xref: /linux-6.15/include/linux/bpf.h (revision 89dd9bb2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60 
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66 
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 					struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 				   const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 	const struct seq_operations *seq_ops;
75 	bpf_iter_init_seq_priv_t init_seq_private;
76 	bpf_iter_fini_seq_priv_t fini_seq_private;
77 	u32 seq_priv_size;
78 };
79 
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 	/* funcs callable from userspace (via syscall) */
83 	int (*map_alloc_check)(union bpf_attr *attr);
84 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 	void (*map_release)(struct bpf_map *map, struct file *map_file);
86 	void (*map_free)(struct bpf_map *map);
87 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 	void (*map_release_uref)(struct bpf_map *map);
89 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 				union bpf_attr __user *uattr);
92 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 					  void *value, u64 flags);
94 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 					   const union bpf_attr *attr,
96 					   union bpf_attr __user *uattr);
97 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 				const union bpf_attr *attr,
99 				union bpf_attr __user *uattr);
100 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 
103 	/* funcs callable from userspace and from eBPF programs */
104 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 	long (*map_delete_elem)(struct bpf_map *map, void *key);
107 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 	long (*map_pop_elem)(struct bpf_map *map, void *value);
109 	long (*map_peek_elem)(struct bpf_map *map, void *value);
110 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111 
112 	/* funcs called by prog_array and perf_event_array map */
113 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 				int fd);
115 	/* If need_defer is true, the implementation should guarantee that
116 	 * the to-be-put element is still alive before the bpf program, which
117 	 * may manipulate it, exists.
118 	 */
119 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 				  struct seq_file *m);
124 	int (*map_check_btf)(const struct bpf_map *map,
125 			     const struct btf *btf,
126 			     const struct btf_type *key_type,
127 			     const struct btf_type *value_type);
128 
129 	/* Prog poke tracking helpers. */
130 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 			     struct bpf_prog *new);
134 
135 	/* Direct value access helpers. */
136 	int (*map_direct_value_addr)(const struct bpf_map *map,
137 				     u64 *imm, u32 off);
138 	int (*map_direct_value_meta)(const struct bpf_map *map,
139 				     u64 imm, u32 *off);
140 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 			     struct poll_table_struct *pts);
143 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 					       unsigned long len, unsigned long pgoff,
145 					       unsigned long flags);
146 
147 	/* Functions called by bpf_local_storage maps */
148 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 					void *owner, u32 size);
150 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 					   void *owner, u32 size);
152 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153 
154 	/* Misc helpers.*/
155 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156 
157 	/* map_meta_equal must be implemented for maps that can be
158 	 * used as an inner map.  It is a runtime check to ensure
159 	 * an inner map can be inserted to an outer map.
160 	 *
161 	 * Some properties of the inner map has been used during the
162 	 * verification time.  When inserting an inner map at the runtime,
163 	 * map_meta_equal has to ensure the inserting map has the same
164 	 * properties that the verifier has used earlier.
165 	 */
166 	bool (*map_meta_equal)(const struct bpf_map *meta0,
167 			       const struct bpf_map *meta1);
168 
169 
170 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 					      struct bpf_func_state *caller,
172 					      struct bpf_func_state *callee);
173 	long (*map_for_each_callback)(struct bpf_map *map,
174 				     bpf_callback_t callback_fn,
175 				     void *callback_ctx, u64 flags);
176 
177 	u64 (*map_mem_usage)(const struct bpf_map *map);
178 
179 	/* BTF id of struct allocated by map_alloc */
180 	int *map_btf_id;
181 
182 	/* bpf_iter info used to open a seq_file */
183 	const struct bpf_iter_seq_info *iter_seq_info;
184 };
185 
186 enum {
187 	/* Support at most 11 fields in a BTF type */
188 	BTF_FIELDS_MAX	   = 11,
189 };
190 
191 enum btf_field_type {
192 	BPF_SPIN_LOCK  = (1 << 0),
193 	BPF_TIMER      = (1 << 1),
194 	BPF_KPTR_UNREF = (1 << 2),
195 	BPF_KPTR_REF   = (1 << 3),
196 	BPF_KPTR_PERCPU = (1 << 4),
197 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 	BPF_LIST_HEAD  = (1 << 5),
199 	BPF_LIST_NODE  = (1 << 6),
200 	BPF_RB_ROOT    = (1 << 7),
201 	BPF_RB_NODE    = (1 << 8),
202 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 	BPF_REFCOUNT   = (1 << 9),
205 	BPF_WORKQUEUE  = (1 << 10),
206 };
207 
208 typedef void (*btf_dtor_kfunc_t)(void *);
209 
210 struct btf_field_kptr {
211 	struct btf *btf;
212 	struct module *module;
213 	/* dtor used if btf_is_kernel(btf), otherwise the type is
214 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
215 	 */
216 	btf_dtor_kfunc_t dtor;
217 	u32 btf_id;
218 };
219 
220 struct btf_field_graph_root {
221 	struct btf *btf;
222 	u32 value_btf_id;
223 	u32 node_offset;
224 	struct btf_record *value_rec;
225 };
226 
227 struct btf_field {
228 	u32 offset;
229 	u32 size;
230 	enum btf_field_type type;
231 	union {
232 		struct btf_field_kptr kptr;
233 		struct btf_field_graph_root graph_root;
234 	};
235 };
236 
237 struct btf_record {
238 	u32 cnt;
239 	u32 field_mask;
240 	int spin_lock_off;
241 	int timer_off;
242 	int wq_off;
243 	int refcount_off;
244 	struct btf_field fields[];
245 };
246 
247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
248 struct bpf_rb_node_kern {
249 	struct rb_node rb_node;
250 	void *owner;
251 } __attribute__((aligned(8)));
252 
253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
254 struct bpf_list_node_kern {
255 	struct list_head list_head;
256 	void *owner;
257 } __attribute__((aligned(8)));
258 
259 struct bpf_map {
260 	const struct bpf_map_ops *ops;
261 	struct bpf_map *inner_map_meta;
262 #ifdef CONFIG_SECURITY
263 	void *security;
264 #endif
265 	enum bpf_map_type map_type;
266 	u32 key_size;
267 	u32 value_size;
268 	u32 max_entries;
269 	u64 map_extra; /* any per-map-type extra fields */
270 	u32 map_flags;
271 	u32 id;
272 	struct btf_record *record;
273 	int numa_node;
274 	u32 btf_key_type_id;
275 	u32 btf_value_type_id;
276 	u32 btf_vmlinux_value_type_id;
277 	struct btf *btf;
278 #ifdef CONFIG_MEMCG
279 	struct obj_cgroup *objcg;
280 #endif
281 	char name[BPF_OBJ_NAME_LEN];
282 	struct mutex freeze_mutex;
283 	atomic64_t refcnt;
284 	atomic64_t usercnt;
285 	/* rcu is used before freeing and work is only used during freeing */
286 	union {
287 		struct work_struct work;
288 		struct rcu_head rcu;
289 	};
290 	atomic64_t writecnt;
291 	/* 'Ownership' of program-containing map is claimed by the first program
292 	 * that is going to use this map or by the first program which FD is
293 	 * stored in the map to make sure that all callers and callees have the
294 	 * same prog type, JITed flag and xdp_has_frags flag.
295 	 */
296 	struct {
297 		const struct btf_type *attach_func_proto;
298 		spinlock_t lock;
299 		enum bpf_prog_type type;
300 		bool jited;
301 		bool xdp_has_frags;
302 	} owner;
303 	bool bypass_spec_v1;
304 	bool frozen; /* write-once; write-protected by freeze_mutex */
305 	bool free_after_mult_rcu_gp;
306 	bool free_after_rcu_gp;
307 	atomic64_t sleepable_refcnt;
308 	s64 __percpu *elem_count;
309 };
310 
311 static inline const char *btf_field_type_name(enum btf_field_type type)
312 {
313 	switch (type) {
314 	case BPF_SPIN_LOCK:
315 		return "bpf_spin_lock";
316 	case BPF_TIMER:
317 		return "bpf_timer";
318 	case BPF_WORKQUEUE:
319 		return "bpf_wq";
320 	case BPF_KPTR_UNREF:
321 	case BPF_KPTR_REF:
322 		return "kptr";
323 	case BPF_KPTR_PERCPU:
324 		return "percpu_kptr";
325 	case BPF_LIST_HEAD:
326 		return "bpf_list_head";
327 	case BPF_LIST_NODE:
328 		return "bpf_list_node";
329 	case BPF_RB_ROOT:
330 		return "bpf_rb_root";
331 	case BPF_RB_NODE:
332 		return "bpf_rb_node";
333 	case BPF_REFCOUNT:
334 		return "bpf_refcount";
335 	default:
336 		WARN_ON_ONCE(1);
337 		return "unknown";
338 	}
339 }
340 
341 static inline u32 btf_field_type_size(enum btf_field_type type)
342 {
343 	switch (type) {
344 	case BPF_SPIN_LOCK:
345 		return sizeof(struct bpf_spin_lock);
346 	case BPF_TIMER:
347 		return sizeof(struct bpf_timer);
348 	case BPF_WORKQUEUE:
349 		return sizeof(struct bpf_wq);
350 	case BPF_KPTR_UNREF:
351 	case BPF_KPTR_REF:
352 	case BPF_KPTR_PERCPU:
353 		return sizeof(u64);
354 	case BPF_LIST_HEAD:
355 		return sizeof(struct bpf_list_head);
356 	case BPF_LIST_NODE:
357 		return sizeof(struct bpf_list_node);
358 	case BPF_RB_ROOT:
359 		return sizeof(struct bpf_rb_root);
360 	case BPF_RB_NODE:
361 		return sizeof(struct bpf_rb_node);
362 	case BPF_REFCOUNT:
363 		return sizeof(struct bpf_refcount);
364 	default:
365 		WARN_ON_ONCE(1);
366 		return 0;
367 	}
368 }
369 
370 static inline u32 btf_field_type_align(enum btf_field_type type)
371 {
372 	switch (type) {
373 	case BPF_SPIN_LOCK:
374 		return __alignof__(struct bpf_spin_lock);
375 	case BPF_TIMER:
376 		return __alignof__(struct bpf_timer);
377 	case BPF_WORKQUEUE:
378 		return __alignof__(struct bpf_wq);
379 	case BPF_KPTR_UNREF:
380 	case BPF_KPTR_REF:
381 	case BPF_KPTR_PERCPU:
382 		return __alignof__(u64);
383 	case BPF_LIST_HEAD:
384 		return __alignof__(struct bpf_list_head);
385 	case BPF_LIST_NODE:
386 		return __alignof__(struct bpf_list_node);
387 	case BPF_RB_ROOT:
388 		return __alignof__(struct bpf_rb_root);
389 	case BPF_RB_NODE:
390 		return __alignof__(struct bpf_rb_node);
391 	case BPF_REFCOUNT:
392 		return __alignof__(struct bpf_refcount);
393 	default:
394 		WARN_ON_ONCE(1);
395 		return 0;
396 	}
397 }
398 
399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
400 {
401 	memset(addr, 0, field->size);
402 
403 	switch (field->type) {
404 	case BPF_REFCOUNT:
405 		refcount_set((refcount_t *)addr, 1);
406 		break;
407 	case BPF_RB_NODE:
408 		RB_CLEAR_NODE((struct rb_node *)addr);
409 		break;
410 	case BPF_LIST_HEAD:
411 	case BPF_LIST_NODE:
412 		INIT_LIST_HEAD((struct list_head *)addr);
413 		break;
414 	case BPF_RB_ROOT:
415 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
416 	case BPF_SPIN_LOCK:
417 	case BPF_TIMER:
418 	case BPF_WORKQUEUE:
419 	case BPF_KPTR_UNREF:
420 	case BPF_KPTR_REF:
421 	case BPF_KPTR_PERCPU:
422 		break;
423 	default:
424 		WARN_ON_ONCE(1);
425 		return;
426 	}
427 }
428 
429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
430 {
431 	if (IS_ERR_OR_NULL(rec))
432 		return false;
433 	return rec->field_mask & type;
434 }
435 
436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
437 {
438 	int i;
439 
440 	if (IS_ERR_OR_NULL(rec))
441 		return;
442 	for (i = 0; i < rec->cnt; i++)
443 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
444 }
445 
446 /* 'dst' must be a temporary buffer and should not point to memory that is being
447  * used in parallel by a bpf program or bpf syscall, otherwise the access from
448  * the bpf program or bpf syscall may be corrupted by the reinitialization,
449  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
450  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
451  * program or bpf syscall.
452  */
453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
454 {
455 	bpf_obj_init(map->record, dst);
456 }
457 
458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
459  * forced to use 'long' read/writes to try to atomically copy long counters.
460  * Best-effort only.  No barriers here, since it _will_ race with concurrent
461  * updates from BPF programs. Called from bpf syscall and mostly used with
462  * size 8 or 16 bytes, so ask compiler to inline it.
463  */
464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
465 {
466 	const long *lsrc = src;
467 	long *ldst = dst;
468 
469 	size /= sizeof(long);
470 	while (size--)
471 		data_race(*ldst++ = *lsrc++);
472 }
473 
474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
475 static inline void bpf_obj_memcpy(struct btf_record *rec,
476 				  void *dst, void *src, u32 size,
477 				  bool long_memcpy)
478 {
479 	u32 curr_off = 0;
480 	int i;
481 
482 	if (IS_ERR_OR_NULL(rec)) {
483 		if (long_memcpy)
484 			bpf_long_memcpy(dst, src, round_up(size, 8));
485 		else
486 			memcpy(dst, src, size);
487 		return;
488 	}
489 
490 	for (i = 0; i < rec->cnt; i++) {
491 		u32 next_off = rec->fields[i].offset;
492 		u32 sz = next_off - curr_off;
493 
494 		memcpy(dst + curr_off, src + curr_off, sz);
495 		curr_off += rec->fields[i].size + sz;
496 	}
497 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
498 }
499 
500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
501 {
502 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
503 }
504 
505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
506 {
507 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
508 }
509 
510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
511 {
512 	u32 curr_off = 0;
513 	int i;
514 
515 	if (IS_ERR_OR_NULL(rec)) {
516 		memset(dst, 0, size);
517 		return;
518 	}
519 
520 	for (i = 0; i < rec->cnt; i++) {
521 		u32 next_off = rec->fields[i].offset;
522 		u32 sz = next_off - curr_off;
523 
524 		memset(dst + curr_off, 0, sz);
525 		curr_off += rec->fields[i].size + sz;
526 	}
527 	memset(dst + curr_off, 0, size - curr_off);
528 }
529 
530 static inline void zero_map_value(struct bpf_map *map, void *dst)
531 {
532 	bpf_obj_memzero(map->record, dst, map->value_size);
533 }
534 
535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
536 			   bool lock_src);
537 void bpf_timer_cancel_and_free(void *timer);
538 void bpf_wq_cancel_and_free(void *timer);
539 void bpf_list_head_free(const struct btf_field *field, void *list_head,
540 			struct bpf_spin_lock *spin_lock);
541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
542 		      struct bpf_spin_lock *spin_lock);
543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
546 
547 struct bpf_offload_dev;
548 struct bpf_offloaded_map;
549 
550 struct bpf_map_dev_ops {
551 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
552 				void *key, void *next_key);
553 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
554 			       void *key, void *value);
555 	int (*map_update_elem)(struct bpf_offloaded_map *map,
556 			       void *key, void *value, u64 flags);
557 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
558 };
559 
560 struct bpf_offloaded_map {
561 	struct bpf_map map;
562 	struct net_device *netdev;
563 	const struct bpf_map_dev_ops *dev_ops;
564 	void *dev_priv;
565 	struct list_head offloads;
566 };
567 
568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
569 {
570 	return container_of(map, struct bpf_offloaded_map, map);
571 }
572 
573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
574 {
575 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
576 }
577 
578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
579 {
580 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
581 		map->ops->map_seq_show_elem;
582 }
583 
584 int map_check_no_btf(const struct bpf_map *map,
585 		     const struct btf *btf,
586 		     const struct btf_type *key_type,
587 		     const struct btf_type *value_type);
588 
589 bool bpf_map_meta_equal(const struct bpf_map *meta0,
590 			const struct bpf_map *meta1);
591 
592 extern const struct bpf_map_ops bpf_map_offload_ops;
593 
594 /* bpf_type_flag contains a set of flags that are applicable to the values of
595  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
596  * or a memory is read-only. We classify types into two categories: base types
597  * and extended types. Extended types are base types combined with a type flag.
598  *
599  * Currently there are no more than 32 base types in arg_type, ret_type and
600  * reg_types.
601  */
602 #define BPF_BASE_TYPE_BITS	8
603 
604 enum bpf_type_flag {
605 	/* PTR may be NULL. */
606 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
607 
608 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
609 	 * compatible with both mutable and immutable memory.
610 	 */
611 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
612 
613 	/* MEM points to BPF ring buffer reservation. */
614 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
615 
616 	/* MEM is in user address space. */
617 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
618 
619 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
620 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
621 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
622 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
623 	 * to the specified cpu.
624 	 */
625 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
626 
627 	/* Indicates that the argument will be released. */
628 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
629 
630 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
631 	 * unreferenced and referenced kptr loaded from map value using a load
632 	 * instruction, so that they can only be dereferenced but not escape the
633 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
634 	 * kfunc or bpf helpers).
635 	 */
636 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
637 
638 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
639 
640 	/* DYNPTR points to memory local to the bpf program. */
641 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
642 
643 	/* DYNPTR points to a kernel-produced ringbuf record. */
644 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
645 
646 	/* Size is known at compile time. */
647 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
648 
649 	/* MEM is of an allocated object of type in program BTF. This is used to
650 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
651 	 */
652 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
653 
654 	/* PTR was passed from the kernel in a trusted context, and may be
655 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
656 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
657 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
658 	 * without invoking bpf_kptr_xchg(). What we really need to know is
659 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
660 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
661 	 * helpers, they do not cover all possible instances of unsafe
662 	 * pointers. For example, a pointer that was obtained from walking a
663 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
664 	 * fact that it may be NULL, invalid, etc. This is due to backwards
665 	 * compatibility requirements, as this was the behavior that was first
666 	 * introduced when kptrs were added. The behavior is now considered
667 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
668 	 *
669 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
670 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
671 	 * For example, pointers passed to tracepoint arguments are considered
672 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
673 	 * callbacks. As alluded to above, pointers that are obtained from
674 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
675 	 * struct task_struct *task is PTR_TRUSTED, then accessing
676 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
677 	 * in a BPF register. Similarly, pointers passed to certain programs
678 	 * types such as kretprobes are not guaranteed to be valid, as they may
679 	 * for example contain an object that was recently freed.
680 	 */
681 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
682 
683 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
684 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
685 
686 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
687 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
688 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
689 	 */
690 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
691 
692 	/* DYNPTR points to sk_buff */
693 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
694 
695 	/* DYNPTR points to xdp_buff */
696 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
697 
698 	__BPF_TYPE_FLAG_MAX,
699 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
700 };
701 
702 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
703 				 | DYNPTR_TYPE_XDP)
704 
705 /* Max number of base types. */
706 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
707 
708 /* Max number of all types. */
709 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
710 
711 /* function argument constraints */
712 enum bpf_arg_type {
713 	ARG_DONTCARE = 0,	/* unused argument in helper function */
714 
715 	/* the following constraints used to prototype
716 	 * bpf_map_lookup/update/delete_elem() functions
717 	 */
718 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
719 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
720 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
721 
722 	/* Used to prototype bpf_memcmp() and other functions that access data
723 	 * on eBPF program stack
724 	 */
725 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
726 	ARG_PTR_TO_ARENA,
727 
728 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
729 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
730 
731 	ARG_PTR_TO_CTX,		/* pointer to context */
732 	ARG_ANYTHING,		/* any (initialized) argument is ok */
733 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
734 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
735 	ARG_PTR_TO_INT,		/* pointer to int */
736 	ARG_PTR_TO_LONG,	/* pointer to long */
737 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
738 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
739 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
740 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
741 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
742 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
743 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
744 	ARG_PTR_TO_STACK,	/* pointer to stack */
745 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
746 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
747 	ARG_KPTR_XCHG_DEST,	/* pointer to destination that kptrs are bpf_kptr_xchg'd into */
748 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
749 	__BPF_ARG_TYPE_MAX,
750 
751 	/* Extended arg_types. */
752 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
753 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
754 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
755 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
756 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
757 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
758 	/* pointer to memory does not need to be initialized, helper function must fill
759 	 * all bytes or clear them in error case.
760 	 */
761 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
762 	/* Pointer to valid memory of size known at compile time. */
763 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
764 
765 	/* This must be the last entry. Its purpose is to ensure the enum is
766 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
767 	 */
768 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
769 };
770 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
771 
772 /* type of values returned from helper functions */
773 enum bpf_return_type {
774 	RET_INTEGER,			/* function returns integer */
775 	RET_VOID,			/* function doesn't return anything */
776 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
777 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
778 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
779 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
780 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
781 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
782 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
783 	__BPF_RET_TYPE_MAX,
784 
785 	/* Extended ret_types. */
786 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
787 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
788 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
789 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
790 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
791 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
792 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
793 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
794 
795 	/* This must be the last entry. Its purpose is to ensure the enum is
796 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
797 	 */
798 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
799 };
800 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
801 
802 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
803  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
804  * instructions after verifying
805  */
806 struct bpf_func_proto {
807 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
808 	bool gpl_only;
809 	bool pkt_access;
810 	bool might_sleep;
811 	/* set to true if helper follows contract for llvm
812 	 * attribute bpf_fastcall:
813 	 * - void functions do not scratch r0
814 	 * - functions taking N arguments scratch only registers r1-rN
815 	 */
816 	bool allow_fastcall;
817 	enum bpf_return_type ret_type;
818 	union {
819 		struct {
820 			enum bpf_arg_type arg1_type;
821 			enum bpf_arg_type arg2_type;
822 			enum bpf_arg_type arg3_type;
823 			enum bpf_arg_type arg4_type;
824 			enum bpf_arg_type arg5_type;
825 		};
826 		enum bpf_arg_type arg_type[5];
827 	};
828 	union {
829 		struct {
830 			u32 *arg1_btf_id;
831 			u32 *arg2_btf_id;
832 			u32 *arg3_btf_id;
833 			u32 *arg4_btf_id;
834 			u32 *arg5_btf_id;
835 		};
836 		u32 *arg_btf_id[5];
837 		struct {
838 			size_t arg1_size;
839 			size_t arg2_size;
840 			size_t arg3_size;
841 			size_t arg4_size;
842 			size_t arg5_size;
843 		};
844 		size_t arg_size[5];
845 	};
846 	int *ret_btf_id; /* return value btf_id */
847 	bool (*allowed)(const struct bpf_prog *prog);
848 };
849 
850 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
851  * the first argument to eBPF programs.
852  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
853  */
854 struct bpf_context;
855 
856 enum bpf_access_type {
857 	BPF_READ = 1,
858 	BPF_WRITE = 2
859 };
860 
861 /* types of values stored in eBPF registers */
862 /* Pointer types represent:
863  * pointer
864  * pointer + imm
865  * pointer + (u16) var
866  * pointer + (u16) var + imm
867  * if (range > 0) then [ptr, ptr + range - off) is safe to access
868  * if (id > 0) means that some 'var' was added
869  * if (off > 0) means that 'imm' was added
870  */
871 enum bpf_reg_type {
872 	NOT_INIT = 0,		 /* nothing was written into register */
873 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
874 	PTR_TO_CTX,		 /* reg points to bpf_context */
875 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
876 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
877 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
878 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
879 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
880 	PTR_TO_PACKET,		 /* reg points to skb->data */
881 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
882 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
883 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
884 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
885 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
886 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
887 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
888 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
889 	 * to be null checked by the BPF program. This does not imply the
890 	 * pointer is _not_ null and in practice this can easily be a null
891 	 * pointer when reading pointer chains. The assumption is program
892 	 * context will handle null pointer dereference typically via fault
893 	 * handling. The verifier must keep this in mind and can make no
894 	 * assumptions about null or non-null when doing branch analysis.
895 	 * Further, when passed into helpers the helpers can not, without
896 	 * additional context, assume the value is non-null.
897 	 */
898 	PTR_TO_BTF_ID,
899 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
900 	 * been checked for null. Used primarily to inform the verifier
901 	 * an explicit null check is required for this struct.
902 	 */
903 	PTR_TO_MEM,		 /* reg points to valid memory region */
904 	PTR_TO_ARENA,
905 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
906 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
907 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
908 	__BPF_REG_TYPE_MAX,
909 
910 	/* Extended reg_types. */
911 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
912 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
913 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
914 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
915 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
916 
917 	/* This must be the last entry. Its purpose is to ensure the enum is
918 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
919 	 */
920 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
921 };
922 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
923 
924 /* The information passed from prog-specific *_is_valid_access
925  * back to the verifier.
926  */
927 struct bpf_insn_access_aux {
928 	enum bpf_reg_type reg_type;
929 	bool is_ldsx;
930 	union {
931 		int ctx_field_size;
932 		struct {
933 			struct btf *btf;
934 			u32 btf_id;
935 		};
936 	};
937 	struct bpf_verifier_log *log; /* for verbose logs */
938 	bool is_retval; /* is accessing function return value ? */
939 };
940 
941 static inline void
942 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
943 {
944 	aux->ctx_field_size = size;
945 }
946 
947 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
948 {
949 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
950 }
951 
952 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
953 {
954 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
955 }
956 
957 struct bpf_prog_ops {
958 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
959 			union bpf_attr __user *uattr);
960 };
961 
962 struct bpf_reg_state;
963 struct bpf_verifier_ops {
964 	/* return eBPF function prototype for verification */
965 	const struct bpf_func_proto *
966 	(*get_func_proto)(enum bpf_func_id func_id,
967 			  const struct bpf_prog *prog);
968 
969 	/* return true if 'size' wide access at offset 'off' within bpf_context
970 	 * with 'type' (read or write) is allowed
971 	 */
972 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
973 				const struct bpf_prog *prog,
974 				struct bpf_insn_access_aux *info);
975 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
976 			    const struct bpf_prog *prog);
977 	int (*gen_ld_abs)(const struct bpf_insn *orig,
978 			  struct bpf_insn *insn_buf);
979 	u32 (*convert_ctx_access)(enum bpf_access_type type,
980 				  const struct bpf_insn *src,
981 				  struct bpf_insn *dst,
982 				  struct bpf_prog *prog, u32 *target_size);
983 	int (*btf_struct_access)(struct bpf_verifier_log *log,
984 				 const struct bpf_reg_state *reg,
985 				 int off, int size);
986 };
987 
988 struct bpf_prog_offload_ops {
989 	/* verifier basic callbacks */
990 	int (*insn_hook)(struct bpf_verifier_env *env,
991 			 int insn_idx, int prev_insn_idx);
992 	int (*finalize)(struct bpf_verifier_env *env);
993 	/* verifier optimization callbacks (called after .finalize) */
994 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
995 			    struct bpf_insn *insn);
996 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
997 	/* program management callbacks */
998 	int (*prepare)(struct bpf_prog *prog);
999 	int (*translate)(struct bpf_prog *prog);
1000 	void (*destroy)(struct bpf_prog *prog);
1001 };
1002 
1003 struct bpf_prog_offload {
1004 	struct bpf_prog		*prog;
1005 	struct net_device	*netdev;
1006 	struct bpf_offload_dev	*offdev;
1007 	void			*dev_priv;
1008 	struct list_head	offloads;
1009 	bool			dev_state;
1010 	bool			opt_failed;
1011 	void			*jited_image;
1012 	u32			jited_len;
1013 };
1014 
1015 enum bpf_cgroup_storage_type {
1016 	BPF_CGROUP_STORAGE_SHARED,
1017 	BPF_CGROUP_STORAGE_PERCPU,
1018 	__BPF_CGROUP_STORAGE_MAX
1019 };
1020 
1021 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1022 
1023 /* The longest tracepoint has 12 args.
1024  * See include/trace/bpf_probe.h
1025  */
1026 #define MAX_BPF_FUNC_ARGS 12
1027 
1028 /* The maximum number of arguments passed through registers
1029  * a single function may have.
1030  */
1031 #define MAX_BPF_FUNC_REG_ARGS 5
1032 
1033 /* The argument is a structure. */
1034 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1035 
1036 /* The argument is signed. */
1037 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1038 
1039 struct btf_func_model {
1040 	u8 ret_size;
1041 	u8 ret_flags;
1042 	u8 nr_args;
1043 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1044 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1045 };
1046 
1047 /* Restore arguments before returning from trampoline to let original function
1048  * continue executing. This flag is used for fentry progs when there are no
1049  * fexit progs.
1050  */
1051 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1052 /* Call original function after fentry progs, but before fexit progs.
1053  * Makes sense for fentry/fexit, normal calls and indirect calls.
1054  */
1055 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1056 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1057  * programs only. Should not be used with normal calls and indirect calls.
1058  */
1059 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1060 /* Store IP address of the caller on the trampoline stack,
1061  * so it's available for trampoline's programs.
1062  */
1063 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1064 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1065 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1066 
1067 /* Get original function from stack instead of from provided direct address.
1068  * Makes sense for trampolines with fexit or fmod_ret programs.
1069  */
1070 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1071 
1072 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1073  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1074  */
1075 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1076 
1077 /* Indicate that current trampoline is in a tail call context. Then, it has to
1078  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1079  */
1080 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1081 
1082 /*
1083  * Indicate the trampoline should be suitable to receive indirect calls;
1084  * without this indirectly calling the generated code can result in #UD/#CP,
1085  * depending on the CFI options.
1086  *
1087  * Used by bpf_struct_ops.
1088  *
1089  * Incompatible with FENTRY usage, overloads @func_addr argument.
1090  */
1091 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1092 
1093 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1094  * bytes on x86.
1095  */
1096 enum {
1097 #if defined(__s390x__)
1098 	BPF_MAX_TRAMP_LINKS = 27,
1099 #else
1100 	BPF_MAX_TRAMP_LINKS = 38,
1101 #endif
1102 };
1103 
1104 struct bpf_tramp_links {
1105 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1106 	int nr_links;
1107 };
1108 
1109 struct bpf_tramp_run_ctx;
1110 
1111 /* Different use cases for BPF trampoline:
1112  * 1. replace nop at the function entry (kprobe equivalent)
1113  *    flags = BPF_TRAMP_F_RESTORE_REGS
1114  *    fentry = a set of programs to run before returning from trampoline
1115  *
1116  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1117  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1118  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1119  *    fentry = a set of program to run before calling original function
1120  *    fexit = a set of program to run after original function
1121  *
1122  * 3. replace direct call instruction anywhere in the function body
1123  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1124  *    With flags = 0
1125  *      fentry = a set of programs to run before returning from trampoline
1126  *    With flags = BPF_TRAMP_F_CALL_ORIG
1127  *      orig_call = original callback addr or direct function addr
1128  *      fentry = a set of program to run before calling original function
1129  *      fexit = a set of program to run after original function
1130  */
1131 struct bpf_tramp_image;
1132 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1133 				const struct btf_func_model *m, u32 flags,
1134 				struct bpf_tramp_links *tlinks,
1135 				void *func_addr);
1136 void *arch_alloc_bpf_trampoline(unsigned int size);
1137 void arch_free_bpf_trampoline(void *image, unsigned int size);
1138 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1139 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1140 			     struct bpf_tramp_links *tlinks, void *func_addr);
1141 
1142 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1143 					     struct bpf_tramp_run_ctx *run_ctx);
1144 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1145 					     struct bpf_tramp_run_ctx *run_ctx);
1146 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1147 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1148 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1149 				      struct bpf_tramp_run_ctx *run_ctx);
1150 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1151 				      struct bpf_tramp_run_ctx *run_ctx);
1152 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1153 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1154 
1155 struct bpf_ksym {
1156 	unsigned long		 start;
1157 	unsigned long		 end;
1158 	char			 name[KSYM_NAME_LEN];
1159 	struct list_head	 lnode;
1160 	struct latch_tree_node	 tnode;
1161 	bool			 prog;
1162 };
1163 
1164 enum bpf_tramp_prog_type {
1165 	BPF_TRAMP_FENTRY,
1166 	BPF_TRAMP_FEXIT,
1167 	BPF_TRAMP_MODIFY_RETURN,
1168 	BPF_TRAMP_MAX,
1169 	BPF_TRAMP_REPLACE, /* more than MAX */
1170 };
1171 
1172 struct bpf_tramp_image {
1173 	void *image;
1174 	int size;
1175 	struct bpf_ksym ksym;
1176 	struct percpu_ref pcref;
1177 	void *ip_after_call;
1178 	void *ip_epilogue;
1179 	union {
1180 		struct rcu_head rcu;
1181 		struct work_struct work;
1182 	};
1183 };
1184 
1185 struct bpf_trampoline {
1186 	/* hlist for trampoline_table */
1187 	struct hlist_node hlist;
1188 	struct ftrace_ops *fops;
1189 	/* serializes access to fields of this trampoline */
1190 	struct mutex mutex;
1191 	refcount_t refcnt;
1192 	u32 flags;
1193 	u64 key;
1194 	struct {
1195 		struct btf_func_model model;
1196 		void *addr;
1197 		bool ftrace_managed;
1198 	} func;
1199 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1200 	 * program by replacing one of its functions. func.addr is the address
1201 	 * of the function it replaced.
1202 	 */
1203 	struct bpf_prog *extension_prog;
1204 	/* list of BPF programs using this trampoline */
1205 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1206 	/* Number of attached programs. A counter per kind. */
1207 	int progs_cnt[BPF_TRAMP_MAX];
1208 	/* Executable image of trampoline */
1209 	struct bpf_tramp_image *cur_image;
1210 };
1211 
1212 struct bpf_attach_target_info {
1213 	struct btf_func_model fmodel;
1214 	long tgt_addr;
1215 	struct module *tgt_mod;
1216 	const char *tgt_name;
1217 	const struct btf_type *tgt_type;
1218 };
1219 
1220 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1221 
1222 struct bpf_dispatcher_prog {
1223 	struct bpf_prog *prog;
1224 	refcount_t users;
1225 };
1226 
1227 struct bpf_dispatcher {
1228 	/* dispatcher mutex */
1229 	struct mutex mutex;
1230 	void *func;
1231 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1232 	int num_progs;
1233 	void *image;
1234 	void *rw_image;
1235 	u32 image_off;
1236 	struct bpf_ksym ksym;
1237 #ifdef CONFIG_HAVE_STATIC_CALL
1238 	struct static_call_key *sc_key;
1239 	void *sc_tramp;
1240 #endif
1241 };
1242 
1243 #ifndef __bpfcall
1244 #define __bpfcall __nocfi
1245 #endif
1246 
1247 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1248 	const void *ctx,
1249 	const struct bpf_insn *insnsi,
1250 	bpf_func_t bpf_func)
1251 {
1252 	return bpf_func(ctx, insnsi);
1253 }
1254 
1255 /* the implementation of the opaque uapi struct bpf_dynptr */
1256 struct bpf_dynptr_kern {
1257 	void *data;
1258 	/* Size represents the number of usable bytes of dynptr data.
1259 	 * If for example the offset is at 4 for a local dynptr whose data is
1260 	 * of type u64, the number of usable bytes is 4.
1261 	 *
1262 	 * The upper 8 bits are reserved. It is as follows:
1263 	 * Bits 0 - 23 = size
1264 	 * Bits 24 - 30 = dynptr type
1265 	 * Bit 31 = whether dynptr is read-only
1266 	 */
1267 	u32 size;
1268 	u32 offset;
1269 } __aligned(8);
1270 
1271 enum bpf_dynptr_type {
1272 	BPF_DYNPTR_TYPE_INVALID,
1273 	/* Points to memory that is local to the bpf program */
1274 	BPF_DYNPTR_TYPE_LOCAL,
1275 	/* Underlying data is a ringbuf record */
1276 	BPF_DYNPTR_TYPE_RINGBUF,
1277 	/* Underlying data is a sk_buff */
1278 	BPF_DYNPTR_TYPE_SKB,
1279 	/* Underlying data is a xdp_buff */
1280 	BPF_DYNPTR_TYPE_XDP,
1281 };
1282 
1283 int bpf_dynptr_check_size(u32 size);
1284 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1285 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1286 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1287 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1288 
1289 #ifdef CONFIG_BPF_JIT
1290 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1291 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1292 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1293 					  struct bpf_attach_target_info *tgt_info);
1294 void bpf_trampoline_put(struct bpf_trampoline *tr);
1295 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1296 
1297 /*
1298  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1299  * indirection with a direct call to the bpf program. If the architecture does
1300  * not have STATIC_CALL, avoid a double-indirection.
1301  */
1302 #ifdef CONFIG_HAVE_STATIC_CALL
1303 
1304 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1305 	.sc_key = &STATIC_CALL_KEY(_name),			\
1306 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1307 
1308 #define __BPF_DISPATCHER_SC(name)				\
1309 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1310 
1311 #define __BPF_DISPATCHER_CALL(name)				\
1312 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1313 
1314 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1315 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1316 
1317 #else
1318 #define __BPF_DISPATCHER_SC_INIT(name)
1319 #define __BPF_DISPATCHER_SC(name)
1320 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1321 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1322 #endif
1323 
1324 #define BPF_DISPATCHER_INIT(_name) {				\
1325 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1326 	.func = &_name##_func,					\
1327 	.progs = {},						\
1328 	.num_progs = 0,						\
1329 	.image = NULL,						\
1330 	.image_off = 0,						\
1331 	.ksym = {						\
1332 		.name  = #_name,				\
1333 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1334 	},							\
1335 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1336 }
1337 
1338 #define DEFINE_BPF_DISPATCHER(name)					\
1339 	__BPF_DISPATCHER_SC(name);					\
1340 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1341 		const void *ctx,					\
1342 		const struct bpf_insn *insnsi,				\
1343 		bpf_func_t bpf_func)					\
1344 	{								\
1345 		return __BPF_DISPATCHER_CALL(name);			\
1346 	}								\
1347 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1348 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1349 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1350 
1351 #define DECLARE_BPF_DISPATCHER(name)					\
1352 	unsigned int bpf_dispatcher_##name##_func(			\
1353 		const void *ctx,					\
1354 		const struct bpf_insn *insnsi,				\
1355 		bpf_func_t bpf_func);					\
1356 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1357 
1358 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1359 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1360 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1361 				struct bpf_prog *to);
1362 /* Called only from JIT-enabled code, so there's no need for stubs. */
1363 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1364 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1365 void bpf_ksym_add(struct bpf_ksym *ksym);
1366 void bpf_ksym_del(struct bpf_ksym *ksym);
1367 int bpf_jit_charge_modmem(u32 size);
1368 void bpf_jit_uncharge_modmem(u32 size);
1369 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1370 #else
1371 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1372 					   struct bpf_trampoline *tr)
1373 {
1374 	return -ENOTSUPP;
1375 }
1376 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1377 					     struct bpf_trampoline *tr)
1378 {
1379 	return -ENOTSUPP;
1380 }
1381 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1382 							struct bpf_attach_target_info *tgt_info)
1383 {
1384 	return NULL;
1385 }
1386 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1387 #define DEFINE_BPF_DISPATCHER(name)
1388 #define DECLARE_BPF_DISPATCHER(name)
1389 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1390 #define BPF_DISPATCHER_PTR(name) NULL
1391 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1392 					      struct bpf_prog *from,
1393 					      struct bpf_prog *to) {}
1394 static inline bool is_bpf_image_address(unsigned long address)
1395 {
1396 	return false;
1397 }
1398 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1399 {
1400 	return false;
1401 }
1402 #endif
1403 
1404 struct bpf_func_info_aux {
1405 	u16 linkage;
1406 	bool unreliable;
1407 	bool called : 1;
1408 	bool verified : 1;
1409 };
1410 
1411 enum bpf_jit_poke_reason {
1412 	BPF_POKE_REASON_TAIL_CALL,
1413 };
1414 
1415 /* Descriptor of pokes pointing /into/ the JITed image. */
1416 struct bpf_jit_poke_descriptor {
1417 	void *tailcall_target;
1418 	void *tailcall_bypass;
1419 	void *bypass_addr;
1420 	void *aux;
1421 	union {
1422 		struct {
1423 			struct bpf_map *map;
1424 			u32 key;
1425 		} tail_call;
1426 	};
1427 	bool tailcall_target_stable;
1428 	u8 adj_off;
1429 	u16 reason;
1430 	u32 insn_idx;
1431 };
1432 
1433 /* reg_type info for ctx arguments */
1434 struct bpf_ctx_arg_aux {
1435 	u32 offset;
1436 	enum bpf_reg_type reg_type;
1437 	struct btf *btf;
1438 	u32 btf_id;
1439 };
1440 
1441 struct btf_mod_pair {
1442 	struct btf *btf;
1443 	struct module *module;
1444 };
1445 
1446 struct bpf_kfunc_desc_tab;
1447 
1448 struct bpf_prog_aux {
1449 	atomic64_t refcnt;
1450 	u32 used_map_cnt;
1451 	u32 used_btf_cnt;
1452 	u32 max_ctx_offset;
1453 	u32 max_pkt_offset;
1454 	u32 max_tp_access;
1455 	u32 stack_depth;
1456 	u32 id;
1457 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1458 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1459 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1460 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1461 	u32 ctx_arg_info_size;
1462 	u32 max_rdonly_access;
1463 	u32 max_rdwr_access;
1464 	struct btf *attach_btf;
1465 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1466 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1467 	struct bpf_prog *dst_prog;
1468 	struct bpf_trampoline *dst_trampoline;
1469 	enum bpf_prog_type saved_dst_prog_type;
1470 	enum bpf_attach_type saved_dst_attach_type;
1471 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1472 	bool dev_bound; /* Program is bound to the netdev. */
1473 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1474 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1475 	bool attach_tracing_prog; /* true if tracing another tracing program */
1476 	bool func_proto_unreliable;
1477 	bool tail_call_reachable;
1478 	bool xdp_has_frags;
1479 	bool exception_cb;
1480 	bool exception_boundary;
1481 	struct bpf_arena *arena;
1482 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1483 	const struct btf_type *attach_func_proto;
1484 	/* function name for valid attach_btf_id */
1485 	const char *attach_func_name;
1486 	struct bpf_prog **func;
1487 	void *jit_data; /* JIT specific data. arch dependent */
1488 	struct bpf_jit_poke_descriptor *poke_tab;
1489 	struct bpf_kfunc_desc_tab *kfunc_tab;
1490 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1491 	u32 size_poke_tab;
1492 #ifdef CONFIG_FINEIBT
1493 	struct bpf_ksym ksym_prefix;
1494 #endif
1495 	struct bpf_ksym ksym;
1496 	const struct bpf_prog_ops *ops;
1497 	struct bpf_map **used_maps;
1498 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1499 	struct btf_mod_pair *used_btfs;
1500 	struct bpf_prog *prog;
1501 	struct user_struct *user;
1502 	u64 load_time; /* ns since boottime */
1503 	u32 verified_insns;
1504 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1505 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1506 	char name[BPF_OBJ_NAME_LEN];
1507 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1508 #ifdef CONFIG_SECURITY
1509 	void *security;
1510 #endif
1511 	struct bpf_token *token;
1512 	struct bpf_prog_offload *offload;
1513 	struct btf *btf;
1514 	struct bpf_func_info *func_info;
1515 	struct bpf_func_info_aux *func_info_aux;
1516 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1517 	 * has the xlated insn offset.
1518 	 * Both the main and sub prog share the same linfo.
1519 	 * The subprog can access its first linfo by
1520 	 * using the linfo_idx.
1521 	 */
1522 	struct bpf_line_info *linfo;
1523 	/* jited_linfo is the jited addr of the linfo.  It has a
1524 	 * one to one mapping to linfo:
1525 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1526 	 * Both the main and sub prog share the same jited_linfo.
1527 	 * The subprog can access its first jited_linfo by
1528 	 * using the linfo_idx.
1529 	 */
1530 	void **jited_linfo;
1531 	u32 func_info_cnt;
1532 	u32 nr_linfo;
1533 	/* subprog can use linfo_idx to access its first linfo and
1534 	 * jited_linfo.
1535 	 * main prog always has linfo_idx == 0
1536 	 */
1537 	u32 linfo_idx;
1538 	struct module *mod;
1539 	u32 num_exentries;
1540 	struct exception_table_entry *extable;
1541 	union {
1542 		struct work_struct work;
1543 		struct rcu_head	rcu;
1544 	};
1545 };
1546 
1547 struct bpf_prog {
1548 	u16			pages;		/* Number of allocated pages */
1549 	u16			jited:1,	/* Is our filter JIT'ed? */
1550 				jit_requested:1,/* archs need to JIT the prog */
1551 				gpl_compatible:1, /* Is filter GPL compatible? */
1552 				cb_access:1,	/* Is control block accessed? */
1553 				dst_needed:1,	/* Do we need dst entry? */
1554 				blinding_requested:1, /* needs constant blinding */
1555 				blinded:1,	/* Was blinded */
1556 				is_func:1,	/* program is a bpf function */
1557 				kprobe_override:1, /* Do we override a kprobe? */
1558 				has_callchain_buf:1, /* callchain buffer allocated? */
1559 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1560 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1561 				call_get_func_ip:1, /* Do we call get_func_ip() */
1562 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1563 				sleepable:1;	/* BPF program is sleepable */
1564 	enum bpf_prog_type	type;		/* Type of BPF program */
1565 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1566 	u32			len;		/* Number of filter blocks */
1567 	u32			jited_len;	/* Size of jited insns in bytes */
1568 	u8			tag[BPF_TAG_SIZE];
1569 	struct bpf_prog_stats __percpu *stats;
1570 	int __percpu		*active;
1571 	unsigned int		(*bpf_func)(const void *ctx,
1572 					    const struct bpf_insn *insn);
1573 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1574 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1575 	/* Instructions for interpreter */
1576 	union {
1577 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1578 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1579 	};
1580 };
1581 
1582 struct bpf_array_aux {
1583 	/* Programs with direct jumps into programs part of this array. */
1584 	struct list_head poke_progs;
1585 	struct bpf_map *map;
1586 	struct mutex poke_mutex;
1587 	struct work_struct work;
1588 };
1589 
1590 struct bpf_link {
1591 	atomic64_t refcnt;
1592 	u32 id;
1593 	enum bpf_link_type type;
1594 	const struct bpf_link_ops *ops;
1595 	struct bpf_prog *prog;
1596 	/* rcu is used before freeing, work can be used to schedule that
1597 	 * RCU-based freeing before that, so they never overlap
1598 	 */
1599 	union {
1600 		struct rcu_head rcu;
1601 		struct work_struct work;
1602 	};
1603 };
1604 
1605 struct bpf_link_ops {
1606 	void (*release)(struct bpf_link *link);
1607 	/* deallocate link resources callback, called without RCU grace period
1608 	 * waiting
1609 	 */
1610 	void (*dealloc)(struct bpf_link *link);
1611 	/* deallocate link resources callback, called after RCU grace period;
1612 	 * if underlying BPF program is sleepable we go through tasks trace
1613 	 * RCU GP and then "classic" RCU GP
1614 	 */
1615 	void (*dealloc_deferred)(struct bpf_link *link);
1616 	int (*detach)(struct bpf_link *link);
1617 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1618 			   struct bpf_prog *old_prog);
1619 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1620 	int (*fill_link_info)(const struct bpf_link *link,
1621 			      struct bpf_link_info *info);
1622 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1623 			  struct bpf_map *old_map);
1624 	__poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1625 };
1626 
1627 struct bpf_tramp_link {
1628 	struct bpf_link link;
1629 	struct hlist_node tramp_hlist;
1630 	u64 cookie;
1631 };
1632 
1633 struct bpf_shim_tramp_link {
1634 	struct bpf_tramp_link link;
1635 	struct bpf_trampoline *trampoline;
1636 };
1637 
1638 struct bpf_tracing_link {
1639 	struct bpf_tramp_link link;
1640 	enum bpf_attach_type attach_type;
1641 	struct bpf_trampoline *trampoline;
1642 	struct bpf_prog *tgt_prog;
1643 };
1644 
1645 struct bpf_raw_tp_link {
1646 	struct bpf_link link;
1647 	struct bpf_raw_event_map *btp;
1648 	u64 cookie;
1649 };
1650 
1651 struct bpf_link_primer {
1652 	struct bpf_link *link;
1653 	struct file *file;
1654 	int fd;
1655 	u32 id;
1656 };
1657 
1658 struct bpf_mount_opts {
1659 	kuid_t uid;
1660 	kgid_t gid;
1661 	umode_t mode;
1662 
1663 	/* BPF token-related delegation options */
1664 	u64 delegate_cmds;
1665 	u64 delegate_maps;
1666 	u64 delegate_progs;
1667 	u64 delegate_attachs;
1668 };
1669 
1670 struct bpf_token {
1671 	struct work_struct work;
1672 	atomic64_t refcnt;
1673 	struct user_namespace *userns;
1674 	u64 allowed_cmds;
1675 	u64 allowed_maps;
1676 	u64 allowed_progs;
1677 	u64 allowed_attachs;
1678 #ifdef CONFIG_SECURITY
1679 	void *security;
1680 #endif
1681 };
1682 
1683 struct bpf_struct_ops_value;
1684 struct btf_member;
1685 
1686 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1687 /**
1688  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1689  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1690  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1691  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1692  *		  when determining whether the struct_ops progs in the
1693  *		  struct_ops map are valid.
1694  * @init: A callback that is invoked a single time, and before any other
1695  *	  callback, to initialize the structure. A nonzero return value means
1696  *	  the subsystem could not be initialized.
1697  * @check_member: When defined, a callback invoked by the verifier to allow
1698  *		  the subsystem to determine if an entry in the struct_ops map
1699  *		  is valid. A nonzero return value means that the map is
1700  *		  invalid and should be rejected by the verifier.
1701  * @init_member: A callback that is invoked for each member of the struct_ops
1702  *		 map to allow the subsystem to initialize the member. A nonzero
1703  *		 value means the member could not be initialized. This callback
1704  *		 is exclusive with the @type, @type_id, @value_type, and
1705  *		 @value_id fields.
1706  * @reg: A callback that is invoked when the struct_ops map has been
1707  *	 initialized and is being attached to. Zero means the struct_ops map
1708  *	 has been successfully registered and is live. A nonzero return value
1709  *	 means the struct_ops map could not be registered.
1710  * @unreg: A callback that is invoked when the struct_ops map should be
1711  *	   unregistered.
1712  * @update: A callback that is invoked when the live struct_ops map is being
1713  *	    updated to contain new values. This callback is only invoked when
1714  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1715  *	    it is assumed that the struct_ops map cannot be updated.
1716  * @validate: A callback that is invoked after all of the members have been
1717  *	      initialized. This callback should perform static checks on the
1718  *	      map, meaning that it should either fail or succeed
1719  *	      deterministically. A struct_ops map that has been validated may
1720  *	      not necessarily succeed in being registered if the call to @reg
1721  *	      fails. For example, a valid struct_ops map may be loaded, but
1722  *	      then fail to be registered due to there being another active
1723  *	      struct_ops map on the system in the subsystem already. For this
1724  *	      reason, if this callback is not defined, the check is skipped as
1725  *	      the struct_ops map will have final verification performed in
1726  *	      @reg.
1727  * @type: BTF type.
1728  * @value_type: Value type.
1729  * @name: The name of the struct bpf_struct_ops object.
1730  * @func_models: Func models
1731  * @type_id: BTF type id.
1732  * @value_id: BTF value id.
1733  */
1734 struct bpf_struct_ops {
1735 	const struct bpf_verifier_ops *verifier_ops;
1736 	int (*init)(struct btf *btf);
1737 	int (*check_member)(const struct btf_type *t,
1738 			    const struct btf_member *member,
1739 			    const struct bpf_prog *prog);
1740 	int (*init_member)(const struct btf_type *t,
1741 			   const struct btf_member *member,
1742 			   void *kdata, const void *udata);
1743 	int (*reg)(void *kdata, struct bpf_link *link);
1744 	void (*unreg)(void *kdata, struct bpf_link *link);
1745 	int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1746 	int (*validate)(void *kdata);
1747 	void *cfi_stubs;
1748 	struct module *owner;
1749 	const char *name;
1750 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1751 };
1752 
1753 /* Every member of a struct_ops type has an instance even a member is not
1754  * an operator (function pointer). The "info" field will be assigned to
1755  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1756  * argument information required by the verifier to verify the program.
1757  *
1758  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1759  * corresponding entry for an given argument.
1760  */
1761 struct bpf_struct_ops_arg_info {
1762 	struct bpf_ctx_arg_aux *info;
1763 	u32 cnt;
1764 };
1765 
1766 struct bpf_struct_ops_desc {
1767 	struct bpf_struct_ops *st_ops;
1768 
1769 	const struct btf_type *type;
1770 	const struct btf_type *value_type;
1771 	u32 type_id;
1772 	u32 value_id;
1773 
1774 	/* Collection of argument information for each member */
1775 	struct bpf_struct_ops_arg_info *arg_info;
1776 };
1777 
1778 enum bpf_struct_ops_state {
1779 	BPF_STRUCT_OPS_STATE_INIT,
1780 	BPF_STRUCT_OPS_STATE_INUSE,
1781 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1782 	BPF_STRUCT_OPS_STATE_READY,
1783 };
1784 
1785 struct bpf_struct_ops_common_value {
1786 	refcount_t refcnt;
1787 	enum bpf_struct_ops_state state;
1788 };
1789 
1790 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1791 /* This macro helps developer to register a struct_ops type and generate
1792  * type information correctly. Developers should use this macro to register
1793  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1794  */
1795 #define register_bpf_struct_ops(st_ops, type)				\
1796 	({								\
1797 		struct bpf_struct_ops_##type {				\
1798 			struct bpf_struct_ops_common_value common;	\
1799 			struct type data ____cacheline_aligned_in_smp;	\
1800 		};							\
1801 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1802 		__register_bpf_struct_ops(st_ops);			\
1803 	})
1804 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1805 bool bpf_struct_ops_get(const void *kdata);
1806 void bpf_struct_ops_put(const void *kdata);
1807 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1808 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1809 				       void *value);
1810 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1811 				      struct bpf_tramp_link *link,
1812 				      const struct btf_func_model *model,
1813 				      void *stub_func,
1814 				      void **image, u32 *image_off,
1815 				      bool allow_alloc);
1816 void bpf_struct_ops_image_free(void *image);
1817 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1818 {
1819 	if (owner == BPF_MODULE_OWNER)
1820 		return bpf_struct_ops_get(data);
1821 	else
1822 		return try_module_get(owner);
1823 }
1824 static inline void bpf_module_put(const void *data, struct module *owner)
1825 {
1826 	if (owner == BPF_MODULE_OWNER)
1827 		bpf_struct_ops_put(data);
1828 	else
1829 		module_put(owner);
1830 }
1831 int bpf_struct_ops_link_create(union bpf_attr *attr);
1832 
1833 #ifdef CONFIG_NET
1834 /* Define it here to avoid the use of forward declaration */
1835 struct bpf_dummy_ops_state {
1836 	int val;
1837 };
1838 
1839 struct bpf_dummy_ops {
1840 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1841 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1842 		      char a3, unsigned long a4);
1843 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1844 };
1845 
1846 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1847 			    union bpf_attr __user *uattr);
1848 #endif
1849 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1850 			     struct btf *btf,
1851 			     struct bpf_verifier_log *log);
1852 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1853 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1854 #else
1855 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1856 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1857 {
1858 	return try_module_get(owner);
1859 }
1860 static inline void bpf_module_put(const void *data, struct module *owner)
1861 {
1862 	module_put(owner);
1863 }
1864 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1865 {
1866 	return -ENOTSUPP;
1867 }
1868 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1869 						     void *key,
1870 						     void *value)
1871 {
1872 	return -EINVAL;
1873 }
1874 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1875 {
1876 	return -EOPNOTSUPP;
1877 }
1878 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1879 {
1880 }
1881 
1882 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1883 {
1884 }
1885 
1886 #endif
1887 
1888 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1889 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1890 				    int cgroup_atype);
1891 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1892 #else
1893 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1894 						  int cgroup_atype)
1895 {
1896 	return -EOPNOTSUPP;
1897 }
1898 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1899 {
1900 }
1901 #endif
1902 
1903 struct bpf_array {
1904 	struct bpf_map map;
1905 	u32 elem_size;
1906 	u32 index_mask;
1907 	struct bpf_array_aux *aux;
1908 	union {
1909 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1910 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1911 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1912 	};
1913 };
1914 
1915 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1916 #define MAX_TAIL_CALL_CNT 33
1917 
1918 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1919  * It's enum to expose it (and thus make it discoverable) through BTF.
1920  */
1921 enum {
1922 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1923 };
1924 
1925 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1926 				 BPF_F_RDONLY_PROG |	\
1927 				 BPF_F_WRONLY |		\
1928 				 BPF_F_WRONLY_PROG)
1929 
1930 #define BPF_MAP_CAN_READ	BIT(0)
1931 #define BPF_MAP_CAN_WRITE	BIT(1)
1932 
1933 /* Maximum number of user-producer ring buffer samples that can be drained in
1934  * a call to bpf_user_ringbuf_drain().
1935  */
1936 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1937 
1938 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1939 {
1940 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1941 
1942 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1943 	 * not possible.
1944 	 */
1945 	if (access_flags & BPF_F_RDONLY_PROG)
1946 		return BPF_MAP_CAN_READ;
1947 	else if (access_flags & BPF_F_WRONLY_PROG)
1948 		return BPF_MAP_CAN_WRITE;
1949 	else
1950 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1951 }
1952 
1953 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1954 {
1955 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1956 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1957 }
1958 
1959 struct bpf_event_entry {
1960 	struct perf_event *event;
1961 	struct file *perf_file;
1962 	struct file *map_file;
1963 	struct rcu_head rcu;
1964 };
1965 
1966 static inline bool map_type_contains_progs(struct bpf_map *map)
1967 {
1968 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1969 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1970 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1971 }
1972 
1973 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1974 int bpf_prog_calc_tag(struct bpf_prog *fp);
1975 
1976 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1977 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1978 
1979 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1980 					unsigned long off, unsigned long len);
1981 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1982 					const struct bpf_insn *src,
1983 					struct bpf_insn *dst,
1984 					struct bpf_prog *prog,
1985 					u32 *target_size);
1986 
1987 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1988 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1989 
1990 /* an array of programs to be executed under rcu_lock.
1991  *
1992  * Typical usage:
1993  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1994  *
1995  * the structure returned by bpf_prog_array_alloc() should be populated
1996  * with program pointers and the last pointer must be NULL.
1997  * The user has to keep refcnt on the program and make sure the program
1998  * is removed from the array before bpf_prog_put().
1999  * The 'struct bpf_prog_array *' should only be replaced with xchg()
2000  * since other cpus are walking the array of pointers in parallel.
2001  */
2002 struct bpf_prog_array_item {
2003 	struct bpf_prog *prog;
2004 	union {
2005 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2006 		u64 bpf_cookie;
2007 	};
2008 };
2009 
2010 struct bpf_prog_array {
2011 	struct rcu_head rcu;
2012 	struct bpf_prog_array_item items[];
2013 };
2014 
2015 struct bpf_empty_prog_array {
2016 	struct bpf_prog_array hdr;
2017 	struct bpf_prog *null_prog;
2018 };
2019 
2020 /* to avoid allocating empty bpf_prog_array for cgroups that
2021  * don't have bpf program attached use one global 'bpf_empty_prog_array'
2022  * It will not be modified the caller of bpf_prog_array_alloc()
2023  * (since caller requested prog_cnt == 0)
2024  * that pointer should be 'freed' by bpf_prog_array_free()
2025  */
2026 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2027 
2028 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2029 void bpf_prog_array_free(struct bpf_prog_array *progs);
2030 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2031 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2032 int bpf_prog_array_length(struct bpf_prog_array *progs);
2033 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2034 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2035 				__u32 __user *prog_ids, u32 cnt);
2036 
2037 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2038 				struct bpf_prog *old_prog);
2039 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2040 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2041 			     struct bpf_prog *prog);
2042 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2043 			     u32 *prog_ids, u32 request_cnt,
2044 			     u32 *prog_cnt);
2045 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2046 			struct bpf_prog *exclude_prog,
2047 			struct bpf_prog *include_prog,
2048 			u64 bpf_cookie,
2049 			struct bpf_prog_array **new_array);
2050 
2051 struct bpf_run_ctx {};
2052 
2053 struct bpf_cg_run_ctx {
2054 	struct bpf_run_ctx run_ctx;
2055 	const struct bpf_prog_array_item *prog_item;
2056 	int retval;
2057 };
2058 
2059 struct bpf_trace_run_ctx {
2060 	struct bpf_run_ctx run_ctx;
2061 	u64 bpf_cookie;
2062 	bool is_uprobe;
2063 };
2064 
2065 struct bpf_tramp_run_ctx {
2066 	struct bpf_run_ctx run_ctx;
2067 	u64 bpf_cookie;
2068 	struct bpf_run_ctx *saved_run_ctx;
2069 };
2070 
2071 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2072 {
2073 	struct bpf_run_ctx *old_ctx = NULL;
2074 
2075 #ifdef CONFIG_BPF_SYSCALL
2076 	old_ctx = current->bpf_ctx;
2077 	current->bpf_ctx = new_ctx;
2078 #endif
2079 	return old_ctx;
2080 }
2081 
2082 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2083 {
2084 #ifdef CONFIG_BPF_SYSCALL
2085 	current->bpf_ctx = old_ctx;
2086 #endif
2087 }
2088 
2089 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2090 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2091 /* BPF program asks to set CN on the packet. */
2092 #define BPF_RET_SET_CN						(1 << 0)
2093 
2094 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2095 
2096 static __always_inline u32
2097 bpf_prog_run_array(const struct bpf_prog_array *array,
2098 		   const void *ctx, bpf_prog_run_fn run_prog)
2099 {
2100 	const struct bpf_prog_array_item *item;
2101 	const struct bpf_prog *prog;
2102 	struct bpf_run_ctx *old_run_ctx;
2103 	struct bpf_trace_run_ctx run_ctx;
2104 	u32 ret = 1;
2105 
2106 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2107 
2108 	if (unlikely(!array))
2109 		return ret;
2110 
2111 	run_ctx.is_uprobe = false;
2112 
2113 	migrate_disable();
2114 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2115 	item = &array->items[0];
2116 	while ((prog = READ_ONCE(item->prog))) {
2117 		run_ctx.bpf_cookie = item->bpf_cookie;
2118 		ret &= run_prog(prog, ctx);
2119 		item++;
2120 	}
2121 	bpf_reset_run_ctx(old_run_ctx);
2122 	migrate_enable();
2123 	return ret;
2124 }
2125 
2126 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2127  *
2128  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2129  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2130  * in order to use the tasks_trace rcu grace period.
2131  *
2132  * When a non-sleepable program is inside the array, we take the rcu read
2133  * section and disable preemption for that program alone, so it can access
2134  * rcu-protected dynamically sized maps.
2135  */
2136 static __always_inline u32
2137 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2138 			  const void *ctx, bpf_prog_run_fn run_prog)
2139 {
2140 	const struct bpf_prog_array_item *item;
2141 	const struct bpf_prog *prog;
2142 	const struct bpf_prog_array *array;
2143 	struct bpf_run_ctx *old_run_ctx;
2144 	struct bpf_trace_run_ctx run_ctx;
2145 	u32 ret = 1;
2146 
2147 	might_fault();
2148 
2149 	rcu_read_lock_trace();
2150 	migrate_disable();
2151 
2152 	run_ctx.is_uprobe = true;
2153 
2154 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2155 	if (unlikely(!array))
2156 		goto out;
2157 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2158 	item = &array->items[0];
2159 	while ((prog = READ_ONCE(item->prog))) {
2160 		if (!prog->sleepable)
2161 			rcu_read_lock();
2162 
2163 		run_ctx.bpf_cookie = item->bpf_cookie;
2164 		ret &= run_prog(prog, ctx);
2165 		item++;
2166 
2167 		if (!prog->sleepable)
2168 			rcu_read_unlock();
2169 	}
2170 	bpf_reset_run_ctx(old_run_ctx);
2171 out:
2172 	migrate_enable();
2173 	rcu_read_unlock_trace();
2174 	return ret;
2175 }
2176 
2177 #ifdef CONFIG_BPF_SYSCALL
2178 DECLARE_PER_CPU(int, bpf_prog_active);
2179 extern struct mutex bpf_stats_enabled_mutex;
2180 
2181 /*
2182  * Block execution of BPF programs attached to instrumentation (perf,
2183  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2184  * these events can happen inside a region which holds a map bucket lock
2185  * and can deadlock on it.
2186  */
2187 static inline void bpf_disable_instrumentation(void)
2188 {
2189 	migrate_disable();
2190 	this_cpu_inc(bpf_prog_active);
2191 }
2192 
2193 static inline void bpf_enable_instrumentation(void)
2194 {
2195 	this_cpu_dec(bpf_prog_active);
2196 	migrate_enable();
2197 }
2198 
2199 extern const struct super_operations bpf_super_ops;
2200 extern const struct file_operations bpf_map_fops;
2201 extern const struct file_operations bpf_prog_fops;
2202 extern const struct file_operations bpf_iter_fops;
2203 
2204 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2205 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2206 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2207 #define BPF_MAP_TYPE(_id, _ops) \
2208 	extern const struct bpf_map_ops _ops;
2209 #define BPF_LINK_TYPE(_id, _name)
2210 #include <linux/bpf_types.h>
2211 #undef BPF_PROG_TYPE
2212 #undef BPF_MAP_TYPE
2213 #undef BPF_LINK_TYPE
2214 
2215 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2216 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2217 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2218 
2219 struct bpf_prog *bpf_prog_get(u32 ufd);
2220 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2221 				       bool attach_drv);
2222 void bpf_prog_add(struct bpf_prog *prog, int i);
2223 void bpf_prog_sub(struct bpf_prog *prog, int i);
2224 void bpf_prog_inc(struct bpf_prog *prog);
2225 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2226 void bpf_prog_put(struct bpf_prog *prog);
2227 
2228 void bpf_prog_free_id(struct bpf_prog *prog);
2229 void bpf_map_free_id(struct bpf_map *map);
2230 
2231 struct btf_field *btf_record_find(const struct btf_record *rec,
2232 				  u32 offset, u32 field_mask);
2233 void btf_record_free(struct btf_record *rec);
2234 void bpf_map_free_record(struct bpf_map *map);
2235 struct btf_record *btf_record_dup(const struct btf_record *rec);
2236 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2237 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2238 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2239 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2240 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2241 
2242 struct bpf_map *bpf_map_get(u32 ufd);
2243 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2244 struct bpf_map *__bpf_map_get(struct fd f);
2245 void bpf_map_inc(struct bpf_map *map);
2246 void bpf_map_inc_with_uref(struct bpf_map *map);
2247 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2248 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2249 void bpf_map_put_with_uref(struct bpf_map *map);
2250 void bpf_map_put(struct bpf_map *map);
2251 void *bpf_map_area_alloc(u64 size, int numa_node);
2252 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2253 void bpf_map_area_free(void *base);
2254 bool bpf_map_write_active(const struct bpf_map *map);
2255 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2256 int  generic_map_lookup_batch(struct bpf_map *map,
2257 			      const union bpf_attr *attr,
2258 			      union bpf_attr __user *uattr);
2259 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2260 			      const union bpf_attr *attr,
2261 			      union bpf_attr __user *uattr);
2262 int  generic_map_delete_batch(struct bpf_map *map,
2263 			      const union bpf_attr *attr,
2264 			      union bpf_attr __user *uattr);
2265 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2266 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2267 
2268 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2269 			unsigned long nr_pages, struct page **page_array);
2270 #ifdef CONFIG_MEMCG
2271 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2272 			   int node);
2273 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2274 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2275 		       gfp_t flags);
2276 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2277 				    size_t align, gfp_t flags);
2278 #else
2279 /*
2280  * These specialized allocators have to be macros for their allocations to be
2281  * accounted separately (to have separate alloc_tag).
2282  */
2283 #define bpf_map_kmalloc_node(_map, _size, _flags, _node)	\
2284 		kmalloc_node(_size, _flags, _node)
2285 #define bpf_map_kzalloc(_map, _size, _flags)			\
2286 		kzalloc(_size, _flags)
2287 #define bpf_map_kvcalloc(_map, _n, _size, _flags)		\
2288 		kvcalloc(_n, _size, _flags)
2289 #define bpf_map_alloc_percpu(_map, _size, _align, _flags)	\
2290 		__alloc_percpu_gfp(_size, _align, _flags)
2291 #endif
2292 
2293 static inline int
2294 bpf_map_init_elem_count(struct bpf_map *map)
2295 {
2296 	size_t size = sizeof(*map->elem_count), align = size;
2297 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2298 
2299 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2300 	if (!map->elem_count)
2301 		return -ENOMEM;
2302 
2303 	return 0;
2304 }
2305 
2306 static inline void
2307 bpf_map_free_elem_count(struct bpf_map *map)
2308 {
2309 	free_percpu(map->elem_count);
2310 }
2311 
2312 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2313 {
2314 	this_cpu_inc(*map->elem_count);
2315 }
2316 
2317 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2318 {
2319 	this_cpu_dec(*map->elem_count);
2320 }
2321 
2322 extern int sysctl_unprivileged_bpf_disabled;
2323 
2324 bool bpf_token_capable(const struct bpf_token *token, int cap);
2325 
2326 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2327 {
2328 	return bpf_token_capable(token, CAP_PERFMON);
2329 }
2330 
2331 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2332 {
2333 	return bpf_token_capable(token, CAP_PERFMON);
2334 }
2335 
2336 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2337 {
2338 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2339 }
2340 
2341 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2342 {
2343 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2344 }
2345 
2346 int bpf_map_new_fd(struct bpf_map *map, int flags);
2347 int bpf_prog_new_fd(struct bpf_prog *prog);
2348 
2349 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2350 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2351 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2352 int bpf_link_settle(struct bpf_link_primer *primer);
2353 void bpf_link_cleanup(struct bpf_link_primer *primer);
2354 void bpf_link_inc(struct bpf_link *link);
2355 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2356 void bpf_link_put(struct bpf_link *link);
2357 int bpf_link_new_fd(struct bpf_link *link);
2358 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2359 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2360 
2361 void bpf_token_inc(struct bpf_token *token);
2362 void bpf_token_put(struct bpf_token *token);
2363 int bpf_token_create(union bpf_attr *attr);
2364 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2365 
2366 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2367 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2368 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2369 			       enum bpf_prog_type prog_type,
2370 			       enum bpf_attach_type attach_type);
2371 
2372 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2373 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2374 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2375 			    umode_t mode);
2376 
2377 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2378 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2379 	extern int bpf_iter_ ## target(args);			\
2380 	int __init bpf_iter_ ## target(args) { return 0; }
2381 
2382 /*
2383  * The task type of iterators.
2384  *
2385  * For BPF task iterators, they can be parameterized with various
2386  * parameters to visit only some of tasks.
2387  *
2388  * BPF_TASK_ITER_ALL (default)
2389  *	Iterate over resources of every task.
2390  *
2391  * BPF_TASK_ITER_TID
2392  *	Iterate over resources of a task/tid.
2393  *
2394  * BPF_TASK_ITER_TGID
2395  *	Iterate over resources of every task of a process / task group.
2396  */
2397 enum bpf_iter_task_type {
2398 	BPF_TASK_ITER_ALL = 0,
2399 	BPF_TASK_ITER_TID,
2400 	BPF_TASK_ITER_TGID,
2401 };
2402 
2403 struct bpf_iter_aux_info {
2404 	/* for map_elem iter */
2405 	struct bpf_map *map;
2406 
2407 	/* for cgroup iter */
2408 	struct {
2409 		struct cgroup *start; /* starting cgroup */
2410 		enum bpf_cgroup_iter_order order;
2411 	} cgroup;
2412 	struct {
2413 		enum bpf_iter_task_type	type;
2414 		u32 pid;
2415 	} task;
2416 };
2417 
2418 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2419 					union bpf_iter_link_info *linfo,
2420 					struct bpf_iter_aux_info *aux);
2421 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2422 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2423 					struct seq_file *seq);
2424 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2425 					 struct bpf_link_info *info);
2426 typedef const struct bpf_func_proto *
2427 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2428 			     const struct bpf_prog *prog);
2429 
2430 enum bpf_iter_feature {
2431 	BPF_ITER_RESCHED	= BIT(0),
2432 };
2433 
2434 #define BPF_ITER_CTX_ARG_MAX 2
2435 struct bpf_iter_reg {
2436 	const char *target;
2437 	bpf_iter_attach_target_t attach_target;
2438 	bpf_iter_detach_target_t detach_target;
2439 	bpf_iter_show_fdinfo_t show_fdinfo;
2440 	bpf_iter_fill_link_info_t fill_link_info;
2441 	bpf_iter_get_func_proto_t get_func_proto;
2442 	u32 ctx_arg_info_size;
2443 	u32 feature;
2444 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2445 	const struct bpf_iter_seq_info *seq_info;
2446 };
2447 
2448 struct bpf_iter_meta {
2449 	__bpf_md_ptr(struct seq_file *, seq);
2450 	u64 session_id;
2451 	u64 seq_num;
2452 };
2453 
2454 struct bpf_iter__bpf_map_elem {
2455 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2456 	__bpf_md_ptr(struct bpf_map *, map);
2457 	__bpf_md_ptr(void *, key);
2458 	__bpf_md_ptr(void *, value);
2459 };
2460 
2461 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2462 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2463 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2464 const struct bpf_func_proto *
2465 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2466 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2467 int bpf_iter_new_fd(struct bpf_link *link);
2468 bool bpf_link_is_iter(struct bpf_link *link);
2469 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2470 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2471 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2472 			      struct seq_file *seq);
2473 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2474 				struct bpf_link_info *info);
2475 
2476 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2477 				   struct bpf_func_state *caller,
2478 				   struct bpf_func_state *callee);
2479 
2480 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2481 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2482 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2483 			   u64 flags);
2484 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2485 			    u64 flags);
2486 
2487 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2488 
2489 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2490 				 void *key, void *value, u64 map_flags);
2491 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2492 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2493 				void *key, void *value, u64 map_flags);
2494 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2495 
2496 int bpf_get_file_flag(int flags);
2497 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2498 			     size_t actual_size);
2499 
2500 /* verify correctness of eBPF program */
2501 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2502 
2503 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2504 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2505 #endif
2506 
2507 struct btf *bpf_get_btf_vmlinux(void);
2508 
2509 /* Map specifics */
2510 struct xdp_frame;
2511 struct sk_buff;
2512 struct bpf_dtab_netdev;
2513 struct bpf_cpu_map_entry;
2514 
2515 void __dev_flush(struct list_head *flush_list);
2516 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2517 		    struct net_device *dev_rx);
2518 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2519 		    struct net_device *dev_rx);
2520 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2521 			  struct bpf_map *map, bool exclude_ingress);
2522 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2523 			     struct bpf_prog *xdp_prog);
2524 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2525 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2526 			   bool exclude_ingress);
2527 
2528 void __cpu_map_flush(struct list_head *flush_list);
2529 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2530 		    struct net_device *dev_rx);
2531 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2532 			     struct sk_buff *skb);
2533 
2534 /* Return map's numa specified by userspace */
2535 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2536 {
2537 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2538 		attr->numa_node : NUMA_NO_NODE;
2539 }
2540 
2541 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2542 int array_map_alloc_check(union bpf_attr *attr);
2543 
2544 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2545 			  union bpf_attr __user *uattr);
2546 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2547 			  union bpf_attr __user *uattr);
2548 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2549 			      const union bpf_attr *kattr,
2550 			      union bpf_attr __user *uattr);
2551 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2552 				     const union bpf_attr *kattr,
2553 				     union bpf_attr __user *uattr);
2554 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2555 			     const union bpf_attr *kattr,
2556 			     union bpf_attr __user *uattr);
2557 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2558 				const union bpf_attr *kattr,
2559 				union bpf_attr __user *uattr);
2560 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2561 			 const union bpf_attr *kattr,
2562 			 union bpf_attr __user *uattr);
2563 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2564 		    const struct bpf_prog *prog,
2565 		    struct bpf_insn_access_aux *info);
2566 
2567 static inline bool bpf_tracing_ctx_access(int off, int size,
2568 					  enum bpf_access_type type)
2569 {
2570 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2571 		return false;
2572 	if (type != BPF_READ)
2573 		return false;
2574 	if (off % size != 0)
2575 		return false;
2576 	return true;
2577 }
2578 
2579 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2580 					      enum bpf_access_type type,
2581 					      const struct bpf_prog *prog,
2582 					      struct bpf_insn_access_aux *info)
2583 {
2584 	if (!bpf_tracing_ctx_access(off, size, type))
2585 		return false;
2586 	return btf_ctx_access(off, size, type, prog, info);
2587 }
2588 
2589 int btf_struct_access(struct bpf_verifier_log *log,
2590 		      const struct bpf_reg_state *reg,
2591 		      int off, int size, enum bpf_access_type atype,
2592 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2593 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2594 			  const struct btf *btf, u32 id, int off,
2595 			  const struct btf *need_btf, u32 need_type_id,
2596 			  bool strict);
2597 
2598 int btf_distill_func_proto(struct bpf_verifier_log *log,
2599 			   struct btf *btf,
2600 			   const struct btf_type *func_proto,
2601 			   const char *func_name,
2602 			   struct btf_func_model *m);
2603 
2604 struct bpf_reg_state;
2605 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2606 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2607 			 struct btf *btf, const struct btf_type *t);
2608 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2609 				    int comp_idx, const char *tag_key);
2610 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2611 			   int comp_idx, const char *tag_key, int last_id);
2612 
2613 struct bpf_prog *bpf_prog_by_id(u32 id);
2614 struct bpf_link *bpf_link_by_id(u32 id);
2615 
2616 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2617 						 const struct bpf_prog *prog);
2618 void bpf_task_storage_free(struct task_struct *task);
2619 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2620 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2621 const struct btf_func_model *
2622 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2623 			 const struct bpf_insn *insn);
2624 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2625 		       u16 btf_fd_idx, u8 **func_addr);
2626 
2627 struct bpf_core_ctx {
2628 	struct bpf_verifier_log *log;
2629 	const struct btf *btf;
2630 };
2631 
2632 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2633 				const struct bpf_reg_state *reg,
2634 				const char *field_name, u32 btf_id, const char *suffix);
2635 
2636 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2637 			       const struct btf *reg_btf, u32 reg_id,
2638 			       const struct btf *arg_btf, u32 arg_id);
2639 
2640 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2641 		   int relo_idx, void *insn);
2642 
2643 static inline bool unprivileged_ebpf_enabled(void)
2644 {
2645 	return !sysctl_unprivileged_bpf_disabled;
2646 }
2647 
2648 /* Not all bpf prog type has the bpf_ctx.
2649  * For the bpf prog type that has initialized the bpf_ctx,
2650  * this function can be used to decide if a kernel function
2651  * is called by a bpf program.
2652  */
2653 static inline bool has_current_bpf_ctx(void)
2654 {
2655 	return !!current->bpf_ctx;
2656 }
2657 
2658 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2659 
2660 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2661 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2662 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2663 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2664 
2665 #else /* !CONFIG_BPF_SYSCALL */
2666 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2667 {
2668 	return ERR_PTR(-EOPNOTSUPP);
2669 }
2670 
2671 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2672 						     enum bpf_prog_type type,
2673 						     bool attach_drv)
2674 {
2675 	return ERR_PTR(-EOPNOTSUPP);
2676 }
2677 
2678 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2679 {
2680 }
2681 
2682 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2683 {
2684 }
2685 
2686 static inline void bpf_prog_put(struct bpf_prog *prog)
2687 {
2688 }
2689 
2690 static inline void bpf_prog_inc(struct bpf_prog *prog)
2691 {
2692 }
2693 
2694 static inline struct bpf_prog *__must_check
2695 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2696 {
2697 	return ERR_PTR(-EOPNOTSUPP);
2698 }
2699 
2700 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2701 				 const struct bpf_link_ops *ops,
2702 				 struct bpf_prog *prog)
2703 {
2704 }
2705 
2706 static inline int bpf_link_prime(struct bpf_link *link,
2707 				 struct bpf_link_primer *primer)
2708 {
2709 	return -EOPNOTSUPP;
2710 }
2711 
2712 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2713 {
2714 	return -EOPNOTSUPP;
2715 }
2716 
2717 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2718 {
2719 }
2720 
2721 static inline void bpf_link_inc(struct bpf_link *link)
2722 {
2723 }
2724 
2725 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2726 {
2727 	return NULL;
2728 }
2729 
2730 static inline void bpf_link_put(struct bpf_link *link)
2731 {
2732 }
2733 
2734 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2735 {
2736 	return -EOPNOTSUPP;
2737 }
2738 
2739 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2740 {
2741 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2742 }
2743 
2744 static inline void bpf_token_inc(struct bpf_token *token)
2745 {
2746 }
2747 
2748 static inline void bpf_token_put(struct bpf_token *token)
2749 {
2750 }
2751 
2752 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2753 {
2754 	return ERR_PTR(-EOPNOTSUPP);
2755 }
2756 
2757 static inline void __dev_flush(struct list_head *flush_list)
2758 {
2759 }
2760 
2761 struct xdp_frame;
2762 struct bpf_dtab_netdev;
2763 struct bpf_cpu_map_entry;
2764 
2765 static inline
2766 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2767 		    struct net_device *dev_rx)
2768 {
2769 	return 0;
2770 }
2771 
2772 static inline
2773 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2774 		    struct net_device *dev_rx)
2775 {
2776 	return 0;
2777 }
2778 
2779 static inline
2780 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2781 			  struct bpf_map *map, bool exclude_ingress)
2782 {
2783 	return 0;
2784 }
2785 
2786 struct sk_buff;
2787 
2788 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2789 					   struct sk_buff *skb,
2790 					   struct bpf_prog *xdp_prog)
2791 {
2792 	return 0;
2793 }
2794 
2795 static inline
2796 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2797 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2798 			   bool exclude_ingress)
2799 {
2800 	return 0;
2801 }
2802 
2803 static inline void __cpu_map_flush(struct list_head *flush_list)
2804 {
2805 }
2806 
2807 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2808 				  struct xdp_frame *xdpf,
2809 				  struct net_device *dev_rx)
2810 {
2811 	return 0;
2812 }
2813 
2814 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2815 					   struct sk_buff *skb)
2816 {
2817 	return -EOPNOTSUPP;
2818 }
2819 
2820 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2821 				enum bpf_prog_type type)
2822 {
2823 	return ERR_PTR(-EOPNOTSUPP);
2824 }
2825 
2826 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2827 					const union bpf_attr *kattr,
2828 					union bpf_attr __user *uattr)
2829 {
2830 	return -ENOTSUPP;
2831 }
2832 
2833 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2834 					const union bpf_attr *kattr,
2835 					union bpf_attr __user *uattr)
2836 {
2837 	return -ENOTSUPP;
2838 }
2839 
2840 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2841 					    const union bpf_attr *kattr,
2842 					    union bpf_attr __user *uattr)
2843 {
2844 	return -ENOTSUPP;
2845 }
2846 
2847 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2848 						   const union bpf_attr *kattr,
2849 						   union bpf_attr __user *uattr)
2850 {
2851 	return -ENOTSUPP;
2852 }
2853 
2854 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2855 					      const union bpf_attr *kattr,
2856 					      union bpf_attr __user *uattr)
2857 {
2858 	return -ENOTSUPP;
2859 }
2860 
2861 static inline void bpf_map_put(struct bpf_map *map)
2862 {
2863 }
2864 
2865 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2866 {
2867 	return ERR_PTR(-ENOTSUPP);
2868 }
2869 
2870 static inline int btf_struct_access(struct bpf_verifier_log *log,
2871 				    const struct bpf_reg_state *reg,
2872 				    int off, int size, enum bpf_access_type atype,
2873 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2874 				    const char **field_name)
2875 {
2876 	return -EACCES;
2877 }
2878 
2879 static inline const struct bpf_func_proto *
2880 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2881 {
2882 	return NULL;
2883 }
2884 
2885 static inline void bpf_task_storage_free(struct task_struct *task)
2886 {
2887 }
2888 
2889 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2890 {
2891 	return false;
2892 }
2893 
2894 static inline const struct btf_func_model *
2895 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2896 			 const struct bpf_insn *insn)
2897 {
2898 	return NULL;
2899 }
2900 
2901 static inline int
2902 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2903 		   u16 btf_fd_idx, u8 **func_addr)
2904 {
2905 	return -ENOTSUPP;
2906 }
2907 
2908 static inline bool unprivileged_ebpf_enabled(void)
2909 {
2910 	return false;
2911 }
2912 
2913 static inline bool has_current_bpf_ctx(void)
2914 {
2915 	return false;
2916 }
2917 
2918 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2919 {
2920 }
2921 
2922 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2923 {
2924 }
2925 
2926 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2927 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2928 {
2929 }
2930 
2931 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2932 {
2933 }
2934 
2935 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2936 {
2937 }
2938 #endif /* CONFIG_BPF_SYSCALL */
2939 
2940 static __always_inline int
2941 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2942 {
2943 	int ret = -EFAULT;
2944 
2945 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2946 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2947 	if (unlikely(ret < 0))
2948 		memset(dst, 0, size);
2949 	return ret;
2950 }
2951 
2952 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
2953 
2954 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2955 						 enum bpf_prog_type type)
2956 {
2957 	return bpf_prog_get_type_dev(ufd, type, false);
2958 }
2959 
2960 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2961 			  struct bpf_map **used_maps, u32 len);
2962 
2963 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2964 
2965 int bpf_prog_offload_compile(struct bpf_prog *prog);
2966 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2967 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2968 			       struct bpf_prog *prog);
2969 
2970 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2971 
2972 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2973 int bpf_map_offload_update_elem(struct bpf_map *map,
2974 				void *key, void *value, u64 flags);
2975 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2976 int bpf_map_offload_get_next_key(struct bpf_map *map,
2977 				 void *key, void *next_key);
2978 
2979 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2980 
2981 struct bpf_offload_dev *
2982 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2983 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2984 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2985 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2986 				    struct net_device *netdev);
2987 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2988 				       struct net_device *netdev);
2989 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2990 
2991 void unpriv_ebpf_notify(int new_state);
2992 
2993 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2994 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2995 			      struct bpf_prog_aux *prog_aux);
2996 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2997 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2998 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2999 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3000 
3001 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3002 {
3003 	return aux->dev_bound;
3004 }
3005 
3006 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3007 {
3008 	return aux->offload_requested;
3009 }
3010 
3011 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3012 
3013 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3014 {
3015 	return unlikely(map->ops == &bpf_map_offload_ops);
3016 }
3017 
3018 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3019 void bpf_map_offload_map_free(struct bpf_map *map);
3020 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3021 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3022 			      const union bpf_attr *kattr,
3023 			      union bpf_attr __user *uattr);
3024 
3025 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3026 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3027 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3028 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3029 			    union bpf_attr __user *uattr);
3030 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3031 
3032 void sock_map_unhash(struct sock *sk);
3033 void sock_map_destroy(struct sock *sk);
3034 void sock_map_close(struct sock *sk, long timeout);
3035 #else
3036 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3037 					    struct bpf_prog_aux *prog_aux)
3038 {
3039 	return -EOPNOTSUPP;
3040 }
3041 
3042 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3043 						u32 func_id)
3044 {
3045 	return NULL;
3046 }
3047 
3048 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3049 					  union bpf_attr *attr)
3050 {
3051 	return -EOPNOTSUPP;
3052 }
3053 
3054 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3055 					     struct bpf_prog *old_prog)
3056 {
3057 	return -EOPNOTSUPP;
3058 }
3059 
3060 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3061 {
3062 }
3063 
3064 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3065 {
3066 	return false;
3067 }
3068 
3069 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3070 {
3071 	return false;
3072 }
3073 
3074 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3075 {
3076 	return false;
3077 }
3078 
3079 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3080 {
3081 	return false;
3082 }
3083 
3084 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3085 {
3086 	return ERR_PTR(-EOPNOTSUPP);
3087 }
3088 
3089 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3090 {
3091 }
3092 
3093 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3094 {
3095 	return 0;
3096 }
3097 
3098 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3099 					    const union bpf_attr *kattr,
3100 					    union bpf_attr __user *uattr)
3101 {
3102 	return -ENOTSUPP;
3103 }
3104 
3105 #ifdef CONFIG_BPF_SYSCALL
3106 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3107 				       struct bpf_prog *prog)
3108 {
3109 	return -EINVAL;
3110 }
3111 
3112 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3113 				       enum bpf_prog_type ptype)
3114 {
3115 	return -EOPNOTSUPP;
3116 }
3117 
3118 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3119 					   u64 flags)
3120 {
3121 	return -EOPNOTSUPP;
3122 }
3123 
3124 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3125 					  union bpf_attr __user *uattr)
3126 {
3127 	return -EINVAL;
3128 }
3129 
3130 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3131 {
3132 	return -EOPNOTSUPP;
3133 }
3134 #endif /* CONFIG_BPF_SYSCALL */
3135 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3136 
3137 static __always_inline void
3138 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3139 {
3140 	const struct bpf_prog_array_item *item;
3141 	struct bpf_prog *prog;
3142 
3143 	if (unlikely(!array))
3144 		return;
3145 
3146 	item = &array->items[0];
3147 	while ((prog = READ_ONCE(item->prog))) {
3148 		bpf_prog_inc_misses_counter(prog);
3149 		item++;
3150 	}
3151 }
3152 
3153 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3154 void bpf_sk_reuseport_detach(struct sock *sk);
3155 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3156 				       void *value);
3157 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3158 				       void *value, u64 map_flags);
3159 #else
3160 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3161 {
3162 }
3163 
3164 #ifdef CONFIG_BPF_SYSCALL
3165 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3166 						     void *key, void *value)
3167 {
3168 	return -EOPNOTSUPP;
3169 }
3170 
3171 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3172 						     void *key, void *value,
3173 						     u64 map_flags)
3174 {
3175 	return -EOPNOTSUPP;
3176 }
3177 #endif /* CONFIG_BPF_SYSCALL */
3178 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3179 
3180 /* verifier prototypes for helper functions called from eBPF programs */
3181 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3182 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3183 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3184 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3185 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3186 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3187 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3188 
3189 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3190 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3191 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3192 extern const struct bpf_func_proto bpf_tail_call_proto;
3193 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3194 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3195 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3196 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3197 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3198 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3199 extern const struct bpf_func_proto bpf_get_stackid_proto;
3200 extern const struct bpf_func_proto bpf_get_stack_proto;
3201 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3202 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3203 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3204 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3205 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3206 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3207 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3208 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3209 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3210 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3211 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3212 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3213 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3214 extern const struct bpf_func_proto bpf_spin_lock_proto;
3215 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3216 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3217 extern const struct bpf_func_proto bpf_strtol_proto;
3218 extern const struct bpf_func_proto bpf_strtoul_proto;
3219 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3220 extern const struct bpf_func_proto bpf_jiffies64_proto;
3221 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3222 extern const struct bpf_func_proto bpf_event_output_data_proto;
3223 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3224 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3225 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3226 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3227 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3228 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3229 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3230 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3231 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3232 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3233 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3234 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3235 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3236 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3237 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3238 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3239 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3240 extern const struct bpf_func_proto bpf_snprintf_proto;
3241 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3242 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3243 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3244 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3245 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3246 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3247 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3248 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3249 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3250 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3251 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3252 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3253 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3254 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3255 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3256 extern const struct bpf_func_proto bpf_find_vma_proto;
3257 extern const struct bpf_func_proto bpf_loop_proto;
3258 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3259 extern const struct bpf_func_proto bpf_set_retval_proto;
3260 extern const struct bpf_func_proto bpf_get_retval_proto;
3261 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3262 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3263 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3264 
3265 const struct bpf_func_proto *tracing_prog_func_proto(
3266   enum bpf_func_id func_id, const struct bpf_prog *prog);
3267 
3268 /* Shared helpers among cBPF and eBPF. */
3269 void bpf_user_rnd_init_once(void);
3270 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3271 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3272 
3273 #if defined(CONFIG_NET)
3274 bool bpf_sock_common_is_valid_access(int off, int size,
3275 				     enum bpf_access_type type,
3276 				     struct bpf_insn_access_aux *info);
3277 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3278 			      struct bpf_insn_access_aux *info);
3279 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3280 				const struct bpf_insn *si,
3281 				struct bpf_insn *insn_buf,
3282 				struct bpf_prog *prog,
3283 				u32 *target_size);
3284 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3285 			       struct bpf_dynptr *ptr);
3286 #else
3287 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3288 						   enum bpf_access_type type,
3289 						   struct bpf_insn_access_aux *info)
3290 {
3291 	return false;
3292 }
3293 static inline bool bpf_sock_is_valid_access(int off, int size,
3294 					    enum bpf_access_type type,
3295 					    struct bpf_insn_access_aux *info)
3296 {
3297 	return false;
3298 }
3299 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3300 					      const struct bpf_insn *si,
3301 					      struct bpf_insn *insn_buf,
3302 					      struct bpf_prog *prog,
3303 					      u32 *target_size)
3304 {
3305 	return 0;
3306 }
3307 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3308 					     struct bpf_dynptr *ptr)
3309 {
3310 	return -EOPNOTSUPP;
3311 }
3312 #endif
3313 
3314 #ifdef CONFIG_INET
3315 struct sk_reuseport_kern {
3316 	struct sk_buff *skb;
3317 	struct sock *sk;
3318 	struct sock *selected_sk;
3319 	struct sock *migrating_sk;
3320 	void *data_end;
3321 	u32 hash;
3322 	u32 reuseport_id;
3323 	bool bind_inany;
3324 };
3325 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3326 				  struct bpf_insn_access_aux *info);
3327 
3328 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3329 				    const struct bpf_insn *si,
3330 				    struct bpf_insn *insn_buf,
3331 				    struct bpf_prog *prog,
3332 				    u32 *target_size);
3333 
3334 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3335 				  struct bpf_insn_access_aux *info);
3336 
3337 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3338 				    const struct bpf_insn *si,
3339 				    struct bpf_insn *insn_buf,
3340 				    struct bpf_prog *prog,
3341 				    u32 *target_size);
3342 #else
3343 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3344 						enum bpf_access_type type,
3345 						struct bpf_insn_access_aux *info)
3346 {
3347 	return false;
3348 }
3349 
3350 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3351 						  const struct bpf_insn *si,
3352 						  struct bpf_insn *insn_buf,
3353 						  struct bpf_prog *prog,
3354 						  u32 *target_size)
3355 {
3356 	return 0;
3357 }
3358 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3359 						enum bpf_access_type type,
3360 						struct bpf_insn_access_aux *info)
3361 {
3362 	return false;
3363 }
3364 
3365 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3366 						  const struct bpf_insn *si,
3367 						  struct bpf_insn *insn_buf,
3368 						  struct bpf_prog *prog,
3369 						  u32 *target_size)
3370 {
3371 	return 0;
3372 }
3373 #endif /* CONFIG_INET */
3374 
3375 enum bpf_text_poke_type {
3376 	BPF_MOD_CALL,
3377 	BPF_MOD_JUMP,
3378 };
3379 
3380 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3381 		       void *addr1, void *addr2);
3382 
3383 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3384 			       struct bpf_prog *new, struct bpf_prog *old);
3385 
3386 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3387 int bpf_arch_text_invalidate(void *dst, size_t len);
3388 
3389 struct btf_id_set;
3390 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3391 
3392 #define MAX_BPRINTF_VARARGS		12
3393 #define MAX_BPRINTF_BUF			1024
3394 
3395 struct bpf_bprintf_data {
3396 	u32 *bin_args;
3397 	char *buf;
3398 	bool get_bin_args;
3399 	bool get_buf;
3400 };
3401 
3402 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3403 			u32 num_args, struct bpf_bprintf_data *data);
3404 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3405 
3406 #ifdef CONFIG_BPF_LSM
3407 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3408 void bpf_cgroup_atype_put(int cgroup_atype);
3409 #else
3410 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3411 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3412 #endif /* CONFIG_BPF_LSM */
3413 
3414 struct key;
3415 
3416 #ifdef CONFIG_KEYS
3417 struct bpf_key {
3418 	struct key *key;
3419 	bool has_ref;
3420 };
3421 #endif /* CONFIG_KEYS */
3422 
3423 static inline bool type_is_alloc(u32 type)
3424 {
3425 	return type & MEM_ALLOC;
3426 }
3427 
3428 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3429 {
3430 	if (memcg_bpf_enabled())
3431 		return flags | __GFP_ACCOUNT;
3432 	return flags;
3433 }
3434 
3435 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3436 {
3437 	return prog->aux->func_idx != 0;
3438 }
3439 
3440 #endif /* _LINUX_BPF_H */
3441