1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206 }; 207 208 typedef void (*btf_dtor_kfunc_t)(void *); 209 210 struct btf_field_kptr { 211 struct btf *btf; 212 struct module *module; 213 /* dtor used if btf_is_kernel(btf), otherwise the type is 214 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 215 */ 216 btf_dtor_kfunc_t dtor; 217 u32 btf_id; 218 }; 219 220 struct btf_field_graph_root { 221 struct btf *btf; 222 u32 value_btf_id; 223 u32 node_offset; 224 struct btf_record *value_rec; 225 }; 226 227 struct btf_field { 228 u32 offset; 229 u32 size; 230 enum btf_field_type type; 231 union { 232 struct btf_field_kptr kptr; 233 struct btf_field_graph_root graph_root; 234 }; 235 }; 236 237 struct btf_record { 238 u32 cnt; 239 u32 field_mask; 240 int spin_lock_off; 241 int timer_off; 242 int wq_off; 243 int refcount_off; 244 struct btf_field fields[]; 245 }; 246 247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 248 struct bpf_rb_node_kern { 249 struct rb_node rb_node; 250 void *owner; 251 } __attribute__((aligned(8))); 252 253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 254 struct bpf_list_node_kern { 255 struct list_head list_head; 256 void *owner; 257 } __attribute__((aligned(8))); 258 259 struct bpf_map { 260 const struct bpf_map_ops *ops; 261 struct bpf_map *inner_map_meta; 262 #ifdef CONFIG_SECURITY 263 void *security; 264 #endif 265 enum bpf_map_type map_type; 266 u32 key_size; 267 u32 value_size; 268 u32 max_entries; 269 u64 map_extra; /* any per-map-type extra fields */ 270 u32 map_flags; 271 u32 id; 272 struct btf_record *record; 273 int numa_node; 274 u32 btf_key_type_id; 275 u32 btf_value_type_id; 276 u32 btf_vmlinux_value_type_id; 277 struct btf *btf; 278 #ifdef CONFIG_MEMCG 279 struct obj_cgroup *objcg; 280 #endif 281 char name[BPF_OBJ_NAME_LEN]; 282 struct mutex freeze_mutex; 283 atomic64_t refcnt; 284 atomic64_t usercnt; 285 /* rcu is used before freeing and work is only used during freeing */ 286 union { 287 struct work_struct work; 288 struct rcu_head rcu; 289 }; 290 atomic64_t writecnt; 291 /* 'Ownership' of program-containing map is claimed by the first program 292 * that is going to use this map or by the first program which FD is 293 * stored in the map to make sure that all callers and callees have the 294 * same prog type, JITed flag and xdp_has_frags flag. 295 */ 296 struct { 297 const struct btf_type *attach_func_proto; 298 spinlock_t lock; 299 enum bpf_prog_type type; 300 bool jited; 301 bool xdp_has_frags; 302 } owner; 303 bool bypass_spec_v1; 304 bool frozen; /* write-once; write-protected by freeze_mutex */ 305 bool free_after_mult_rcu_gp; 306 bool free_after_rcu_gp; 307 atomic64_t sleepable_refcnt; 308 s64 __percpu *elem_count; 309 }; 310 311 static inline const char *btf_field_type_name(enum btf_field_type type) 312 { 313 switch (type) { 314 case BPF_SPIN_LOCK: 315 return "bpf_spin_lock"; 316 case BPF_TIMER: 317 return "bpf_timer"; 318 case BPF_WORKQUEUE: 319 return "bpf_wq"; 320 case BPF_KPTR_UNREF: 321 case BPF_KPTR_REF: 322 return "kptr"; 323 case BPF_KPTR_PERCPU: 324 return "percpu_kptr"; 325 case BPF_LIST_HEAD: 326 return "bpf_list_head"; 327 case BPF_LIST_NODE: 328 return "bpf_list_node"; 329 case BPF_RB_ROOT: 330 return "bpf_rb_root"; 331 case BPF_RB_NODE: 332 return "bpf_rb_node"; 333 case BPF_REFCOUNT: 334 return "bpf_refcount"; 335 default: 336 WARN_ON_ONCE(1); 337 return "unknown"; 338 } 339 } 340 341 static inline u32 btf_field_type_size(enum btf_field_type type) 342 { 343 switch (type) { 344 case BPF_SPIN_LOCK: 345 return sizeof(struct bpf_spin_lock); 346 case BPF_TIMER: 347 return sizeof(struct bpf_timer); 348 case BPF_WORKQUEUE: 349 return sizeof(struct bpf_wq); 350 case BPF_KPTR_UNREF: 351 case BPF_KPTR_REF: 352 case BPF_KPTR_PERCPU: 353 return sizeof(u64); 354 case BPF_LIST_HEAD: 355 return sizeof(struct bpf_list_head); 356 case BPF_LIST_NODE: 357 return sizeof(struct bpf_list_node); 358 case BPF_RB_ROOT: 359 return sizeof(struct bpf_rb_root); 360 case BPF_RB_NODE: 361 return sizeof(struct bpf_rb_node); 362 case BPF_REFCOUNT: 363 return sizeof(struct bpf_refcount); 364 default: 365 WARN_ON_ONCE(1); 366 return 0; 367 } 368 } 369 370 static inline u32 btf_field_type_align(enum btf_field_type type) 371 { 372 switch (type) { 373 case BPF_SPIN_LOCK: 374 return __alignof__(struct bpf_spin_lock); 375 case BPF_TIMER: 376 return __alignof__(struct bpf_timer); 377 case BPF_WORKQUEUE: 378 return __alignof__(struct bpf_wq); 379 case BPF_KPTR_UNREF: 380 case BPF_KPTR_REF: 381 case BPF_KPTR_PERCPU: 382 return __alignof__(u64); 383 case BPF_LIST_HEAD: 384 return __alignof__(struct bpf_list_head); 385 case BPF_LIST_NODE: 386 return __alignof__(struct bpf_list_node); 387 case BPF_RB_ROOT: 388 return __alignof__(struct bpf_rb_root); 389 case BPF_RB_NODE: 390 return __alignof__(struct bpf_rb_node); 391 case BPF_REFCOUNT: 392 return __alignof__(struct bpf_refcount); 393 default: 394 WARN_ON_ONCE(1); 395 return 0; 396 } 397 } 398 399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 400 { 401 memset(addr, 0, field->size); 402 403 switch (field->type) { 404 case BPF_REFCOUNT: 405 refcount_set((refcount_t *)addr, 1); 406 break; 407 case BPF_RB_NODE: 408 RB_CLEAR_NODE((struct rb_node *)addr); 409 break; 410 case BPF_LIST_HEAD: 411 case BPF_LIST_NODE: 412 INIT_LIST_HEAD((struct list_head *)addr); 413 break; 414 case BPF_RB_ROOT: 415 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 416 case BPF_SPIN_LOCK: 417 case BPF_TIMER: 418 case BPF_WORKQUEUE: 419 case BPF_KPTR_UNREF: 420 case BPF_KPTR_REF: 421 case BPF_KPTR_PERCPU: 422 break; 423 default: 424 WARN_ON_ONCE(1); 425 return; 426 } 427 } 428 429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 430 { 431 if (IS_ERR_OR_NULL(rec)) 432 return false; 433 return rec->field_mask & type; 434 } 435 436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 437 { 438 int i; 439 440 if (IS_ERR_OR_NULL(rec)) 441 return; 442 for (i = 0; i < rec->cnt; i++) 443 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 444 } 445 446 /* 'dst' must be a temporary buffer and should not point to memory that is being 447 * used in parallel by a bpf program or bpf syscall, otherwise the access from 448 * the bpf program or bpf syscall may be corrupted by the reinitialization, 449 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 450 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 451 * program or bpf syscall. 452 */ 453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 454 { 455 bpf_obj_init(map->record, dst); 456 } 457 458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 459 * forced to use 'long' read/writes to try to atomically copy long counters. 460 * Best-effort only. No barriers here, since it _will_ race with concurrent 461 * updates from BPF programs. Called from bpf syscall and mostly used with 462 * size 8 or 16 bytes, so ask compiler to inline it. 463 */ 464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 465 { 466 const long *lsrc = src; 467 long *ldst = dst; 468 469 size /= sizeof(long); 470 while (size--) 471 data_race(*ldst++ = *lsrc++); 472 } 473 474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 475 static inline void bpf_obj_memcpy(struct btf_record *rec, 476 void *dst, void *src, u32 size, 477 bool long_memcpy) 478 { 479 u32 curr_off = 0; 480 int i; 481 482 if (IS_ERR_OR_NULL(rec)) { 483 if (long_memcpy) 484 bpf_long_memcpy(dst, src, round_up(size, 8)); 485 else 486 memcpy(dst, src, size); 487 return; 488 } 489 490 for (i = 0; i < rec->cnt; i++) { 491 u32 next_off = rec->fields[i].offset; 492 u32 sz = next_off - curr_off; 493 494 memcpy(dst + curr_off, src + curr_off, sz); 495 curr_off += rec->fields[i].size + sz; 496 } 497 memcpy(dst + curr_off, src + curr_off, size - curr_off); 498 } 499 500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 501 { 502 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 503 } 504 505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 506 { 507 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 508 } 509 510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 511 { 512 u32 curr_off = 0; 513 int i; 514 515 if (IS_ERR_OR_NULL(rec)) { 516 memset(dst, 0, size); 517 return; 518 } 519 520 for (i = 0; i < rec->cnt; i++) { 521 u32 next_off = rec->fields[i].offset; 522 u32 sz = next_off - curr_off; 523 524 memset(dst + curr_off, 0, sz); 525 curr_off += rec->fields[i].size + sz; 526 } 527 memset(dst + curr_off, 0, size - curr_off); 528 } 529 530 static inline void zero_map_value(struct bpf_map *map, void *dst) 531 { 532 bpf_obj_memzero(map->record, dst, map->value_size); 533 } 534 535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 536 bool lock_src); 537 void bpf_timer_cancel_and_free(void *timer); 538 void bpf_wq_cancel_and_free(void *timer); 539 void bpf_list_head_free(const struct btf_field *field, void *list_head, 540 struct bpf_spin_lock *spin_lock); 541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 542 struct bpf_spin_lock *spin_lock); 543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 546 547 struct bpf_offload_dev; 548 struct bpf_offloaded_map; 549 550 struct bpf_map_dev_ops { 551 int (*map_get_next_key)(struct bpf_offloaded_map *map, 552 void *key, void *next_key); 553 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 554 void *key, void *value); 555 int (*map_update_elem)(struct bpf_offloaded_map *map, 556 void *key, void *value, u64 flags); 557 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 558 }; 559 560 struct bpf_offloaded_map { 561 struct bpf_map map; 562 struct net_device *netdev; 563 const struct bpf_map_dev_ops *dev_ops; 564 void *dev_priv; 565 struct list_head offloads; 566 }; 567 568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 569 { 570 return container_of(map, struct bpf_offloaded_map, map); 571 } 572 573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 574 { 575 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 576 } 577 578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 579 { 580 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 581 map->ops->map_seq_show_elem; 582 } 583 584 int map_check_no_btf(const struct bpf_map *map, 585 const struct btf *btf, 586 const struct btf_type *key_type, 587 const struct btf_type *value_type); 588 589 bool bpf_map_meta_equal(const struct bpf_map *meta0, 590 const struct bpf_map *meta1); 591 592 extern const struct bpf_map_ops bpf_map_offload_ops; 593 594 /* bpf_type_flag contains a set of flags that are applicable to the values of 595 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 596 * or a memory is read-only. We classify types into two categories: base types 597 * and extended types. Extended types are base types combined with a type flag. 598 * 599 * Currently there are no more than 32 base types in arg_type, ret_type and 600 * reg_types. 601 */ 602 #define BPF_BASE_TYPE_BITS 8 603 604 enum bpf_type_flag { 605 /* PTR may be NULL. */ 606 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 609 * compatible with both mutable and immutable memory. 610 */ 611 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 612 613 /* MEM points to BPF ring buffer reservation. */ 614 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 615 616 /* MEM is in user address space. */ 617 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 618 619 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 620 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 621 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 622 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 623 * to the specified cpu. 624 */ 625 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 626 627 /* Indicates that the argument will be released. */ 628 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 629 630 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 631 * unreferenced and referenced kptr loaded from map value using a load 632 * instruction, so that they can only be dereferenced but not escape the 633 * BPF program into the kernel (i.e. cannot be passed as arguments to 634 * kfunc or bpf helpers). 635 */ 636 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 637 638 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 639 640 /* DYNPTR points to memory local to the bpf program. */ 641 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 642 643 /* DYNPTR points to a kernel-produced ringbuf record. */ 644 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 645 646 /* Size is known at compile time. */ 647 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 648 649 /* MEM is of an allocated object of type in program BTF. This is used to 650 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 651 */ 652 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 653 654 /* PTR was passed from the kernel in a trusted context, and may be 655 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 656 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 657 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 658 * without invoking bpf_kptr_xchg(). What we really need to know is 659 * whether a pointer is safe to pass to a kfunc or BPF helper function. 660 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 661 * helpers, they do not cover all possible instances of unsafe 662 * pointers. For example, a pointer that was obtained from walking a 663 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 664 * fact that it may be NULL, invalid, etc. This is due to backwards 665 * compatibility requirements, as this was the behavior that was first 666 * introduced when kptrs were added. The behavior is now considered 667 * deprecated, and PTR_UNTRUSTED will eventually be removed. 668 * 669 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 670 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 671 * For example, pointers passed to tracepoint arguments are considered 672 * PTR_TRUSTED, as are pointers that are passed to struct_ops 673 * callbacks. As alluded to above, pointers that are obtained from 674 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 675 * struct task_struct *task is PTR_TRUSTED, then accessing 676 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 677 * in a BPF register. Similarly, pointers passed to certain programs 678 * types such as kretprobes are not guaranteed to be valid, as they may 679 * for example contain an object that was recently freed. 680 */ 681 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 682 683 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 684 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 685 686 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 687 * Currently only valid for linked-list and rbtree nodes. If the nodes 688 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 689 */ 690 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 691 692 /* DYNPTR points to sk_buff */ 693 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 694 695 /* DYNPTR points to xdp_buff */ 696 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 697 698 __BPF_TYPE_FLAG_MAX, 699 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 700 }; 701 702 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 703 | DYNPTR_TYPE_XDP) 704 705 /* Max number of base types. */ 706 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 707 708 /* Max number of all types. */ 709 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 710 711 /* function argument constraints */ 712 enum bpf_arg_type { 713 ARG_DONTCARE = 0, /* unused argument in helper function */ 714 715 /* the following constraints used to prototype 716 * bpf_map_lookup/update/delete_elem() functions 717 */ 718 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 719 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 720 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 721 722 /* Used to prototype bpf_memcmp() and other functions that access data 723 * on eBPF program stack 724 */ 725 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 726 ARG_PTR_TO_ARENA, 727 728 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 729 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 730 731 ARG_PTR_TO_CTX, /* pointer to context */ 732 ARG_ANYTHING, /* any (initialized) argument is ok */ 733 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 734 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 735 ARG_PTR_TO_INT, /* pointer to int */ 736 ARG_PTR_TO_LONG, /* pointer to long */ 737 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 738 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 739 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 740 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 741 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 742 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 743 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 744 ARG_PTR_TO_STACK, /* pointer to stack */ 745 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 746 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 747 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 748 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 749 __BPF_ARG_TYPE_MAX, 750 751 /* Extended arg_types. */ 752 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 753 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 754 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 755 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 756 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 757 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 758 /* pointer to memory does not need to be initialized, helper function must fill 759 * all bytes or clear them in error case. 760 */ 761 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 762 /* Pointer to valid memory of size known at compile time. */ 763 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 764 765 /* This must be the last entry. Its purpose is to ensure the enum is 766 * wide enough to hold the higher bits reserved for bpf_type_flag. 767 */ 768 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 769 }; 770 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 771 772 /* type of values returned from helper functions */ 773 enum bpf_return_type { 774 RET_INTEGER, /* function returns integer */ 775 RET_VOID, /* function doesn't return anything */ 776 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 777 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 778 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 779 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 780 RET_PTR_TO_MEM, /* returns a pointer to memory */ 781 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 782 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 783 __BPF_RET_TYPE_MAX, 784 785 /* Extended ret_types. */ 786 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 787 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 788 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 789 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 790 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 791 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 792 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 793 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 794 795 /* This must be the last entry. Its purpose is to ensure the enum is 796 * wide enough to hold the higher bits reserved for bpf_type_flag. 797 */ 798 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 799 }; 800 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 801 802 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 803 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 804 * instructions after verifying 805 */ 806 struct bpf_func_proto { 807 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 808 bool gpl_only; 809 bool pkt_access; 810 bool might_sleep; 811 /* set to true if helper follows contract for llvm 812 * attribute bpf_fastcall: 813 * - void functions do not scratch r0 814 * - functions taking N arguments scratch only registers r1-rN 815 */ 816 bool allow_fastcall; 817 enum bpf_return_type ret_type; 818 union { 819 struct { 820 enum bpf_arg_type arg1_type; 821 enum bpf_arg_type arg2_type; 822 enum bpf_arg_type arg3_type; 823 enum bpf_arg_type arg4_type; 824 enum bpf_arg_type arg5_type; 825 }; 826 enum bpf_arg_type arg_type[5]; 827 }; 828 union { 829 struct { 830 u32 *arg1_btf_id; 831 u32 *arg2_btf_id; 832 u32 *arg3_btf_id; 833 u32 *arg4_btf_id; 834 u32 *arg5_btf_id; 835 }; 836 u32 *arg_btf_id[5]; 837 struct { 838 size_t arg1_size; 839 size_t arg2_size; 840 size_t arg3_size; 841 size_t arg4_size; 842 size_t arg5_size; 843 }; 844 size_t arg_size[5]; 845 }; 846 int *ret_btf_id; /* return value btf_id */ 847 bool (*allowed)(const struct bpf_prog *prog); 848 }; 849 850 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 851 * the first argument to eBPF programs. 852 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 853 */ 854 struct bpf_context; 855 856 enum bpf_access_type { 857 BPF_READ = 1, 858 BPF_WRITE = 2 859 }; 860 861 /* types of values stored in eBPF registers */ 862 /* Pointer types represent: 863 * pointer 864 * pointer + imm 865 * pointer + (u16) var 866 * pointer + (u16) var + imm 867 * if (range > 0) then [ptr, ptr + range - off) is safe to access 868 * if (id > 0) means that some 'var' was added 869 * if (off > 0) means that 'imm' was added 870 */ 871 enum bpf_reg_type { 872 NOT_INIT = 0, /* nothing was written into register */ 873 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 874 PTR_TO_CTX, /* reg points to bpf_context */ 875 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 876 PTR_TO_MAP_VALUE, /* reg points to map element value */ 877 PTR_TO_MAP_KEY, /* reg points to a map element key */ 878 PTR_TO_STACK, /* reg == frame_pointer + offset */ 879 PTR_TO_PACKET_META, /* skb->data - meta_len */ 880 PTR_TO_PACKET, /* reg points to skb->data */ 881 PTR_TO_PACKET_END, /* skb->data + headlen */ 882 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 883 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 884 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 885 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 886 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 887 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 888 /* PTR_TO_BTF_ID points to a kernel struct that does not need 889 * to be null checked by the BPF program. This does not imply the 890 * pointer is _not_ null and in practice this can easily be a null 891 * pointer when reading pointer chains. The assumption is program 892 * context will handle null pointer dereference typically via fault 893 * handling. The verifier must keep this in mind and can make no 894 * assumptions about null or non-null when doing branch analysis. 895 * Further, when passed into helpers the helpers can not, without 896 * additional context, assume the value is non-null. 897 */ 898 PTR_TO_BTF_ID, 899 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 900 * been checked for null. Used primarily to inform the verifier 901 * an explicit null check is required for this struct. 902 */ 903 PTR_TO_MEM, /* reg points to valid memory region */ 904 PTR_TO_ARENA, 905 PTR_TO_BUF, /* reg points to a read/write buffer */ 906 PTR_TO_FUNC, /* reg points to a bpf program function */ 907 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 908 __BPF_REG_TYPE_MAX, 909 910 /* Extended reg_types. */ 911 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 912 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 913 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 914 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 915 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 916 917 /* This must be the last entry. Its purpose is to ensure the enum is 918 * wide enough to hold the higher bits reserved for bpf_type_flag. 919 */ 920 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 921 }; 922 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 923 924 /* The information passed from prog-specific *_is_valid_access 925 * back to the verifier. 926 */ 927 struct bpf_insn_access_aux { 928 enum bpf_reg_type reg_type; 929 bool is_ldsx; 930 union { 931 int ctx_field_size; 932 struct { 933 struct btf *btf; 934 u32 btf_id; 935 }; 936 }; 937 struct bpf_verifier_log *log; /* for verbose logs */ 938 bool is_retval; /* is accessing function return value ? */ 939 }; 940 941 static inline void 942 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 943 { 944 aux->ctx_field_size = size; 945 } 946 947 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 948 { 949 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 950 } 951 952 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 953 { 954 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 955 } 956 957 struct bpf_prog_ops { 958 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 959 union bpf_attr __user *uattr); 960 }; 961 962 struct bpf_reg_state; 963 struct bpf_verifier_ops { 964 /* return eBPF function prototype for verification */ 965 const struct bpf_func_proto * 966 (*get_func_proto)(enum bpf_func_id func_id, 967 const struct bpf_prog *prog); 968 969 /* return true if 'size' wide access at offset 'off' within bpf_context 970 * with 'type' (read or write) is allowed 971 */ 972 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 973 const struct bpf_prog *prog, 974 struct bpf_insn_access_aux *info); 975 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 976 const struct bpf_prog *prog); 977 int (*gen_ld_abs)(const struct bpf_insn *orig, 978 struct bpf_insn *insn_buf); 979 u32 (*convert_ctx_access)(enum bpf_access_type type, 980 const struct bpf_insn *src, 981 struct bpf_insn *dst, 982 struct bpf_prog *prog, u32 *target_size); 983 int (*btf_struct_access)(struct bpf_verifier_log *log, 984 const struct bpf_reg_state *reg, 985 int off, int size); 986 }; 987 988 struct bpf_prog_offload_ops { 989 /* verifier basic callbacks */ 990 int (*insn_hook)(struct bpf_verifier_env *env, 991 int insn_idx, int prev_insn_idx); 992 int (*finalize)(struct bpf_verifier_env *env); 993 /* verifier optimization callbacks (called after .finalize) */ 994 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 995 struct bpf_insn *insn); 996 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 997 /* program management callbacks */ 998 int (*prepare)(struct bpf_prog *prog); 999 int (*translate)(struct bpf_prog *prog); 1000 void (*destroy)(struct bpf_prog *prog); 1001 }; 1002 1003 struct bpf_prog_offload { 1004 struct bpf_prog *prog; 1005 struct net_device *netdev; 1006 struct bpf_offload_dev *offdev; 1007 void *dev_priv; 1008 struct list_head offloads; 1009 bool dev_state; 1010 bool opt_failed; 1011 void *jited_image; 1012 u32 jited_len; 1013 }; 1014 1015 enum bpf_cgroup_storage_type { 1016 BPF_CGROUP_STORAGE_SHARED, 1017 BPF_CGROUP_STORAGE_PERCPU, 1018 __BPF_CGROUP_STORAGE_MAX 1019 }; 1020 1021 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1022 1023 /* The longest tracepoint has 12 args. 1024 * See include/trace/bpf_probe.h 1025 */ 1026 #define MAX_BPF_FUNC_ARGS 12 1027 1028 /* The maximum number of arguments passed through registers 1029 * a single function may have. 1030 */ 1031 #define MAX_BPF_FUNC_REG_ARGS 5 1032 1033 /* The argument is a structure. */ 1034 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1035 1036 /* The argument is signed. */ 1037 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1038 1039 struct btf_func_model { 1040 u8 ret_size; 1041 u8 ret_flags; 1042 u8 nr_args; 1043 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1044 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1045 }; 1046 1047 /* Restore arguments before returning from trampoline to let original function 1048 * continue executing. This flag is used for fentry progs when there are no 1049 * fexit progs. 1050 */ 1051 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1052 /* Call original function after fentry progs, but before fexit progs. 1053 * Makes sense for fentry/fexit, normal calls and indirect calls. 1054 */ 1055 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1056 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1057 * programs only. Should not be used with normal calls and indirect calls. 1058 */ 1059 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1060 /* Store IP address of the caller on the trampoline stack, 1061 * so it's available for trampoline's programs. 1062 */ 1063 #define BPF_TRAMP_F_IP_ARG BIT(3) 1064 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1065 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1066 1067 /* Get original function from stack instead of from provided direct address. 1068 * Makes sense for trampolines with fexit or fmod_ret programs. 1069 */ 1070 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1071 1072 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1073 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1074 */ 1075 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1076 1077 /* Indicate that current trampoline is in a tail call context. Then, it has to 1078 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1079 */ 1080 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1081 1082 /* 1083 * Indicate the trampoline should be suitable to receive indirect calls; 1084 * without this indirectly calling the generated code can result in #UD/#CP, 1085 * depending on the CFI options. 1086 * 1087 * Used by bpf_struct_ops. 1088 * 1089 * Incompatible with FENTRY usage, overloads @func_addr argument. 1090 */ 1091 #define BPF_TRAMP_F_INDIRECT BIT(8) 1092 1093 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1094 * bytes on x86. 1095 */ 1096 enum { 1097 #if defined(__s390x__) 1098 BPF_MAX_TRAMP_LINKS = 27, 1099 #else 1100 BPF_MAX_TRAMP_LINKS = 38, 1101 #endif 1102 }; 1103 1104 struct bpf_tramp_links { 1105 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1106 int nr_links; 1107 }; 1108 1109 struct bpf_tramp_run_ctx; 1110 1111 /* Different use cases for BPF trampoline: 1112 * 1. replace nop at the function entry (kprobe equivalent) 1113 * flags = BPF_TRAMP_F_RESTORE_REGS 1114 * fentry = a set of programs to run before returning from trampoline 1115 * 1116 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1117 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1118 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1119 * fentry = a set of program to run before calling original function 1120 * fexit = a set of program to run after original function 1121 * 1122 * 3. replace direct call instruction anywhere in the function body 1123 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1124 * With flags = 0 1125 * fentry = a set of programs to run before returning from trampoline 1126 * With flags = BPF_TRAMP_F_CALL_ORIG 1127 * orig_call = original callback addr or direct function addr 1128 * fentry = a set of program to run before calling original function 1129 * fexit = a set of program to run after original function 1130 */ 1131 struct bpf_tramp_image; 1132 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1133 const struct btf_func_model *m, u32 flags, 1134 struct bpf_tramp_links *tlinks, 1135 void *func_addr); 1136 void *arch_alloc_bpf_trampoline(unsigned int size); 1137 void arch_free_bpf_trampoline(void *image, unsigned int size); 1138 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1139 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1140 struct bpf_tramp_links *tlinks, void *func_addr); 1141 1142 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1143 struct bpf_tramp_run_ctx *run_ctx); 1144 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1145 struct bpf_tramp_run_ctx *run_ctx); 1146 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1147 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1148 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1149 struct bpf_tramp_run_ctx *run_ctx); 1150 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1151 struct bpf_tramp_run_ctx *run_ctx); 1152 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1153 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1154 1155 struct bpf_ksym { 1156 unsigned long start; 1157 unsigned long end; 1158 char name[KSYM_NAME_LEN]; 1159 struct list_head lnode; 1160 struct latch_tree_node tnode; 1161 bool prog; 1162 }; 1163 1164 enum bpf_tramp_prog_type { 1165 BPF_TRAMP_FENTRY, 1166 BPF_TRAMP_FEXIT, 1167 BPF_TRAMP_MODIFY_RETURN, 1168 BPF_TRAMP_MAX, 1169 BPF_TRAMP_REPLACE, /* more than MAX */ 1170 }; 1171 1172 struct bpf_tramp_image { 1173 void *image; 1174 int size; 1175 struct bpf_ksym ksym; 1176 struct percpu_ref pcref; 1177 void *ip_after_call; 1178 void *ip_epilogue; 1179 union { 1180 struct rcu_head rcu; 1181 struct work_struct work; 1182 }; 1183 }; 1184 1185 struct bpf_trampoline { 1186 /* hlist for trampoline_table */ 1187 struct hlist_node hlist; 1188 struct ftrace_ops *fops; 1189 /* serializes access to fields of this trampoline */ 1190 struct mutex mutex; 1191 refcount_t refcnt; 1192 u32 flags; 1193 u64 key; 1194 struct { 1195 struct btf_func_model model; 1196 void *addr; 1197 bool ftrace_managed; 1198 } func; 1199 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1200 * program by replacing one of its functions. func.addr is the address 1201 * of the function it replaced. 1202 */ 1203 struct bpf_prog *extension_prog; 1204 /* list of BPF programs using this trampoline */ 1205 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1206 /* Number of attached programs. A counter per kind. */ 1207 int progs_cnt[BPF_TRAMP_MAX]; 1208 /* Executable image of trampoline */ 1209 struct bpf_tramp_image *cur_image; 1210 }; 1211 1212 struct bpf_attach_target_info { 1213 struct btf_func_model fmodel; 1214 long tgt_addr; 1215 struct module *tgt_mod; 1216 const char *tgt_name; 1217 const struct btf_type *tgt_type; 1218 }; 1219 1220 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1221 1222 struct bpf_dispatcher_prog { 1223 struct bpf_prog *prog; 1224 refcount_t users; 1225 }; 1226 1227 struct bpf_dispatcher { 1228 /* dispatcher mutex */ 1229 struct mutex mutex; 1230 void *func; 1231 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1232 int num_progs; 1233 void *image; 1234 void *rw_image; 1235 u32 image_off; 1236 struct bpf_ksym ksym; 1237 #ifdef CONFIG_HAVE_STATIC_CALL 1238 struct static_call_key *sc_key; 1239 void *sc_tramp; 1240 #endif 1241 }; 1242 1243 #ifndef __bpfcall 1244 #define __bpfcall __nocfi 1245 #endif 1246 1247 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1248 const void *ctx, 1249 const struct bpf_insn *insnsi, 1250 bpf_func_t bpf_func) 1251 { 1252 return bpf_func(ctx, insnsi); 1253 } 1254 1255 /* the implementation of the opaque uapi struct bpf_dynptr */ 1256 struct bpf_dynptr_kern { 1257 void *data; 1258 /* Size represents the number of usable bytes of dynptr data. 1259 * If for example the offset is at 4 for a local dynptr whose data is 1260 * of type u64, the number of usable bytes is 4. 1261 * 1262 * The upper 8 bits are reserved. It is as follows: 1263 * Bits 0 - 23 = size 1264 * Bits 24 - 30 = dynptr type 1265 * Bit 31 = whether dynptr is read-only 1266 */ 1267 u32 size; 1268 u32 offset; 1269 } __aligned(8); 1270 1271 enum bpf_dynptr_type { 1272 BPF_DYNPTR_TYPE_INVALID, 1273 /* Points to memory that is local to the bpf program */ 1274 BPF_DYNPTR_TYPE_LOCAL, 1275 /* Underlying data is a ringbuf record */ 1276 BPF_DYNPTR_TYPE_RINGBUF, 1277 /* Underlying data is a sk_buff */ 1278 BPF_DYNPTR_TYPE_SKB, 1279 /* Underlying data is a xdp_buff */ 1280 BPF_DYNPTR_TYPE_XDP, 1281 }; 1282 1283 int bpf_dynptr_check_size(u32 size); 1284 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1285 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1286 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1287 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1288 1289 #ifdef CONFIG_BPF_JIT 1290 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1291 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1292 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1293 struct bpf_attach_target_info *tgt_info); 1294 void bpf_trampoline_put(struct bpf_trampoline *tr); 1295 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1296 1297 /* 1298 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1299 * indirection with a direct call to the bpf program. If the architecture does 1300 * not have STATIC_CALL, avoid a double-indirection. 1301 */ 1302 #ifdef CONFIG_HAVE_STATIC_CALL 1303 1304 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1305 .sc_key = &STATIC_CALL_KEY(_name), \ 1306 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1307 1308 #define __BPF_DISPATCHER_SC(name) \ 1309 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1310 1311 #define __BPF_DISPATCHER_CALL(name) \ 1312 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1313 1314 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1315 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1316 1317 #else 1318 #define __BPF_DISPATCHER_SC_INIT(name) 1319 #define __BPF_DISPATCHER_SC(name) 1320 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1321 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1322 #endif 1323 1324 #define BPF_DISPATCHER_INIT(_name) { \ 1325 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1326 .func = &_name##_func, \ 1327 .progs = {}, \ 1328 .num_progs = 0, \ 1329 .image = NULL, \ 1330 .image_off = 0, \ 1331 .ksym = { \ 1332 .name = #_name, \ 1333 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1334 }, \ 1335 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1336 } 1337 1338 #define DEFINE_BPF_DISPATCHER(name) \ 1339 __BPF_DISPATCHER_SC(name); \ 1340 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1341 const void *ctx, \ 1342 const struct bpf_insn *insnsi, \ 1343 bpf_func_t bpf_func) \ 1344 { \ 1345 return __BPF_DISPATCHER_CALL(name); \ 1346 } \ 1347 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1348 struct bpf_dispatcher bpf_dispatcher_##name = \ 1349 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1350 1351 #define DECLARE_BPF_DISPATCHER(name) \ 1352 unsigned int bpf_dispatcher_##name##_func( \ 1353 const void *ctx, \ 1354 const struct bpf_insn *insnsi, \ 1355 bpf_func_t bpf_func); \ 1356 extern struct bpf_dispatcher bpf_dispatcher_##name; 1357 1358 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1359 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1360 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1361 struct bpf_prog *to); 1362 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1363 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1364 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1365 void bpf_ksym_add(struct bpf_ksym *ksym); 1366 void bpf_ksym_del(struct bpf_ksym *ksym); 1367 int bpf_jit_charge_modmem(u32 size); 1368 void bpf_jit_uncharge_modmem(u32 size); 1369 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1370 #else 1371 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1372 struct bpf_trampoline *tr) 1373 { 1374 return -ENOTSUPP; 1375 } 1376 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1377 struct bpf_trampoline *tr) 1378 { 1379 return -ENOTSUPP; 1380 } 1381 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1382 struct bpf_attach_target_info *tgt_info) 1383 { 1384 return NULL; 1385 } 1386 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1387 #define DEFINE_BPF_DISPATCHER(name) 1388 #define DECLARE_BPF_DISPATCHER(name) 1389 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1390 #define BPF_DISPATCHER_PTR(name) NULL 1391 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1392 struct bpf_prog *from, 1393 struct bpf_prog *to) {} 1394 static inline bool is_bpf_image_address(unsigned long address) 1395 { 1396 return false; 1397 } 1398 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1399 { 1400 return false; 1401 } 1402 #endif 1403 1404 struct bpf_func_info_aux { 1405 u16 linkage; 1406 bool unreliable; 1407 bool called : 1; 1408 bool verified : 1; 1409 }; 1410 1411 enum bpf_jit_poke_reason { 1412 BPF_POKE_REASON_TAIL_CALL, 1413 }; 1414 1415 /* Descriptor of pokes pointing /into/ the JITed image. */ 1416 struct bpf_jit_poke_descriptor { 1417 void *tailcall_target; 1418 void *tailcall_bypass; 1419 void *bypass_addr; 1420 void *aux; 1421 union { 1422 struct { 1423 struct bpf_map *map; 1424 u32 key; 1425 } tail_call; 1426 }; 1427 bool tailcall_target_stable; 1428 u8 adj_off; 1429 u16 reason; 1430 u32 insn_idx; 1431 }; 1432 1433 /* reg_type info for ctx arguments */ 1434 struct bpf_ctx_arg_aux { 1435 u32 offset; 1436 enum bpf_reg_type reg_type; 1437 struct btf *btf; 1438 u32 btf_id; 1439 }; 1440 1441 struct btf_mod_pair { 1442 struct btf *btf; 1443 struct module *module; 1444 }; 1445 1446 struct bpf_kfunc_desc_tab; 1447 1448 struct bpf_prog_aux { 1449 atomic64_t refcnt; 1450 u32 used_map_cnt; 1451 u32 used_btf_cnt; 1452 u32 max_ctx_offset; 1453 u32 max_pkt_offset; 1454 u32 max_tp_access; 1455 u32 stack_depth; 1456 u32 id; 1457 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1458 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1459 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1460 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1461 u32 ctx_arg_info_size; 1462 u32 max_rdonly_access; 1463 u32 max_rdwr_access; 1464 struct btf *attach_btf; 1465 const struct bpf_ctx_arg_aux *ctx_arg_info; 1466 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1467 struct bpf_prog *dst_prog; 1468 struct bpf_trampoline *dst_trampoline; 1469 enum bpf_prog_type saved_dst_prog_type; 1470 enum bpf_attach_type saved_dst_attach_type; 1471 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1472 bool dev_bound; /* Program is bound to the netdev. */ 1473 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1474 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1475 bool attach_tracing_prog; /* true if tracing another tracing program */ 1476 bool func_proto_unreliable; 1477 bool tail_call_reachable; 1478 bool xdp_has_frags; 1479 bool exception_cb; 1480 bool exception_boundary; 1481 struct bpf_arena *arena; 1482 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1483 const struct btf_type *attach_func_proto; 1484 /* function name for valid attach_btf_id */ 1485 const char *attach_func_name; 1486 struct bpf_prog **func; 1487 void *jit_data; /* JIT specific data. arch dependent */ 1488 struct bpf_jit_poke_descriptor *poke_tab; 1489 struct bpf_kfunc_desc_tab *kfunc_tab; 1490 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1491 u32 size_poke_tab; 1492 #ifdef CONFIG_FINEIBT 1493 struct bpf_ksym ksym_prefix; 1494 #endif 1495 struct bpf_ksym ksym; 1496 const struct bpf_prog_ops *ops; 1497 struct bpf_map **used_maps; 1498 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1499 struct btf_mod_pair *used_btfs; 1500 struct bpf_prog *prog; 1501 struct user_struct *user; 1502 u64 load_time; /* ns since boottime */ 1503 u32 verified_insns; 1504 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1505 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1506 char name[BPF_OBJ_NAME_LEN]; 1507 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1508 #ifdef CONFIG_SECURITY 1509 void *security; 1510 #endif 1511 struct bpf_token *token; 1512 struct bpf_prog_offload *offload; 1513 struct btf *btf; 1514 struct bpf_func_info *func_info; 1515 struct bpf_func_info_aux *func_info_aux; 1516 /* bpf_line_info loaded from userspace. linfo->insn_off 1517 * has the xlated insn offset. 1518 * Both the main and sub prog share the same linfo. 1519 * The subprog can access its first linfo by 1520 * using the linfo_idx. 1521 */ 1522 struct bpf_line_info *linfo; 1523 /* jited_linfo is the jited addr of the linfo. It has a 1524 * one to one mapping to linfo: 1525 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1526 * Both the main and sub prog share the same jited_linfo. 1527 * The subprog can access its first jited_linfo by 1528 * using the linfo_idx. 1529 */ 1530 void **jited_linfo; 1531 u32 func_info_cnt; 1532 u32 nr_linfo; 1533 /* subprog can use linfo_idx to access its first linfo and 1534 * jited_linfo. 1535 * main prog always has linfo_idx == 0 1536 */ 1537 u32 linfo_idx; 1538 struct module *mod; 1539 u32 num_exentries; 1540 struct exception_table_entry *extable; 1541 union { 1542 struct work_struct work; 1543 struct rcu_head rcu; 1544 }; 1545 }; 1546 1547 struct bpf_prog { 1548 u16 pages; /* Number of allocated pages */ 1549 u16 jited:1, /* Is our filter JIT'ed? */ 1550 jit_requested:1,/* archs need to JIT the prog */ 1551 gpl_compatible:1, /* Is filter GPL compatible? */ 1552 cb_access:1, /* Is control block accessed? */ 1553 dst_needed:1, /* Do we need dst entry? */ 1554 blinding_requested:1, /* needs constant blinding */ 1555 blinded:1, /* Was blinded */ 1556 is_func:1, /* program is a bpf function */ 1557 kprobe_override:1, /* Do we override a kprobe? */ 1558 has_callchain_buf:1, /* callchain buffer allocated? */ 1559 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1560 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1561 call_get_func_ip:1, /* Do we call get_func_ip() */ 1562 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1563 sleepable:1; /* BPF program is sleepable */ 1564 enum bpf_prog_type type; /* Type of BPF program */ 1565 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1566 u32 len; /* Number of filter blocks */ 1567 u32 jited_len; /* Size of jited insns in bytes */ 1568 u8 tag[BPF_TAG_SIZE]; 1569 struct bpf_prog_stats __percpu *stats; 1570 int __percpu *active; 1571 unsigned int (*bpf_func)(const void *ctx, 1572 const struct bpf_insn *insn); 1573 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1574 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1575 /* Instructions for interpreter */ 1576 union { 1577 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1578 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1579 }; 1580 }; 1581 1582 struct bpf_array_aux { 1583 /* Programs with direct jumps into programs part of this array. */ 1584 struct list_head poke_progs; 1585 struct bpf_map *map; 1586 struct mutex poke_mutex; 1587 struct work_struct work; 1588 }; 1589 1590 struct bpf_link { 1591 atomic64_t refcnt; 1592 u32 id; 1593 enum bpf_link_type type; 1594 const struct bpf_link_ops *ops; 1595 struct bpf_prog *prog; 1596 /* rcu is used before freeing, work can be used to schedule that 1597 * RCU-based freeing before that, so they never overlap 1598 */ 1599 union { 1600 struct rcu_head rcu; 1601 struct work_struct work; 1602 }; 1603 }; 1604 1605 struct bpf_link_ops { 1606 void (*release)(struct bpf_link *link); 1607 /* deallocate link resources callback, called without RCU grace period 1608 * waiting 1609 */ 1610 void (*dealloc)(struct bpf_link *link); 1611 /* deallocate link resources callback, called after RCU grace period; 1612 * if underlying BPF program is sleepable we go through tasks trace 1613 * RCU GP and then "classic" RCU GP 1614 */ 1615 void (*dealloc_deferred)(struct bpf_link *link); 1616 int (*detach)(struct bpf_link *link); 1617 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1618 struct bpf_prog *old_prog); 1619 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1620 int (*fill_link_info)(const struct bpf_link *link, 1621 struct bpf_link_info *info); 1622 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1623 struct bpf_map *old_map); 1624 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1625 }; 1626 1627 struct bpf_tramp_link { 1628 struct bpf_link link; 1629 struct hlist_node tramp_hlist; 1630 u64 cookie; 1631 }; 1632 1633 struct bpf_shim_tramp_link { 1634 struct bpf_tramp_link link; 1635 struct bpf_trampoline *trampoline; 1636 }; 1637 1638 struct bpf_tracing_link { 1639 struct bpf_tramp_link link; 1640 enum bpf_attach_type attach_type; 1641 struct bpf_trampoline *trampoline; 1642 struct bpf_prog *tgt_prog; 1643 }; 1644 1645 struct bpf_raw_tp_link { 1646 struct bpf_link link; 1647 struct bpf_raw_event_map *btp; 1648 u64 cookie; 1649 }; 1650 1651 struct bpf_link_primer { 1652 struct bpf_link *link; 1653 struct file *file; 1654 int fd; 1655 u32 id; 1656 }; 1657 1658 struct bpf_mount_opts { 1659 kuid_t uid; 1660 kgid_t gid; 1661 umode_t mode; 1662 1663 /* BPF token-related delegation options */ 1664 u64 delegate_cmds; 1665 u64 delegate_maps; 1666 u64 delegate_progs; 1667 u64 delegate_attachs; 1668 }; 1669 1670 struct bpf_token { 1671 struct work_struct work; 1672 atomic64_t refcnt; 1673 struct user_namespace *userns; 1674 u64 allowed_cmds; 1675 u64 allowed_maps; 1676 u64 allowed_progs; 1677 u64 allowed_attachs; 1678 #ifdef CONFIG_SECURITY 1679 void *security; 1680 #endif 1681 }; 1682 1683 struct bpf_struct_ops_value; 1684 struct btf_member; 1685 1686 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1687 /** 1688 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1689 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1690 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1691 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1692 * when determining whether the struct_ops progs in the 1693 * struct_ops map are valid. 1694 * @init: A callback that is invoked a single time, and before any other 1695 * callback, to initialize the structure. A nonzero return value means 1696 * the subsystem could not be initialized. 1697 * @check_member: When defined, a callback invoked by the verifier to allow 1698 * the subsystem to determine if an entry in the struct_ops map 1699 * is valid. A nonzero return value means that the map is 1700 * invalid and should be rejected by the verifier. 1701 * @init_member: A callback that is invoked for each member of the struct_ops 1702 * map to allow the subsystem to initialize the member. A nonzero 1703 * value means the member could not be initialized. This callback 1704 * is exclusive with the @type, @type_id, @value_type, and 1705 * @value_id fields. 1706 * @reg: A callback that is invoked when the struct_ops map has been 1707 * initialized and is being attached to. Zero means the struct_ops map 1708 * has been successfully registered and is live. A nonzero return value 1709 * means the struct_ops map could not be registered. 1710 * @unreg: A callback that is invoked when the struct_ops map should be 1711 * unregistered. 1712 * @update: A callback that is invoked when the live struct_ops map is being 1713 * updated to contain new values. This callback is only invoked when 1714 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1715 * it is assumed that the struct_ops map cannot be updated. 1716 * @validate: A callback that is invoked after all of the members have been 1717 * initialized. This callback should perform static checks on the 1718 * map, meaning that it should either fail or succeed 1719 * deterministically. A struct_ops map that has been validated may 1720 * not necessarily succeed in being registered if the call to @reg 1721 * fails. For example, a valid struct_ops map may be loaded, but 1722 * then fail to be registered due to there being another active 1723 * struct_ops map on the system in the subsystem already. For this 1724 * reason, if this callback is not defined, the check is skipped as 1725 * the struct_ops map will have final verification performed in 1726 * @reg. 1727 * @type: BTF type. 1728 * @value_type: Value type. 1729 * @name: The name of the struct bpf_struct_ops object. 1730 * @func_models: Func models 1731 * @type_id: BTF type id. 1732 * @value_id: BTF value id. 1733 */ 1734 struct bpf_struct_ops { 1735 const struct bpf_verifier_ops *verifier_ops; 1736 int (*init)(struct btf *btf); 1737 int (*check_member)(const struct btf_type *t, 1738 const struct btf_member *member, 1739 const struct bpf_prog *prog); 1740 int (*init_member)(const struct btf_type *t, 1741 const struct btf_member *member, 1742 void *kdata, const void *udata); 1743 int (*reg)(void *kdata, struct bpf_link *link); 1744 void (*unreg)(void *kdata, struct bpf_link *link); 1745 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1746 int (*validate)(void *kdata); 1747 void *cfi_stubs; 1748 struct module *owner; 1749 const char *name; 1750 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1751 }; 1752 1753 /* Every member of a struct_ops type has an instance even a member is not 1754 * an operator (function pointer). The "info" field will be assigned to 1755 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1756 * argument information required by the verifier to verify the program. 1757 * 1758 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1759 * corresponding entry for an given argument. 1760 */ 1761 struct bpf_struct_ops_arg_info { 1762 struct bpf_ctx_arg_aux *info; 1763 u32 cnt; 1764 }; 1765 1766 struct bpf_struct_ops_desc { 1767 struct bpf_struct_ops *st_ops; 1768 1769 const struct btf_type *type; 1770 const struct btf_type *value_type; 1771 u32 type_id; 1772 u32 value_id; 1773 1774 /* Collection of argument information for each member */ 1775 struct bpf_struct_ops_arg_info *arg_info; 1776 }; 1777 1778 enum bpf_struct_ops_state { 1779 BPF_STRUCT_OPS_STATE_INIT, 1780 BPF_STRUCT_OPS_STATE_INUSE, 1781 BPF_STRUCT_OPS_STATE_TOBEFREE, 1782 BPF_STRUCT_OPS_STATE_READY, 1783 }; 1784 1785 struct bpf_struct_ops_common_value { 1786 refcount_t refcnt; 1787 enum bpf_struct_ops_state state; 1788 }; 1789 1790 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1791 /* This macro helps developer to register a struct_ops type and generate 1792 * type information correctly. Developers should use this macro to register 1793 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1794 */ 1795 #define register_bpf_struct_ops(st_ops, type) \ 1796 ({ \ 1797 struct bpf_struct_ops_##type { \ 1798 struct bpf_struct_ops_common_value common; \ 1799 struct type data ____cacheline_aligned_in_smp; \ 1800 }; \ 1801 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1802 __register_bpf_struct_ops(st_ops); \ 1803 }) 1804 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1805 bool bpf_struct_ops_get(const void *kdata); 1806 void bpf_struct_ops_put(const void *kdata); 1807 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1808 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1809 void *value); 1810 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1811 struct bpf_tramp_link *link, 1812 const struct btf_func_model *model, 1813 void *stub_func, 1814 void **image, u32 *image_off, 1815 bool allow_alloc); 1816 void bpf_struct_ops_image_free(void *image); 1817 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1818 { 1819 if (owner == BPF_MODULE_OWNER) 1820 return bpf_struct_ops_get(data); 1821 else 1822 return try_module_get(owner); 1823 } 1824 static inline void bpf_module_put(const void *data, struct module *owner) 1825 { 1826 if (owner == BPF_MODULE_OWNER) 1827 bpf_struct_ops_put(data); 1828 else 1829 module_put(owner); 1830 } 1831 int bpf_struct_ops_link_create(union bpf_attr *attr); 1832 1833 #ifdef CONFIG_NET 1834 /* Define it here to avoid the use of forward declaration */ 1835 struct bpf_dummy_ops_state { 1836 int val; 1837 }; 1838 1839 struct bpf_dummy_ops { 1840 int (*test_1)(struct bpf_dummy_ops_state *cb); 1841 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1842 char a3, unsigned long a4); 1843 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1844 }; 1845 1846 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1847 union bpf_attr __user *uattr); 1848 #endif 1849 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1850 struct btf *btf, 1851 struct bpf_verifier_log *log); 1852 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1853 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1854 #else 1855 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1856 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1857 { 1858 return try_module_get(owner); 1859 } 1860 static inline void bpf_module_put(const void *data, struct module *owner) 1861 { 1862 module_put(owner); 1863 } 1864 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1865 { 1866 return -ENOTSUPP; 1867 } 1868 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1869 void *key, 1870 void *value) 1871 { 1872 return -EINVAL; 1873 } 1874 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1875 { 1876 return -EOPNOTSUPP; 1877 } 1878 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1879 { 1880 } 1881 1882 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1883 { 1884 } 1885 1886 #endif 1887 1888 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1889 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1890 int cgroup_atype); 1891 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1892 #else 1893 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1894 int cgroup_atype) 1895 { 1896 return -EOPNOTSUPP; 1897 } 1898 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1899 { 1900 } 1901 #endif 1902 1903 struct bpf_array { 1904 struct bpf_map map; 1905 u32 elem_size; 1906 u32 index_mask; 1907 struct bpf_array_aux *aux; 1908 union { 1909 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1910 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1911 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1912 }; 1913 }; 1914 1915 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1916 #define MAX_TAIL_CALL_CNT 33 1917 1918 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1919 * It's enum to expose it (and thus make it discoverable) through BTF. 1920 */ 1921 enum { 1922 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1923 }; 1924 1925 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1926 BPF_F_RDONLY_PROG | \ 1927 BPF_F_WRONLY | \ 1928 BPF_F_WRONLY_PROG) 1929 1930 #define BPF_MAP_CAN_READ BIT(0) 1931 #define BPF_MAP_CAN_WRITE BIT(1) 1932 1933 /* Maximum number of user-producer ring buffer samples that can be drained in 1934 * a call to bpf_user_ringbuf_drain(). 1935 */ 1936 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1937 1938 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1939 { 1940 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1941 1942 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1943 * not possible. 1944 */ 1945 if (access_flags & BPF_F_RDONLY_PROG) 1946 return BPF_MAP_CAN_READ; 1947 else if (access_flags & BPF_F_WRONLY_PROG) 1948 return BPF_MAP_CAN_WRITE; 1949 else 1950 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1951 } 1952 1953 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1954 { 1955 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1956 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1957 } 1958 1959 struct bpf_event_entry { 1960 struct perf_event *event; 1961 struct file *perf_file; 1962 struct file *map_file; 1963 struct rcu_head rcu; 1964 }; 1965 1966 static inline bool map_type_contains_progs(struct bpf_map *map) 1967 { 1968 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1969 map->map_type == BPF_MAP_TYPE_DEVMAP || 1970 map->map_type == BPF_MAP_TYPE_CPUMAP; 1971 } 1972 1973 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1974 int bpf_prog_calc_tag(struct bpf_prog *fp); 1975 1976 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1977 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1978 1979 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1980 unsigned long off, unsigned long len); 1981 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1982 const struct bpf_insn *src, 1983 struct bpf_insn *dst, 1984 struct bpf_prog *prog, 1985 u32 *target_size); 1986 1987 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1988 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1989 1990 /* an array of programs to be executed under rcu_lock. 1991 * 1992 * Typical usage: 1993 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1994 * 1995 * the structure returned by bpf_prog_array_alloc() should be populated 1996 * with program pointers and the last pointer must be NULL. 1997 * The user has to keep refcnt on the program and make sure the program 1998 * is removed from the array before bpf_prog_put(). 1999 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2000 * since other cpus are walking the array of pointers in parallel. 2001 */ 2002 struct bpf_prog_array_item { 2003 struct bpf_prog *prog; 2004 union { 2005 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2006 u64 bpf_cookie; 2007 }; 2008 }; 2009 2010 struct bpf_prog_array { 2011 struct rcu_head rcu; 2012 struct bpf_prog_array_item items[]; 2013 }; 2014 2015 struct bpf_empty_prog_array { 2016 struct bpf_prog_array hdr; 2017 struct bpf_prog *null_prog; 2018 }; 2019 2020 /* to avoid allocating empty bpf_prog_array for cgroups that 2021 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2022 * It will not be modified the caller of bpf_prog_array_alloc() 2023 * (since caller requested prog_cnt == 0) 2024 * that pointer should be 'freed' by bpf_prog_array_free() 2025 */ 2026 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2027 2028 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2029 void bpf_prog_array_free(struct bpf_prog_array *progs); 2030 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2031 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2032 int bpf_prog_array_length(struct bpf_prog_array *progs); 2033 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2034 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2035 __u32 __user *prog_ids, u32 cnt); 2036 2037 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2038 struct bpf_prog *old_prog); 2039 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2040 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2041 struct bpf_prog *prog); 2042 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2043 u32 *prog_ids, u32 request_cnt, 2044 u32 *prog_cnt); 2045 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2046 struct bpf_prog *exclude_prog, 2047 struct bpf_prog *include_prog, 2048 u64 bpf_cookie, 2049 struct bpf_prog_array **new_array); 2050 2051 struct bpf_run_ctx {}; 2052 2053 struct bpf_cg_run_ctx { 2054 struct bpf_run_ctx run_ctx; 2055 const struct bpf_prog_array_item *prog_item; 2056 int retval; 2057 }; 2058 2059 struct bpf_trace_run_ctx { 2060 struct bpf_run_ctx run_ctx; 2061 u64 bpf_cookie; 2062 bool is_uprobe; 2063 }; 2064 2065 struct bpf_tramp_run_ctx { 2066 struct bpf_run_ctx run_ctx; 2067 u64 bpf_cookie; 2068 struct bpf_run_ctx *saved_run_ctx; 2069 }; 2070 2071 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2072 { 2073 struct bpf_run_ctx *old_ctx = NULL; 2074 2075 #ifdef CONFIG_BPF_SYSCALL 2076 old_ctx = current->bpf_ctx; 2077 current->bpf_ctx = new_ctx; 2078 #endif 2079 return old_ctx; 2080 } 2081 2082 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2083 { 2084 #ifdef CONFIG_BPF_SYSCALL 2085 current->bpf_ctx = old_ctx; 2086 #endif 2087 } 2088 2089 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2090 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2091 /* BPF program asks to set CN on the packet. */ 2092 #define BPF_RET_SET_CN (1 << 0) 2093 2094 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2095 2096 static __always_inline u32 2097 bpf_prog_run_array(const struct bpf_prog_array *array, 2098 const void *ctx, bpf_prog_run_fn run_prog) 2099 { 2100 const struct bpf_prog_array_item *item; 2101 const struct bpf_prog *prog; 2102 struct bpf_run_ctx *old_run_ctx; 2103 struct bpf_trace_run_ctx run_ctx; 2104 u32 ret = 1; 2105 2106 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2107 2108 if (unlikely(!array)) 2109 return ret; 2110 2111 run_ctx.is_uprobe = false; 2112 2113 migrate_disable(); 2114 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2115 item = &array->items[0]; 2116 while ((prog = READ_ONCE(item->prog))) { 2117 run_ctx.bpf_cookie = item->bpf_cookie; 2118 ret &= run_prog(prog, ctx); 2119 item++; 2120 } 2121 bpf_reset_run_ctx(old_run_ctx); 2122 migrate_enable(); 2123 return ret; 2124 } 2125 2126 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2127 * 2128 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2129 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2130 * in order to use the tasks_trace rcu grace period. 2131 * 2132 * When a non-sleepable program is inside the array, we take the rcu read 2133 * section and disable preemption for that program alone, so it can access 2134 * rcu-protected dynamically sized maps. 2135 */ 2136 static __always_inline u32 2137 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2138 const void *ctx, bpf_prog_run_fn run_prog) 2139 { 2140 const struct bpf_prog_array_item *item; 2141 const struct bpf_prog *prog; 2142 const struct bpf_prog_array *array; 2143 struct bpf_run_ctx *old_run_ctx; 2144 struct bpf_trace_run_ctx run_ctx; 2145 u32 ret = 1; 2146 2147 might_fault(); 2148 2149 rcu_read_lock_trace(); 2150 migrate_disable(); 2151 2152 run_ctx.is_uprobe = true; 2153 2154 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2155 if (unlikely(!array)) 2156 goto out; 2157 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2158 item = &array->items[0]; 2159 while ((prog = READ_ONCE(item->prog))) { 2160 if (!prog->sleepable) 2161 rcu_read_lock(); 2162 2163 run_ctx.bpf_cookie = item->bpf_cookie; 2164 ret &= run_prog(prog, ctx); 2165 item++; 2166 2167 if (!prog->sleepable) 2168 rcu_read_unlock(); 2169 } 2170 bpf_reset_run_ctx(old_run_ctx); 2171 out: 2172 migrate_enable(); 2173 rcu_read_unlock_trace(); 2174 return ret; 2175 } 2176 2177 #ifdef CONFIG_BPF_SYSCALL 2178 DECLARE_PER_CPU(int, bpf_prog_active); 2179 extern struct mutex bpf_stats_enabled_mutex; 2180 2181 /* 2182 * Block execution of BPF programs attached to instrumentation (perf, 2183 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2184 * these events can happen inside a region which holds a map bucket lock 2185 * and can deadlock on it. 2186 */ 2187 static inline void bpf_disable_instrumentation(void) 2188 { 2189 migrate_disable(); 2190 this_cpu_inc(bpf_prog_active); 2191 } 2192 2193 static inline void bpf_enable_instrumentation(void) 2194 { 2195 this_cpu_dec(bpf_prog_active); 2196 migrate_enable(); 2197 } 2198 2199 extern const struct super_operations bpf_super_ops; 2200 extern const struct file_operations bpf_map_fops; 2201 extern const struct file_operations bpf_prog_fops; 2202 extern const struct file_operations bpf_iter_fops; 2203 2204 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2205 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2206 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2207 #define BPF_MAP_TYPE(_id, _ops) \ 2208 extern const struct bpf_map_ops _ops; 2209 #define BPF_LINK_TYPE(_id, _name) 2210 #include <linux/bpf_types.h> 2211 #undef BPF_PROG_TYPE 2212 #undef BPF_MAP_TYPE 2213 #undef BPF_LINK_TYPE 2214 2215 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2216 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2217 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2218 2219 struct bpf_prog *bpf_prog_get(u32 ufd); 2220 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2221 bool attach_drv); 2222 void bpf_prog_add(struct bpf_prog *prog, int i); 2223 void bpf_prog_sub(struct bpf_prog *prog, int i); 2224 void bpf_prog_inc(struct bpf_prog *prog); 2225 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2226 void bpf_prog_put(struct bpf_prog *prog); 2227 2228 void bpf_prog_free_id(struct bpf_prog *prog); 2229 void bpf_map_free_id(struct bpf_map *map); 2230 2231 struct btf_field *btf_record_find(const struct btf_record *rec, 2232 u32 offset, u32 field_mask); 2233 void btf_record_free(struct btf_record *rec); 2234 void bpf_map_free_record(struct bpf_map *map); 2235 struct btf_record *btf_record_dup(const struct btf_record *rec); 2236 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2237 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2238 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2239 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2240 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2241 2242 struct bpf_map *bpf_map_get(u32 ufd); 2243 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2244 struct bpf_map *__bpf_map_get(struct fd f); 2245 void bpf_map_inc(struct bpf_map *map); 2246 void bpf_map_inc_with_uref(struct bpf_map *map); 2247 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2248 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2249 void bpf_map_put_with_uref(struct bpf_map *map); 2250 void bpf_map_put(struct bpf_map *map); 2251 void *bpf_map_area_alloc(u64 size, int numa_node); 2252 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2253 void bpf_map_area_free(void *base); 2254 bool bpf_map_write_active(const struct bpf_map *map); 2255 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2256 int generic_map_lookup_batch(struct bpf_map *map, 2257 const union bpf_attr *attr, 2258 union bpf_attr __user *uattr); 2259 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2260 const union bpf_attr *attr, 2261 union bpf_attr __user *uattr); 2262 int generic_map_delete_batch(struct bpf_map *map, 2263 const union bpf_attr *attr, 2264 union bpf_attr __user *uattr); 2265 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2266 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2267 2268 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2269 unsigned long nr_pages, struct page **page_array); 2270 #ifdef CONFIG_MEMCG 2271 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2272 int node); 2273 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2274 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2275 gfp_t flags); 2276 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2277 size_t align, gfp_t flags); 2278 #else 2279 /* 2280 * These specialized allocators have to be macros for their allocations to be 2281 * accounted separately (to have separate alloc_tag). 2282 */ 2283 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2284 kmalloc_node(_size, _flags, _node) 2285 #define bpf_map_kzalloc(_map, _size, _flags) \ 2286 kzalloc(_size, _flags) 2287 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2288 kvcalloc(_n, _size, _flags) 2289 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2290 __alloc_percpu_gfp(_size, _align, _flags) 2291 #endif 2292 2293 static inline int 2294 bpf_map_init_elem_count(struct bpf_map *map) 2295 { 2296 size_t size = sizeof(*map->elem_count), align = size; 2297 gfp_t flags = GFP_USER | __GFP_NOWARN; 2298 2299 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2300 if (!map->elem_count) 2301 return -ENOMEM; 2302 2303 return 0; 2304 } 2305 2306 static inline void 2307 bpf_map_free_elem_count(struct bpf_map *map) 2308 { 2309 free_percpu(map->elem_count); 2310 } 2311 2312 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2313 { 2314 this_cpu_inc(*map->elem_count); 2315 } 2316 2317 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2318 { 2319 this_cpu_dec(*map->elem_count); 2320 } 2321 2322 extern int sysctl_unprivileged_bpf_disabled; 2323 2324 bool bpf_token_capable(const struct bpf_token *token, int cap); 2325 2326 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2327 { 2328 return bpf_token_capable(token, CAP_PERFMON); 2329 } 2330 2331 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2332 { 2333 return bpf_token_capable(token, CAP_PERFMON); 2334 } 2335 2336 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2337 { 2338 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2339 } 2340 2341 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2342 { 2343 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2344 } 2345 2346 int bpf_map_new_fd(struct bpf_map *map, int flags); 2347 int bpf_prog_new_fd(struct bpf_prog *prog); 2348 2349 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2350 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2351 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2352 int bpf_link_settle(struct bpf_link_primer *primer); 2353 void bpf_link_cleanup(struct bpf_link_primer *primer); 2354 void bpf_link_inc(struct bpf_link *link); 2355 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2356 void bpf_link_put(struct bpf_link *link); 2357 int bpf_link_new_fd(struct bpf_link *link); 2358 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2359 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2360 2361 void bpf_token_inc(struct bpf_token *token); 2362 void bpf_token_put(struct bpf_token *token); 2363 int bpf_token_create(union bpf_attr *attr); 2364 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2365 2366 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2367 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2368 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2369 enum bpf_prog_type prog_type, 2370 enum bpf_attach_type attach_type); 2371 2372 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2373 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2374 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2375 umode_t mode); 2376 2377 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2378 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2379 extern int bpf_iter_ ## target(args); \ 2380 int __init bpf_iter_ ## target(args) { return 0; } 2381 2382 /* 2383 * The task type of iterators. 2384 * 2385 * For BPF task iterators, they can be parameterized with various 2386 * parameters to visit only some of tasks. 2387 * 2388 * BPF_TASK_ITER_ALL (default) 2389 * Iterate over resources of every task. 2390 * 2391 * BPF_TASK_ITER_TID 2392 * Iterate over resources of a task/tid. 2393 * 2394 * BPF_TASK_ITER_TGID 2395 * Iterate over resources of every task of a process / task group. 2396 */ 2397 enum bpf_iter_task_type { 2398 BPF_TASK_ITER_ALL = 0, 2399 BPF_TASK_ITER_TID, 2400 BPF_TASK_ITER_TGID, 2401 }; 2402 2403 struct bpf_iter_aux_info { 2404 /* for map_elem iter */ 2405 struct bpf_map *map; 2406 2407 /* for cgroup iter */ 2408 struct { 2409 struct cgroup *start; /* starting cgroup */ 2410 enum bpf_cgroup_iter_order order; 2411 } cgroup; 2412 struct { 2413 enum bpf_iter_task_type type; 2414 u32 pid; 2415 } task; 2416 }; 2417 2418 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2419 union bpf_iter_link_info *linfo, 2420 struct bpf_iter_aux_info *aux); 2421 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2422 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2423 struct seq_file *seq); 2424 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2425 struct bpf_link_info *info); 2426 typedef const struct bpf_func_proto * 2427 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2428 const struct bpf_prog *prog); 2429 2430 enum bpf_iter_feature { 2431 BPF_ITER_RESCHED = BIT(0), 2432 }; 2433 2434 #define BPF_ITER_CTX_ARG_MAX 2 2435 struct bpf_iter_reg { 2436 const char *target; 2437 bpf_iter_attach_target_t attach_target; 2438 bpf_iter_detach_target_t detach_target; 2439 bpf_iter_show_fdinfo_t show_fdinfo; 2440 bpf_iter_fill_link_info_t fill_link_info; 2441 bpf_iter_get_func_proto_t get_func_proto; 2442 u32 ctx_arg_info_size; 2443 u32 feature; 2444 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2445 const struct bpf_iter_seq_info *seq_info; 2446 }; 2447 2448 struct bpf_iter_meta { 2449 __bpf_md_ptr(struct seq_file *, seq); 2450 u64 session_id; 2451 u64 seq_num; 2452 }; 2453 2454 struct bpf_iter__bpf_map_elem { 2455 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2456 __bpf_md_ptr(struct bpf_map *, map); 2457 __bpf_md_ptr(void *, key); 2458 __bpf_md_ptr(void *, value); 2459 }; 2460 2461 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2462 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2463 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2464 const struct bpf_func_proto * 2465 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2466 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2467 int bpf_iter_new_fd(struct bpf_link *link); 2468 bool bpf_link_is_iter(struct bpf_link *link); 2469 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2470 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2471 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2472 struct seq_file *seq); 2473 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2474 struct bpf_link_info *info); 2475 2476 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2477 struct bpf_func_state *caller, 2478 struct bpf_func_state *callee); 2479 2480 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2481 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2482 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2483 u64 flags); 2484 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2485 u64 flags); 2486 2487 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2488 2489 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2490 void *key, void *value, u64 map_flags); 2491 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2492 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2493 void *key, void *value, u64 map_flags); 2494 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2495 2496 int bpf_get_file_flag(int flags); 2497 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2498 size_t actual_size); 2499 2500 /* verify correctness of eBPF program */ 2501 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2502 2503 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2504 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2505 #endif 2506 2507 struct btf *bpf_get_btf_vmlinux(void); 2508 2509 /* Map specifics */ 2510 struct xdp_frame; 2511 struct sk_buff; 2512 struct bpf_dtab_netdev; 2513 struct bpf_cpu_map_entry; 2514 2515 void __dev_flush(struct list_head *flush_list); 2516 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2517 struct net_device *dev_rx); 2518 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2519 struct net_device *dev_rx); 2520 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2521 struct bpf_map *map, bool exclude_ingress); 2522 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2523 struct bpf_prog *xdp_prog); 2524 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2525 struct bpf_prog *xdp_prog, struct bpf_map *map, 2526 bool exclude_ingress); 2527 2528 void __cpu_map_flush(struct list_head *flush_list); 2529 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2530 struct net_device *dev_rx); 2531 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2532 struct sk_buff *skb); 2533 2534 /* Return map's numa specified by userspace */ 2535 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2536 { 2537 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2538 attr->numa_node : NUMA_NO_NODE; 2539 } 2540 2541 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2542 int array_map_alloc_check(union bpf_attr *attr); 2543 2544 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2545 union bpf_attr __user *uattr); 2546 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2547 union bpf_attr __user *uattr); 2548 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2549 const union bpf_attr *kattr, 2550 union bpf_attr __user *uattr); 2551 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2552 const union bpf_attr *kattr, 2553 union bpf_attr __user *uattr); 2554 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2555 const union bpf_attr *kattr, 2556 union bpf_attr __user *uattr); 2557 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2558 const union bpf_attr *kattr, 2559 union bpf_attr __user *uattr); 2560 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2561 const union bpf_attr *kattr, 2562 union bpf_attr __user *uattr); 2563 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2564 const struct bpf_prog *prog, 2565 struct bpf_insn_access_aux *info); 2566 2567 static inline bool bpf_tracing_ctx_access(int off, int size, 2568 enum bpf_access_type type) 2569 { 2570 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2571 return false; 2572 if (type != BPF_READ) 2573 return false; 2574 if (off % size != 0) 2575 return false; 2576 return true; 2577 } 2578 2579 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2580 enum bpf_access_type type, 2581 const struct bpf_prog *prog, 2582 struct bpf_insn_access_aux *info) 2583 { 2584 if (!bpf_tracing_ctx_access(off, size, type)) 2585 return false; 2586 return btf_ctx_access(off, size, type, prog, info); 2587 } 2588 2589 int btf_struct_access(struct bpf_verifier_log *log, 2590 const struct bpf_reg_state *reg, 2591 int off, int size, enum bpf_access_type atype, 2592 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2593 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2594 const struct btf *btf, u32 id, int off, 2595 const struct btf *need_btf, u32 need_type_id, 2596 bool strict); 2597 2598 int btf_distill_func_proto(struct bpf_verifier_log *log, 2599 struct btf *btf, 2600 const struct btf_type *func_proto, 2601 const char *func_name, 2602 struct btf_func_model *m); 2603 2604 struct bpf_reg_state; 2605 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2606 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2607 struct btf *btf, const struct btf_type *t); 2608 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2609 int comp_idx, const char *tag_key); 2610 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2611 int comp_idx, const char *tag_key, int last_id); 2612 2613 struct bpf_prog *bpf_prog_by_id(u32 id); 2614 struct bpf_link *bpf_link_by_id(u32 id); 2615 2616 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2617 const struct bpf_prog *prog); 2618 void bpf_task_storage_free(struct task_struct *task); 2619 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2620 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2621 const struct btf_func_model * 2622 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2623 const struct bpf_insn *insn); 2624 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2625 u16 btf_fd_idx, u8 **func_addr); 2626 2627 struct bpf_core_ctx { 2628 struct bpf_verifier_log *log; 2629 const struct btf *btf; 2630 }; 2631 2632 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2633 const struct bpf_reg_state *reg, 2634 const char *field_name, u32 btf_id, const char *suffix); 2635 2636 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2637 const struct btf *reg_btf, u32 reg_id, 2638 const struct btf *arg_btf, u32 arg_id); 2639 2640 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2641 int relo_idx, void *insn); 2642 2643 static inline bool unprivileged_ebpf_enabled(void) 2644 { 2645 return !sysctl_unprivileged_bpf_disabled; 2646 } 2647 2648 /* Not all bpf prog type has the bpf_ctx. 2649 * For the bpf prog type that has initialized the bpf_ctx, 2650 * this function can be used to decide if a kernel function 2651 * is called by a bpf program. 2652 */ 2653 static inline bool has_current_bpf_ctx(void) 2654 { 2655 return !!current->bpf_ctx; 2656 } 2657 2658 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2659 2660 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2661 enum bpf_dynptr_type type, u32 offset, u32 size); 2662 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2663 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2664 2665 #else /* !CONFIG_BPF_SYSCALL */ 2666 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2667 { 2668 return ERR_PTR(-EOPNOTSUPP); 2669 } 2670 2671 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2672 enum bpf_prog_type type, 2673 bool attach_drv) 2674 { 2675 return ERR_PTR(-EOPNOTSUPP); 2676 } 2677 2678 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2679 { 2680 } 2681 2682 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2683 { 2684 } 2685 2686 static inline void bpf_prog_put(struct bpf_prog *prog) 2687 { 2688 } 2689 2690 static inline void bpf_prog_inc(struct bpf_prog *prog) 2691 { 2692 } 2693 2694 static inline struct bpf_prog *__must_check 2695 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2696 { 2697 return ERR_PTR(-EOPNOTSUPP); 2698 } 2699 2700 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2701 const struct bpf_link_ops *ops, 2702 struct bpf_prog *prog) 2703 { 2704 } 2705 2706 static inline int bpf_link_prime(struct bpf_link *link, 2707 struct bpf_link_primer *primer) 2708 { 2709 return -EOPNOTSUPP; 2710 } 2711 2712 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2713 { 2714 return -EOPNOTSUPP; 2715 } 2716 2717 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2718 { 2719 } 2720 2721 static inline void bpf_link_inc(struct bpf_link *link) 2722 { 2723 } 2724 2725 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2726 { 2727 return NULL; 2728 } 2729 2730 static inline void bpf_link_put(struct bpf_link *link) 2731 { 2732 } 2733 2734 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2735 { 2736 return -EOPNOTSUPP; 2737 } 2738 2739 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2740 { 2741 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2742 } 2743 2744 static inline void bpf_token_inc(struct bpf_token *token) 2745 { 2746 } 2747 2748 static inline void bpf_token_put(struct bpf_token *token) 2749 { 2750 } 2751 2752 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2753 { 2754 return ERR_PTR(-EOPNOTSUPP); 2755 } 2756 2757 static inline void __dev_flush(struct list_head *flush_list) 2758 { 2759 } 2760 2761 struct xdp_frame; 2762 struct bpf_dtab_netdev; 2763 struct bpf_cpu_map_entry; 2764 2765 static inline 2766 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2767 struct net_device *dev_rx) 2768 { 2769 return 0; 2770 } 2771 2772 static inline 2773 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2774 struct net_device *dev_rx) 2775 { 2776 return 0; 2777 } 2778 2779 static inline 2780 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2781 struct bpf_map *map, bool exclude_ingress) 2782 { 2783 return 0; 2784 } 2785 2786 struct sk_buff; 2787 2788 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2789 struct sk_buff *skb, 2790 struct bpf_prog *xdp_prog) 2791 { 2792 return 0; 2793 } 2794 2795 static inline 2796 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2797 struct bpf_prog *xdp_prog, struct bpf_map *map, 2798 bool exclude_ingress) 2799 { 2800 return 0; 2801 } 2802 2803 static inline void __cpu_map_flush(struct list_head *flush_list) 2804 { 2805 } 2806 2807 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2808 struct xdp_frame *xdpf, 2809 struct net_device *dev_rx) 2810 { 2811 return 0; 2812 } 2813 2814 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2815 struct sk_buff *skb) 2816 { 2817 return -EOPNOTSUPP; 2818 } 2819 2820 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2821 enum bpf_prog_type type) 2822 { 2823 return ERR_PTR(-EOPNOTSUPP); 2824 } 2825 2826 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2827 const union bpf_attr *kattr, 2828 union bpf_attr __user *uattr) 2829 { 2830 return -ENOTSUPP; 2831 } 2832 2833 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2834 const union bpf_attr *kattr, 2835 union bpf_attr __user *uattr) 2836 { 2837 return -ENOTSUPP; 2838 } 2839 2840 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2841 const union bpf_attr *kattr, 2842 union bpf_attr __user *uattr) 2843 { 2844 return -ENOTSUPP; 2845 } 2846 2847 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2848 const union bpf_attr *kattr, 2849 union bpf_attr __user *uattr) 2850 { 2851 return -ENOTSUPP; 2852 } 2853 2854 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2855 const union bpf_attr *kattr, 2856 union bpf_attr __user *uattr) 2857 { 2858 return -ENOTSUPP; 2859 } 2860 2861 static inline void bpf_map_put(struct bpf_map *map) 2862 { 2863 } 2864 2865 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2866 { 2867 return ERR_PTR(-ENOTSUPP); 2868 } 2869 2870 static inline int btf_struct_access(struct bpf_verifier_log *log, 2871 const struct bpf_reg_state *reg, 2872 int off, int size, enum bpf_access_type atype, 2873 u32 *next_btf_id, enum bpf_type_flag *flag, 2874 const char **field_name) 2875 { 2876 return -EACCES; 2877 } 2878 2879 static inline const struct bpf_func_proto * 2880 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2881 { 2882 return NULL; 2883 } 2884 2885 static inline void bpf_task_storage_free(struct task_struct *task) 2886 { 2887 } 2888 2889 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2890 { 2891 return false; 2892 } 2893 2894 static inline const struct btf_func_model * 2895 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2896 const struct bpf_insn *insn) 2897 { 2898 return NULL; 2899 } 2900 2901 static inline int 2902 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2903 u16 btf_fd_idx, u8 **func_addr) 2904 { 2905 return -ENOTSUPP; 2906 } 2907 2908 static inline bool unprivileged_ebpf_enabled(void) 2909 { 2910 return false; 2911 } 2912 2913 static inline bool has_current_bpf_ctx(void) 2914 { 2915 return false; 2916 } 2917 2918 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2919 { 2920 } 2921 2922 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2923 { 2924 } 2925 2926 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2927 enum bpf_dynptr_type type, u32 offset, u32 size) 2928 { 2929 } 2930 2931 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2932 { 2933 } 2934 2935 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2936 { 2937 } 2938 #endif /* CONFIG_BPF_SYSCALL */ 2939 2940 static __always_inline int 2941 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2942 { 2943 int ret = -EFAULT; 2944 2945 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2946 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2947 if (unlikely(ret < 0)) 2948 memset(dst, 0, size); 2949 return ret; 2950 } 2951 2952 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 2953 2954 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2955 enum bpf_prog_type type) 2956 { 2957 return bpf_prog_get_type_dev(ufd, type, false); 2958 } 2959 2960 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2961 struct bpf_map **used_maps, u32 len); 2962 2963 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2964 2965 int bpf_prog_offload_compile(struct bpf_prog *prog); 2966 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2967 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2968 struct bpf_prog *prog); 2969 2970 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2971 2972 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2973 int bpf_map_offload_update_elem(struct bpf_map *map, 2974 void *key, void *value, u64 flags); 2975 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2976 int bpf_map_offload_get_next_key(struct bpf_map *map, 2977 void *key, void *next_key); 2978 2979 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2980 2981 struct bpf_offload_dev * 2982 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2983 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2984 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2985 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2986 struct net_device *netdev); 2987 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2988 struct net_device *netdev); 2989 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2990 2991 void unpriv_ebpf_notify(int new_state); 2992 2993 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2994 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2995 struct bpf_prog_aux *prog_aux); 2996 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2997 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2998 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2999 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3000 3001 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3002 { 3003 return aux->dev_bound; 3004 } 3005 3006 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3007 { 3008 return aux->offload_requested; 3009 } 3010 3011 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3012 3013 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3014 { 3015 return unlikely(map->ops == &bpf_map_offload_ops); 3016 } 3017 3018 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3019 void bpf_map_offload_map_free(struct bpf_map *map); 3020 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3021 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3022 const union bpf_attr *kattr, 3023 union bpf_attr __user *uattr); 3024 3025 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3026 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3027 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3028 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3029 union bpf_attr __user *uattr); 3030 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3031 3032 void sock_map_unhash(struct sock *sk); 3033 void sock_map_destroy(struct sock *sk); 3034 void sock_map_close(struct sock *sk, long timeout); 3035 #else 3036 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3037 struct bpf_prog_aux *prog_aux) 3038 { 3039 return -EOPNOTSUPP; 3040 } 3041 3042 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3043 u32 func_id) 3044 { 3045 return NULL; 3046 } 3047 3048 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3049 union bpf_attr *attr) 3050 { 3051 return -EOPNOTSUPP; 3052 } 3053 3054 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3055 struct bpf_prog *old_prog) 3056 { 3057 return -EOPNOTSUPP; 3058 } 3059 3060 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3061 { 3062 } 3063 3064 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3065 { 3066 return false; 3067 } 3068 3069 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3070 { 3071 return false; 3072 } 3073 3074 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3075 { 3076 return false; 3077 } 3078 3079 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3080 { 3081 return false; 3082 } 3083 3084 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3085 { 3086 return ERR_PTR(-EOPNOTSUPP); 3087 } 3088 3089 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3090 { 3091 } 3092 3093 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3094 { 3095 return 0; 3096 } 3097 3098 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3099 const union bpf_attr *kattr, 3100 union bpf_attr __user *uattr) 3101 { 3102 return -ENOTSUPP; 3103 } 3104 3105 #ifdef CONFIG_BPF_SYSCALL 3106 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3107 struct bpf_prog *prog) 3108 { 3109 return -EINVAL; 3110 } 3111 3112 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3113 enum bpf_prog_type ptype) 3114 { 3115 return -EOPNOTSUPP; 3116 } 3117 3118 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3119 u64 flags) 3120 { 3121 return -EOPNOTSUPP; 3122 } 3123 3124 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3125 union bpf_attr __user *uattr) 3126 { 3127 return -EINVAL; 3128 } 3129 3130 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3131 { 3132 return -EOPNOTSUPP; 3133 } 3134 #endif /* CONFIG_BPF_SYSCALL */ 3135 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3136 3137 static __always_inline void 3138 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3139 { 3140 const struct bpf_prog_array_item *item; 3141 struct bpf_prog *prog; 3142 3143 if (unlikely(!array)) 3144 return; 3145 3146 item = &array->items[0]; 3147 while ((prog = READ_ONCE(item->prog))) { 3148 bpf_prog_inc_misses_counter(prog); 3149 item++; 3150 } 3151 } 3152 3153 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3154 void bpf_sk_reuseport_detach(struct sock *sk); 3155 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3156 void *value); 3157 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3158 void *value, u64 map_flags); 3159 #else 3160 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3161 { 3162 } 3163 3164 #ifdef CONFIG_BPF_SYSCALL 3165 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3166 void *key, void *value) 3167 { 3168 return -EOPNOTSUPP; 3169 } 3170 3171 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3172 void *key, void *value, 3173 u64 map_flags) 3174 { 3175 return -EOPNOTSUPP; 3176 } 3177 #endif /* CONFIG_BPF_SYSCALL */ 3178 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3179 3180 /* verifier prototypes for helper functions called from eBPF programs */ 3181 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3182 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3183 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3184 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3185 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3186 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3187 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3188 3189 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3190 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3191 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3192 extern const struct bpf_func_proto bpf_tail_call_proto; 3193 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3194 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3195 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3196 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3197 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3198 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3199 extern const struct bpf_func_proto bpf_get_stackid_proto; 3200 extern const struct bpf_func_proto bpf_get_stack_proto; 3201 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3202 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3203 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3204 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3205 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3206 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3207 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3208 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3209 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3210 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3211 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3212 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3213 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3214 extern const struct bpf_func_proto bpf_spin_lock_proto; 3215 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3216 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3217 extern const struct bpf_func_proto bpf_strtol_proto; 3218 extern const struct bpf_func_proto bpf_strtoul_proto; 3219 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3220 extern const struct bpf_func_proto bpf_jiffies64_proto; 3221 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3222 extern const struct bpf_func_proto bpf_event_output_data_proto; 3223 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3224 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3225 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3226 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3227 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3228 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3229 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3230 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3231 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3232 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3233 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3234 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3235 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3236 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3237 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3238 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3239 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3240 extern const struct bpf_func_proto bpf_snprintf_proto; 3241 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3242 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3243 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3244 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3245 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3246 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3247 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3248 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3249 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3250 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3251 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3252 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3253 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3254 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3255 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3256 extern const struct bpf_func_proto bpf_find_vma_proto; 3257 extern const struct bpf_func_proto bpf_loop_proto; 3258 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3259 extern const struct bpf_func_proto bpf_set_retval_proto; 3260 extern const struct bpf_func_proto bpf_get_retval_proto; 3261 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3262 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3263 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3264 3265 const struct bpf_func_proto *tracing_prog_func_proto( 3266 enum bpf_func_id func_id, const struct bpf_prog *prog); 3267 3268 /* Shared helpers among cBPF and eBPF. */ 3269 void bpf_user_rnd_init_once(void); 3270 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3271 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3272 3273 #if defined(CONFIG_NET) 3274 bool bpf_sock_common_is_valid_access(int off, int size, 3275 enum bpf_access_type type, 3276 struct bpf_insn_access_aux *info); 3277 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3278 struct bpf_insn_access_aux *info); 3279 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3280 const struct bpf_insn *si, 3281 struct bpf_insn *insn_buf, 3282 struct bpf_prog *prog, 3283 u32 *target_size); 3284 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3285 struct bpf_dynptr *ptr); 3286 #else 3287 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3288 enum bpf_access_type type, 3289 struct bpf_insn_access_aux *info) 3290 { 3291 return false; 3292 } 3293 static inline bool bpf_sock_is_valid_access(int off, int size, 3294 enum bpf_access_type type, 3295 struct bpf_insn_access_aux *info) 3296 { 3297 return false; 3298 } 3299 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3300 const struct bpf_insn *si, 3301 struct bpf_insn *insn_buf, 3302 struct bpf_prog *prog, 3303 u32 *target_size) 3304 { 3305 return 0; 3306 } 3307 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3308 struct bpf_dynptr *ptr) 3309 { 3310 return -EOPNOTSUPP; 3311 } 3312 #endif 3313 3314 #ifdef CONFIG_INET 3315 struct sk_reuseport_kern { 3316 struct sk_buff *skb; 3317 struct sock *sk; 3318 struct sock *selected_sk; 3319 struct sock *migrating_sk; 3320 void *data_end; 3321 u32 hash; 3322 u32 reuseport_id; 3323 bool bind_inany; 3324 }; 3325 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3326 struct bpf_insn_access_aux *info); 3327 3328 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3329 const struct bpf_insn *si, 3330 struct bpf_insn *insn_buf, 3331 struct bpf_prog *prog, 3332 u32 *target_size); 3333 3334 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3335 struct bpf_insn_access_aux *info); 3336 3337 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3338 const struct bpf_insn *si, 3339 struct bpf_insn *insn_buf, 3340 struct bpf_prog *prog, 3341 u32 *target_size); 3342 #else 3343 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3344 enum bpf_access_type type, 3345 struct bpf_insn_access_aux *info) 3346 { 3347 return false; 3348 } 3349 3350 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3351 const struct bpf_insn *si, 3352 struct bpf_insn *insn_buf, 3353 struct bpf_prog *prog, 3354 u32 *target_size) 3355 { 3356 return 0; 3357 } 3358 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3359 enum bpf_access_type type, 3360 struct bpf_insn_access_aux *info) 3361 { 3362 return false; 3363 } 3364 3365 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3366 const struct bpf_insn *si, 3367 struct bpf_insn *insn_buf, 3368 struct bpf_prog *prog, 3369 u32 *target_size) 3370 { 3371 return 0; 3372 } 3373 #endif /* CONFIG_INET */ 3374 3375 enum bpf_text_poke_type { 3376 BPF_MOD_CALL, 3377 BPF_MOD_JUMP, 3378 }; 3379 3380 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3381 void *addr1, void *addr2); 3382 3383 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3384 struct bpf_prog *new, struct bpf_prog *old); 3385 3386 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3387 int bpf_arch_text_invalidate(void *dst, size_t len); 3388 3389 struct btf_id_set; 3390 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3391 3392 #define MAX_BPRINTF_VARARGS 12 3393 #define MAX_BPRINTF_BUF 1024 3394 3395 struct bpf_bprintf_data { 3396 u32 *bin_args; 3397 char *buf; 3398 bool get_bin_args; 3399 bool get_buf; 3400 }; 3401 3402 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3403 u32 num_args, struct bpf_bprintf_data *data); 3404 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3405 3406 #ifdef CONFIG_BPF_LSM 3407 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3408 void bpf_cgroup_atype_put(int cgroup_atype); 3409 #else 3410 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3411 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3412 #endif /* CONFIG_BPF_LSM */ 3413 3414 struct key; 3415 3416 #ifdef CONFIG_KEYS 3417 struct bpf_key { 3418 struct key *key; 3419 bool has_ref; 3420 }; 3421 #endif /* CONFIG_KEYS */ 3422 3423 static inline bool type_is_alloc(u32 type) 3424 { 3425 return type & MEM_ALLOC; 3426 } 3427 3428 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3429 { 3430 if (memcg_bpf_enabled()) 3431 return flags | __GFP_ACCOUNT; 3432 return flags; 3433 } 3434 3435 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3436 { 3437 return prog->aux->func_idx != 0; 3438 } 3439 3440 #endif /* _LINUX_BPF_H */ 3441