360 	union {
1361 		struct {
1362 			struct bpf_map *map;
1363 			u32 key;
1364 		} tail_call;
1365 	};
1366 	bool tailcall_target_stable;
1367 	u8 adj_off;
1368 	u16 reason;
1369 	u32 insn_idx;
1370 };
1371 
1372 /* reg_type info for ctx arguments */
1373 struct bpf_ctx_arg_aux {
1374 	u32 offset;
1375 	enum bpf_reg_type reg_type;
1376 	u32 btf_id;
1377 };
1378 
1379 struct btf_mod_pair {
1380 	struct btf *btf;
1381 	struct module *module;
1382 };
1383 
1384 struct bpf_kfunc_desc_tab;
1385 
1386 struct bpf_prog_aux {
1387 	atomic64_t refcnt;
1388 	u32 used_map_cnt;
1389 	u32 used_btf_cnt;
1390 	u32 max_ctx_offset;
1391 	u32 max_pkt_offset;
1392 	u32 max_tp_access;
1393 	u32 stack_depth;
1394 	u32 id;
1395 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1396 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1397 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1398 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1399 	u32 ctx_arg_info_size;
1400 	u32 max_rdonly_access;
1401 	u32 max_rdwr_access;
1402 	struct btf *attach_btf;
1403 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1404 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1405 	struct bpf_prog *dst_prog;
1406 	struct bpf_trampoline *dst_trampoline;
1407 	enum bpf_prog_type saved_dst_prog_type;
1408 	enum bpf_attach_type saved_dst_attach_type;
1409 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1410 	bool dev_bound; /* Program is bound to the netdev. */
1411 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1412 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1413 	bool func_proto_unreliable;
1414 	bool sleepable;
1415 	bool tail_call_reachable;
1416 	bool xdp_has_frags;
1417 	bool exception_cb;
1418 	bool exception_boundary;
1419 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1420 	const struct btf_type *attach_func_proto;
1421 	/* function name for valid attach_btf_id */
1422 	const char *attach_func_name;
1423 	struct bpf_prog **func;
1424 	void *jit_data; /* JIT specific data. arch dependent */
1425 	struct bpf_jit_poke_descriptor *poke_tab;
1426 	struct bpf_kfunc_desc_tab *kfunc_tab;
1427 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1428 	u32 size_poke_tab;
1429 	struct bpf_ksym ksym;
1430 	const struct bpf_prog_ops *ops;
1431 	struct bpf_map **used_maps;
1432 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1433 	struct btf_mod_pair *used_btfs;
1434 	struct bpf_prog *prog;
1435 	struct user_struct *user;
1436 	u64 load_time; /* ns since boottime */
1437 	u32 verified_insns;
1438 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1439 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1440 	char name[BPF_OBJ_NAME_LEN];
1441 	unsigned int (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp);
1442 #ifdef CONFIG_SECURITY
1443 	void *security;
1444 #endif
1445 	struct bpf_prog_offload *offload;
1446 	struct btf *btf;
1447 	struct bpf_func_info *func_info;
1448 	struct bpf_func_info_aux *func_info_aux;
1449 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1450 	 * has the xlated insn offset.
1451 	 * Both the main and sub prog share the same linfo.
1452 	 * The subprog can access its first linfo by
1453 	 * using the linfo_idx.
1454 	 */
1455 	struct bpf_line_info *linfo;
1456 	/* jited_linfo is the jited addr of the linfo.  It has a
1457 	 * one to one mapping to linfo:
1458 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1459 	 * Both the main and sub prog share the same jited_linfo.
1460 	 * The subprog can access its first jited_linfo by
1461 	 * using the linfo_idx.
1462 	 */
1463 	void **jited_linfo;
1464 	u32 func_info_cnt;
1465 	u32 nr_linfo;
1466 	/* subprog can use linfo_idx to access its first linfo and
1467 	 * jited_linfo.
1468 	 * main prog always has linfo_idx == 0
1469 	 */
1470 	u32 linfo_idx;
1471 	struct module *mod;
1472 	u32 num_exentries;
1473 	struct exception_table_entry *extable;
1474 	union {
1475 		struct work_struct work;
1476 		struct rcu_head	rcu;
1477 	};
1478 };
1479 
1480 struct bpf_prog {
1481 	u16			pages;		/* Number of allocated pages */
1482 	u16			jited:1,	/* Is our filter JIT'ed? */
1483 				jit_requested:1,/* archs need to JIT the prog */
1484 				gpl_compatible:1, /* Is filter GPL compatible? */
1485 				cb_access:1,	/* Is control block accessed? */
1486 				dst_needed:1,	/* Do we need dst entry? */
1487 				blinding_requested:1, /* needs constant blinding */
1488 				blinded:1,	/* Was blinded */
1489 				is_func:1,	/* program is a bpf function */
1490 				kprobe_override:1, /* Do we override a kprobe? */
1491 				has_callchain_buf:1, /* callchain buffer allocated? */
1492 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1493 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1494 				call_get_func_ip:1, /* Do we call get_func_ip() */
1495 				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1496 	enum bpf_prog_type	type;		/* Type of BPF program */
1497 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1498 	u32			len;		/* Number of filter blocks */
1499 	u32			jited_len;	/* Size of jited insns in bytes */
1500 	u8			tag[BPF_TAG_SIZE];
1501 	struct bpf_prog_stats __percpu *stats;
1502 	int __percpu		*active;
1503 	unsigned int		(*bpf_func)(const void *ctx,
1504 					    const struct bpf_insn *insn);
1505 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1506 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1507 	/* Instructions for interpreter */
1508 	union {
1509 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1510 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1511 	};
1512 };
1513 
1514 struct bpf_array_aux {
1515 	/* Programs with direct jumps into programs part of this array. */
1516 	struct list_head poke_progs;
1517 	struct bpf_map *map;
1518 	struct mutex poke_mutex;
1519 	struct work_struct work;
1520 };
1521 
1522 struct bpf_link {
1523 	atomic64_t refcnt;
1524 	u32 id;
1525 	enum bpf_link_type type;
1526 	const struct bpf_link_ops *ops;
1527 	struct bpf_prog *prog;
1528 	struct work_struct work;
1529 };
1530 
1531 struct bpf_link_ops {
1532 	void (*release)(struct bpf_link *link);
1533 	void (*dealloc)(struct bpf_link *link);
1534 	int (*detach)(struct bpf_link *link);
1535 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1536 			   struct bpf_prog *old_prog);
1537 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1538 	int (*fill_link_info)(const struct bpf_link *link,
1539 			      struct bpf_link_info *info);
1540 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1541 			  struct bpf_map *old_map);
1542 };
1543 
1544 struct bpf_tramp_link {
1545 	struct bpf_link link;
1546 	struct hlist_node tramp_hlist;
1547 	u64 cookie;
1548 };
1549 
1550 struct bpf_shim_tramp_link {
1551 	struct bpf_tramp_link link;
1552 	struct bpf_trampoline *trampoline;
1553 };
1554 
1555 struct bpf_tracing_link {
1556 	struct bpf_tramp_link link;
1557 	enum bpf_attach_type attach_type;
1558 	struct bpf_trampoline *trampoline;
1559 	struct bpf_prog *tgt_prog;
1560 };
1561 
1562 struct bpf_link_primer {
1563 	struct bpf_link *link;
1564 	struct file *file;
1565 	int fd;
1566 	u32 id;
1567 };
1568 
1569 struct bpf_struct_ops_value;
1570 struct btf_member;
1571 
1572 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1573 /**
1574  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1575  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1576  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1577  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1578  *		  when determining whether the struct_ops progs in the
1579  *		  struct_ops map are valid.
1580  * @init: A callback that is invoked a single time, and before any other
1581  *	  callback, to initialize the structure. A nonzero return value means
1582  *	  the subsystem could not be initialized.
1583  * @check_member: When defined, a callback invoked by the verifier to allow
1584  *		  the subsystem to determine if an entry in the struct_ops map
1585  *		  is valid. A nonzero return value means that the map is
1586  *		  invalid and should be rejected by the verifier.
1587  * @init_member: A callback that is invoked for each member of the struct_ops
1588  *		 map to allow the subsystem to initialize the member. A nonzero
1589  *		 value means the member could not be initialized. This callback
1590  *		 is exclusive with the @type, @type_id, @value_type, and
1591  *		 @value_id fields.
1592  * @reg: A callback that is invoked when the struct_ops map has been
1593  *	 initialized and is being attached to. Zero means the struct_ops map
1594  *	 has been successfully registered and is live. A nonzero return value
1595  *	 means the struct_ops map could not be registered.
1596  * @unreg: A callback that is invoked when the struct_ops map should be
1597  *	   unregistered.
1598  * @update: A callback that is invoked when the live struct_ops map is being
1599  *	    updated to contain new values. This callback is only invoked when
1600  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1601  *	    it is assumed that the struct_ops map cannot be updated.
1602  * @validate: A callback that is invoked after all of the members have been
1603  *	      initialized. This callback should perform static checks on the
1604  *	      map, meaning that it should either fail or succeed
1605  *	      deterministically. A struct_ops map that has been validated may
1606  *	      not necessarily succeed in being registered if the call to @reg
1607  *	      fails. For example, a valid struct_ops map may be loaded, but
1608  *	      then fail to be registered due to there being another active
1609  *	      struct_ops map on the system in the subsystem already. For this
1610  *	      reason, if this callback is not defined, the check is skipped as
1611  *	      the struct_ops map will have final verification performed in
1612  *	      @reg.
1613  * @type: BTF type.
1614  * @value_type: Value type.
1615  * @name: The name of the struct bpf_struct_ops object.
1616  * @func_models: Func models
1617  * @type_id: BTF type id.
1618  * @value_id: BTF value id.
1619  */
1620 struct bpf_struct_ops {
1621 	const struct bpf_verifier_ops *verifier_ops;
1622 	int (*init)(struct btf *btf);
1623 	int (*check_member)(const struct btf_type *t,
1624 			    const struct btf_member *member,
1625 			    const struct bpf_prog *prog);
1626 	int (*init_member)(const struct btf_type *t,
1627 			   const struct btf_member *member,
1628 			   void *kdata, const void *udata);
1629 	int (*reg)(void *kdata);
1630 	void (*unreg)(void *kdata);
1631 	int (*update)(void *kdata, void *old_kdata);
1632 	int (*validate)(void *kdata);
1633 	const struct btf_type *type;
1634 	const struct btf_type *value_type;
1635 	const char *name;
1636 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1637 	u32 type_id;
1638 	u32 value_id;
1639 };
1640 
1641 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1642 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1643 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1644 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1645 bool bpf_struct_ops_get(const void *kdata);
1646 void bpf_struct_ops_put(const void *kdata);
1647 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1648 				       void *value);
1649 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1650 				      struct bpf_tramp_link *link,
1651 				      const struct btf_func_model *model,
1652 				      void *image, void *image_end);
1653 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1654 {
1655 	if (owner == BPF_MODULE_OWNER)
1656 		return bpf_struct_ops_get(data);
1657 	else
1658 		return try_module_get(owner);
1659 }
1660 static inline void bpf_module_put(const void *data, struct module *owner)
1661 {
1662 	if (owner == BPF_MODULE_OWNER)
1663 		bpf_struct_ops_put(data);
1664 	else
1665 		module_put(owner);
1666 }
1667 int bpf_struct_ops_link_create(union bpf_attr *attr);
1668 
1669 #ifdef CONFIG_NET
1670 /* Define it here to avoid the use of forward declaration */
1671 struct bpf_dummy_ops_state {
1672 	int val;
1673 };
1674 
1675 struct bpf_dummy_ops {
1676 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1677 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1678 		      char a3, unsigned long a4);
1679 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1680 };
1681 
1682 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1683 			    union bpf_attr __user *uattr);
1684 #endif
1685 #else
1686 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1687 {
1688 	return NULL;
1689 }
1690 static inline void bpf_struct_ops_init(struct btf *btf,
1691 				       struct bpf_verifier_log *log)
1692 {
1693 }
1694 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1695 {
1696 	return try_module_get(owner);
1697 }
1698 static inline void bpf_module_put(const void *data, struct module *owner)
1699 {
1700 	module_put(owner);
1701 }
1702 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1703 						     void *key,
1704 						     void *value)
1705 {
1706 	return -EINVAL;
1707 }
1708 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1709 {
1710 	return -EOPNOTSUPP;
1711 }
1712 
1713 #endif
1714 
1715 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1716 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1717 				    int cgroup_atype);
1718 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1719 #else
1720 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1721 						  int cgroup_atype)
1722 {
1723 	return -EOPNOTSUPP;
1724 }
1725 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1726 {
1727 }
1728 #endif
1729 
1730 struct bpf_array {
1731 	struct bpf_map map;
1732 	u32 elem_size;
1733 	u32 index_mask;
1734 	struct bpf_array_aux *aux;
1735 	union {
1736 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1737 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1738 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1739 	};
1740 };
1741 
1742 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1743 #define MAX_TAIL_CALL_CNT 33
1744 
1745 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1746  * It's enum to expose it (and thus make it discoverable) through BTF.
1747  */
1748 enum {
1749 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1750 };
1751 
1752 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1753 				 BPF_F_RDONLY_PROG |	\
1754 				 BPF_F_WRONLY |		\
1755 				 BPF_F_WRONLY_PROG)
1756 
1757 #define BPF_MAP_CAN_READ	BIT(0)
1758 #define BPF_MAP_CAN_WRITE	BIT(1)
1759 
1760 /* Maximum number of user-producer ring buffer samples that can be drained in
1761  * a call to bpf_user_ringbuf_drain().
1762  */
1763 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1764 
1765 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1766 {
1767 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1768 
1769 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1770 	 * not possible.
1771 	 */
1772 	if (access_flags & BPF_F_RDONLY_PROG)
1773 		return BPF_MAP_CAN_READ;
1774 	else if (access_flags & BPF_F_WRONLY_PROG)
1775 		return BPF_MAP_CAN_WRITE;
1776 	else
1777 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1778 }
1779 
1780 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1781 {
1782 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1783 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1784 }
1785 
1786 struct bpf_event_entry {
1787 	struct perf_event *event;
1788 	struct file *perf_file;
1789 	struct file *map_file;
1790 	struct rcu_head rcu;
1791 };
1792 
1793 static inline bool map_type_contains_progs(struct bpf_map *map)
1794 {
1795 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1796 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1797 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1798 }
1799 
1800 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1801 int bpf_prog_calc_tag(struct bpf_prog *fp);
1802 
1803 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1804 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1805 
1806 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1807 					unsigned long off, unsigned long len);
1808 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1809 					const struct bpf_insn *src,
1810 					struct bpf_insn *dst,
1811 					struct bpf_prog *prog,
1812 					u32 *target_size);
1813 
1814 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1815 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1816 
1817 /* an array of programs to be executed under rcu_lock.
1818  *
1819  * Typical usage:
1820  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1821  *
1822  * the structure returned by bpf_prog_array_alloc() should be populated
1823  * with program pointers and the last pointer must be NULL.
1824  * The user has to keep refcnt on the program and make sure the program
1825  * is removed from the array before bpf_prog_put().
1826  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1827  * since other cpus are walking the array of pointers in parallel.
1828  */
1829 struct bpf_prog_array_item {
1830 	struct bpf_prog *prog;
1831 	union {
1832 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1833 		u64 bpf_cookie;
1834 	};
1835 };
1836 
1837 struct bpf_prog_array {
1838 	struct rcu_head rcu;
1839 	struct bpf_prog_array_item items[];
1840 };
1841 
1842 struct bpf_empty_prog_array {
1843 	struct bpf_prog_array hdr;
1844 	struct bpf_prog *null_prog;
1845 };
1846 
1847 /* to avoid allocating empty bpf_prog_array for cgroups that
1848  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1849  * It will not be modified the caller of bpf_prog_array_alloc()
1850  * (since caller requested prog_cnt == 0)
1851  * that pointer should be 'freed' by bpf_prog_array_free()
1852  */
1853 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1854 
1855 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1856 void bpf_prog_array_free(struct bpf_prog_array *progs);
1857 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1858 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1859 int bpf_prog_array_length(struct bpf_prog_array *progs);
1860 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1861 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1862 				__u32 __user *prog_ids, u32 cnt);
1863 
1864 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1865 				struct bpf_prog *old_prog);
1866 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1867 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1868 			     struct bpf_prog *prog);
1869 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1870 			     u32 *prog_ids, u32 request_cnt,
1871 			     u32 *prog_cnt);
1872 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1873 			struct bpf_prog *exclude_prog,
1874 			struct bpf_prog *include_prog,
1875 			u64 bpf_cookie,
1876 			struct bpf_prog_array **new_array);
1877 
1878 struct bpf_run_ctx {};
1879 
1880 struct bpf_cg_run_ctx {
1881 	struct bpf_run_ctx run_ctx;
1882 	const struct bpf_prog_array_item *prog_item;
1883 	int retval;
1884 };
1885 
1886 struct bpf_trace_run_ctx {
1887 	struct bpf_run_ctx run_ctx;
1888 	u64 bpf_cookie;
1889 	bool is_uprobe;
1890 };
1891 
1892 struct bpf_tramp_run_ctx {
1893 	struct bpf_run_ctx run_ctx;
1894 	u64 bpf_cookie;
1895 	struct bpf_run_ctx *saved_run_ctx;
1896 };
1897 
1898 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1899 {
1900 	struct bpf_run_ctx *old_ctx = NULL;
1901 
1902 #ifdef CONFIG_BPF_SYSCALL
1903 	old_ctx = current->bpf_ctx;
1904 	current->bpf_ctx = new_ctx;
1905 #endif
1906 	return old_ctx;
1907 }
1908 
1909 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1910 {
1911 #ifdef CONFIG_BPF_SYSCALL
1912 	current->bpf_ctx = old_ctx;
1913 #endif
1914 }
1915 
1916 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1917 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
1918 /* BPF program asks to set CN on the packet. */
1919 #define BPF_RET_SET_CN						(1 << 0)
1920 
1921 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1922 
1923 static __always_inline u32
1924 bpf_prog_run_array(const struct bpf_prog_array *array,
1925 		   const void *ctx, bpf_prog_run_fn run_prog)
1926 {
1927 	const struct bpf_prog_array_item *item;
1928 	const struct bpf_prog *prog;
1929 	struct bpf_run_ctx *old_run_ctx;
1930 	struct bpf_trace_run_ctx run_ctx;
1931 	u32 ret = 1;
1932 
1933 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1934 
1935 	if (unlikely(!array))
1936 		return ret;
1937 
1938 	run_ctx.is_uprobe = false;
1939 
1940 	migrate_disable();
1941 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1942 	item = &array->items[0];
1943 	while ((prog = READ_ONCE(item->prog))) {
1944 		run_ctx.bpf_cookie = item->bpf_cookie;
1945 		ret &= run_prog(prog, ctx);
1946 		item++;
1947 	}
1948 	bpf_reset_run_ctx(old_run_ctx);
1949 	migrate_enable();
1950 	return ret;
1951 }
1952 
1953 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1954  *
1955  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1956  * overall. As a result, we must use the bpf_prog_array_free_sleepable
1957  * in order to use the tasks_trace rcu grace period.
1958  *
1959  * When a non-sleepable program is inside the array, we take the rcu read
1960  * section and disable preemption for that program alone, so it can access
1961  * rcu-protected dynamically sized maps.
1962  */
1963 static __always_inline u32
1964 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
1965 			  const void *ctx, bpf_prog_run_fn run_prog)
1966 {
1967 	const struct bpf_prog_array_item *item;
1968 	const struct bpf_prog *prog;
1969 	const struct bpf_prog_array *array;
1970 	struct bpf_run_ctx *old_run_ctx;
1971 	struct bpf_trace_run_ctx run_ctx;
1972 	u32 ret = 1;
1973 
1974 	might_fault();
1975 
1976 	rcu_read_lock_trace();
1977 	migrate_disable();
1978 
1979 	run_ctx.is_uprobe = true;
1980 
1981 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1982 	if (unlikely(!array))
1983 		goto out;
1984 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1985 	item = &array->items[0];
1986 	while ((prog = READ_ONCE(item->prog))) {
1987 		if (!prog->aux->sleepable)
1988 			rcu_read_lock();
1989 
1990 		run_ctx.bpf_cookie = item->bpf_cookie;
1991 		ret &= run_prog(prog, ctx);
1992 		item++;
1993 
1994 		if (!prog->aux->sleepable)
1995 			rcu_read_unlock();
1996 	}
1997 	bpf_reset_run_ctx(old_run_ctx);
1998 out:
1999 	migrate_enable();
2000 	rcu_read_unlock_trace();
2001 	return ret;
2002 }
2003 
2004 #ifdef CONFIG_BPF_SYSCALL
2005 DECLARE_PER_CPU(int, bpf_prog_active);
2006 extern struct mutex bpf_stats_enabled_mutex;
2007 
2008 /*
2009  * Block execution of BPF programs attached to instrumentation (perf,
2010  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2011  * these events can happen inside a region which holds a map bucket lock
2012  * and can deadlock on it.
2013  */
2014 static inline void bpf_disable_instrumentation(void)
2015 {
2016 	migrate_disable();
2017 	this_cpu_inc(bpf_prog_active);
2018 }
2019 
2020 static inline void bpf_enable_instrumentation(void)
2021 {
2022 	this_cpu_dec(bpf_prog_active);
2023 	migrate_enable();
2024 }
2025 
2026 extern const struct file_operations bpf_map_fops;
2027 extern const struct file_operations bpf_prog_fops;
2028 extern const struct file_operations bpf_iter_fops;
2029 
2030 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2031 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2032 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2033 #define BPF_MAP_TYPE(_id, _ops) \
2034 	extern const struct bpf_map_ops _ops;
2035 #define BPF_LINK_TYPE(_id, _name)
2036 #include <linux/bpf_types.h>
2037 #undef BPF_PROG_TYPE
2038 #undef BPF_MAP_TYPE
2039 #undef BPF_LINK_TYPE
2040 
2041 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2042 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2043 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2044 
2045 struct bpf_prog *bpf_prog_get(u32 ufd);
2046 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2047 				       bool attach_drv);
2048 void bpf_prog_add(struct bpf_prog *prog, int i);
2049 void bpf_prog_sub(struct bpf_prog *prog, int i);
2050 void bpf_prog_inc(struct bpf_prog *prog);
2051 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2052 void bpf_prog_put(struct bpf_prog *prog);
2053 
2054 void bpf_prog_free_id(struct bpf_prog *prog);
2055 void bpf_map_free_id(struct bpf_map *map);
2056 
2057 struct btf_field *btf_record_find(const struct btf_record *rec,
2058 				  u32 offset, u32 field_mask);
2059 void btf_record_free(struct btf_record *rec);
2060 void bpf_map_free_record(struct bpf_map *map);
2061 struct btf_record *btf_record_dup(const struct btf_record *rec);
2062 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2063 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2064 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2065 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2066 
2067 struct bpf_map *bpf_map_get(u32 ufd);
2068 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2069 struct bpf_map *__bpf_map_get(struct fd f);
2070 void bpf_map_inc(struct bpf_map *map);
2071 void bpf_map_inc_with_uref(struct bpf_map *map);
2072 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2073 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2074 void bpf_map_put_with_uref(struct bpf_map *map);
2075 void bpf_map_put(struct bpf_map *map);
2076 void *bpf_map_area_alloc(u64 size, int numa_node);
2077 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2078 void bpf_map_area_free(void *base);
2079 bool bpf_map_write_active(const struct bpf_map *map);
2080 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2081 int  generic_map_lookup_batch(struct bpf_map *map,
2082 			      const union bpf_attr *attr,
2083 			      union bpf_attr __user *uattr);
2084 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2085 			      const union bpf_attr *attr,
2086 			      union bpf_attr __user *uattr);
2087 int  generic_map_delete_batch(struct bpf_map *map,
2088 			      const union bpf_attr *attr,
2089 			      union bpf_attr __user *uattr);
2090 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2091 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2092 
2093 #ifdef CONFIG_MEMCG_KMEM
2094 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2095 			   int node);
2096 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2097 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2098 		       gfp_t flags);
2099 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2100 				    size_t align, gfp_t flags);
2101 #else
2102 static inline void *
2103 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2104 		     int node)
2105 {
2106 	return kmalloc_node(size, flags, node);
2107 }
2108 
2109 static inline void *
2110 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2111 {
2112 	return kzalloc(size, flags);
2113 }
2114 
2115 static inline void *
2116 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2117 {
2118 	return kvcalloc(n, size, flags);
2119 }
2120 
2121 static inline void __percpu *
2122 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2123 		     gfp_t flags)
2124 {
2125 	return __alloc_percpu_gfp(size, align, flags);
2126 }
2127 #endif
2128 
2129 static inline int
2130 bpf_map_init_elem_count(struct bpf_map *map)
2131 {
2132 	size_t size = sizeof(*map->elem_count), align = size;
2133 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2134 
2135 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2136 	if (!map->elem_count)
2137 		return -ENOMEM;
2138 
2139 	return 0;
2140 }
2141 
2142 static inline void
2143 bpf_map_free_elem_count(struct bpf_map *map)
2144 {
2145 	free_percpu(map->elem_count);
2146 }
2147 
2148 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2149 {
2150 	this_cpu_inc(*map->elem_count);
2151 }
2152 
2153 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2154 {
2155 	this_cpu_dec(*map->elem_count);
2156 }
2157 
2158 extern int sysctl_unprivileged_bpf_disabled;
2159 
2160 static inline bool bpf_allow_ptr_leaks(void)
2161 {
2162 	return perfmon_capable();
2163 }
2164 
2165 static inline bool bpf_allow_uninit_stack(void)
2166 {
2167 	return perfmon_capable();
2168 }
2169 
2170 static inline bool bpf_bypass_spec_v1(void)
2171 {
2172 	return cpu_mitigations_off() || perfmon_capable();
2173 }
2174 
2175 static inline bool bpf_bypass_spec_v4(void)
2176 {
2177 	return cpu_mitigations_off() || perfmon_capable();
2178 }
2179 
2180 int bpf_map_new_fd(struct bpf_map *map, int flags);
2181 int bpf_prog_new_fd(struct bpf_prog *prog);
2182 
2183 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2184 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2185 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2186 int bpf_link_settle(struct bpf_link_primer *primer);
2187 void bpf_link_cleanup(struct bpf_link_primer *primer);
2188 void bpf_link_inc(struct bpf_link *link);
2189 void bpf_link_put(struct bpf_link *link);
2190 int bpf_link_new_fd(struct bpf_link *link);
2191 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2192 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2193 
2194 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2195 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2196 
2197 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2198 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2199 	extern int bpf_iter_ ## target(args);			\
2200 	int __init bpf_iter_ ## target(args) { return 0; }
2201 
2202 /*
2203  * The task type of iterators.
2204  *
2205  * For BPF task iterators, they can be parameterized with various
2206  * parameters to visit only some of tasks.
2207  *
2208  * BPF_TASK_ITER_ALL (default)
2209  *	Iterate over resources of every task.
2210  *
2211  * BPF_TASK_ITER_TID
2212  *	Iterate over resources of a task/tid.
2213  *
2214  * BPF_TASK_ITER_TGID
2215  *	Iterate over resources of every task of a process / task group.
2216  */
2217 enum bpf_iter_task_type {
2218 	BPF_TASK_ITER_ALL = 0,
2219 	BPF_TASK_ITER_TID,
2220 	BPF_TASK_ITER_TGID,
2221 };
2222 
2223 struct bpf_iter_aux_info {
2224 	/* for map_elem iter */
2225 	struct bpf_map *map;
2226 
2227 	/* for cgroup iter */
2228 	struct {
2229 		struct cgroup *start; /* starting cgroup */
2230 		enum bpf_cgroup_iter_order order;
2231 	} cgroup;
2232 	struct {
2233 		enum bpf_iter_task_type	type;
2234 		u32 pid;
2235 	} task;
2236 };
2237 
2238 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2239 					union bpf_iter_link_info *linfo,
2240 					struct bpf_iter_aux_info *aux);
2241 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2242 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2243 					struct seq_file *seq);
2244 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2245 					 struct bpf_link_info *info);
2246 typedef const struct bpf_func_proto *
2247 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2248 			     const struct bpf_prog *prog);
2249 
2250 enum bpf_iter_feature {
2251 	BPF_ITER_RESCHED	= BIT(0),
2252 };
2253 
2254 #define BPF_ITER_CTX_ARG_MAX 2
2255 struct bpf_iter_reg {
2256 	const char *target;
2257 	bpf_iter_attach_target_t attach_target;
2258 	bpf_iter_detach_target_t detach_target;
2259 	bpf_iter_show_fdinfo_t show_fdinfo;
2260 	bpf_iter_fill_link_info_t fill_link_info;
2261 	bpf_iter_get_func_proto_t get_func_proto;
2262 	u32 ctx_arg_info_size;
2263 	u32 feature;
2264 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2265 	const struct bpf_iter_seq_info *seq_info;
2266 };
2267 
2268 struct bpf_iter_meta {
2269 	__bpf_md_ptr(struct seq_file *, seq);
2270 	u64 session_id;
2271 	u64 seq_num;
2272 };
2273 
2274 struct bpf_iter__bpf_map_elem {
2275 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2276 	__bpf_md_ptr(struct bpf_map *, map);
2277 	__bpf_md_ptr(void *, key);
2278 	__bpf_md_ptr(void *, value);
2279 };
2280 
2281 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2282 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2283 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2284 const struct bpf_func_proto *
2285 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2286 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2287 int bpf_iter_new_fd(struct bpf_link *link);
2288 bool bpf_link_is_iter(struct bpf_link *link);
2289 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2290 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2291 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2292 			      struct seq_file *seq);
2293 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2294 				struct bpf_link_info *info);
2295 
2296 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2297 				   struct bpf_func_state *caller,
2298 				   struct bpf_func_state *callee);
2299 
2300 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2301 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2302 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2303 			   u64 flags);
2304 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2305 			    u64 flags);
2306 
2307 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2308 
2309 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2310 				 void *key, void *value, u64 map_flags);
2311 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2312 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2313 				void *key, void *value, u64 map_flags);
2314 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2315 
2316 int bpf_get_file_flag(int flags);
2317 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2318 			     size_t actual_size);
2319 
2320 /* verify correctness of eBPF program */
2321 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2322 
2323 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2324 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2325 #endif
2326 
2327 struct btf *bpf_get_btf_vmlinux(void);
2328 
2329 /* Map specifics */
2330 struct xdp_frame;
2331 struct sk_buff;
2332 struct bpf_dtab_netdev;
2333 struct bpf_cpu_map_entry;
2334 
2335 void __dev_flush(void);
2336 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2337 		    struct net_device *dev_rx);
2338 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2339 		    struct net_device *dev_rx);
2340 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2341 			  struct bpf_map *map, bool exclude_ingress);
2342 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2343 			     struct bpf_prog *xdp_prog);
2344 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2345 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2346 			   bool exclude_ingress);
2347 
2348 void __cpu_map_flush(void);
2349 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2350 		    struct net_device *dev_rx);
2351 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2352 			     struct sk_buff *skb);
2353 
2354 /* Return map's numa specified by userspace */
2355 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2356 {
2357 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2358 		attr->numa_node : NUMA_NO_NODE;
2359 }
2360 
2361 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2362 int array_map_alloc_check(union bpf_attr *attr);
2363 
2364 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2365 			  union bpf_attr __user *uattr);
2366 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2367 			  union bpf_attr __user *uattr);
2368 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2369 			      const union bpf_attr *kattr,
2370 			      union bpf_attr __user *uattr);
2371 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2372 				     const union bpf_attr *kattr,
2373 				     union bpf_attr __user *uattr);
2374 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2375 			     const union bpf_attr *kattr,
2376 			     union bpf_attr __user *uattr);
2377 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2378 				const union bpf_attr *kattr,
2379 				union bpf_attr __user *uattr);
2380 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2381 			 const union bpf_attr *kattr,
2382 			 union bpf_attr __user *uattr);
2383 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2384 		    const struct bpf_prog *prog,
2385 		    struct bpf_insn_access_aux *info);
2386 
2387 static inline bool bpf_tracing_ctx_access(int off, int size,
2388 					  enum bpf_access_type type)
2389 {
2390 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2391 		return false;
2392 	if (type != BPF_READ)
2393 		return false;
2394 	if (off % size != 0)
2395 		return false;
2396 	return true;
2397 }
2398 
2399 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2400 					      enum bpf_access_type type,
2401 					      const struct bpf_prog *prog,
2402 					      struct bpf_insn_access_aux *info)
2403 {
2404 	if (!bpf_tracing_ctx_access(off, size, type))
2405 		return false;
2406 	return btf_ctx_access(off, size, type, prog, info);
2407 }
2408 
2409 int btf_struct_access(struct bpf_verifier_log *log,
2410 		      const struct bpf_reg_state *reg,
2411 		      int off, int size, enum bpf_access_type atype,
2412 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2413 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2414 			  const struct btf *btf, u32 id, int off,
2415 			  const struct btf *need_btf, u32 need_type_id,
2416 			  bool strict);
2417 
2418 int btf_distill_func_proto(struct bpf_verifier_log *log,
2419 			   struct btf *btf,
2420 			   const struct btf_type *func_proto,
2421 			   const char *func_name,
2422 			   struct btf_func_model *m);
2423 
2424 struct bpf_reg_state;
2425 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2426 				struct bpf_reg_state *regs);
2427 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2428 			   struct bpf_reg_state *regs);
2429 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2430 			  struct bpf_reg_state *reg, bool is_ex_cb);
2431 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2432 			 struct btf *btf, const struct btf_type *t);
2433 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2434 				    int comp_idx, const char *tag_key);
2435 
2436 struct bpf_prog *bpf_prog_by_id(u32 id);
2437 struct bpf_link *bpf_link_by_id(u32 id);
2438 
2439 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2440 void bpf_task_storage_free(struct task_struct *task);
2441 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2442 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2443 const struct btf_func_model *
2444 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2445 			 const struct bpf_insn *insn);
2446 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2447 		       u16 btf_fd_idx, u8 **func_addr);
2448 
2449 struct bpf_core_ctx {
2450 	struct bpf_verifier_log *log;
2451 	const struct btf *btf;
2452 };
2453 
2454 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2455 				const struct bpf_reg_state *reg,
2456 				const char *field_name, u32 btf_id, const char *suffix);
2457 
2458 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2459 			       const struct btf *reg_btf, u32 reg_id,
2460 			       const struct btf *arg_btf, u32 arg_id);
2461 
2462 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2463 		   int relo_idx, void *insn);
2464 
2465 static inline bool unprivileged_ebpf_enabled(void)
2466 {
2467 	return !sysctl_unprivileged_bpf_disabled;
2468 }
2469 
2470 /* Not all bpf prog type has the bpf_ctx.
2471  * For the bpf prog type that has initialized the bpf_ctx,
2472  * this function can be used to decide if a kernel function
2473  * is called by a bpf program.
2474  */
2475 static inline bool has_current_bpf_ctx(void)
2476 {
2477 	return !!current->bpf_ctx;
2478 }
2479 
2480 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2481 
2482 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2483 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2484 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2485 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2486 
2487 bool dev_check_flush(void);
2488 bool cpu_map_check_flush(void);
2489 #else /* !CONFIG_BPF_SYSCALL */
2490 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2491 {
2492 	return ERR_PTR(-EOPNOTSUPP);
2493 }
2494 
2495 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2496 						     enum bpf_prog_type type,
2497 						     bool attach_drv)
2498 {
2499 	return ERR_PTR(-EOPNOTSUPP);
2500 }
2501 
2502 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2503 {
2504 }
2505 
2506 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2507 {
2508 }
2509 
2510 static inline void bpf_prog_put(struct bpf_prog *prog)
2511 {
2512 }
2513 
2514 static inline void bpf_prog_inc(struct bpf_prog *prog)
2515 {
2516 }
2517 
2518 static inline struct bpf_prog *__must_check
2519 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2520 {
2521 	return ERR_PTR(-EOPNOTSUPP);
2522 }
2523 
2524 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2525 				 const struct bpf_link_ops *ops,
2526 				 struct bpf_prog *prog)
2527 {
2528 }
2529 
2530 static inline int bpf_link_prime(struct bpf_link *link,
2531 				 struct bpf_link_primer *primer)
2532 {
2533 	return -EOPNOTSUPP;
2534 }
2535 
2536 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2537 {
2538 	return -EOPNOTSUPP;
2539 }
2540 
2541 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2542 {
2543 }
2544 
2545 static inline void bpf_link_inc(struct bpf_link *link)
2546 {
2547 }
2548 
2549 static inline void bpf_link_put(struct bpf_link *link)
2550 {
2551 }
2552 
2553 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2554 {
2555 	return -EOPNOTSUPP;
2556 }
2557 
2558 static inline void __dev_flush(void)
2559 {
2560 }
2561 
2562 struct xdp_frame;
2563 struct bpf_dtab_netdev;
2564 struct bpf_cpu_map_entry;
2565 
2566 static inline
2567 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2568 		    struct net_device *dev_rx)
2569 {
2570 	return 0;
2571 }
2572 
2573 static inline
2574 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2575 		    struct net_device *dev_rx)
2576 {
2577 	return 0;
2578 }
2579 
2580 static inline
2581 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2582 			  struct bpf_map *map, bool exclude_ingress)
2583 {
2584 	return 0;
2585 }
2586 
2587 struct sk_buff;
2588 
2589 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2590 					   struct sk_buff *skb,
2591 					   struct bpf_prog *xdp_prog)
2592 {
2593 	return 0;
2594 }
2595 
2596 static inline
2597 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2598 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2599 			   bool exclude_ingress)
2600 {
2601 	return 0;
2602 }
2603 
2604 static inline void __cpu_map_flush(void)
2605 {
2606 }
2607 
2608 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2609 				  struct xdp_frame *xdpf,
2610 				  struct net_device *dev_rx)
2611 {
2612 	return 0;
2613 }
2614 
2615 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2616 					   struct sk_buff *skb)
2617 {
2618 	return -EOPNOTSUPP;
2619 }
2620 
2621 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2622 				enum bpf_prog_type type)
2623 {
2624 	return ERR_PTR(-EOPNOTSUPP);
2625 }
2626 
2627 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2628 					const union bpf_attr *kattr,
2629 					union bpf_attr __user *uattr)
2630 {
2631 	return -ENOTSUPP;
2632 }
2633 
2634 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2635 					const union bpf_attr *kattr,
2636 					union bpf_attr __user *uattr)
2637 {
2638 	return -ENOTSUPP;
2639 }
2640 
2641 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2642 					    const union bpf_attr *kattr,
2643 					    union bpf_attr __user *uattr)
2644 {
2645 	return -ENOTSUPP;
2646 }
2647 
2648 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2649 						   const union bpf_attr *kattr,
2650 						   union bpf_attr __user *uattr)
2651 {
2652 	return -ENOTSUPP;
2653 }
2654 
2655 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2656 					      const union bpf_attr *kattr,
2657 					      union bpf_attr __user *uattr)
2658 {
2659 	return -ENOTSUPP;
2660 }
2661 
2662 static inline void bpf_map_put(struct bpf_map *map)
2663 {
2664 }
2665 
2666 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2667 {
2668 	return ERR_PTR(-ENOTSUPP);
2669 }
2670 
2671 static inline int btf_struct_access(struct bpf_verifier_log *log,
2672 				    const struct bpf_reg_state *reg,
2673 				    int off, int size, enum bpf_access_type atype,
2674 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2675 				    const char **field_name)
2676 {
2677 	return -EACCES;
2678 }
2679 
2680 static inline const struct bpf_func_proto *
2681 bpf_base_func_proto(enum bpf_func_id func_id)
2682 {
2683 	return NULL;
2684 }
2685 
2686 static inline void bpf_task_storage_free(struct task_struct *task)
2687 {
2688 }
2689 
2690 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2691 {
2692 	return false;
2693 }
2694 
2695 static inline const struct btf_func_model *
2696 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2697 			 const struct bpf_insn *insn)
2698 {
2699 	return NULL;
2700 }
2701 
2702 static inline int
2703 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2704 		   u16 btf_fd_idx, u8 **func_addr)
2705 {
2706 	return -ENOTSUPP;
2707 }
2708 
2709 static inline bool unprivileged_ebpf_enabled(void)
2710 {
2711 	return false;
2712 }
2713 
2714 static inline bool has_current_bpf_ctx(void)
2715 {
2716 	return false;
2717 }
2718 
2719 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2720 {
2721 }
2722 
2723 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2724 {
2725 }
2726 
2727 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2728 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2729 {
2730 }
2731 
2732 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2733 {
2734 }
2735 
2736 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2737 {
2738 }
2739 #endif /* CONFIG_BPF_SYSCALL */
2740 
2741 static __always_inline int
2742 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2743 {
2744 	int ret = -EFAULT;
2745 
2746 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2747 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2748 	if (unlikely(ret < 0))
2749 		memset(dst, 0, size);
2750 	return ret;
2751 }
2752 
2753 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2754 			  struct btf_mod_pair *used_btfs, u32 len);
2755 
2756 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2757 						 enum bpf_prog_type type)
2758 {
2759 	return bpf_prog_get_type_dev(ufd, type, false);
2760 }
2761 
2762 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2763 			  struct bpf_map **used_maps, u32 len);
2764 
2765 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2766 
2767 int bpf_prog_offload_compile(struct bpf_prog *prog);
2768 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2769 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2770 			       struct bpf_prog *prog);
2771 
2772 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2773 
2774 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2775 int bpf_map_offload_update_elem(struct bpf_map *map,
2776 				void *key, void *value, u64 flags);
2777 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2778 int bpf_map_offload_get_next_key(struct bpf_map *map,
2779 				 void *key, void *next_key);
2780 
2781 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2782 
2783 struct bpf_offload_dev *
2784 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2785 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2786 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2787 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2788 				    struct net_device *netdev);
2789 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2790 				       struct net_device *netdev);
2791 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2792 
2793 void unpriv_ebpf_notify(int new_state);
2794 
2795 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2796 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2797 			      struct bpf_prog_aux *prog_aux);
2798 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2799 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2800 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2801 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2802 
2803 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2804 {
2805 	return aux->dev_bound;
2806 }
2807 
2808 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2809 {
2810 	return aux->offload_requested;
2811 }
2812 
2813 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2814 
2815 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2816 {
2817 	return unlikely(map->ops == &bpf_map_offload_ops);
2818 }
2819 
2820 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2821 void bpf_map_offload_map_free(struct bpf_map *map);
2822 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2823 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2824 			      const union bpf_attr *kattr,
2825 			      union bpf_attr __user *uattr);
2826 
2827 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2828 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2829 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2830 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2831 			    union bpf_attr __user *uattr);
2832 
2833 void sock_map_unhash(struct sock *sk);
2834 void sock_map_destroy(struct sock *sk);
2835 void sock_map_close(struct sock *sk, long timeout);
2836 #else
2837 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2838 					    struct bpf_prog_aux *prog_aux)
2839 {
2840 	return -EOPNOTSUPP;
2841 }
2842 
2843 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2844 						u32 func_id)
2845 {
2846 	return NULL;
2847 }
2848 
2849 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2850 					  union bpf_attr *attr)
2851 {
2852 	return -EOPNOTSUPP;
2853 }
2854 
2855 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2856 					     struct bpf_prog *old_prog)
2857 {
2858 	return -EOPNOTSUPP;
2859 }
2860 
2861 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2862 {
2863 }
2864 
2865 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2866 {
2867 	return false;
2868 }
2869 
2870 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2871 {
2872 	return false;
2873 }
2874 
2875 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2876 {
2877 	return false;
2878 }
2879 
2880 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2881 {
2882 	return false;
2883 }
2884 
2885 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2886 {
2887 	return ERR_PTR(-EOPNOTSUPP);
2888 }
2889 
2890 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2891 {
2892 }
2893 
2894 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2895 {
2896 	return 0;
2897 }
2898 
2899 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2900 					    const union bpf_attr *kattr,
2901 					    union bpf_attr __user *uattr)
2902 {
2903 	return -ENOTSUPP;
2904 }
2905 
2906 #ifdef CONFIG_BPF_SYSCALL
2907 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2908 				       struct bpf_prog *prog)
2909 {
2910 	return -EINVAL;
2911 }
2912 
2913 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2914 				       enum bpf_prog_type ptype)
2915 {
2916 	return -EOPNOTSUPP;
2917 }
2918 
2919 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2920 					   u64 flags)
2921 {
2922 	return -EOPNOTSUPP;
2923 }
2924 
2925 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2926 					  union bpf_attr __user *uattr)
2927 {
2928 	return -EINVAL;
2929 }
2930 #endif /* CONFIG_BPF_SYSCALL */
2931 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2932 
2933 static __always_inline void
2934 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
2935 {
2936 	const struct bpf_prog_array_item *item;
2937 	struct bpf_prog *prog;
2938 
2939 	if (unlikely(!array))
2940 		return;
2941 
2942 	item = &array->items[0];
2943 	while ((prog = READ_ONCE(item->prog))) {
2944 		bpf_prog_inc_misses_counter(prog);
2945 		item++;
2946 	}
2947 }
2948 
2949 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2950 void bpf_sk_reuseport_detach(struct sock *sk);
2951 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2952 				       void *value);
2953 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2954 				       void *value, u64 map_flags);
2955 #else
2956 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2957 {
2958 }
2959 
2960 #ifdef CONFIG_BPF_SYSCALL
2961 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2962 						     void *key, void *value)
2963 {
2964 	return -EOPNOTSUPP;
2965 }
2966 
2967 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2968 						     void *key, void *value,
2969 						     u64 map_flags)
2970 {
2971 	return -EOPNOTSUPP;
2972 }
2973 #endif /* CONFIG_BPF_SYSCALL */
2974 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2975 
2976 /* verifier prototypes for helper functions called from eBPF programs */
2977 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2978 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2979 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2980 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2981 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2982 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2983 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2984 
2985 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2986 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2987 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2988 extern const struct bpf_func_proto bpf_tail_call_proto;
2989 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2990 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2991 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2992 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2993 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2994 extern const struct bpf_func_proto bpf_get_current_comm_proto;
2995 extern const struct bpf_func_proto bpf_get_stackid_proto;
2996 extern const struct bpf_func_proto bpf_get_stack_proto;
2997 extern const struct bpf_func_proto bpf_get_task_stack_proto;
2998 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2999 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3000 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3001 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3002 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3003 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3004 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3005 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3006 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3007 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3008 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3009 extern const struct bpf_func_proto bpf_spin_lock_proto;
3010 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3011 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3012 extern const struct bpf_func_proto bpf_strtol_proto;
3013 extern const struct bpf_func_proto bpf_strtoul_proto;
3014 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3015 extern const struct bpf_func_proto bpf_jiffies64_proto;
3016 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3017 extern const struct bpf_func_proto bpf_event_output_data_proto;
3018 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3019 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3020 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3021 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3022 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3023 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3024 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3025 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3026 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3027 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3028 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3029 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3030 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3031 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3032 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3033 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3034 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3035 extern const struct bpf_func_proto bpf_snprintf_proto;
3036 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3037 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3038 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3039 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3040 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3041 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3042 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3043 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3044 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3045 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3046 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3047 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3048 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3049 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3050 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3051 extern const struct bpf_func_proto bpf_find_vma_proto;
3052 extern const struct bpf_func_proto bpf_loop_proto;
3053 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3054 extern const struct bpf_func_proto bpf_set_retval_proto;
3055 extern const struct bpf_func_proto bpf_get_retval_proto;
3056 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3057 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3058 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3059 
3060 const struct bpf_func_proto *tracing_prog_func_proto(
3061   enum bpf_func_id func_id, const struct bpf_prog *prog);
3062 
3063 /* Shared helpers among cBPF and eBPF. */
3064 void bpf_user_rnd_init_once(void);
3065 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3066 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3067 
3068 #if defined(CONFIG_NET)
3069 bool bpf_sock_common_is_valid_access(int off, int size,
3070 				     enum bpf_access_type type,
3071 				     struct bpf_insn_access_aux *info);
3072 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3073 			      struct bpf_insn_access_aux *info);
3074 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3075 				const struct bpf_insn *si,
3076 				struct bpf_insn *insn_buf,
3077 				struct bpf_prog *prog,
3078 				u32 *target_size);
3079 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3080 			       struct bpf_dynptr_kern *ptr);
3081 #else
3082 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3083 						   enum bpf_access_type type,
3084 						   struct bpf_insn_access_aux *info)
3085 {
3086 	return false;
3087 }
3088 static inline bool bpf_sock_is_valid_access(int off, int size,
3089 					    enum bpf_access_type type,
3090 					    struct bpf_insn_access_aux *info)
3091 {
3092 	return false;
3093 }
3094 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3095 					      const struct bpf_insn *si,
3096 					      struct bpf_insn *insn_buf,
3097 					      struct bpf_prog *prog,
3098 					      u32 *target_size)
3099 {
3100 	return 0;
3101 }
3102 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3103 					     struct bpf_dynptr_kern *ptr)
3104 {
3105 	return -EOPNOTSUPP;
3106 }
3107 #endif
3108 
3109 #ifdef CONFIG_INET
3110 struct sk_reuseport_kern {
3111 	struct sk_buff *skb;
3112 	struct sock *sk;
3113 	struct sock *selected_sk;
3114 	struct sock *migrating_sk;
3115 	void *data_end;
3116 	u32 hash;
3117 	u32 reuseport_id;
3118 	bool bind_inany;
3119 };
3120 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3121 				  struct bpf_insn_access_aux *info);
3122 
3123 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3124 				    const struct bpf_insn *si,
3125 				    struct bpf_insn *insn_buf,
3126 				    struct bpf_prog *prog,
3127 				    u32 *target_size);
3128 
3129 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3130 				  struct bpf_insn_access_aux *info);
3131 
3132 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3133 				    const struct bpf_insn *si,
3134 				    struct bpf_insn *insn_buf,
3135 				    struct bpf_prog *prog,
3136 				    u32 *target_size);
3137 #else
3138 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3139 						enum bpf_access_type type,
3140 						struct bpf_insn_access_aux *info)
3141 {
3142 	return false;
3143 }
3144 
3145 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3146 						  const struct bpf_insn *si,
3147 						  struct bpf_insn *insn_buf,
3148 						  struct bpf_prog *prog,
3149 						  u32 *target_size)
3150 {
3151 	return 0;
3152 }
3153 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3154 						enum bpf_access_type type,
3155 						struct bpf_insn_access_aux *info)
3156 {
3157 	return false;
3158 }
3159 
3160 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3161 						  const struct bpf_insn *si,
3162 						  struct bpf_insn *insn_buf,
3163 						  struct bpf_prog *prog,
3164 						  u32 *target_size)
3165 {
3166 	return 0;
3167 }
3168 #endif /* CONFIG_INET */
3169 
3170 enum bpf_text_poke_type {
3171 	BPF_MOD_CALL,
3172 	BPF_MOD_JUMP,
3173 };
3174 
3175 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3176 		       void *addr1, void *addr2);
3177 
3178 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3179 			       struct bpf_prog *new, struct bpf_prog *old);
3180 
3181 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3182 int bpf_arch_text_invalidate(void *dst, size_t len);
3183 
3184 struct btf_id_set;
3185 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3186 
3187 #define MAX_BPRINTF_VARARGS		12
3188 #define MAX_BPRINTF_BUF			1024
3189 
3190 struct bpf_bprintf_data {
3191 	u32 *bin_args;
3192 	char *buf;
3193 	bool get_bin_args;
3194 	bool get_buf;
3195 };
3196 
3197 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3198 			u32 num_args, struct bpf_bprintf_data *data);
3199 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3200 
3201 #ifdef CONFIG_BPF_LSM
3202 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3203 void bpf_cgroup_atype_put(int cgroup_atype);
3204 #else
3205 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3206 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3207 #endif /* CONFIG_BPF_LSM */
3208 
3209 struct key;
3210 
3211 #ifdef CONFIG_KEYS
3212 struct bpf_key {
3213 	struct key *key;
3214 	bool has_ref;
3215 };
3216 #endif /* CONFIG_KEYS */
3217 
3218 static inline bool type_is_alloc(u32 type)
3219 {
3220 	return type & MEM_ALLOC;
3221 }
3222 
3223 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3224 {
3225 	if (memcg_bpf_enabled())
3226 		return flags | __GFP_ACCOUNT;
3227 	return flags;
3228 }
3229 
3230 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3231 {
3232 	return prog->aux->func_idx != 0;
3233 }
3234 
3235 #endif /* _LINUX_BPF_H */
3236