1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 #include <asm/rqspinlock.h> 34 35 struct bpf_verifier_env; 36 struct bpf_verifier_log; 37 struct perf_event; 38 struct bpf_prog; 39 struct bpf_prog_aux; 40 struct bpf_map; 41 struct bpf_arena; 42 struct sock; 43 struct seq_file; 44 struct btf; 45 struct btf_type; 46 struct exception_table_entry; 47 struct seq_operations; 48 struct bpf_iter_aux_info; 49 struct bpf_local_storage; 50 struct bpf_local_storage_map; 51 struct kobject; 52 struct mem_cgroup; 53 struct module; 54 struct bpf_func_state; 55 struct ftrace_ops; 56 struct cgroup; 57 struct bpf_token; 58 struct user_namespace; 59 struct super_block; 60 struct inode; 61 62 extern struct idr btf_idr; 63 extern spinlock_t btf_idr_lock; 64 extern struct kobject *btf_kobj; 65 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 66 extern bool bpf_global_ma_set; 67 68 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 69 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 70 struct bpf_iter_aux_info *aux); 71 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 72 typedef unsigned int (*bpf_func_t)(const void *, 73 const struct bpf_insn *); 74 struct bpf_iter_seq_info { 75 const struct seq_operations *seq_ops; 76 bpf_iter_init_seq_priv_t init_seq_private; 77 bpf_iter_fini_seq_priv_t fini_seq_private; 78 u32 seq_priv_size; 79 }; 80 81 /* map is generic key/value storage optionally accessible by eBPF programs */ 82 struct bpf_map_ops { 83 /* funcs callable from userspace (via syscall) */ 84 int (*map_alloc_check)(union bpf_attr *attr); 85 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 86 void (*map_release)(struct bpf_map *map, struct file *map_file); 87 void (*map_free)(struct bpf_map *map); 88 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 89 void (*map_release_uref)(struct bpf_map *map); 90 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 91 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 92 union bpf_attr __user *uattr); 93 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 94 void *value, u64 flags); 95 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 96 const union bpf_attr *attr, 97 union bpf_attr __user *uattr); 98 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 99 const union bpf_attr *attr, 100 union bpf_attr __user *uattr); 101 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 102 union bpf_attr __user *uattr); 103 104 /* funcs callable from userspace and from eBPF programs */ 105 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 106 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 107 long (*map_delete_elem)(struct bpf_map *map, void *key); 108 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 109 long (*map_pop_elem)(struct bpf_map *map, void *value); 110 long (*map_peek_elem)(struct bpf_map *map, void *value); 111 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 112 113 /* funcs called by prog_array and perf_event_array map */ 114 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 115 int fd); 116 /* If need_defer is true, the implementation should guarantee that 117 * the to-be-put element is still alive before the bpf program, which 118 * may manipulate it, exists. 119 */ 120 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 121 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 122 u32 (*map_fd_sys_lookup_elem)(void *ptr); 123 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 124 struct seq_file *m); 125 int (*map_check_btf)(const struct bpf_map *map, 126 const struct btf *btf, 127 const struct btf_type *key_type, 128 const struct btf_type *value_type); 129 130 /* Prog poke tracking helpers. */ 131 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 133 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 134 struct bpf_prog *new); 135 136 /* Direct value access helpers. */ 137 int (*map_direct_value_addr)(const struct bpf_map *map, 138 u64 *imm, u32 off); 139 int (*map_direct_value_meta)(const struct bpf_map *map, 140 u64 imm, u32 *off); 141 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 142 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 143 struct poll_table_struct *pts); 144 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 145 unsigned long len, unsigned long pgoff, 146 unsigned long flags); 147 148 /* Functions called by bpf_local_storage maps */ 149 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 150 void *owner, u32 size); 151 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 152 void *owner, u32 size); 153 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 154 155 /* Misc helpers.*/ 156 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 157 158 /* map_meta_equal must be implemented for maps that can be 159 * used as an inner map. It is a runtime check to ensure 160 * an inner map can be inserted to an outer map. 161 * 162 * Some properties of the inner map has been used during the 163 * verification time. When inserting an inner map at the runtime, 164 * map_meta_equal has to ensure the inserting map has the same 165 * properties that the verifier has used earlier. 166 */ 167 bool (*map_meta_equal)(const struct bpf_map *meta0, 168 const struct bpf_map *meta1); 169 170 171 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 172 struct bpf_func_state *caller, 173 struct bpf_func_state *callee); 174 long (*map_for_each_callback)(struct bpf_map *map, 175 bpf_callback_t callback_fn, 176 void *callback_ctx, u64 flags); 177 178 u64 (*map_mem_usage)(const struct bpf_map *map); 179 180 /* BTF id of struct allocated by map_alloc */ 181 int *map_btf_id; 182 183 /* bpf_iter info used to open a seq_file */ 184 const struct bpf_iter_seq_info *iter_seq_info; 185 }; 186 187 enum { 188 /* Support at most 11 fields in a BTF type */ 189 BTF_FIELDS_MAX = 11, 190 }; 191 192 enum btf_field_type { 193 BPF_SPIN_LOCK = (1 << 0), 194 BPF_TIMER = (1 << 1), 195 BPF_KPTR_UNREF = (1 << 2), 196 BPF_KPTR_REF = (1 << 3), 197 BPF_KPTR_PERCPU = (1 << 4), 198 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 199 BPF_LIST_HEAD = (1 << 5), 200 BPF_LIST_NODE = (1 << 6), 201 BPF_RB_ROOT = (1 << 7), 202 BPF_RB_NODE = (1 << 8), 203 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 204 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 205 BPF_REFCOUNT = (1 << 9), 206 BPF_WORKQUEUE = (1 << 10), 207 BPF_UPTR = (1 << 11), 208 }; 209 210 typedef void (*btf_dtor_kfunc_t)(void *); 211 212 struct btf_field_kptr { 213 struct btf *btf; 214 struct module *module; 215 /* dtor used if btf_is_kernel(btf), otherwise the type is 216 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 217 */ 218 btf_dtor_kfunc_t dtor; 219 u32 btf_id; 220 }; 221 222 struct btf_field_graph_root { 223 struct btf *btf; 224 u32 value_btf_id; 225 u32 node_offset; 226 struct btf_record *value_rec; 227 }; 228 229 struct btf_field { 230 u32 offset; 231 u32 size; 232 enum btf_field_type type; 233 union { 234 struct btf_field_kptr kptr; 235 struct btf_field_graph_root graph_root; 236 }; 237 }; 238 239 struct btf_record { 240 u32 cnt; 241 u32 field_mask; 242 int spin_lock_off; 243 int timer_off; 244 int wq_off; 245 int refcount_off; 246 struct btf_field fields[]; 247 }; 248 249 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 250 struct bpf_rb_node_kern { 251 struct rb_node rb_node; 252 void *owner; 253 } __attribute__((aligned(8))); 254 255 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 256 struct bpf_list_node_kern { 257 struct list_head list_head; 258 void *owner; 259 } __attribute__((aligned(8))); 260 261 struct bpf_map { 262 const struct bpf_map_ops *ops; 263 struct bpf_map *inner_map_meta; 264 #ifdef CONFIG_SECURITY 265 void *security; 266 #endif 267 enum bpf_map_type map_type; 268 u32 key_size; 269 u32 value_size; 270 u32 max_entries; 271 u64 map_extra; /* any per-map-type extra fields */ 272 u32 map_flags; 273 u32 id; 274 struct btf_record *record; 275 int numa_node; 276 u32 btf_key_type_id; 277 u32 btf_value_type_id; 278 u32 btf_vmlinux_value_type_id; 279 struct btf *btf; 280 #ifdef CONFIG_MEMCG 281 struct obj_cgroup *objcg; 282 #endif 283 char name[BPF_OBJ_NAME_LEN]; 284 struct mutex freeze_mutex; 285 atomic64_t refcnt; 286 atomic64_t usercnt; 287 /* rcu is used before freeing and work is only used during freeing */ 288 union { 289 struct work_struct work; 290 struct rcu_head rcu; 291 }; 292 atomic64_t writecnt; 293 /* 'Ownership' of program-containing map is claimed by the first program 294 * that is going to use this map or by the first program which FD is 295 * stored in the map to make sure that all callers and callees have the 296 * same prog type, JITed flag and xdp_has_frags flag. 297 */ 298 struct { 299 const struct btf_type *attach_func_proto; 300 spinlock_t lock; 301 enum bpf_prog_type type; 302 bool jited; 303 bool xdp_has_frags; 304 } owner; 305 bool bypass_spec_v1; 306 bool frozen; /* write-once; write-protected by freeze_mutex */ 307 bool free_after_mult_rcu_gp; 308 bool free_after_rcu_gp; 309 atomic64_t sleepable_refcnt; 310 s64 __percpu *elem_count; 311 }; 312 313 static inline const char *btf_field_type_name(enum btf_field_type type) 314 { 315 switch (type) { 316 case BPF_SPIN_LOCK: 317 return "bpf_spin_lock"; 318 case BPF_TIMER: 319 return "bpf_timer"; 320 case BPF_WORKQUEUE: 321 return "bpf_wq"; 322 case BPF_KPTR_UNREF: 323 case BPF_KPTR_REF: 324 return "kptr"; 325 case BPF_KPTR_PERCPU: 326 return "percpu_kptr"; 327 case BPF_UPTR: 328 return "uptr"; 329 case BPF_LIST_HEAD: 330 return "bpf_list_head"; 331 case BPF_LIST_NODE: 332 return "bpf_list_node"; 333 case BPF_RB_ROOT: 334 return "bpf_rb_root"; 335 case BPF_RB_NODE: 336 return "bpf_rb_node"; 337 case BPF_REFCOUNT: 338 return "bpf_refcount"; 339 default: 340 WARN_ON_ONCE(1); 341 return "unknown"; 342 } 343 } 344 345 static inline u32 btf_field_type_size(enum btf_field_type type) 346 { 347 switch (type) { 348 case BPF_SPIN_LOCK: 349 return sizeof(struct bpf_spin_lock); 350 case BPF_TIMER: 351 return sizeof(struct bpf_timer); 352 case BPF_WORKQUEUE: 353 return sizeof(struct bpf_wq); 354 case BPF_KPTR_UNREF: 355 case BPF_KPTR_REF: 356 case BPF_KPTR_PERCPU: 357 case BPF_UPTR: 358 return sizeof(u64); 359 case BPF_LIST_HEAD: 360 return sizeof(struct bpf_list_head); 361 case BPF_LIST_NODE: 362 return sizeof(struct bpf_list_node); 363 case BPF_RB_ROOT: 364 return sizeof(struct bpf_rb_root); 365 case BPF_RB_NODE: 366 return sizeof(struct bpf_rb_node); 367 case BPF_REFCOUNT: 368 return sizeof(struct bpf_refcount); 369 default: 370 WARN_ON_ONCE(1); 371 return 0; 372 } 373 } 374 375 static inline u32 btf_field_type_align(enum btf_field_type type) 376 { 377 switch (type) { 378 case BPF_SPIN_LOCK: 379 return __alignof__(struct bpf_spin_lock); 380 case BPF_TIMER: 381 return __alignof__(struct bpf_timer); 382 case BPF_WORKQUEUE: 383 return __alignof__(struct bpf_wq); 384 case BPF_KPTR_UNREF: 385 case BPF_KPTR_REF: 386 case BPF_KPTR_PERCPU: 387 case BPF_UPTR: 388 return __alignof__(u64); 389 case BPF_LIST_HEAD: 390 return __alignof__(struct bpf_list_head); 391 case BPF_LIST_NODE: 392 return __alignof__(struct bpf_list_node); 393 case BPF_RB_ROOT: 394 return __alignof__(struct bpf_rb_root); 395 case BPF_RB_NODE: 396 return __alignof__(struct bpf_rb_node); 397 case BPF_REFCOUNT: 398 return __alignof__(struct bpf_refcount); 399 default: 400 WARN_ON_ONCE(1); 401 return 0; 402 } 403 } 404 405 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 406 { 407 memset(addr, 0, field->size); 408 409 switch (field->type) { 410 case BPF_REFCOUNT: 411 refcount_set((refcount_t *)addr, 1); 412 break; 413 case BPF_RB_NODE: 414 RB_CLEAR_NODE((struct rb_node *)addr); 415 break; 416 case BPF_LIST_HEAD: 417 case BPF_LIST_NODE: 418 INIT_LIST_HEAD((struct list_head *)addr); 419 break; 420 case BPF_RB_ROOT: 421 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 422 case BPF_SPIN_LOCK: 423 case BPF_TIMER: 424 case BPF_WORKQUEUE: 425 case BPF_KPTR_UNREF: 426 case BPF_KPTR_REF: 427 case BPF_KPTR_PERCPU: 428 case BPF_UPTR: 429 break; 430 default: 431 WARN_ON_ONCE(1); 432 return; 433 } 434 } 435 436 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 437 { 438 if (IS_ERR_OR_NULL(rec)) 439 return false; 440 return rec->field_mask & type; 441 } 442 443 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 444 { 445 int i; 446 447 if (IS_ERR_OR_NULL(rec)) 448 return; 449 for (i = 0; i < rec->cnt; i++) 450 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 451 } 452 453 /* 'dst' must be a temporary buffer and should not point to memory that is being 454 * used in parallel by a bpf program or bpf syscall, otherwise the access from 455 * the bpf program or bpf syscall may be corrupted by the reinitialization, 456 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 457 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 458 * program or bpf syscall. 459 */ 460 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 461 { 462 bpf_obj_init(map->record, dst); 463 } 464 465 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 466 * forced to use 'long' read/writes to try to atomically copy long counters. 467 * Best-effort only. No barriers here, since it _will_ race with concurrent 468 * updates from BPF programs. Called from bpf syscall and mostly used with 469 * size 8 or 16 bytes, so ask compiler to inline it. 470 */ 471 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 472 { 473 const long *lsrc = src; 474 long *ldst = dst; 475 476 size /= sizeof(long); 477 while (size--) 478 data_race(*ldst++ = *lsrc++); 479 } 480 481 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 482 static inline void bpf_obj_memcpy(struct btf_record *rec, 483 void *dst, void *src, u32 size, 484 bool long_memcpy) 485 { 486 u32 curr_off = 0; 487 int i; 488 489 if (IS_ERR_OR_NULL(rec)) { 490 if (long_memcpy) 491 bpf_long_memcpy(dst, src, round_up(size, 8)); 492 else 493 memcpy(dst, src, size); 494 return; 495 } 496 497 for (i = 0; i < rec->cnt; i++) { 498 u32 next_off = rec->fields[i].offset; 499 u32 sz = next_off - curr_off; 500 501 memcpy(dst + curr_off, src + curr_off, sz); 502 curr_off += rec->fields[i].size + sz; 503 } 504 memcpy(dst + curr_off, src + curr_off, size - curr_off); 505 } 506 507 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 508 { 509 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 510 } 511 512 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 513 { 514 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 515 } 516 517 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src) 518 { 519 unsigned long *src_uptr, *dst_uptr; 520 const struct btf_field *field; 521 int i; 522 523 if (!btf_record_has_field(rec, BPF_UPTR)) 524 return; 525 526 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { 527 if (field->type != BPF_UPTR) 528 continue; 529 530 src_uptr = src + field->offset; 531 dst_uptr = dst + field->offset; 532 swap(*src_uptr, *dst_uptr); 533 } 534 } 535 536 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 537 { 538 u32 curr_off = 0; 539 int i; 540 541 if (IS_ERR_OR_NULL(rec)) { 542 memset(dst, 0, size); 543 return; 544 } 545 546 for (i = 0; i < rec->cnt; i++) { 547 u32 next_off = rec->fields[i].offset; 548 u32 sz = next_off - curr_off; 549 550 memset(dst + curr_off, 0, sz); 551 curr_off += rec->fields[i].size + sz; 552 } 553 memset(dst + curr_off, 0, size - curr_off); 554 } 555 556 static inline void zero_map_value(struct bpf_map *map, void *dst) 557 { 558 bpf_obj_memzero(map->record, dst, map->value_size); 559 } 560 561 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 562 bool lock_src); 563 void bpf_timer_cancel_and_free(void *timer); 564 void bpf_wq_cancel_and_free(void *timer); 565 void bpf_list_head_free(const struct btf_field *field, void *list_head, 566 struct bpf_spin_lock *spin_lock); 567 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 568 struct bpf_spin_lock *spin_lock); 569 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 570 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 571 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 572 573 struct bpf_offload_dev; 574 struct bpf_offloaded_map; 575 576 struct bpf_map_dev_ops { 577 int (*map_get_next_key)(struct bpf_offloaded_map *map, 578 void *key, void *next_key); 579 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 580 void *key, void *value); 581 int (*map_update_elem)(struct bpf_offloaded_map *map, 582 void *key, void *value, u64 flags); 583 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 584 }; 585 586 struct bpf_offloaded_map { 587 struct bpf_map map; 588 struct net_device *netdev; 589 const struct bpf_map_dev_ops *dev_ops; 590 void *dev_priv; 591 struct list_head offloads; 592 }; 593 594 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 595 { 596 return container_of(map, struct bpf_offloaded_map, map); 597 } 598 599 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 600 { 601 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 602 } 603 604 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 605 { 606 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 607 map->ops->map_seq_show_elem; 608 } 609 610 int map_check_no_btf(const struct bpf_map *map, 611 const struct btf *btf, 612 const struct btf_type *key_type, 613 const struct btf_type *value_type); 614 615 bool bpf_map_meta_equal(const struct bpf_map *meta0, 616 const struct bpf_map *meta1); 617 618 extern const struct bpf_map_ops bpf_map_offload_ops; 619 620 /* bpf_type_flag contains a set of flags that are applicable to the values of 621 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 622 * or a memory is read-only. We classify types into two categories: base types 623 * and extended types. Extended types are base types combined with a type flag. 624 * 625 * Currently there are no more than 32 base types in arg_type, ret_type and 626 * reg_types. 627 */ 628 #define BPF_BASE_TYPE_BITS 8 629 630 enum bpf_type_flag { 631 /* PTR may be NULL. */ 632 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 633 634 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 635 * compatible with both mutable and immutable memory. 636 */ 637 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 638 639 /* MEM points to BPF ring buffer reservation. */ 640 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 641 642 /* MEM is in user address space. */ 643 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 644 645 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 646 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 647 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 648 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 649 * to the specified cpu. 650 */ 651 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 652 653 /* Indicates that the argument will be released. */ 654 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 655 656 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 657 * unreferenced and referenced kptr loaded from map value using a load 658 * instruction, so that they can only be dereferenced but not escape the 659 * BPF program into the kernel (i.e. cannot be passed as arguments to 660 * kfunc or bpf helpers). 661 */ 662 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 663 664 /* MEM can be uninitialized. */ 665 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 666 667 /* DYNPTR points to memory local to the bpf program. */ 668 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 669 670 /* DYNPTR points to a kernel-produced ringbuf record. */ 671 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 672 673 /* Size is known at compile time. */ 674 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 675 676 /* MEM is of an allocated object of type in program BTF. This is used to 677 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 678 */ 679 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 680 681 /* PTR was passed from the kernel in a trusted context, and may be 682 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 683 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 684 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 685 * without invoking bpf_kptr_xchg(). What we really need to know is 686 * whether a pointer is safe to pass to a kfunc or BPF helper function. 687 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 688 * helpers, they do not cover all possible instances of unsafe 689 * pointers. For example, a pointer that was obtained from walking a 690 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 691 * fact that it may be NULL, invalid, etc. This is due to backwards 692 * compatibility requirements, as this was the behavior that was first 693 * introduced when kptrs were added. The behavior is now considered 694 * deprecated, and PTR_UNTRUSTED will eventually be removed. 695 * 696 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 697 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 698 * For example, pointers passed to tracepoint arguments are considered 699 * PTR_TRUSTED, as are pointers that are passed to struct_ops 700 * callbacks. As alluded to above, pointers that are obtained from 701 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 702 * struct task_struct *task is PTR_TRUSTED, then accessing 703 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 704 * in a BPF register. Similarly, pointers passed to certain programs 705 * types such as kretprobes are not guaranteed to be valid, as they may 706 * for example contain an object that was recently freed. 707 */ 708 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 709 710 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 711 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 712 713 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 714 * Currently only valid for linked-list and rbtree nodes. If the nodes 715 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 716 */ 717 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 718 719 /* DYNPTR points to sk_buff */ 720 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 721 722 /* DYNPTR points to xdp_buff */ 723 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 724 725 /* Memory must be aligned on some architectures, used in combination with 726 * MEM_FIXED_SIZE. 727 */ 728 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 729 730 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence 731 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the 732 * MEM_UNINIT means that memory needs to be initialized since it is also 733 * read. 734 */ 735 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), 736 737 __BPF_TYPE_FLAG_MAX, 738 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 739 }; 740 741 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 742 | DYNPTR_TYPE_XDP) 743 744 /* Max number of base types. */ 745 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 746 747 /* Max number of all types. */ 748 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 749 750 /* function argument constraints */ 751 enum bpf_arg_type { 752 ARG_DONTCARE = 0, /* unused argument in helper function */ 753 754 /* the following constraints used to prototype 755 * bpf_map_lookup/update/delete_elem() functions 756 */ 757 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 758 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 759 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 760 761 /* Used to prototype bpf_memcmp() and other functions that access data 762 * on eBPF program stack 763 */ 764 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 765 ARG_PTR_TO_ARENA, 766 767 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 768 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 769 770 ARG_PTR_TO_CTX, /* pointer to context */ 771 ARG_ANYTHING, /* any (initialized) argument is ok */ 772 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 773 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 774 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 775 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 776 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 777 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 778 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 779 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 780 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 781 ARG_PTR_TO_STACK, /* pointer to stack */ 782 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 783 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 784 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 785 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 786 __BPF_ARG_TYPE_MAX, 787 788 /* Extended arg_types. */ 789 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 790 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 791 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 792 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 793 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 794 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 795 /* Pointer to memory does not need to be initialized, since helper function 796 * fills all bytes or clears them in error case. 797 */ 798 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, 799 /* Pointer to valid memory of size known at compile time. */ 800 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 801 802 /* This must be the last entry. Its purpose is to ensure the enum is 803 * wide enough to hold the higher bits reserved for bpf_type_flag. 804 */ 805 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 806 }; 807 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 808 809 /* type of values returned from helper functions */ 810 enum bpf_return_type { 811 RET_INTEGER, /* function returns integer */ 812 RET_VOID, /* function doesn't return anything */ 813 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 814 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 815 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 816 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 817 RET_PTR_TO_MEM, /* returns a pointer to memory */ 818 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 819 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 820 __BPF_RET_TYPE_MAX, 821 822 /* Extended ret_types. */ 823 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 824 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 825 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 826 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 827 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 828 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 829 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 830 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 831 832 /* This must be the last entry. Its purpose is to ensure the enum is 833 * wide enough to hold the higher bits reserved for bpf_type_flag. 834 */ 835 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 836 }; 837 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 838 839 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 840 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 841 * instructions after verifying 842 */ 843 struct bpf_func_proto { 844 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 845 bool gpl_only; 846 bool pkt_access; 847 bool might_sleep; 848 /* set to true if helper follows contract for llvm 849 * attribute bpf_fastcall: 850 * - void functions do not scratch r0 851 * - functions taking N arguments scratch only registers r1-rN 852 */ 853 bool allow_fastcall; 854 enum bpf_return_type ret_type; 855 union { 856 struct { 857 enum bpf_arg_type arg1_type; 858 enum bpf_arg_type arg2_type; 859 enum bpf_arg_type arg3_type; 860 enum bpf_arg_type arg4_type; 861 enum bpf_arg_type arg5_type; 862 }; 863 enum bpf_arg_type arg_type[5]; 864 }; 865 union { 866 struct { 867 u32 *arg1_btf_id; 868 u32 *arg2_btf_id; 869 u32 *arg3_btf_id; 870 u32 *arg4_btf_id; 871 u32 *arg5_btf_id; 872 }; 873 u32 *arg_btf_id[5]; 874 struct { 875 size_t arg1_size; 876 size_t arg2_size; 877 size_t arg3_size; 878 size_t arg4_size; 879 size_t arg5_size; 880 }; 881 size_t arg_size[5]; 882 }; 883 int *ret_btf_id; /* return value btf_id */ 884 bool (*allowed)(const struct bpf_prog *prog); 885 }; 886 887 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 888 * the first argument to eBPF programs. 889 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 890 */ 891 struct bpf_context; 892 893 enum bpf_access_type { 894 BPF_READ = 1, 895 BPF_WRITE = 2 896 }; 897 898 /* types of values stored in eBPF registers */ 899 /* Pointer types represent: 900 * pointer 901 * pointer + imm 902 * pointer + (u16) var 903 * pointer + (u16) var + imm 904 * if (range > 0) then [ptr, ptr + range - off) is safe to access 905 * if (id > 0) means that some 'var' was added 906 * if (off > 0) means that 'imm' was added 907 */ 908 enum bpf_reg_type { 909 NOT_INIT = 0, /* nothing was written into register */ 910 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 911 PTR_TO_CTX, /* reg points to bpf_context */ 912 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 913 PTR_TO_MAP_VALUE, /* reg points to map element value */ 914 PTR_TO_MAP_KEY, /* reg points to a map element key */ 915 PTR_TO_STACK, /* reg == frame_pointer + offset */ 916 PTR_TO_PACKET_META, /* skb->data - meta_len */ 917 PTR_TO_PACKET, /* reg points to skb->data */ 918 PTR_TO_PACKET_END, /* skb->data + headlen */ 919 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 920 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 921 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 922 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 923 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 924 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 925 /* PTR_TO_BTF_ID points to a kernel struct that does not need 926 * to be null checked by the BPF program. This does not imply the 927 * pointer is _not_ null and in practice this can easily be a null 928 * pointer when reading pointer chains. The assumption is program 929 * context will handle null pointer dereference typically via fault 930 * handling. The verifier must keep this in mind and can make no 931 * assumptions about null or non-null when doing branch analysis. 932 * Further, when passed into helpers the helpers can not, without 933 * additional context, assume the value is non-null. 934 */ 935 PTR_TO_BTF_ID, 936 PTR_TO_MEM, /* reg points to valid memory region */ 937 PTR_TO_ARENA, 938 PTR_TO_BUF, /* reg points to a read/write buffer */ 939 PTR_TO_FUNC, /* reg points to a bpf program function */ 940 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 941 __BPF_REG_TYPE_MAX, 942 943 /* Extended reg_types. */ 944 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 945 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 946 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 947 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 948 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 949 * been checked for null. Used primarily to inform the verifier 950 * an explicit null check is required for this struct. 951 */ 952 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 953 954 /* This must be the last entry. Its purpose is to ensure the enum is 955 * wide enough to hold the higher bits reserved for bpf_type_flag. 956 */ 957 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 958 }; 959 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 960 961 /* The information passed from prog-specific *_is_valid_access 962 * back to the verifier. 963 */ 964 struct bpf_insn_access_aux { 965 enum bpf_reg_type reg_type; 966 bool is_ldsx; 967 union { 968 int ctx_field_size; 969 struct { 970 struct btf *btf; 971 u32 btf_id; 972 u32 ref_obj_id; 973 }; 974 }; 975 struct bpf_verifier_log *log; /* for verbose logs */ 976 bool is_retval; /* is accessing function return value ? */ 977 }; 978 979 static inline void 980 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 981 { 982 aux->ctx_field_size = size; 983 } 984 985 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 986 { 987 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 988 } 989 990 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 991 { 992 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 993 } 994 995 /* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an 996 * atomic load or store, and false if it is a read-modify-write instruction. 997 */ 998 static inline bool 999 bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn) 1000 { 1001 switch (atomic_insn->imm) { 1002 case BPF_LOAD_ACQ: 1003 case BPF_STORE_REL: 1004 return true; 1005 default: 1006 return false; 1007 } 1008 } 1009 1010 struct bpf_prog_ops { 1011 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 1012 union bpf_attr __user *uattr); 1013 }; 1014 1015 struct bpf_reg_state; 1016 struct bpf_verifier_ops { 1017 /* return eBPF function prototype for verification */ 1018 const struct bpf_func_proto * 1019 (*get_func_proto)(enum bpf_func_id func_id, 1020 const struct bpf_prog *prog); 1021 1022 /* return true if 'size' wide access at offset 'off' within bpf_context 1023 * with 'type' (read or write) is allowed 1024 */ 1025 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 1026 const struct bpf_prog *prog, 1027 struct bpf_insn_access_aux *info); 1028 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 1029 const struct bpf_prog *prog); 1030 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 1031 s16 ctx_stack_off); 1032 int (*gen_ld_abs)(const struct bpf_insn *orig, 1033 struct bpf_insn *insn_buf); 1034 u32 (*convert_ctx_access)(enum bpf_access_type type, 1035 const struct bpf_insn *src, 1036 struct bpf_insn *dst, 1037 struct bpf_prog *prog, u32 *target_size); 1038 int (*btf_struct_access)(struct bpf_verifier_log *log, 1039 const struct bpf_reg_state *reg, 1040 int off, int size); 1041 }; 1042 1043 struct bpf_prog_offload_ops { 1044 /* verifier basic callbacks */ 1045 int (*insn_hook)(struct bpf_verifier_env *env, 1046 int insn_idx, int prev_insn_idx); 1047 int (*finalize)(struct bpf_verifier_env *env); 1048 /* verifier optimization callbacks (called after .finalize) */ 1049 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1050 struct bpf_insn *insn); 1051 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1052 /* program management callbacks */ 1053 int (*prepare)(struct bpf_prog *prog); 1054 int (*translate)(struct bpf_prog *prog); 1055 void (*destroy)(struct bpf_prog *prog); 1056 }; 1057 1058 struct bpf_prog_offload { 1059 struct bpf_prog *prog; 1060 struct net_device *netdev; 1061 struct bpf_offload_dev *offdev; 1062 void *dev_priv; 1063 struct list_head offloads; 1064 bool dev_state; 1065 bool opt_failed; 1066 void *jited_image; 1067 u32 jited_len; 1068 }; 1069 1070 enum bpf_cgroup_storage_type { 1071 BPF_CGROUP_STORAGE_SHARED, 1072 BPF_CGROUP_STORAGE_PERCPU, 1073 __BPF_CGROUP_STORAGE_MAX 1074 }; 1075 1076 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1077 1078 /* The longest tracepoint has 12 args. 1079 * See include/trace/bpf_probe.h 1080 */ 1081 #define MAX_BPF_FUNC_ARGS 12 1082 1083 /* The maximum number of arguments passed through registers 1084 * a single function may have. 1085 */ 1086 #define MAX_BPF_FUNC_REG_ARGS 5 1087 1088 /* The argument is a structure. */ 1089 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1090 1091 /* The argument is signed. */ 1092 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1093 1094 struct btf_func_model { 1095 u8 ret_size; 1096 u8 ret_flags; 1097 u8 nr_args; 1098 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1099 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1100 }; 1101 1102 /* Restore arguments before returning from trampoline to let original function 1103 * continue executing. This flag is used for fentry progs when there are no 1104 * fexit progs. 1105 */ 1106 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1107 /* Call original function after fentry progs, but before fexit progs. 1108 * Makes sense for fentry/fexit, normal calls and indirect calls. 1109 */ 1110 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1111 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1112 * programs only. Should not be used with normal calls and indirect calls. 1113 */ 1114 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1115 /* Store IP address of the caller on the trampoline stack, 1116 * so it's available for trampoline's programs. 1117 */ 1118 #define BPF_TRAMP_F_IP_ARG BIT(3) 1119 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1120 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1121 1122 /* Get original function from stack instead of from provided direct address. 1123 * Makes sense for trampolines with fexit or fmod_ret programs. 1124 */ 1125 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1126 1127 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1128 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1129 */ 1130 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1131 1132 /* Indicate that current trampoline is in a tail call context. Then, it has to 1133 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1134 */ 1135 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1136 1137 /* 1138 * Indicate the trampoline should be suitable to receive indirect calls; 1139 * without this indirectly calling the generated code can result in #UD/#CP, 1140 * depending on the CFI options. 1141 * 1142 * Used by bpf_struct_ops. 1143 * 1144 * Incompatible with FENTRY usage, overloads @func_addr argument. 1145 */ 1146 #define BPF_TRAMP_F_INDIRECT BIT(8) 1147 1148 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1149 * bytes on x86. 1150 */ 1151 enum { 1152 #if defined(__s390x__) 1153 BPF_MAX_TRAMP_LINKS = 27, 1154 #else 1155 BPF_MAX_TRAMP_LINKS = 38, 1156 #endif 1157 }; 1158 1159 struct bpf_tramp_links { 1160 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1161 int nr_links; 1162 }; 1163 1164 struct bpf_tramp_run_ctx; 1165 1166 /* Different use cases for BPF trampoline: 1167 * 1. replace nop at the function entry (kprobe equivalent) 1168 * flags = BPF_TRAMP_F_RESTORE_REGS 1169 * fentry = a set of programs to run before returning from trampoline 1170 * 1171 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1172 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1173 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1174 * fentry = a set of program to run before calling original function 1175 * fexit = a set of program to run after original function 1176 * 1177 * 3. replace direct call instruction anywhere in the function body 1178 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1179 * With flags = 0 1180 * fentry = a set of programs to run before returning from trampoline 1181 * With flags = BPF_TRAMP_F_CALL_ORIG 1182 * orig_call = original callback addr or direct function addr 1183 * fentry = a set of program to run before calling original function 1184 * fexit = a set of program to run after original function 1185 */ 1186 struct bpf_tramp_image; 1187 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1188 const struct btf_func_model *m, u32 flags, 1189 struct bpf_tramp_links *tlinks, 1190 void *func_addr); 1191 void *arch_alloc_bpf_trampoline(unsigned int size); 1192 void arch_free_bpf_trampoline(void *image, unsigned int size); 1193 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1194 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1195 struct bpf_tramp_links *tlinks, void *func_addr); 1196 1197 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1198 struct bpf_tramp_run_ctx *run_ctx); 1199 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1200 struct bpf_tramp_run_ctx *run_ctx); 1201 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1202 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1203 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1204 struct bpf_tramp_run_ctx *run_ctx); 1205 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1206 struct bpf_tramp_run_ctx *run_ctx); 1207 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1208 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1209 1210 struct bpf_ksym { 1211 unsigned long start; 1212 unsigned long end; 1213 char name[KSYM_NAME_LEN]; 1214 struct list_head lnode; 1215 struct latch_tree_node tnode; 1216 bool prog; 1217 }; 1218 1219 enum bpf_tramp_prog_type { 1220 BPF_TRAMP_FENTRY, 1221 BPF_TRAMP_FEXIT, 1222 BPF_TRAMP_MODIFY_RETURN, 1223 BPF_TRAMP_MAX, 1224 BPF_TRAMP_REPLACE, /* more than MAX */ 1225 }; 1226 1227 struct bpf_tramp_image { 1228 void *image; 1229 int size; 1230 struct bpf_ksym ksym; 1231 struct percpu_ref pcref; 1232 void *ip_after_call; 1233 void *ip_epilogue; 1234 union { 1235 struct rcu_head rcu; 1236 struct work_struct work; 1237 }; 1238 }; 1239 1240 struct bpf_trampoline { 1241 /* hlist for trampoline_table */ 1242 struct hlist_node hlist; 1243 struct ftrace_ops *fops; 1244 /* serializes access to fields of this trampoline */ 1245 struct mutex mutex; 1246 refcount_t refcnt; 1247 u32 flags; 1248 u64 key; 1249 struct { 1250 struct btf_func_model model; 1251 void *addr; 1252 bool ftrace_managed; 1253 } func; 1254 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1255 * program by replacing one of its functions. func.addr is the address 1256 * of the function it replaced. 1257 */ 1258 struct bpf_prog *extension_prog; 1259 /* list of BPF programs using this trampoline */ 1260 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1261 /* Number of attached programs. A counter per kind. */ 1262 int progs_cnt[BPF_TRAMP_MAX]; 1263 /* Executable image of trampoline */ 1264 struct bpf_tramp_image *cur_image; 1265 }; 1266 1267 struct bpf_attach_target_info { 1268 struct btf_func_model fmodel; 1269 long tgt_addr; 1270 struct module *tgt_mod; 1271 const char *tgt_name; 1272 const struct btf_type *tgt_type; 1273 }; 1274 1275 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1276 1277 struct bpf_dispatcher_prog { 1278 struct bpf_prog *prog; 1279 refcount_t users; 1280 }; 1281 1282 struct bpf_dispatcher { 1283 /* dispatcher mutex */ 1284 struct mutex mutex; 1285 void *func; 1286 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1287 int num_progs; 1288 void *image; 1289 void *rw_image; 1290 u32 image_off; 1291 struct bpf_ksym ksym; 1292 #ifdef CONFIG_HAVE_STATIC_CALL 1293 struct static_call_key *sc_key; 1294 void *sc_tramp; 1295 #endif 1296 }; 1297 1298 #ifndef __bpfcall 1299 #define __bpfcall __nocfi 1300 #endif 1301 1302 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1303 const void *ctx, 1304 const struct bpf_insn *insnsi, 1305 bpf_func_t bpf_func) 1306 { 1307 return bpf_func(ctx, insnsi); 1308 } 1309 1310 /* the implementation of the opaque uapi struct bpf_dynptr */ 1311 struct bpf_dynptr_kern { 1312 void *data; 1313 /* Size represents the number of usable bytes of dynptr data. 1314 * If for example the offset is at 4 for a local dynptr whose data is 1315 * of type u64, the number of usable bytes is 4. 1316 * 1317 * The upper 8 bits are reserved. It is as follows: 1318 * Bits 0 - 23 = size 1319 * Bits 24 - 30 = dynptr type 1320 * Bit 31 = whether dynptr is read-only 1321 */ 1322 u32 size; 1323 u32 offset; 1324 } __aligned(8); 1325 1326 enum bpf_dynptr_type { 1327 BPF_DYNPTR_TYPE_INVALID, 1328 /* Points to memory that is local to the bpf program */ 1329 BPF_DYNPTR_TYPE_LOCAL, 1330 /* Underlying data is a ringbuf record */ 1331 BPF_DYNPTR_TYPE_RINGBUF, 1332 /* Underlying data is a sk_buff */ 1333 BPF_DYNPTR_TYPE_SKB, 1334 /* Underlying data is a xdp_buff */ 1335 BPF_DYNPTR_TYPE_XDP, 1336 }; 1337 1338 int bpf_dynptr_check_size(u32 size); 1339 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1340 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1341 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1342 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1343 1344 #ifdef CONFIG_BPF_JIT 1345 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1346 struct bpf_trampoline *tr, 1347 struct bpf_prog *tgt_prog); 1348 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1349 struct bpf_trampoline *tr, 1350 struct bpf_prog *tgt_prog); 1351 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1352 struct bpf_attach_target_info *tgt_info); 1353 void bpf_trampoline_put(struct bpf_trampoline *tr); 1354 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1355 1356 /* 1357 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1358 * indirection with a direct call to the bpf program. If the architecture does 1359 * not have STATIC_CALL, avoid a double-indirection. 1360 */ 1361 #ifdef CONFIG_HAVE_STATIC_CALL 1362 1363 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1364 .sc_key = &STATIC_CALL_KEY(_name), \ 1365 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1366 1367 #define __BPF_DISPATCHER_SC(name) \ 1368 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1369 1370 #define __BPF_DISPATCHER_CALL(name) \ 1371 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1372 1373 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1374 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1375 1376 #else 1377 #define __BPF_DISPATCHER_SC_INIT(name) 1378 #define __BPF_DISPATCHER_SC(name) 1379 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1380 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1381 #endif 1382 1383 #define BPF_DISPATCHER_INIT(_name) { \ 1384 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1385 .func = &_name##_func, \ 1386 .progs = {}, \ 1387 .num_progs = 0, \ 1388 .image = NULL, \ 1389 .image_off = 0, \ 1390 .ksym = { \ 1391 .name = #_name, \ 1392 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1393 }, \ 1394 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1395 } 1396 1397 #define DEFINE_BPF_DISPATCHER(name) \ 1398 __BPF_DISPATCHER_SC(name); \ 1399 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1400 const void *ctx, \ 1401 const struct bpf_insn *insnsi, \ 1402 bpf_func_t bpf_func) \ 1403 { \ 1404 return __BPF_DISPATCHER_CALL(name); \ 1405 } \ 1406 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1407 struct bpf_dispatcher bpf_dispatcher_##name = \ 1408 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1409 1410 #define DECLARE_BPF_DISPATCHER(name) \ 1411 unsigned int bpf_dispatcher_##name##_func( \ 1412 const void *ctx, \ 1413 const struct bpf_insn *insnsi, \ 1414 bpf_func_t bpf_func); \ 1415 extern struct bpf_dispatcher bpf_dispatcher_##name; 1416 1417 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1418 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1419 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1420 struct bpf_prog *to); 1421 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1422 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym); 1423 void bpf_image_ksym_add(struct bpf_ksym *ksym); 1424 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1425 void bpf_ksym_add(struct bpf_ksym *ksym); 1426 void bpf_ksym_del(struct bpf_ksym *ksym); 1427 int bpf_jit_charge_modmem(u32 size); 1428 void bpf_jit_uncharge_modmem(u32 size); 1429 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1430 #else 1431 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1432 struct bpf_trampoline *tr, 1433 struct bpf_prog *tgt_prog) 1434 { 1435 return -ENOTSUPP; 1436 } 1437 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1438 struct bpf_trampoline *tr, 1439 struct bpf_prog *tgt_prog) 1440 { 1441 return -ENOTSUPP; 1442 } 1443 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1444 struct bpf_attach_target_info *tgt_info) 1445 { 1446 return NULL; 1447 } 1448 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1449 #define DEFINE_BPF_DISPATCHER(name) 1450 #define DECLARE_BPF_DISPATCHER(name) 1451 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1452 #define BPF_DISPATCHER_PTR(name) NULL 1453 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1454 struct bpf_prog *from, 1455 struct bpf_prog *to) {} 1456 static inline bool is_bpf_image_address(unsigned long address) 1457 { 1458 return false; 1459 } 1460 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1461 { 1462 return false; 1463 } 1464 #endif 1465 1466 struct bpf_func_info_aux { 1467 u16 linkage; 1468 bool unreliable; 1469 bool called : 1; 1470 bool verified : 1; 1471 }; 1472 1473 enum bpf_jit_poke_reason { 1474 BPF_POKE_REASON_TAIL_CALL, 1475 }; 1476 1477 /* Descriptor of pokes pointing /into/ the JITed image. */ 1478 struct bpf_jit_poke_descriptor { 1479 void *tailcall_target; 1480 void *tailcall_bypass; 1481 void *bypass_addr; 1482 void *aux; 1483 union { 1484 struct { 1485 struct bpf_map *map; 1486 u32 key; 1487 } tail_call; 1488 }; 1489 bool tailcall_target_stable; 1490 u8 adj_off; 1491 u16 reason; 1492 u32 insn_idx; 1493 }; 1494 1495 /* reg_type info for ctx arguments */ 1496 struct bpf_ctx_arg_aux { 1497 u32 offset; 1498 enum bpf_reg_type reg_type; 1499 struct btf *btf; 1500 u32 btf_id; 1501 u32 ref_obj_id; 1502 bool refcounted; 1503 }; 1504 1505 struct btf_mod_pair { 1506 struct btf *btf; 1507 struct module *module; 1508 }; 1509 1510 struct bpf_kfunc_desc_tab; 1511 1512 struct bpf_prog_aux { 1513 atomic64_t refcnt; 1514 u32 used_map_cnt; 1515 u32 used_btf_cnt; 1516 u32 max_ctx_offset; 1517 u32 max_pkt_offset; 1518 u32 max_tp_access; 1519 u32 stack_depth; 1520 u32 id; 1521 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1522 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1523 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1524 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1525 u32 ctx_arg_info_size; 1526 u32 max_rdonly_access; 1527 u32 max_rdwr_access; 1528 struct btf *attach_btf; 1529 struct bpf_ctx_arg_aux *ctx_arg_info; 1530 void __percpu *priv_stack_ptr; 1531 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1532 struct bpf_prog *dst_prog; 1533 struct bpf_trampoline *dst_trampoline; 1534 enum bpf_prog_type saved_dst_prog_type; 1535 enum bpf_attach_type saved_dst_attach_type; 1536 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1537 bool dev_bound; /* Program is bound to the netdev. */ 1538 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1539 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1540 bool attach_tracing_prog; /* true if tracing another tracing program */ 1541 bool func_proto_unreliable; 1542 bool tail_call_reachable; 1543 bool xdp_has_frags; 1544 bool exception_cb; 1545 bool exception_boundary; 1546 bool is_extended; /* true if extended by freplace program */ 1547 bool jits_use_priv_stack; 1548 bool priv_stack_requested; 1549 bool changes_pkt_data; 1550 bool might_sleep; 1551 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ 1552 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ 1553 struct bpf_arena *arena; 1554 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */ 1555 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1556 const struct btf_type *attach_func_proto; 1557 /* function name for valid attach_btf_id */ 1558 const char *attach_func_name; 1559 struct bpf_prog **func; 1560 void *jit_data; /* JIT specific data. arch dependent */ 1561 struct bpf_jit_poke_descriptor *poke_tab; 1562 struct bpf_kfunc_desc_tab *kfunc_tab; 1563 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1564 u32 size_poke_tab; 1565 #ifdef CONFIG_FINEIBT 1566 struct bpf_ksym ksym_prefix; 1567 #endif 1568 struct bpf_ksym ksym; 1569 const struct bpf_prog_ops *ops; 1570 struct bpf_map **used_maps; 1571 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1572 struct btf_mod_pair *used_btfs; 1573 struct bpf_prog *prog; 1574 struct user_struct *user; 1575 u64 load_time; /* ns since boottime */ 1576 u32 verified_insns; 1577 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1578 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1579 char name[BPF_OBJ_NAME_LEN]; 1580 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1581 #ifdef CONFIG_SECURITY 1582 void *security; 1583 #endif 1584 struct bpf_token *token; 1585 struct bpf_prog_offload *offload; 1586 struct btf *btf; 1587 struct bpf_func_info *func_info; 1588 struct bpf_func_info_aux *func_info_aux; 1589 /* bpf_line_info loaded from userspace. linfo->insn_off 1590 * has the xlated insn offset. 1591 * Both the main and sub prog share the same linfo. 1592 * The subprog can access its first linfo by 1593 * using the linfo_idx. 1594 */ 1595 struct bpf_line_info *linfo; 1596 /* jited_linfo is the jited addr of the linfo. It has a 1597 * one to one mapping to linfo: 1598 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1599 * Both the main and sub prog share the same jited_linfo. 1600 * The subprog can access its first jited_linfo by 1601 * using the linfo_idx. 1602 */ 1603 void **jited_linfo; 1604 u32 func_info_cnt; 1605 u32 nr_linfo; 1606 /* subprog can use linfo_idx to access its first linfo and 1607 * jited_linfo. 1608 * main prog always has linfo_idx == 0 1609 */ 1610 u32 linfo_idx; 1611 struct module *mod; 1612 u32 num_exentries; 1613 struct exception_table_entry *extable; 1614 union { 1615 struct work_struct work; 1616 struct rcu_head rcu; 1617 }; 1618 }; 1619 1620 struct bpf_prog { 1621 u16 pages; /* Number of allocated pages */ 1622 u16 jited:1, /* Is our filter JIT'ed? */ 1623 jit_requested:1,/* archs need to JIT the prog */ 1624 gpl_compatible:1, /* Is filter GPL compatible? */ 1625 cb_access:1, /* Is control block accessed? */ 1626 dst_needed:1, /* Do we need dst entry? */ 1627 blinding_requested:1, /* needs constant blinding */ 1628 blinded:1, /* Was blinded */ 1629 is_func:1, /* program is a bpf function */ 1630 kprobe_override:1, /* Do we override a kprobe? */ 1631 has_callchain_buf:1, /* callchain buffer allocated? */ 1632 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1633 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1634 call_get_func_ip:1, /* Do we call get_func_ip() */ 1635 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1636 sleepable:1; /* BPF program is sleepable */ 1637 enum bpf_prog_type type; /* Type of BPF program */ 1638 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1639 u32 len; /* Number of filter blocks */ 1640 u32 jited_len; /* Size of jited insns in bytes */ 1641 u8 tag[BPF_TAG_SIZE]; 1642 struct bpf_prog_stats __percpu *stats; 1643 int __percpu *active; 1644 unsigned int (*bpf_func)(const void *ctx, 1645 const struct bpf_insn *insn); 1646 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1647 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1648 /* Instructions for interpreter */ 1649 union { 1650 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1651 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1652 }; 1653 }; 1654 1655 struct bpf_array_aux { 1656 /* Programs with direct jumps into programs part of this array. */ 1657 struct list_head poke_progs; 1658 struct bpf_map *map; 1659 struct mutex poke_mutex; 1660 struct work_struct work; 1661 }; 1662 1663 struct bpf_link { 1664 atomic64_t refcnt; 1665 u32 id; 1666 enum bpf_link_type type; 1667 const struct bpf_link_ops *ops; 1668 struct bpf_prog *prog; 1669 /* whether BPF link itself has "sleepable" semantics, which can differ 1670 * from underlying BPF program having a "sleepable" semantics, as BPF 1671 * link's semantics is determined by target attach hook 1672 */ 1673 bool sleepable; 1674 /* rcu is used before freeing, work can be used to schedule that 1675 * RCU-based freeing before that, so they never overlap 1676 */ 1677 union { 1678 struct rcu_head rcu; 1679 struct work_struct work; 1680 }; 1681 }; 1682 1683 struct bpf_link_ops { 1684 void (*release)(struct bpf_link *link); 1685 /* deallocate link resources callback, called without RCU grace period 1686 * waiting 1687 */ 1688 void (*dealloc)(struct bpf_link *link); 1689 /* deallocate link resources callback, called after RCU grace period; 1690 * if either the underlying BPF program is sleepable or BPF link's 1691 * target hook is sleepable, we'll go through tasks trace RCU GP and 1692 * then "classic" RCU GP; this need for chaining tasks trace and 1693 * classic RCU GPs is designated by setting bpf_link->sleepable flag 1694 */ 1695 void (*dealloc_deferred)(struct bpf_link *link); 1696 int (*detach)(struct bpf_link *link); 1697 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1698 struct bpf_prog *old_prog); 1699 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1700 int (*fill_link_info)(const struct bpf_link *link, 1701 struct bpf_link_info *info); 1702 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1703 struct bpf_map *old_map); 1704 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1705 }; 1706 1707 struct bpf_tramp_link { 1708 struct bpf_link link; 1709 struct hlist_node tramp_hlist; 1710 u64 cookie; 1711 }; 1712 1713 struct bpf_shim_tramp_link { 1714 struct bpf_tramp_link link; 1715 struct bpf_trampoline *trampoline; 1716 }; 1717 1718 struct bpf_tracing_link { 1719 struct bpf_tramp_link link; 1720 enum bpf_attach_type attach_type; 1721 struct bpf_trampoline *trampoline; 1722 struct bpf_prog *tgt_prog; 1723 }; 1724 1725 struct bpf_raw_tp_link { 1726 struct bpf_link link; 1727 struct bpf_raw_event_map *btp; 1728 u64 cookie; 1729 }; 1730 1731 struct bpf_link_primer { 1732 struct bpf_link *link; 1733 struct file *file; 1734 int fd; 1735 u32 id; 1736 }; 1737 1738 struct bpf_mount_opts { 1739 kuid_t uid; 1740 kgid_t gid; 1741 umode_t mode; 1742 1743 /* BPF token-related delegation options */ 1744 u64 delegate_cmds; 1745 u64 delegate_maps; 1746 u64 delegate_progs; 1747 u64 delegate_attachs; 1748 }; 1749 1750 struct bpf_token { 1751 struct work_struct work; 1752 atomic64_t refcnt; 1753 struct user_namespace *userns; 1754 u64 allowed_cmds; 1755 u64 allowed_maps; 1756 u64 allowed_progs; 1757 u64 allowed_attachs; 1758 #ifdef CONFIG_SECURITY 1759 void *security; 1760 #endif 1761 }; 1762 1763 struct bpf_struct_ops_value; 1764 struct btf_member; 1765 1766 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1767 /** 1768 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1769 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1770 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1771 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1772 * when determining whether the struct_ops progs in the 1773 * struct_ops map are valid. 1774 * @init: A callback that is invoked a single time, and before any other 1775 * callback, to initialize the structure. A nonzero return value means 1776 * the subsystem could not be initialized. 1777 * @check_member: When defined, a callback invoked by the verifier to allow 1778 * the subsystem to determine if an entry in the struct_ops map 1779 * is valid. A nonzero return value means that the map is 1780 * invalid and should be rejected by the verifier. 1781 * @init_member: A callback that is invoked for each member of the struct_ops 1782 * map to allow the subsystem to initialize the member. A nonzero 1783 * value means the member could not be initialized. This callback 1784 * is exclusive with the @type, @type_id, @value_type, and 1785 * @value_id fields. 1786 * @reg: A callback that is invoked when the struct_ops map has been 1787 * initialized and is being attached to. Zero means the struct_ops map 1788 * has been successfully registered and is live. A nonzero return value 1789 * means the struct_ops map could not be registered. 1790 * @unreg: A callback that is invoked when the struct_ops map should be 1791 * unregistered. 1792 * @update: A callback that is invoked when the live struct_ops map is being 1793 * updated to contain new values. This callback is only invoked when 1794 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1795 * it is assumed that the struct_ops map cannot be updated. 1796 * @validate: A callback that is invoked after all of the members have been 1797 * initialized. This callback should perform static checks on the 1798 * map, meaning that it should either fail or succeed 1799 * deterministically. A struct_ops map that has been validated may 1800 * not necessarily succeed in being registered if the call to @reg 1801 * fails. For example, a valid struct_ops map may be loaded, but 1802 * then fail to be registered due to there being another active 1803 * struct_ops map on the system in the subsystem already. For this 1804 * reason, if this callback is not defined, the check is skipped as 1805 * the struct_ops map will have final verification performed in 1806 * @reg. 1807 * @type: BTF type. 1808 * @value_type: Value type. 1809 * @name: The name of the struct bpf_struct_ops object. 1810 * @func_models: Func models 1811 * @type_id: BTF type id. 1812 * @value_id: BTF value id. 1813 */ 1814 struct bpf_struct_ops { 1815 const struct bpf_verifier_ops *verifier_ops; 1816 int (*init)(struct btf *btf); 1817 int (*check_member)(const struct btf_type *t, 1818 const struct btf_member *member, 1819 const struct bpf_prog *prog); 1820 int (*init_member)(const struct btf_type *t, 1821 const struct btf_member *member, 1822 void *kdata, const void *udata); 1823 int (*reg)(void *kdata, struct bpf_link *link); 1824 void (*unreg)(void *kdata, struct bpf_link *link); 1825 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1826 int (*validate)(void *kdata); 1827 void *cfi_stubs; 1828 struct module *owner; 1829 const char *name; 1830 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1831 }; 1832 1833 /* Every member of a struct_ops type has an instance even a member is not 1834 * an operator (function pointer). The "info" field will be assigned to 1835 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1836 * argument information required by the verifier to verify the program. 1837 * 1838 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1839 * corresponding entry for an given argument. 1840 */ 1841 struct bpf_struct_ops_arg_info { 1842 struct bpf_ctx_arg_aux *info; 1843 u32 cnt; 1844 }; 1845 1846 struct bpf_struct_ops_desc { 1847 struct bpf_struct_ops *st_ops; 1848 1849 const struct btf_type *type; 1850 const struct btf_type *value_type; 1851 u32 type_id; 1852 u32 value_id; 1853 1854 /* Collection of argument information for each member */ 1855 struct bpf_struct_ops_arg_info *arg_info; 1856 }; 1857 1858 enum bpf_struct_ops_state { 1859 BPF_STRUCT_OPS_STATE_INIT, 1860 BPF_STRUCT_OPS_STATE_INUSE, 1861 BPF_STRUCT_OPS_STATE_TOBEFREE, 1862 BPF_STRUCT_OPS_STATE_READY, 1863 }; 1864 1865 struct bpf_struct_ops_common_value { 1866 refcount_t refcnt; 1867 enum bpf_struct_ops_state state; 1868 }; 1869 1870 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1871 /* This macro helps developer to register a struct_ops type and generate 1872 * type information correctly. Developers should use this macro to register 1873 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1874 */ 1875 #define register_bpf_struct_ops(st_ops, type) \ 1876 ({ \ 1877 struct bpf_struct_ops_##type { \ 1878 struct bpf_struct_ops_common_value common; \ 1879 struct type data ____cacheline_aligned_in_smp; \ 1880 }; \ 1881 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1882 __register_bpf_struct_ops(st_ops); \ 1883 }) 1884 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1885 bool bpf_struct_ops_get(const void *kdata); 1886 void bpf_struct_ops_put(const void *kdata); 1887 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1888 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1889 void *value); 1890 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1891 struct bpf_tramp_link *link, 1892 const struct btf_func_model *model, 1893 void *stub_func, 1894 void **image, u32 *image_off, 1895 bool allow_alloc); 1896 void bpf_struct_ops_image_free(void *image); 1897 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1898 { 1899 if (owner == BPF_MODULE_OWNER) 1900 return bpf_struct_ops_get(data); 1901 else 1902 return try_module_get(owner); 1903 } 1904 static inline void bpf_module_put(const void *data, struct module *owner) 1905 { 1906 if (owner == BPF_MODULE_OWNER) 1907 bpf_struct_ops_put(data); 1908 else 1909 module_put(owner); 1910 } 1911 int bpf_struct_ops_link_create(union bpf_attr *attr); 1912 1913 #ifdef CONFIG_NET 1914 /* Define it here to avoid the use of forward declaration */ 1915 struct bpf_dummy_ops_state { 1916 int val; 1917 }; 1918 1919 struct bpf_dummy_ops { 1920 int (*test_1)(struct bpf_dummy_ops_state *cb); 1921 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1922 char a3, unsigned long a4); 1923 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1924 }; 1925 1926 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1927 union bpf_attr __user *uattr); 1928 #endif 1929 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1930 struct btf *btf, 1931 struct bpf_verifier_log *log); 1932 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1933 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1934 #else 1935 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1936 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1937 { 1938 return try_module_get(owner); 1939 } 1940 static inline void bpf_module_put(const void *data, struct module *owner) 1941 { 1942 module_put(owner); 1943 } 1944 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1945 { 1946 return -ENOTSUPP; 1947 } 1948 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1949 void *key, 1950 void *value) 1951 { 1952 return -EINVAL; 1953 } 1954 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1955 { 1956 return -EOPNOTSUPP; 1957 } 1958 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1959 { 1960 } 1961 1962 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1963 { 1964 } 1965 1966 #endif 1967 1968 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog, 1969 const struct bpf_ctx_arg_aux *info, u32 cnt); 1970 1971 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1972 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1973 int cgroup_atype); 1974 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1975 #else 1976 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1977 int cgroup_atype) 1978 { 1979 return -EOPNOTSUPP; 1980 } 1981 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1982 { 1983 } 1984 #endif 1985 1986 struct bpf_array { 1987 struct bpf_map map; 1988 u32 elem_size; 1989 u32 index_mask; 1990 struct bpf_array_aux *aux; 1991 union { 1992 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1993 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1994 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1995 }; 1996 }; 1997 1998 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1999 #define MAX_TAIL_CALL_CNT 33 2000 2001 /* Maximum number of loops for bpf_loop and bpf_iter_num. 2002 * It's enum to expose it (and thus make it discoverable) through BTF. 2003 */ 2004 enum { 2005 BPF_MAX_LOOPS = 8 * 1024 * 1024, 2006 BPF_MAX_TIMED_LOOPS = 0xffff, 2007 }; 2008 2009 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 2010 BPF_F_RDONLY_PROG | \ 2011 BPF_F_WRONLY | \ 2012 BPF_F_WRONLY_PROG) 2013 2014 #define BPF_MAP_CAN_READ BIT(0) 2015 #define BPF_MAP_CAN_WRITE BIT(1) 2016 2017 /* Maximum number of user-producer ring buffer samples that can be drained in 2018 * a call to bpf_user_ringbuf_drain(). 2019 */ 2020 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 2021 2022 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 2023 { 2024 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2025 2026 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 2027 * not possible. 2028 */ 2029 if (access_flags & BPF_F_RDONLY_PROG) 2030 return BPF_MAP_CAN_READ; 2031 else if (access_flags & BPF_F_WRONLY_PROG) 2032 return BPF_MAP_CAN_WRITE; 2033 else 2034 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 2035 } 2036 2037 static inline bool bpf_map_flags_access_ok(u32 access_flags) 2038 { 2039 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 2040 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2041 } 2042 2043 struct bpf_event_entry { 2044 struct perf_event *event; 2045 struct file *perf_file; 2046 struct file *map_file; 2047 struct rcu_head rcu; 2048 }; 2049 2050 static inline bool map_type_contains_progs(struct bpf_map *map) 2051 { 2052 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 2053 map->map_type == BPF_MAP_TYPE_DEVMAP || 2054 map->map_type == BPF_MAP_TYPE_CPUMAP; 2055 } 2056 2057 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 2058 int bpf_prog_calc_tag(struct bpf_prog *fp); 2059 2060 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 2061 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 2062 2063 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void); 2064 2065 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 2066 unsigned long off, unsigned long len); 2067 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 2068 const struct bpf_insn *src, 2069 struct bpf_insn *dst, 2070 struct bpf_prog *prog, 2071 u32 *target_size); 2072 2073 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2074 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2075 2076 /* an array of programs to be executed under rcu_lock. 2077 * 2078 * Typical usage: 2079 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2080 * 2081 * the structure returned by bpf_prog_array_alloc() should be populated 2082 * with program pointers and the last pointer must be NULL. 2083 * The user has to keep refcnt on the program and make sure the program 2084 * is removed from the array before bpf_prog_put(). 2085 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2086 * since other cpus are walking the array of pointers in parallel. 2087 */ 2088 struct bpf_prog_array_item { 2089 struct bpf_prog *prog; 2090 union { 2091 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2092 u64 bpf_cookie; 2093 }; 2094 }; 2095 2096 struct bpf_prog_array { 2097 struct rcu_head rcu; 2098 struct bpf_prog_array_item items[]; 2099 }; 2100 2101 struct bpf_empty_prog_array { 2102 struct bpf_prog_array hdr; 2103 struct bpf_prog *null_prog; 2104 }; 2105 2106 /* to avoid allocating empty bpf_prog_array for cgroups that 2107 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2108 * It will not be modified the caller of bpf_prog_array_alloc() 2109 * (since caller requested prog_cnt == 0) 2110 * that pointer should be 'freed' by bpf_prog_array_free() 2111 */ 2112 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2113 2114 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2115 void bpf_prog_array_free(struct bpf_prog_array *progs); 2116 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2117 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2118 int bpf_prog_array_length(struct bpf_prog_array *progs); 2119 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2120 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2121 __u32 __user *prog_ids, u32 cnt); 2122 2123 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2124 struct bpf_prog *old_prog); 2125 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2126 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2127 struct bpf_prog *prog); 2128 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2129 u32 *prog_ids, u32 request_cnt, 2130 u32 *prog_cnt); 2131 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2132 struct bpf_prog *exclude_prog, 2133 struct bpf_prog *include_prog, 2134 u64 bpf_cookie, 2135 struct bpf_prog_array **new_array); 2136 2137 struct bpf_run_ctx {}; 2138 2139 struct bpf_cg_run_ctx { 2140 struct bpf_run_ctx run_ctx; 2141 const struct bpf_prog_array_item *prog_item; 2142 int retval; 2143 }; 2144 2145 struct bpf_trace_run_ctx { 2146 struct bpf_run_ctx run_ctx; 2147 u64 bpf_cookie; 2148 bool is_uprobe; 2149 }; 2150 2151 struct bpf_tramp_run_ctx { 2152 struct bpf_run_ctx run_ctx; 2153 u64 bpf_cookie; 2154 struct bpf_run_ctx *saved_run_ctx; 2155 }; 2156 2157 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2158 { 2159 struct bpf_run_ctx *old_ctx = NULL; 2160 2161 #ifdef CONFIG_BPF_SYSCALL 2162 old_ctx = current->bpf_ctx; 2163 current->bpf_ctx = new_ctx; 2164 #endif 2165 return old_ctx; 2166 } 2167 2168 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2169 { 2170 #ifdef CONFIG_BPF_SYSCALL 2171 current->bpf_ctx = old_ctx; 2172 #endif 2173 } 2174 2175 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2176 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2177 /* BPF program asks to set CN on the packet. */ 2178 #define BPF_RET_SET_CN (1 << 0) 2179 2180 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2181 2182 static __always_inline u32 2183 bpf_prog_run_array(const struct bpf_prog_array *array, 2184 const void *ctx, bpf_prog_run_fn run_prog) 2185 { 2186 const struct bpf_prog_array_item *item; 2187 const struct bpf_prog *prog; 2188 struct bpf_run_ctx *old_run_ctx; 2189 struct bpf_trace_run_ctx run_ctx; 2190 u32 ret = 1; 2191 2192 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2193 2194 if (unlikely(!array)) 2195 return ret; 2196 2197 run_ctx.is_uprobe = false; 2198 2199 migrate_disable(); 2200 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2201 item = &array->items[0]; 2202 while ((prog = READ_ONCE(item->prog))) { 2203 run_ctx.bpf_cookie = item->bpf_cookie; 2204 ret &= run_prog(prog, ctx); 2205 item++; 2206 } 2207 bpf_reset_run_ctx(old_run_ctx); 2208 migrate_enable(); 2209 return ret; 2210 } 2211 2212 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2213 * 2214 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2215 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2216 * in order to use the tasks_trace rcu grace period. 2217 * 2218 * When a non-sleepable program is inside the array, we take the rcu read 2219 * section and disable preemption for that program alone, so it can access 2220 * rcu-protected dynamically sized maps. 2221 */ 2222 static __always_inline u32 2223 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array, 2224 const void *ctx, bpf_prog_run_fn run_prog) 2225 { 2226 const struct bpf_prog_array_item *item; 2227 const struct bpf_prog *prog; 2228 struct bpf_run_ctx *old_run_ctx; 2229 struct bpf_trace_run_ctx run_ctx; 2230 u32 ret = 1; 2231 2232 might_fault(); 2233 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held"); 2234 2235 if (unlikely(!array)) 2236 return ret; 2237 2238 migrate_disable(); 2239 2240 run_ctx.is_uprobe = true; 2241 2242 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2243 item = &array->items[0]; 2244 while ((prog = READ_ONCE(item->prog))) { 2245 if (!prog->sleepable) 2246 rcu_read_lock(); 2247 2248 run_ctx.bpf_cookie = item->bpf_cookie; 2249 ret &= run_prog(prog, ctx); 2250 item++; 2251 2252 if (!prog->sleepable) 2253 rcu_read_unlock(); 2254 } 2255 bpf_reset_run_ctx(old_run_ctx); 2256 migrate_enable(); 2257 return ret; 2258 } 2259 2260 #ifdef CONFIG_BPF_SYSCALL 2261 DECLARE_PER_CPU(int, bpf_prog_active); 2262 extern struct mutex bpf_stats_enabled_mutex; 2263 2264 /* 2265 * Block execution of BPF programs attached to instrumentation (perf, 2266 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2267 * these events can happen inside a region which holds a map bucket lock 2268 * and can deadlock on it. 2269 */ 2270 static inline void bpf_disable_instrumentation(void) 2271 { 2272 migrate_disable(); 2273 this_cpu_inc(bpf_prog_active); 2274 } 2275 2276 static inline void bpf_enable_instrumentation(void) 2277 { 2278 this_cpu_dec(bpf_prog_active); 2279 migrate_enable(); 2280 } 2281 2282 extern const struct super_operations bpf_super_ops; 2283 extern const struct file_operations bpf_map_fops; 2284 extern const struct file_operations bpf_prog_fops; 2285 extern const struct file_operations bpf_iter_fops; 2286 2287 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2288 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2289 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2290 #define BPF_MAP_TYPE(_id, _ops) \ 2291 extern const struct bpf_map_ops _ops; 2292 #define BPF_LINK_TYPE(_id, _name) 2293 #include <linux/bpf_types.h> 2294 #undef BPF_PROG_TYPE 2295 #undef BPF_MAP_TYPE 2296 #undef BPF_LINK_TYPE 2297 2298 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2299 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2300 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2301 2302 struct bpf_prog *bpf_prog_get(u32 ufd); 2303 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2304 bool attach_drv); 2305 void bpf_prog_add(struct bpf_prog *prog, int i); 2306 void bpf_prog_sub(struct bpf_prog *prog, int i); 2307 void bpf_prog_inc(struct bpf_prog *prog); 2308 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2309 void bpf_prog_put(struct bpf_prog *prog); 2310 2311 void bpf_prog_free_id(struct bpf_prog *prog); 2312 void bpf_map_free_id(struct bpf_map *map); 2313 2314 struct btf_field *btf_record_find(const struct btf_record *rec, 2315 u32 offset, u32 field_mask); 2316 void btf_record_free(struct btf_record *rec); 2317 void bpf_map_free_record(struct bpf_map *map); 2318 struct btf_record *btf_record_dup(const struct btf_record *rec); 2319 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2320 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2321 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2322 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2323 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2324 2325 struct bpf_map *bpf_map_get(u32 ufd); 2326 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2327 2328 /* 2329 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file 2330 * descriptor and return a corresponding map or btf object. 2331 * Their names are double underscored to emphasize the fact that they 2332 * do not increase refcnt. To also increase refcnt use corresponding 2333 * bpf_map_get() and btf_get_by_fd() functions. 2334 */ 2335 2336 static inline struct bpf_map *__bpf_map_get(struct fd f) 2337 { 2338 if (fd_empty(f)) 2339 return ERR_PTR(-EBADF); 2340 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2341 return ERR_PTR(-EINVAL); 2342 return fd_file(f)->private_data; 2343 } 2344 2345 static inline struct btf *__btf_get_by_fd(struct fd f) 2346 { 2347 if (fd_empty(f)) 2348 return ERR_PTR(-EBADF); 2349 if (unlikely(fd_file(f)->f_op != &btf_fops)) 2350 return ERR_PTR(-EINVAL); 2351 return fd_file(f)->private_data; 2352 } 2353 2354 void bpf_map_inc(struct bpf_map *map); 2355 void bpf_map_inc_with_uref(struct bpf_map *map); 2356 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2357 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2358 void bpf_map_put_with_uref(struct bpf_map *map); 2359 void bpf_map_put(struct bpf_map *map); 2360 void *bpf_map_area_alloc(u64 size, int numa_node); 2361 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2362 void bpf_map_area_free(void *base); 2363 bool bpf_map_write_active(const struct bpf_map *map); 2364 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2365 int generic_map_lookup_batch(struct bpf_map *map, 2366 const union bpf_attr *attr, 2367 union bpf_attr __user *uattr); 2368 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2369 const union bpf_attr *attr, 2370 union bpf_attr __user *uattr); 2371 int generic_map_delete_batch(struct bpf_map *map, 2372 const union bpf_attr *attr, 2373 union bpf_attr __user *uattr); 2374 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2375 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2376 2377 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2378 unsigned long nr_pages, struct page **page_array); 2379 #ifdef CONFIG_MEMCG 2380 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2381 int node); 2382 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2383 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2384 gfp_t flags); 2385 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2386 size_t align, gfp_t flags); 2387 #else 2388 /* 2389 * These specialized allocators have to be macros for their allocations to be 2390 * accounted separately (to have separate alloc_tag). 2391 */ 2392 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2393 kmalloc_node(_size, _flags, _node) 2394 #define bpf_map_kzalloc(_map, _size, _flags) \ 2395 kzalloc(_size, _flags) 2396 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2397 kvcalloc(_n, _size, _flags) 2398 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2399 __alloc_percpu_gfp(_size, _align, _flags) 2400 #endif 2401 2402 static inline int 2403 bpf_map_init_elem_count(struct bpf_map *map) 2404 { 2405 size_t size = sizeof(*map->elem_count), align = size; 2406 gfp_t flags = GFP_USER | __GFP_NOWARN; 2407 2408 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2409 if (!map->elem_count) 2410 return -ENOMEM; 2411 2412 return 0; 2413 } 2414 2415 static inline void 2416 bpf_map_free_elem_count(struct bpf_map *map) 2417 { 2418 free_percpu(map->elem_count); 2419 } 2420 2421 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2422 { 2423 this_cpu_inc(*map->elem_count); 2424 } 2425 2426 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2427 { 2428 this_cpu_dec(*map->elem_count); 2429 } 2430 2431 extern int sysctl_unprivileged_bpf_disabled; 2432 2433 bool bpf_token_capable(const struct bpf_token *token, int cap); 2434 2435 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2436 { 2437 return bpf_token_capable(token, CAP_PERFMON); 2438 } 2439 2440 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2441 { 2442 return bpf_token_capable(token, CAP_PERFMON); 2443 } 2444 2445 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2446 { 2447 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2448 } 2449 2450 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2451 { 2452 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2453 } 2454 2455 int bpf_map_new_fd(struct bpf_map *map, int flags); 2456 int bpf_prog_new_fd(struct bpf_prog *prog); 2457 2458 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2459 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2460 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2461 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2462 bool sleepable); 2463 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2464 int bpf_link_settle(struct bpf_link_primer *primer); 2465 void bpf_link_cleanup(struct bpf_link_primer *primer); 2466 void bpf_link_inc(struct bpf_link *link); 2467 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2468 void bpf_link_put(struct bpf_link *link); 2469 int bpf_link_new_fd(struct bpf_link *link); 2470 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2471 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2472 2473 void bpf_token_inc(struct bpf_token *token); 2474 void bpf_token_put(struct bpf_token *token); 2475 int bpf_token_create(union bpf_attr *attr); 2476 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2477 2478 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2479 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2480 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2481 enum bpf_prog_type prog_type, 2482 enum bpf_attach_type attach_type); 2483 2484 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2485 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2486 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2487 umode_t mode); 2488 2489 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2490 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2491 extern int bpf_iter_ ## target(args); \ 2492 int __init bpf_iter_ ## target(args) { return 0; } 2493 2494 /* 2495 * The task type of iterators. 2496 * 2497 * For BPF task iterators, they can be parameterized with various 2498 * parameters to visit only some of tasks. 2499 * 2500 * BPF_TASK_ITER_ALL (default) 2501 * Iterate over resources of every task. 2502 * 2503 * BPF_TASK_ITER_TID 2504 * Iterate over resources of a task/tid. 2505 * 2506 * BPF_TASK_ITER_TGID 2507 * Iterate over resources of every task of a process / task group. 2508 */ 2509 enum bpf_iter_task_type { 2510 BPF_TASK_ITER_ALL = 0, 2511 BPF_TASK_ITER_TID, 2512 BPF_TASK_ITER_TGID, 2513 }; 2514 2515 struct bpf_iter_aux_info { 2516 /* for map_elem iter */ 2517 struct bpf_map *map; 2518 2519 /* for cgroup iter */ 2520 struct { 2521 struct cgroup *start; /* starting cgroup */ 2522 enum bpf_cgroup_iter_order order; 2523 } cgroup; 2524 struct { 2525 enum bpf_iter_task_type type; 2526 u32 pid; 2527 } task; 2528 }; 2529 2530 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2531 union bpf_iter_link_info *linfo, 2532 struct bpf_iter_aux_info *aux); 2533 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2534 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2535 struct seq_file *seq); 2536 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2537 struct bpf_link_info *info); 2538 typedef const struct bpf_func_proto * 2539 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2540 const struct bpf_prog *prog); 2541 2542 enum bpf_iter_feature { 2543 BPF_ITER_RESCHED = BIT(0), 2544 }; 2545 2546 #define BPF_ITER_CTX_ARG_MAX 2 2547 struct bpf_iter_reg { 2548 const char *target; 2549 bpf_iter_attach_target_t attach_target; 2550 bpf_iter_detach_target_t detach_target; 2551 bpf_iter_show_fdinfo_t show_fdinfo; 2552 bpf_iter_fill_link_info_t fill_link_info; 2553 bpf_iter_get_func_proto_t get_func_proto; 2554 u32 ctx_arg_info_size; 2555 u32 feature; 2556 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2557 const struct bpf_iter_seq_info *seq_info; 2558 }; 2559 2560 struct bpf_iter_meta { 2561 __bpf_md_ptr(struct seq_file *, seq); 2562 u64 session_id; 2563 u64 seq_num; 2564 }; 2565 2566 struct bpf_iter__bpf_map_elem { 2567 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2568 __bpf_md_ptr(struct bpf_map *, map); 2569 __bpf_md_ptr(void *, key); 2570 __bpf_md_ptr(void *, value); 2571 }; 2572 2573 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2574 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2575 int bpf_iter_prog_supported(struct bpf_prog *prog); 2576 const struct bpf_func_proto * 2577 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2578 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2579 int bpf_iter_new_fd(struct bpf_link *link); 2580 bool bpf_link_is_iter(struct bpf_link *link); 2581 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2582 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2583 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2584 struct seq_file *seq); 2585 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2586 struct bpf_link_info *info); 2587 2588 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2589 struct bpf_func_state *caller, 2590 struct bpf_func_state *callee); 2591 2592 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2593 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2594 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2595 u64 flags); 2596 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2597 u64 flags); 2598 2599 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2600 2601 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2602 void *key, void *value, u64 map_flags); 2603 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2604 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2605 void *key, void *value, u64 map_flags); 2606 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2607 2608 int bpf_get_file_flag(int flags); 2609 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2610 size_t actual_size); 2611 2612 /* verify correctness of eBPF program */ 2613 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2614 2615 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2616 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2617 #endif 2618 2619 struct btf *bpf_get_btf_vmlinux(void); 2620 2621 /* Map specifics */ 2622 struct xdp_frame; 2623 struct sk_buff; 2624 struct bpf_dtab_netdev; 2625 struct bpf_cpu_map_entry; 2626 2627 void __dev_flush(struct list_head *flush_list); 2628 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2629 struct net_device *dev_rx); 2630 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2631 struct net_device *dev_rx); 2632 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2633 struct bpf_map *map, bool exclude_ingress); 2634 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2635 const struct bpf_prog *xdp_prog); 2636 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2637 const struct bpf_prog *xdp_prog, 2638 struct bpf_map *map, bool exclude_ingress); 2639 2640 void __cpu_map_flush(struct list_head *flush_list); 2641 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2642 struct net_device *dev_rx); 2643 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2644 struct sk_buff *skb); 2645 2646 /* Return map's numa specified by userspace */ 2647 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2648 { 2649 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2650 attr->numa_node : NUMA_NO_NODE; 2651 } 2652 2653 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2654 int array_map_alloc_check(union bpf_attr *attr); 2655 2656 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2657 union bpf_attr __user *uattr); 2658 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2659 union bpf_attr __user *uattr); 2660 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2661 const union bpf_attr *kattr, 2662 union bpf_attr __user *uattr); 2663 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2664 const union bpf_attr *kattr, 2665 union bpf_attr __user *uattr); 2666 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2667 const union bpf_attr *kattr, 2668 union bpf_attr __user *uattr); 2669 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2670 const union bpf_attr *kattr, 2671 union bpf_attr __user *uattr); 2672 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2673 const union bpf_attr *kattr, 2674 union bpf_attr __user *uattr); 2675 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2676 const struct bpf_prog *prog, 2677 struct bpf_insn_access_aux *info); 2678 2679 static inline bool bpf_tracing_ctx_access(int off, int size, 2680 enum bpf_access_type type) 2681 { 2682 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2683 return false; 2684 if (type != BPF_READ) 2685 return false; 2686 if (off % size != 0) 2687 return false; 2688 return true; 2689 } 2690 2691 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2692 enum bpf_access_type type, 2693 const struct bpf_prog *prog, 2694 struct bpf_insn_access_aux *info) 2695 { 2696 if (!bpf_tracing_ctx_access(off, size, type)) 2697 return false; 2698 return btf_ctx_access(off, size, type, prog, info); 2699 } 2700 2701 int btf_struct_access(struct bpf_verifier_log *log, 2702 const struct bpf_reg_state *reg, 2703 int off, int size, enum bpf_access_type atype, 2704 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2705 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2706 const struct btf *btf, u32 id, int off, 2707 const struct btf *need_btf, u32 need_type_id, 2708 bool strict); 2709 2710 int btf_distill_func_proto(struct bpf_verifier_log *log, 2711 struct btf *btf, 2712 const struct btf_type *func_proto, 2713 const char *func_name, 2714 struct btf_func_model *m); 2715 2716 struct bpf_reg_state; 2717 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2718 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2719 struct btf *btf, const struct btf_type *t); 2720 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2721 int comp_idx, const char *tag_key); 2722 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2723 int comp_idx, const char *tag_key, int last_id); 2724 2725 struct bpf_prog *bpf_prog_by_id(u32 id); 2726 struct bpf_link *bpf_link_by_id(u32 id); 2727 2728 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2729 const struct bpf_prog *prog); 2730 void bpf_task_storage_free(struct task_struct *task); 2731 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2732 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2733 const struct btf_func_model * 2734 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2735 const struct bpf_insn *insn); 2736 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2737 u16 btf_fd_idx, u8 **func_addr); 2738 2739 struct bpf_core_ctx { 2740 struct bpf_verifier_log *log; 2741 const struct btf *btf; 2742 }; 2743 2744 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2745 const struct bpf_reg_state *reg, 2746 const char *field_name, u32 btf_id, const char *suffix); 2747 2748 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2749 const struct btf *reg_btf, u32 reg_id, 2750 const struct btf *arg_btf, u32 arg_id); 2751 2752 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2753 int relo_idx, void *insn); 2754 2755 static inline bool unprivileged_ebpf_enabled(void) 2756 { 2757 return !sysctl_unprivileged_bpf_disabled; 2758 } 2759 2760 /* Not all bpf prog type has the bpf_ctx. 2761 * For the bpf prog type that has initialized the bpf_ctx, 2762 * this function can be used to decide if a kernel function 2763 * is called by a bpf program. 2764 */ 2765 static inline bool has_current_bpf_ctx(void) 2766 { 2767 return !!current->bpf_ctx; 2768 } 2769 2770 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2771 2772 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2773 enum bpf_dynptr_type type, u32 offset, u32 size); 2774 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2775 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2776 2777 #else /* !CONFIG_BPF_SYSCALL */ 2778 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2779 { 2780 return ERR_PTR(-EOPNOTSUPP); 2781 } 2782 2783 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2784 enum bpf_prog_type type, 2785 bool attach_drv) 2786 { 2787 return ERR_PTR(-EOPNOTSUPP); 2788 } 2789 2790 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2791 { 2792 } 2793 2794 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2795 { 2796 } 2797 2798 static inline void bpf_prog_put(struct bpf_prog *prog) 2799 { 2800 } 2801 2802 static inline void bpf_prog_inc(struct bpf_prog *prog) 2803 { 2804 } 2805 2806 static inline struct bpf_prog *__must_check 2807 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2808 { 2809 return ERR_PTR(-EOPNOTSUPP); 2810 } 2811 2812 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2813 const struct bpf_link_ops *ops, 2814 struct bpf_prog *prog) 2815 { 2816 } 2817 2818 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2819 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2820 bool sleepable) 2821 { 2822 } 2823 2824 static inline int bpf_link_prime(struct bpf_link *link, 2825 struct bpf_link_primer *primer) 2826 { 2827 return -EOPNOTSUPP; 2828 } 2829 2830 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2831 { 2832 return -EOPNOTSUPP; 2833 } 2834 2835 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2836 { 2837 } 2838 2839 static inline void bpf_link_inc(struct bpf_link *link) 2840 { 2841 } 2842 2843 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2844 { 2845 return NULL; 2846 } 2847 2848 static inline void bpf_link_put(struct bpf_link *link) 2849 { 2850 } 2851 2852 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2853 { 2854 return -EOPNOTSUPP; 2855 } 2856 2857 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2858 { 2859 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2860 } 2861 2862 static inline void bpf_token_inc(struct bpf_token *token) 2863 { 2864 } 2865 2866 static inline void bpf_token_put(struct bpf_token *token) 2867 { 2868 } 2869 2870 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2871 { 2872 return ERR_PTR(-EOPNOTSUPP); 2873 } 2874 2875 static inline void __dev_flush(struct list_head *flush_list) 2876 { 2877 } 2878 2879 struct xdp_frame; 2880 struct bpf_dtab_netdev; 2881 struct bpf_cpu_map_entry; 2882 2883 static inline 2884 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2885 struct net_device *dev_rx) 2886 { 2887 return 0; 2888 } 2889 2890 static inline 2891 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2892 struct net_device *dev_rx) 2893 { 2894 return 0; 2895 } 2896 2897 static inline 2898 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2899 struct bpf_map *map, bool exclude_ingress) 2900 { 2901 return 0; 2902 } 2903 2904 struct sk_buff; 2905 2906 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2907 struct sk_buff *skb, 2908 const struct bpf_prog *xdp_prog) 2909 { 2910 return 0; 2911 } 2912 2913 static inline 2914 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2915 const struct bpf_prog *xdp_prog, 2916 struct bpf_map *map, bool exclude_ingress) 2917 { 2918 return 0; 2919 } 2920 2921 static inline void __cpu_map_flush(struct list_head *flush_list) 2922 { 2923 } 2924 2925 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2926 struct xdp_frame *xdpf, 2927 struct net_device *dev_rx) 2928 { 2929 return 0; 2930 } 2931 2932 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2933 struct sk_buff *skb) 2934 { 2935 return -EOPNOTSUPP; 2936 } 2937 2938 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2939 enum bpf_prog_type type) 2940 { 2941 return ERR_PTR(-EOPNOTSUPP); 2942 } 2943 2944 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2945 const union bpf_attr *kattr, 2946 union bpf_attr __user *uattr) 2947 { 2948 return -ENOTSUPP; 2949 } 2950 2951 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2952 const union bpf_attr *kattr, 2953 union bpf_attr __user *uattr) 2954 { 2955 return -ENOTSUPP; 2956 } 2957 2958 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2959 const union bpf_attr *kattr, 2960 union bpf_attr __user *uattr) 2961 { 2962 return -ENOTSUPP; 2963 } 2964 2965 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2966 const union bpf_attr *kattr, 2967 union bpf_attr __user *uattr) 2968 { 2969 return -ENOTSUPP; 2970 } 2971 2972 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2973 const union bpf_attr *kattr, 2974 union bpf_attr __user *uattr) 2975 { 2976 return -ENOTSUPP; 2977 } 2978 2979 static inline void bpf_map_put(struct bpf_map *map) 2980 { 2981 } 2982 2983 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2984 { 2985 return ERR_PTR(-ENOTSUPP); 2986 } 2987 2988 static inline int btf_struct_access(struct bpf_verifier_log *log, 2989 const struct bpf_reg_state *reg, 2990 int off, int size, enum bpf_access_type atype, 2991 u32 *next_btf_id, enum bpf_type_flag *flag, 2992 const char **field_name) 2993 { 2994 return -EACCES; 2995 } 2996 2997 static inline const struct bpf_func_proto * 2998 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2999 { 3000 return NULL; 3001 } 3002 3003 static inline void bpf_task_storage_free(struct task_struct *task) 3004 { 3005 } 3006 3007 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 3008 { 3009 return false; 3010 } 3011 3012 static inline const struct btf_func_model * 3013 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 3014 const struct bpf_insn *insn) 3015 { 3016 return NULL; 3017 } 3018 3019 static inline int 3020 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 3021 u16 btf_fd_idx, u8 **func_addr) 3022 { 3023 return -ENOTSUPP; 3024 } 3025 3026 static inline bool unprivileged_ebpf_enabled(void) 3027 { 3028 return false; 3029 } 3030 3031 static inline bool has_current_bpf_ctx(void) 3032 { 3033 return false; 3034 } 3035 3036 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 3037 { 3038 } 3039 3040 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 3041 { 3042 } 3043 3044 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 3045 enum bpf_dynptr_type type, u32 offset, u32 size) 3046 { 3047 } 3048 3049 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 3050 { 3051 } 3052 3053 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 3054 { 3055 } 3056 #endif /* CONFIG_BPF_SYSCALL */ 3057 3058 static __always_inline int 3059 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 3060 { 3061 int ret = -EFAULT; 3062 3063 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 3064 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 3065 if (unlikely(ret < 0)) 3066 memset(dst, 0, size); 3067 return ret; 3068 } 3069 3070 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 3071 3072 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 3073 enum bpf_prog_type type) 3074 { 3075 return bpf_prog_get_type_dev(ufd, type, false); 3076 } 3077 3078 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 3079 struct bpf_map **used_maps, u32 len); 3080 3081 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 3082 3083 int bpf_prog_offload_compile(struct bpf_prog *prog); 3084 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 3085 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 3086 struct bpf_prog *prog); 3087 3088 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 3089 3090 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 3091 int bpf_map_offload_update_elem(struct bpf_map *map, 3092 void *key, void *value, u64 flags); 3093 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 3094 int bpf_map_offload_get_next_key(struct bpf_map *map, 3095 void *key, void *next_key); 3096 3097 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3098 3099 struct bpf_offload_dev * 3100 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3101 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3102 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3103 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3104 struct net_device *netdev); 3105 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3106 struct net_device *netdev); 3107 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3108 3109 void unpriv_ebpf_notify(int new_state); 3110 3111 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3112 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3113 struct bpf_prog_aux *prog_aux); 3114 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3115 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3116 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3117 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3118 3119 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3120 { 3121 return aux->dev_bound; 3122 } 3123 3124 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3125 { 3126 return aux->offload_requested; 3127 } 3128 3129 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3130 3131 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3132 { 3133 return unlikely(map->ops == &bpf_map_offload_ops); 3134 } 3135 3136 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3137 void bpf_map_offload_map_free(struct bpf_map *map); 3138 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3139 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3140 const union bpf_attr *kattr, 3141 union bpf_attr __user *uattr); 3142 3143 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3144 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3145 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3146 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3147 union bpf_attr __user *uattr); 3148 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3149 3150 void sock_map_unhash(struct sock *sk); 3151 void sock_map_destroy(struct sock *sk); 3152 void sock_map_close(struct sock *sk, long timeout); 3153 #else 3154 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3155 struct bpf_prog_aux *prog_aux) 3156 { 3157 return -EOPNOTSUPP; 3158 } 3159 3160 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3161 u32 func_id) 3162 { 3163 return NULL; 3164 } 3165 3166 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3167 union bpf_attr *attr) 3168 { 3169 return -EOPNOTSUPP; 3170 } 3171 3172 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3173 struct bpf_prog *old_prog) 3174 { 3175 return -EOPNOTSUPP; 3176 } 3177 3178 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3179 { 3180 } 3181 3182 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3183 { 3184 return false; 3185 } 3186 3187 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3188 { 3189 return false; 3190 } 3191 3192 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3193 { 3194 return false; 3195 } 3196 3197 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3198 { 3199 return false; 3200 } 3201 3202 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3203 { 3204 return ERR_PTR(-EOPNOTSUPP); 3205 } 3206 3207 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3208 { 3209 } 3210 3211 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3212 { 3213 return 0; 3214 } 3215 3216 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3217 const union bpf_attr *kattr, 3218 union bpf_attr __user *uattr) 3219 { 3220 return -ENOTSUPP; 3221 } 3222 3223 #ifdef CONFIG_BPF_SYSCALL 3224 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3225 struct bpf_prog *prog) 3226 { 3227 return -EINVAL; 3228 } 3229 3230 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3231 enum bpf_prog_type ptype) 3232 { 3233 return -EOPNOTSUPP; 3234 } 3235 3236 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3237 u64 flags) 3238 { 3239 return -EOPNOTSUPP; 3240 } 3241 3242 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3243 union bpf_attr __user *uattr) 3244 { 3245 return -EINVAL; 3246 } 3247 3248 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3249 { 3250 return -EOPNOTSUPP; 3251 } 3252 #endif /* CONFIG_BPF_SYSCALL */ 3253 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3254 3255 static __always_inline void 3256 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3257 { 3258 const struct bpf_prog_array_item *item; 3259 struct bpf_prog *prog; 3260 3261 if (unlikely(!array)) 3262 return; 3263 3264 item = &array->items[0]; 3265 while ((prog = READ_ONCE(item->prog))) { 3266 bpf_prog_inc_misses_counter(prog); 3267 item++; 3268 } 3269 } 3270 3271 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3272 void bpf_sk_reuseport_detach(struct sock *sk); 3273 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3274 void *value); 3275 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3276 void *value, u64 map_flags); 3277 #else 3278 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3279 { 3280 } 3281 3282 #ifdef CONFIG_BPF_SYSCALL 3283 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3284 void *key, void *value) 3285 { 3286 return -EOPNOTSUPP; 3287 } 3288 3289 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3290 void *key, void *value, 3291 u64 map_flags) 3292 { 3293 return -EOPNOTSUPP; 3294 } 3295 #endif /* CONFIG_BPF_SYSCALL */ 3296 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3297 3298 /* verifier prototypes for helper functions called from eBPF programs */ 3299 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3300 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3301 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3302 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3303 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3304 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3305 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3306 3307 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3308 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3309 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3310 extern const struct bpf_func_proto bpf_tail_call_proto; 3311 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3312 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3313 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3314 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3315 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3316 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3317 extern const struct bpf_func_proto bpf_get_stackid_proto; 3318 extern const struct bpf_func_proto bpf_get_stack_proto; 3319 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3320 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3321 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3322 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3323 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3324 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3325 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3326 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3327 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3328 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3329 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3330 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3331 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3332 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3333 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3334 extern const struct bpf_func_proto bpf_spin_lock_proto; 3335 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3336 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3337 extern const struct bpf_func_proto bpf_strtol_proto; 3338 extern const struct bpf_func_proto bpf_strtoul_proto; 3339 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3340 extern const struct bpf_func_proto bpf_jiffies64_proto; 3341 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3342 extern const struct bpf_func_proto bpf_event_output_data_proto; 3343 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3344 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3345 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3346 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3347 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3348 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3349 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3350 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3351 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3352 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3353 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3354 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3355 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3356 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3357 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3358 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3359 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3360 extern const struct bpf_func_proto bpf_snprintf_proto; 3361 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3362 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3363 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3364 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3365 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3366 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3367 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3368 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3369 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3370 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3371 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3372 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3373 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3374 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3375 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3376 extern const struct bpf_func_proto bpf_find_vma_proto; 3377 extern const struct bpf_func_proto bpf_loop_proto; 3378 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3379 extern const struct bpf_func_proto bpf_set_retval_proto; 3380 extern const struct bpf_func_proto bpf_get_retval_proto; 3381 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3382 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3383 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3384 3385 const struct bpf_func_proto *tracing_prog_func_proto( 3386 enum bpf_func_id func_id, const struct bpf_prog *prog); 3387 3388 /* Shared helpers among cBPF and eBPF. */ 3389 void bpf_user_rnd_init_once(void); 3390 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3391 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3392 3393 #if defined(CONFIG_NET) 3394 bool bpf_sock_common_is_valid_access(int off, int size, 3395 enum bpf_access_type type, 3396 struct bpf_insn_access_aux *info); 3397 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3398 struct bpf_insn_access_aux *info); 3399 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3400 const struct bpf_insn *si, 3401 struct bpf_insn *insn_buf, 3402 struct bpf_prog *prog, 3403 u32 *target_size); 3404 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3405 struct bpf_dynptr *ptr); 3406 #else 3407 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3408 enum bpf_access_type type, 3409 struct bpf_insn_access_aux *info) 3410 { 3411 return false; 3412 } 3413 static inline bool bpf_sock_is_valid_access(int off, int size, 3414 enum bpf_access_type type, 3415 struct bpf_insn_access_aux *info) 3416 { 3417 return false; 3418 } 3419 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3420 const struct bpf_insn *si, 3421 struct bpf_insn *insn_buf, 3422 struct bpf_prog *prog, 3423 u32 *target_size) 3424 { 3425 return 0; 3426 } 3427 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3428 struct bpf_dynptr *ptr) 3429 { 3430 return -EOPNOTSUPP; 3431 } 3432 #endif 3433 3434 #ifdef CONFIG_INET 3435 struct sk_reuseport_kern { 3436 struct sk_buff *skb; 3437 struct sock *sk; 3438 struct sock *selected_sk; 3439 struct sock *migrating_sk; 3440 void *data_end; 3441 u32 hash; 3442 u32 reuseport_id; 3443 bool bind_inany; 3444 }; 3445 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3446 struct bpf_insn_access_aux *info); 3447 3448 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3449 const struct bpf_insn *si, 3450 struct bpf_insn *insn_buf, 3451 struct bpf_prog *prog, 3452 u32 *target_size); 3453 3454 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3455 struct bpf_insn_access_aux *info); 3456 3457 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3458 const struct bpf_insn *si, 3459 struct bpf_insn *insn_buf, 3460 struct bpf_prog *prog, 3461 u32 *target_size); 3462 #else 3463 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3464 enum bpf_access_type type, 3465 struct bpf_insn_access_aux *info) 3466 { 3467 return false; 3468 } 3469 3470 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3471 const struct bpf_insn *si, 3472 struct bpf_insn *insn_buf, 3473 struct bpf_prog *prog, 3474 u32 *target_size) 3475 { 3476 return 0; 3477 } 3478 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3479 enum bpf_access_type type, 3480 struct bpf_insn_access_aux *info) 3481 { 3482 return false; 3483 } 3484 3485 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3486 const struct bpf_insn *si, 3487 struct bpf_insn *insn_buf, 3488 struct bpf_prog *prog, 3489 u32 *target_size) 3490 { 3491 return 0; 3492 } 3493 #endif /* CONFIG_INET */ 3494 3495 enum bpf_text_poke_type { 3496 BPF_MOD_CALL, 3497 BPF_MOD_JUMP, 3498 }; 3499 3500 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3501 void *addr1, void *addr2); 3502 3503 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3504 struct bpf_prog *new, struct bpf_prog *old); 3505 3506 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3507 int bpf_arch_text_invalidate(void *dst, size_t len); 3508 3509 struct btf_id_set; 3510 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3511 3512 #define MAX_BPRINTF_VARARGS 12 3513 #define MAX_BPRINTF_BUF 1024 3514 3515 struct bpf_bprintf_data { 3516 u32 *bin_args; 3517 char *buf; 3518 bool get_bin_args; 3519 bool get_buf; 3520 }; 3521 3522 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3523 u32 num_args, struct bpf_bprintf_data *data); 3524 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3525 3526 #ifdef CONFIG_BPF_LSM 3527 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3528 void bpf_cgroup_atype_put(int cgroup_atype); 3529 #else 3530 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3531 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3532 #endif /* CONFIG_BPF_LSM */ 3533 3534 struct key; 3535 3536 #ifdef CONFIG_KEYS 3537 struct bpf_key { 3538 struct key *key; 3539 bool has_ref; 3540 }; 3541 #endif /* CONFIG_KEYS */ 3542 3543 static inline bool type_is_alloc(u32 type) 3544 { 3545 return type & MEM_ALLOC; 3546 } 3547 3548 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3549 { 3550 if (memcg_bpf_enabled()) 3551 return flags | __GFP_ACCOUNT; 3552 return flags; 3553 } 3554 3555 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3556 { 3557 return prog->aux->func_idx != 0; 3558 } 3559 3560 #endif /* _LINUX_BPF_H */ 3561