1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206 }; 207 208 typedef void (*btf_dtor_kfunc_t)(void *); 209 210 struct btf_field_kptr { 211 struct btf *btf; 212 struct module *module; 213 /* dtor used if btf_is_kernel(btf), otherwise the type is 214 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 215 */ 216 btf_dtor_kfunc_t dtor; 217 u32 btf_id; 218 }; 219 220 struct btf_field_graph_root { 221 struct btf *btf; 222 u32 value_btf_id; 223 u32 node_offset; 224 struct btf_record *value_rec; 225 }; 226 227 struct btf_field { 228 u32 offset; 229 u32 size; 230 enum btf_field_type type; 231 union { 232 struct btf_field_kptr kptr; 233 struct btf_field_graph_root graph_root; 234 }; 235 }; 236 237 struct btf_record { 238 u32 cnt; 239 u32 field_mask; 240 int spin_lock_off; 241 int timer_off; 242 int wq_off; 243 int refcount_off; 244 struct btf_field fields[]; 245 }; 246 247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 248 struct bpf_rb_node_kern { 249 struct rb_node rb_node; 250 void *owner; 251 } __attribute__((aligned(8))); 252 253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 254 struct bpf_list_node_kern { 255 struct list_head list_head; 256 void *owner; 257 } __attribute__((aligned(8))); 258 259 struct bpf_map { 260 const struct bpf_map_ops *ops; 261 struct bpf_map *inner_map_meta; 262 #ifdef CONFIG_SECURITY 263 void *security; 264 #endif 265 enum bpf_map_type map_type; 266 u32 key_size; 267 u32 value_size; 268 u32 max_entries; 269 u64 map_extra; /* any per-map-type extra fields */ 270 u32 map_flags; 271 u32 id; 272 struct btf_record *record; 273 int numa_node; 274 u32 btf_key_type_id; 275 u32 btf_value_type_id; 276 u32 btf_vmlinux_value_type_id; 277 struct btf *btf; 278 #ifdef CONFIG_MEMCG 279 struct obj_cgroup *objcg; 280 #endif 281 char name[BPF_OBJ_NAME_LEN]; 282 struct mutex freeze_mutex; 283 atomic64_t refcnt; 284 atomic64_t usercnt; 285 /* rcu is used before freeing and work is only used during freeing */ 286 union { 287 struct work_struct work; 288 struct rcu_head rcu; 289 }; 290 atomic64_t writecnt; 291 /* 'Ownership' of program-containing map is claimed by the first program 292 * that is going to use this map or by the first program which FD is 293 * stored in the map to make sure that all callers and callees have the 294 * same prog type, JITed flag and xdp_has_frags flag. 295 */ 296 struct { 297 const struct btf_type *attach_func_proto; 298 spinlock_t lock; 299 enum bpf_prog_type type; 300 bool jited; 301 bool xdp_has_frags; 302 } owner; 303 bool bypass_spec_v1; 304 bool frozen; /* write-once; write-protected by freeze_mutex */ 305 bool free_after_mult_rcu_gp; 306 bool free_after_rcu_gp; 307 atomic64_t sleepable_refcnt; 308 s64 __percpu *elem_count; 309 }; 310 311 static inline const char *btf_field_type_name(enum btf_field_type type) 312 { 313 switch (type) { 314 case BPF_SPIN_LOCK: 315 return "bpf_spin_lock"; 316 case BPF_TIMER: 317 return "bpf_timer"; 318 case BPF_WORKQUEUE: 319 return "bpf_wq"; 320 case BPF_KPTR_UNREF: 321 case BPF_KPTR_REF: 322 return "kptr"; 323 case BPF_KPTR_PERCPU: 324 return "percpu_kptr"; 325 case BPF_LIST_HEAD: 326 return "bpf_list_head"; 327 case BPF_LIST_NODE: 328 return "bpf_list_node"; 329 case BPF_RB_ROOT: 330 return "bpf_rb_root"; 331 case BPF_RB_NODE: 332 return "bpf_rb_node"; 333 case BPF_REFCOUNT: 334 return "bpf_refcount"; 335 default: 336 WARN_ON_ONCE(1); 337 return "unknown"; 338 } 339 } 340 341 static inline u32 btf_field_type_size(enum btf_field_type type) 342 { 343 switch (type) { 344 case BPF_SPIN_LOCK: 345 return sizeof(struct bpf_spin_lock); 346 case BPF_TIMER: 347 return sizeof(struct bpf_timer); 348 case BPF_WORKQUEUE: 349 return sizeof(struct bpf_wq); 350 case BPF_KPTR_UNREF: 351 case BPF_KPTR_REF: 352 case BPF_KPTR_PERCPU: 353 return sizeof(u64); 354 case BPF_LIST_HEAD: 355 return sizeof(struct bpf_list_head); 356 case BPF_LIST_NODE: 357 return sizeof(struct bpf_list_node); 358 case BPF_RB_ROOT: 359 return sizeof(struct bpf_rb_root); 360 case BPF_RB_NODE: 361 return sizeof(struct bpf_rb_node); 362 case BPF_REFCOUNT: 363 return sizeof(struct bpf_refcount); 364 default: 365 WARN_ON_ONCE(1); 366 return 0; 367 } 368 } 369 370 static inline u32 btf_field_type_align(enum btf_field_type type) 371 { 372 switch (type) { 373 case BPF_SPIN_LOCK: 374 return __alignof__(struct bpf_spin_lock); 375 case BPF_TIMER: 376 return __alignof__(struct bpf_timer); 377 case BPF_WORKQUEUE: 378 return __alignof__(struct bpf_wq); 379 case BPF_KPTR_UNREF: 380 case BPF_KPTR_REF: 381 case BPF_KPTR_PERCPU: 382 return __alignof__(u64); 383 case BPF_LIST_HEAD: 384 return __alignof__(struct bpf_list_head); 385 case BPF_LIST_NODE: 386 return __alignof__(struct bpf_list_node); 387 case BPF_RB_ROOT: 388 return __alignof__(struct bpf_rb_root); 389 case BPF_RB_NODE: 390 return __alignof__(struct bpf_rb_node); 391 case BPF_REFCOUNT: 392 return __alignof__(struct bpf_refcount); 393 default: 394 WARN_ON_ONCE(1); 395 return 0; 396 } 397 } 398 399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 400 { 401 memset(addr, 0, field->size); 402 403 switch (field->type) { 404 case BPF_REFCOUNT: 405 refcount_set((refcount_t *)addr, 1); 406 break; 407 case BPF_RB_NODE: 408 RB_CLEAR_NODE((struct rb_node *)addr); 409 break; 410 case BPF_LIST_HEAD: 411 case BPF_LIST_NODE: 412 INIT_LIST_HEAD((struct list_head *)addr); 413 break; 414 case BPF_RB_ROOT: 415 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 416 case BPF_SPIN_LOCK: 417 case BPF_TIMER: 418 case BPF_WORKQUEUE: 419 case BPF_KPTR_UNREF: 420 case BPF_KPTR_REF: 421 case BPF_KPTR_PERCPU: 422 break; 423 default: 424 WARN_ON_ONCE(1); 425 return; 426 } 427 } 428 429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 430 { 431 if (IS_ERR_OR_NULL(rec)) 432 return false; 433 return rec->field_mask & type; 434 } 435 436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 437 { 438 int i; 439 440 if (IS_ERR_OR_NULL(rec)) 441 return; 442 for (i = 0; i < rec->cnt; i++) 443 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 444 } 445 446 /* 'dst' must be a temporary buffer and should not point to memory that is being 447 * used in parallel by a bpf program or bpf syscall, otherwise the access from 448 * the bpf program or bpf syscall may be corrupted by the reinitialization, 449 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 450 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 451 * program or bpf syscall. 452 */ 453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 454 { 455 bpf_obj_init(map->record, dst); 456 } 457 458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 459 * forced to use 'long' read/writes to try to atomically copy long counters. 460 * Best-effort only. No barriers here, since it _will_ race with concurrent 461 * updates from BPF programs. Called from bpf syscall and mostly used with 462 * size 8 or 16 bytes, so ask compiler to inline it. 463 */ 464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 465 { 466 const long *lsrc = src; 467 long *ldst = dst; 468 469 size /= sizeof(long); 470 while (size--) 471 data_race(*ldst++ = *lsrc++); 472 } 473 474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 475 static inline void bpf_obj_memcpy(struct btf_record *rec, 476 void *dst, void *src, u32 size, 477 bool long_memcpy) 478 { 479 u32 curr_off = 0; 480 int i; 481 482 if (IS_ERR_OR_NULL(rec)) { 483 if (long_memcpy) 484 bpf_long_memcpy(dst, src, round_up(size, 8)); 485 else 486 memcpy(dst, src, size); 487 return; 488 } 489 490 for (i = 0; i < rec->cnt; i++) { 491 u32 next_off = rec->fields[i].offset; 492 u32 sz = next_off - curr_off; 493 494 memcpy(dst + curr_off, src + curr_off, sz); 495 curr_off += rec->fields[i].size + sz; 496 } 497 memcpy(dst + curr_off, src + curr_off, size - curr_off); 498 } 499 500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 501 { 502 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 503 } 504 505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 506 { 507 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 508 } 509 510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 511 { 512 u32 curr_off = 0; 513 int i; 514 515 if (IS_ERR_OR_NULL(rec)) { 516 memset(dst, 0, size); 517 return; 518 } 519 520 for (i = 0; i < rec->cnt; i++) { 521 u32 next_off = rec->fields[i].offset; 522 u32 sz = next_off - curr_off; 523 524 memset(dst + curr_off, 0, sz); 525 curr_off += rec->fields[i].size + sz; 526 } 527 memset(dst + curr_off, 0, size - curr_off); 528 } 529 530 static inline void zero_map_value(struct bpf_map *map, void *dst) 531 { 532 bpf_obj_memzero(map->record, dst, map->value_size); 533 } 534 535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 536 bool lock_src); 537 void bpf_timer_cancel_and_free(void *timer); 538 void bpf_wq_cancel_and_free(void *timer); 539 void bpf_list_head_free(const struct btf_field *field, void *list_head, 540 struct bpf_spin_lock *spin_lock); 541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 542 struct bpf_spin_lock *spin_lock); 543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 546 547 struct bpf_offload_dev; 548 struct bpf_offloaded_map; 549 550 struct bpf_map_dev_ops { 551 int (*map_get_next_key)(struct bpf_offloaded_map *map, 552 void *key, void *next_key); 553 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 554 void *key, void *value); 555 int (*map_update_elem)(struct bpf_offloaded_map *map, 556 void *key, void *value, u64 flags); 557 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 558 }; 559 560 struct bpf_offloaded_map { 561 struct bpf_map map; 562 struct net_device *netdev; 563 const struct bpf_map_dev_ops *dev_ops; 564 void *dev_priv; 565 struct list_head offloads; 566 }; 567 568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 569 { 570 return container_of(map, struct bpf_offloaded_map, map); 571 } 572 573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 574 { 575 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 576 } 577 578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 579 { 580 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 581 map->ops->map_seq_show_elem; 582 } 583 584 int map_check_no_btf(const struct bpf_map *map, 585 const struct btf *btf, 586 const struct btf_type *key_type, 587 const struct btf_type *value_type); 588 589 bool bpf_map_meta_equal(const struct bpf_map *meta0, 590 const struct bpf_map *meta1); 591 592 extern const struct bpf_map_ops bpf_map_offload_ops; 593 594 /* bpf_type_flag contains a set of flags that are applicable to the values of 595 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 596 * or a memory is read-only. We classify types into two categories: base types 597 * and extended types. Extended types are base types combined with a type flag. 598 * 599 * Currently there are no more than 32 base types in arg_type, ret_type and 600 * reg_types. 601 */ 602 #define BPF_BASE_TYPE_BITS 8 603 604 enum bpf_type_flag { 605 /* PTR may be NULL. */ 606 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 609 * compatible with both mutable and immutable memory. 610 */ 611 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 612 613 /* MEM points to BPF ring buffer reservation. */ 614 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 615 616 /* MEM is in user address space. */ 617 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 618 619 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 620 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 621 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 622 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 623 * to the specified cpu. 624 */ 625 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 626 627 /* Indicates that the argument will be released. */ 628 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 629 630 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 631 * unreferenced and referenced kptr loaded from map value using a load 632 * instruction, so that they can only be dereferenced but not escape the 633 * BPF program into the kernel (i.e. cannot be passed as arguments to 634 * kfunc or bpf helpers). 635 */ 636 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 637 638 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 639 640 /* DYNPTR points to memory local to the bpf program. */ 641 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 642 643 /* DYNPTR points to a kernel-produced ringbuf record. */ 644 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 645 646 /* Size is known at compile time. */ 647 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 648 649 /* MEM is of an allocated object of type in program BTF. This is used to 650 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 651 */ 652 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 653 654 /* PTR was passed from the kernel in a trusted context, and may be 655 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 656 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 657 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 658 * without invoking bpf_kptr_xchg(). What we really need to know is 659 * whether a pointer is safe to pass to a kfunc or BPF helper function. 660 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 661 * helpers, they do not cover all possible instances of unsafe 662 * pointers. For example, a pointer that was obtained from walking a 663 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 664 * fact that it may be NULL, invalid, etc. This is due to backwards 665 * compatibility requirements, as this was the behavior that was first 666 * introduced when kptrs were added. The behavior is now considered 667 * deprecated, and PTR_UNTRUSTED will eventually be removed. 668 * 669 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 670 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 671 * For example, pointers passed to tracepoint arguments are considered 672 * PTR_TRUSTED, as are pointers that are passed to struct_ops 673 * callbacks. As alluded to above, pointers that are obtained from 674 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 675 * struct task_struct *task is PTR_TRUSTED, then accessing 676 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 677 * in a BPF register. Similarly, pointers passed to certain programs 678 * types such as kretprobes are not guaranteed to be valid, as they may 679 * for example contain an object that was recently freed. 680 */ 681 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 682 683 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 684 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 685 686 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 687 * Currently only valid for linked-list and rbtree nodes. If the nodes 688 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 689 */ 690 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 691 692 /* DYNPTR points to sk_buff */ 693 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 694 695 /* DYNPTR points to xdp_buff */ 696 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 697 698 /* Memory must be aligned on some architectures, used in combination with 699 * MEM_FIXED_SIZE. 700 */ 701 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 702 703 __BPF_TYPE_FLAG_MAX, 704 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 705 }; 706 707 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 708 | DYNPTR_TYPE_XDP) 709 710 /* Max number of base types. */ 711 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 712 713 /* Max number of all types. */ 714 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 715 716 /* function argument constraints */ 717 enum bpf_arg_type { 718 ARG_DONTCARE = 0, /* unused argument in helper function */ 719 720 /* the following constraints used to prototype 721 * bpf_map_lookup/update/delete_elem() functions 722 */ 723 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 724 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 725 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 726 727 /* Used to prototype bpf_memcmp() and other functions that access data 728 * on eBPF program stack 729 */ 730 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 731 ARG_PTR_TO_ARENA, 732 733 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 734 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 735 736 ARG_PTR_TO_CTX, /* pointer to context */ 737 ARG_ANYTHING, /* any (initialized) argument is ok */ 738 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 739 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 740 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 741 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 742 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 743 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 744 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 745 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 746 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 747 ARG_PTR_TO_STACK, /* pointer to stack */ 748 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 749 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 750 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 751 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 752 __BPF_ARG_TYPE_MAX, 753 754 /* Extended arg_types. */ 755 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 756 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 757 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 758 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 759 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 760 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 761 /* pointer to memory does not need to be initialized, helper function must fill 762 * all bytes or clear them in error case. 763 */ 764 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 765 /* Pointer to valid memory of size known at compile time. */ 766 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 767 768 /* This must be the last entry. Its purpose is to ensure the enum is 769 * wide enough to hold the higher bits reserved for bpf_type_flag. 770 */ 771 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 772 }; 773 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 774 775 /* type of values returned from helper functions */ 776 enum bpf_return_type { 777 RET_INTEGER, /* function returns integer */ 778 RET_VOID, /* function doesn't return anything */ 779 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 780 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 781 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 782 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 783 RET_PTR_TO_MEM, /* returns a pointer to memory */ 784 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 785 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 786 __BPF_RET_TYPE_MAX, 787 788 /* Extended ret_types. */ 789 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 790 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 791 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 792 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 793 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 794 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 795 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 796 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 797 798 /* This must be the last entry. Its purpose is to ensure the enum is 799 * wide enough to hold the higher bits reserved for bpf_type_flag. 800 */ 801 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 802 }; 803 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 804 805 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 806 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 807 * instructions after verifying 808 */ 809 struct bpf_func_proto { 810 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 811 bool gpl_only; 812 bool pkt_access; 813 bool might_sleep; 814 /* set to true if helper follows contract for llvm 815 * attribute bpf_fastcall: 816 * - void functions do not scratch r0 817 * - functions taking N arguments scratch only registers r1-rN 818 */ 819 bool allow_fastcall; 820 enum bpf_return_type ret_type; 821 union { 822 struct { 823 enum bpf_arg_type arg1_type; 824 enum bpf_arg_type arg2_type; 825 enum bpf_arg_type arg3_type; 826 enum bpf_arg_type arg4_type; 827 enum bpf_arg_type arg5_type; 828 }; 829 enum bpf_arg_type arg_type[5]; 830 }; 831 union { 832 struct { 833 u32 *arg1_btf_id; 834 u32 *arg2_btf_id; 835 u32 *arg3_btf_id; 836 u32 *arg4_btf_id; 837 u32 *arg5_btf_id; 838 }; 839 u32 *arg_btf_id[5]; 840 struct { 841 size_t arg1_size; 842 size_t arg2_size; 843 size_t arg3_size; 844 size_t arg4_size; 845 size_t arg5_size; 846 }; 847 size_t arg_size[5]; 848 }; 849 int *ret_btf_id; /* return value btf_id */ 850 bool (*allowed)(const struct bpf_prog *prog); 851 }; 852 853 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 854 * the first argument to eBPF programs. 855 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 856 */ 857 struct bpf_context; 858 859 enum bpf_access_type { 860 BPF_READ = 1, 861 BPF_WRITE = 2 862 }; 863 864 /* types of values stored in eBPF registers */ 865 /* Pointer types represent: 866 * pointer 867 * pointer + imm 868 * pointer + (u16) var 869 * pointer + (u16) var + imm 870 * if (range > 0) then [ptr, ptr + range - off) is safe to access 871 * if (id > 0) means that some 'var' was added 872 * if (off > 0) means that 'imm' was added 873 */ 874 enum bpf_reg_type { 875 NOT_INIT = 0, /* nothing was written into register */ 876 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 877 PTR_TO_CTX, /* reg points to bpf_context */ 878 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 879 PTR_TO_MAP_VALUE, /* reg points to map element value */ 880 PTR_TO_MAP_KEY, /* reg points to a map element key */ 881 PTR_TO_STACK, /* reg == frame_pointer + offset */ 882 PTR_TO_PACKET_META, /* skb->data - meta_len */ 883 PTR_TO_PACKET, /* reg points to skb->data */ 884 PTR_TO_PACKET_END, /* skb->data + headlen */ 885 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 886 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 887 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 888 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 889 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 890 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 891 /* PTR_TO_BTF_ID points to a kernel struct that does not need 892 * to be null checked by the BPF program. This does not imply the 893 * pointer is _not_ null and in practice this can easily be a null 894 * pointer when reading pointer chains. The assumption is program 895 * context will handle null pointer dereference typically via fault 896 * handling. The verifier must keep this in mind and can make no 897 * assumptions about null or non-null when doing branch analysis. 898 * Further, when passed into helpers the helpers can not, without 899 * additional context, assume the value is non-null. 900 */ 901 PTR_TO_BTF_ID, 902 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 903 * been checked for null. Used primarily to inform the verifier 904 * an explicit null check is required for this struct. 905 */ 906 PTR_TO_MEM, /* reg points to valid memory region */ 907 PTR_TO_ARENA, 908 PTR_TO_BUF, /* reg points to a read/write buffer */ 909 PTR_TO_FUNC, /* reg points to a bpf program function */ 910 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 911 __BPF_REG_TYPE_MAX, 912 913 /* Extended reg_types. */ 914 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 915 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 916 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 917 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 918 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 919 920 /* This must be the last entry. Its purpose is to ensure the enum is 921 * wide enough to hold the higher bits reserved for bpf_type_flag. 922 */ 923 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 924 }; 925 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 926 927 /* The information passed from prog-specific *_is_valid_access 928 * back to the verifier. 929 */ 930 struct bpf_insn_access_aux { 931 enum bpf_reg_type reg_type; 932 bool is_ldsx; 933 union { 934 int ctx_field_size; 935 struct { 936 struct btf *btf; 937 u32 btf_id; 938 }; 939 }; 940 struct bpf_verifier_log *log; /* for verbose logs */ 941 bool is_retval; /* is accessing function return value ? */ 942 }; 943 944 static inline void 945 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 946 { 947 aux->ctx_field_size = size; 948 } 949 950 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 951 { 952 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 953 } 954 955 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 956 { 957 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 958 } 959 960 struct bpf_prog_ops { 961 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 962 union bpf_attr __user *uattr); 963 }; 964 965 struct bpf_reg_state; 966 struct bpf_verifier_ops { 967 /* return eBPF function prototype for verification */ 968 const struct bpf_func_proto * 969 (*get_func_proto)(enum bpf_func_id func_id, 970 const struct bpf_prog *prog); 971 972 /* return true if 'size' wide access at offset 'off' within bpf_context 973 * with 'type' (read or write) is allowed 974 */ 975 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 976 const struct bpf_prog *prog, 977 struct bpf_insn_access_aux *info); 978 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 979 const struct bpf_prog *prog); 980 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 981 s16 ctx_stack_off); 982 int (*gen_ld_abs)(const struct bpf_insn *orig, 983 struct bpf_insn *insn_buf); 984 u32 (*convert_ctx_access)(enum bpf_access_type type, 985 const struct bpf_insn *src, 986 struct bpf_insn *dst, 987 struct bpf_prog *prog, u32 *target_size); 988 int (*btf_struct_access)(struct bpf_verifier_log *log, 989 const struct bpf_reg_state *reg, 990 int off, int size); 991 }; 992 993 struct bpf_prog_offload_ops { 994 /* verifier basic callbacks */ 995 int (*insn_hook)(struct bpf_verifier_env *env, 996 int insn_idx, int prev_insn_idx); 997 int (*finalize)(struct bpf_verifier_env *env); 998 /* verifier optimization callbacks (called after .finalize) */ 999 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1000 struct bpf_insn *insn); 1001 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1002 /* program management callbacks */ 1003 int (*prepare)(struct bpf_prog *prog); 1004 int (*translate)(struct bpf_prog *prog); 1005 void (*destroy)(struct bpf_prog *prog); 1006 }; 1007 1008 struct bpf_prog_offload { 1009 struct bpf_prog *prog; 1010 struct net_device *netdev; 1011 struct bpf_offload_dev *offdev; 1012 void *dev_priv; 1013 struct list_head offloads; 1014 bool dev_state; 1015 bool opt_failed; 1016 void *jited_image; 1017 u32 jited_len; 1018 }; 1019 1020 enum bpf_cgroup_storage_type { 1021 BPF_CGROUP_STORAGE_SHARED, 1022 BPF_CGROUP_STORAGE_PERCPU, 1023 __BPF_CGROUP_STORAGE_MAX 1024 }; 1025 1026 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1027 1028 /* The longest tracepoint has 12 args. 1029 * See include/trace/bpf_probe.h 1030 */ 1031 #define MAX_BPF_FUNC_ARGS 12 1032 1033 /* The maximum number of arguments passed through registers 1034 * a single function may have. 1035 */ 1036 #define MAX_BPF_FUNC_REG_ARGS 5 1037 1038 /* The argument is a structure. */ 1039 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1040 1041 /* The argument is signed. */ 1042 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1043 1044 struct btf_func_model { 1045 u8 ret_size; 1046 u8 ret_flags; 1047 u8 nr_args; 1048 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1049 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1050 }; 1051 1052 /* Restore arguments before returning from trampoline to let original function 1053 * continue executing. This flag is used for fentry progs when there are no 1054 * fexit progs. 1055 */ 1056 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1057 /* Call original function after fentry progs, but before fexit progs. 1058 * Makes sense for fentry/fexit, normal calls and indirect calls. 1059 */ 1060 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1061 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1062 * programs only. Should not be used with normal calls and indirect calls. 1063 */ 1064 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1065 /* Store IP address of the caller on the trampoline stack, 1066 * so it's available for trampoline's programs. 1067 */ 1068 #define BPF_TRAMP_F_IP_ARG BIT(3) 1069 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1070 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1071 1072 /* Get original function from stack instead of from provided direct address. 1073 * Makes sense for trampolines with fexit or fmod_ret programs. 1074 */ 1075 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1076 1077 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1078 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1079 */ 1080 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1081 1082 /* Indicate that current trampoline is in a tail call context. Then, it has to 1083 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1084 */ 1085 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1086 1087 /* 1088 * Indicate the trampoline should be suitable to receive indirect calls; 1089 * without this indirectly calling the generated code can result in #UD/#CP, 1090 * depending on the CFI options. 1091 * 1092 * Used by bpf_struct_ops. 1093 * 1094 * Incompatible with FENTRY usage, overloads @func_addr argument. 1095 */ 1096 #define BPF_TRAMP_F_INDIRECT BIT(8) 1097 1098 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1099 * bytes on x86. 1100 */ 1101 enum { 1102 #if defined(__s390x__) 1103 BPF_MAX_TRAMP_LINKS = 27, 1104 #else 1105 BPF_MAX_TRAMP_LINKS = 38, 1106 #endif 1107 }; 1108 1109 struct bpf_tramp_links { 1110 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1111 int nr_links; 1112 }; 1113 1114 struct bpf_tramp_run_ctx; 1115 1116 /* Different use cases for BPF trampoline: 1117 * 1. replace nop at the function entry (kprobe equivalent) 1118 * flags = BPF_TRAMP_F_RESTORE_REGS 1119 * fentry = a set of programs to run before returning from trampoline 1120 * 1121 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1122 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1123 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1124 * fentry = a set of program to run before calling original function 1125 * fexit = a set of program to run after original function 1126 * 1127 * 3. replace direct call instruction anywhere in the function body 1128 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1129 * With flags = 0 1130 * fentry = a set of programs to run before returning from trampoline 1131 * With flags = BPF_TRAMP_F_CALL_ORIG 1132 * orig_call = original callback addr or direct function addr 1133 * fentry = a set of program to run before calling original function 1134 * fexit = a set of program to run after original function 1135 */ 1136 struct bpf_tramp_image; 1137 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1138 const struct btf_func_model *m, u32 flags, 1139 struct bpf_tramp_links *tlinks, 1140 void *func_addr); 1141 void *arch_alloc_bpf_trampoline(unsigned int size); 1142 void arch_free_bpf_trampoline(void *image, unsigned int size); 1143 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1144 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1145 struct bpf_tramp_links *tlinks, void *func_addr); 1146 1147 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1148 struct bpf_tramp_run_ctx *run_ctx); 1149 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1150 struct bpf_tramp_run_ctx *run_ctx); 1151 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1152 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1153 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1154 struct bpf_tramp_run_ctx *run_ctx); 1155 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1156 struct bpf_tramp_run_ctx *run_ctx); 1157 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1158 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1159 1160 struct bpf_ksym { 1161 unsigned long start; 1162 unsigned long end; 1163 char name[KSYM_NAME_LEN]; 1164 struct list_head lnode; 1165 struct latch_tree_node tnode; 1166 bool prog; 1167 }; 1168 1169 enum bpf_tramp_prog_type { 1170 BPF_TRAMP_FENTRY, 1171 BPF_TRAMP_FEXIT, 1172 BPF_TRAMP_MODIFY_RETURN, 1173 BPF_TRAMP_MAX, 1174 BPF_TRAMP_REPLACE, /* more than MAX */ 1175 }; 1176 1177 struct bpf_tramp_image { 1178 void *image; 1179 int size; 1180 struct bpf_ksym ksym; 1181 struct percpu_ref pcref; 1182 void *ip_after_call; 1183 void *ip_epilogue; 1184 union { 1185 struct rcu_head rcu; 1186 struct work_struct work; 1187 }; 1188 }; 1189 1190 struct bpf_trampoline { 1191 /* hlist for trampoline_table */ 1192 struct hlist_node hlist; 1193 struct ftrace_ops *fops; 1194 /* serializes access to fields of this trampoline */ 1195 struct mutex mutex; 1196 refcount_t refcnt; 1197 u32 flags; 1198 u64 key; 1199 struct { 1200 struct btf_func_model model; 1201 void *addr; 1202 bool ftrace_managed; 1203 } func; 1204 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1205 * program by replacing one of its functions. func.addr is the address 1206 * of the function it replaced. 1207 */ 1208 struct bpf_prog *extension_prog; 1209 /* list of BPF programs using this trampoline */ 1210 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1211 /* Number of attached programs. A counter per kind. */ 1212 int progs_cnt[BPF_TRAMP_MAX]; 1213 /* Executable image of trampoline */ 1214 struct bpf_tramp_image *cur_image; 1215 }; 1216 1217 struct bpf_attach_target_info { 1218 struct btf_func_model fmodel; 1219 long tgt_addr; 1220 struct module *tgt_mod; 1221 const char *tgt_name; 1222 const struct btf_type *tgt_type; 1223 }; 1224 1225 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1226 1227 struct bpf_dispatcher_prog { 1228 struct bpf_prog *prog; 1229 refcount_t users; 1230 }; 1231 1232 struct bpf_dispatcher { 1233 /* dispatcher mutex */ 1234 struct mutex mutex; 1235 void *func; 1236 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1237 int num_progs; 1238 void *image; 1239 void *rw_image; 1240 u32 image_off; 1241 struct bpf_ksym ksym; 1242 #ifdef CONFIG_HAVE_STATIC_CALL 1243 struct static_call_key *sc_key; 1244 void *sc_tramp; 1245 #endif 1246 }; 1247 1248 #ifndef __bpfcall 1249 #define __bpfcall __nocfi 1250 #endif 1251 1252 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1253 const void *ctx, 1254 const struct bpf_insn *insnsi, 1255 bpf_func_t bpf_func) 1256 { 1257 return bpf_func(ctx, insnsi); 1258 } 1259 1260 /* the implementation of the opaque uapi struct bpf_dynptr */ 1261 struct bpf_dynptr_kern { 1262 void *data; 1263 /* Size represents the number of usable bytes of dynptr data. 1264 * If for example the offset is at 4 for a local dynptr whose data is 1265 * of type u64, the number of usable bytes is 4. 1266 * 1267 * The upper 8 bits are reserved. It is as follows: 1268 * Bits 0 - 23 = size 1269 * Bits 24 - 30 = dynptr type 1270 * Bit 31 = whether dynptr is read-only 1271 */ 1272 u32 size; 1273 u32 offset; 1274 } __aligned(8); 1275 1276 enum bpf_dynptr_type { 1277 BPF_DYNPTR_TYPE_INVALID, 1278 /* Points to memory that is local to the bpf program */ 1279 BPF_DYNPTR_TYPE_LOCAL, 1280 /* Underlying data is a ringbuf record */ 1281 BPF_DYNPTR_TYPE_RINGBUF, 1282 /* Underlying data is a sk_buff */ 1283 BPF_DYNPTR_TYPE_SKB, 1284 /* Underlying data is a xdp_buff */ 1285 BPF_DYNPTR_TYPE_XDP, 1286 }; 1287 1288 int bpf_dynptr_check_size(u32 size); 1289 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1290 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1291 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1292 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1293 1294 #ifdef CONFIG_BPF_JIT 1295 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1296 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1297 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1298 struct bpf_attach_target_info *tgt_info); 1299 void bpf_trampoline_put(struct bpf_trampoline *tr); 1300 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1301 1302 /* 1303 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1304 * indirection with a direct call to the bpf program. If the architecture does 1305 * not have STATIC_CALL, avoid a double-indirection. 1306 */ 1307 #ifdef CONFIG_HAVE_STATIC_CALL 1308 1309 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1310 .sc_key = &STATIC_CALL_KEY(_name), \ 1311 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1312 1313 #define __BPF_DISPATCHER_SC(name) \ 1314 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1315 1316 #define __BPF_DISPATCHER_CALL(name) \ 1317 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1318 1319 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1320 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1321 1322 #else 1323 #define __BPF_DISPATCHER_SC_INIT(name) 1324 #define __BPF_DISPATCHER_SC(name) 1325 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1326 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1327 #endif 1328 1329 #define BPF_DISPATCHER_INIT(_name) { \ 1330 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1331 .func = &_name##_func, \ 1332 .progs = {}, \ 1333 .num_progs = 0, \ 1334 .image = NULL, \ 1335 .image_off = 0, \ 1336 .ksym = { \ 1337 .name = #_name, \ 1338 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1339 }, \ 1340 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1341 } 1342 1343 #define DEFINE_BPF_DISPATCHER(name) \ 1344 __BPF_DISPATCHER_SC(name); \ 1345 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1346 const void *ctx, \ 1347 const struct bpf_insn *insnsi, \ 1348 bpf_func_t bpf_func) \ 1349 { \ 1350 return __BPF_DISPATCHER_CALL(name); \ 1351 } \ 1352 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1353 struct bpf_dispatcher bpf_dispatcher_##name = \ 1354 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1355 1356 #define DECLARE_BPF_DISPATCHER(name) \ 1357 unsigned int bpf_dispatcher_##name##_func( \ 1358 const void *ctx, \ 1359 const struct bpf_insn *insnsi, \ 1360 bpf_func_t bpf_func); \ 1361 extern struct bpf_dispatcher bpf_dispatcher_##name; 1362 1363 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1364 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1365 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1366 struct bpf_prog *to); 1367 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1368 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1369 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1370 void bpf_ksym_add(struct bpf_ksym *ksym); 1371 void bpf_ksym_del(struct bpf_ksym *ksym); 1372 int bpf_jit_charge_modmem(u32 size); 1373 void bpf_jit_uncharge_modmem(u32 size); 1374 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1375 #else 1376 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1377 struct bpf_trampoline *tr) 1378 { 1379 return -ENOTSUPP; 1380 } 1381 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1382 struct bpf_trampoline *tr) 1383 { 1384 return -ENOTSUPP; 1385 } 1386 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1387 struct bpf_attach_target_info *tgt_info) 1388 { 1389 return NULL; 1390 } 1391 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1392 #define DEFINE_BPF_DISPATCHER(name) 1393 #define DECLARE_BPF_DISPATCHER(name) 1394 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1395 #define BPF_DISPATCHER_PTR(name) NULL 1396 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1397 struct bpf_prog *from, 1398 struct bpf_prog *to) {} 1399 static inline bool is_bpf_image_address(unsigned long address) 1400 { 1401 return false; 1402 } 1403 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1404 { 1405 return false; 1406 } 1407 #endif 1408 1409 struct bpf_func_info_aux { 1410 u16 linkage; 1411 bool unreliable; 1412 bool called : 1; 1413 bool verified : 1; 1414 }; 1415 1416 enum bpf_jit_poke_reason { 1417 BPF_POKE_REASON_TAIL_CALL, 1418 }; 1419 1420 /* Descriptor of pokes pointing /into/ the JITed image. */ 1421 struct bpf_jit_poke_descriptor { 1422 void *tailcall_target; 1423 void *tailcall_bypass; 1424 void *bypass_addr; 1425 void *aux; 1426 union { 1427 struct { 1428 struct bpf_map *map; 1429 u32 key; 1430 } tail_call; 1431 }; 1432 bool tailcall_target_stable; 1433 u8 adj_off; 1434 u16 reason; 1435 u32 insn_idx; 1436 }; 1437 1438 /* reg_type info for ctx arguments */ 1439 struct bpf_ctx_arg_aux { 1440 u32 offset; 1441 enum bpf_reg_type reg_type; 1442 struct btf *btf; 1443 u32 btf_id; 1444 }; 1445 1446 struct btf_mod_pair { 1447 struct btf *btf; 1448 struct module *module; 1449 }; 1450 1451 struct bpf_kfunc_desc_tab; 1452 1453 struct bpf_prog_aux { 1454 atomic64_t refcnt; 1455 u32 used_map_cnt; 1456 u32 used_btf_cnt; 1457 u32 max_ctx_offset; 1458 u32 max_pkt_offset; 1459 u32 max_tp_access; 1460 u32 stack_depth; 1461 u32 id; 1462 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1463 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1464 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1465 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1466 u32 ctx_arg_info_size; 1467 u32 max_rdonly_access; 1468 u32 max_rdwr_access; 1469 struct btf *attach_btf; 1470 const struct bpf_ctx_arg_aux *ctx_arg_info; 1471 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1472 struct bpf_prog *dst_prog; 1473 struct bpf_trampoline *dst_trampoline; 1474 enum bpf_prog_type saved_dst_prog_type; 1475 enum bpf_attach_type saved_dst_attach_type; 1476 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1477 bool dev_bound; /* Program is bound to the netdev. */ 1478 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1479 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1480 bool attach_tracing_prog; /* true if tracing another tracing program */ 1481 bool func_proto_unreliable; 1482 bool tail_call_reachable; 1483 bool xdp_has_frags; 1484 bool exception_cb; 1485 bool exception_boundary; 1486 struct bpf_arena *arena; 1487 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1488 const struct btf_type *attach_func_proto; 1489 /* function name for valid attach_btf_id */ 1490 const char *attach_func_name; 1491 struct bpf_prog **func; 1492 void *jit_data; /* JIT specific data. arch dependent */ 1493 struct bpf_jit_poke_descriptor *poke_tab; 1494 struct bpf_kfunc_desc_tab *kfunc_tab; 1495 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1496 u32 size_poke_tab; 1497 #ifdef CONFIG_FINEIBT 1498 struct bpf_ksym ksym_prefix; 1499 #endif 1500 struct bpf_ksym ksym; 1501 const struct bpf_prog_ops *ops; 1502 struct bpf_map **used_maps; 1503 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1504 struct btf_mod_pair *used_btfs; 1505 struct bpf_prog *prog; 1506 struct user_struct *user; 1507 u64 load_time; /* ns since boottime */ 1508 u32 verified_insns; 1509 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1510 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1511 char name[BPF_OBJ_NAME_LEN]; 1512 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1513 #ifdef CONFIG_SECURITY 1514 void *security; 1515 #endif 1516 struct bpf_token *token; 1517 struct bpf_prog_offload *offload; 1518 struct btf *btf; 1519 struct bpf_func_info *func_info; 1520 struct bpf_func_info_aux *func_info_aux; 1521 /* bpf_line_info loaded from userspace. linfo->insn_off 1522 * has the xlated insn offset. 1523 * Both the main and sub prog share the same linfo. 1524 * The subprog can access its first linfo by 1525 * using the linfo_idx. 1526 */ 1527 struct bpf_line_info *linfo; 1528 /* jited_linfo is the jited addr of the linfo. It has a 1529 * one to one mapping to linfo: 1530 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1531 * Both the main and sub prog share the same jited_linfo. 1532 * The subprog can access its first jited_linfo by 1533 * using the linfo_idx. 1534 */ 1535 void **jited_linfo; 1536 u32 func_info_cnt; 1537 u32 nr_linfo; 1538 /* subprog can use linfo_idx to access its first linfo and 1539 * jited_linfo. 1540 * main prog always has linfo_idx == 0 1541 */ 1542 u32 linfo_idx; 1543 struct module *mod; 1544 u32 num_exentries; 1545 struct exception_table_entry *extable; 1546 union { 1547 struct work_struct work; 1548 struct rcu_head rcu; 1549 }; 1550 }; 1551 1552 struct bpf_prog { 1553 u16 pages; /* Number of allocated pages */ 1554 u16 jited:1, /* Is our filter JIT'ed? */ 1555 jit_requested:1,/* archs need to JIT the prog */ 1556 gpl_compatible:1, /* Is filter GPL compatible? */ 1557 cb_access:1, /* Is control block accessed? */ 1558 dst_needed:1, /* Do we need dst entry? */ 1559 blinding_requested:1, /* needs constant blinding */ 1560 blinded:1, /* Was blinded */ 1561 is_func:1, /* program is a bpf function */ 1562 kprobe_override:1, /* Do we override a kprobe? */ 1563 has_callchain_buf:1, /* callchain buffer allocated? */ 1564 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1565 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1566 call_get_func_ip:1, /* Do we call get_func_ip() */ 1567 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1568 sleepable:1; /* BPF program is sleepable */ 1569 enum bpf_prog_type type; /* Type of BPF program */ 1570 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1571 u32 len; /* Number of filter blocks */ 1572 u32 jited_len; /* Size of jited insns in bytes */ 1573 u8 tag[BPF_TAG_SIZE]; 1574 struct bpf_prog_stats __percpu *stats; 1575 int __percpu *active; 1576 unsigned int (*bpf_func)(const void *ctx, 1577 const struct bpf_insn *insn); 1578 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1579 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1580 /* Instructions for interpreter */ 1581 union { 1582 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1583 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1584 }; 1585 }; 1586 1587 struct bpf_array_aux { 1588 /* Programs with direct jumps into programs part of this array. */ 1589 struct list_head poke_progs; 1590 struct bpf_map *map; 1591 struct mutex poke_mutex; 1592 struct work_struct work; 1593 }; 1594 1595 struct bpf_link { 1596 atomic64_t refcnt; 1597 u32 id; 1598 enum bpf_link_type type; 1599 const struct bpf_link_ops *ops; 1600 struct bpf_prog *prog; 1601 /* rcu is used before freeing, work can be used to schedule that 1602 * RCU-based freeing before that, so they never overlap 1603 */ 1604 union { 1605 struct rcu_head rcu; 1606 struct work_struct work; 1607 }; 1608 }; 1609 1610 struct bpf_link_ops { 1611 void (*release)(struct bpf_link *link); 1612 /* deallocate link resources callback, called without RCU grace period 1613 * waiting 1614 */ 1615 void (*dealloc)(struct bpf_link *link); 1616 /* deallocate link resources callback, called after RCU grace period; 1617 * if underlying BPF program is sleepable we go through tasks trace 1618 * RCU GP and then "classic" RCU GP 1619 */ 1620 void (*dealloc_deferred)(struct bpf_link *link); 1621 int (*detach)(struct bpf_link *link); 1622 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1623 struct bpf_prog *old_prog); 1624 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1625 int (*fill_link_info)(const struct bpf_link *link, 1626 struct bpf_link_info *info); 1627 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1628 struct bpf_map *old_map); 1629 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1630 }; 1631 1632 struct bpf_tramp_link { 1633 struct bpf_link link; 1634 struct hlist_node tramp_hlist; 1635 u64 cookie; 1636 }; 1637 1638 struct bpf_shim_tramp_link { 1639 struct bpf_tramp_link link; 1640 struct bpf_trampoline *trampoline; 1641 }; 1642 1643 struct bpf_tracing_link { 1644 struct bpf_tramp_link link; 1645 enum bpf_attach_type attach_type; 1646 struct bpf_trampoline *trampoline; 1647 struct bpf_prog *tgt_prog; 1648 }; 1649 1650 struct bpf_raw_tp_link { 1651 struct bpf_link link; 1652 struct bpf_raw_event_map *btp; 1653 u64 cookie; 1654 }; 1655 1656 struct bpf_link_primer { 1657 struct bpf_link *link; 1658 struct file *file; 1659 int fd; 1660 u32 id; 1661 }; 1662 1663 struct bpf_mount_opts { 1664 kuid_t uid; 1665 kgid_t gid; 1666 umode_t mode; 1667 1668 /* BPF token-related delegation options */ 1669 u64 delegate_cmds; 1670 u64 delegate_maps; 1671 u64 delegate_progs; 1672 u64 delegate_attachs; 1673 }; 1674 1675 struct bpf_token { 1676 struct work_struct work; 1677 atomic64_t refcnt; 1678 struct user_namespace *userns; 1679 u64 allowed_cmds; 1680 u64 allowed_maps; 1681 u64 allowed_progs; 1682 u64 allowed_attachs; 1683 #ifdef CONFIG_SECURITY 1684 void *security; 1685 #endif 1686 }; 1687 1688 struct bpf_struct_ops_value; 1689 struct btf_member; 1690 1691 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1692 /** 1693 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1694 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1695 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1696 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1697 * when determining whether the struct_ops progs in the 1698 * struct_ops map are valid. 1699 * @init: A callback that is invoked a single time, and before any other 1700 * callback, to initialize the structure. A nonzero return value means 1701 * the subsystem could not be initialized. 1702 * @check_member: When defined, a callback invoked by the verifier to allow 1703 * the subsystem to determine if an entry in the struct_ops map 1704 * is valid. A nonzero return value means that the map is 1705 * invalid and should be rejected by the verifier. 1706 * @init_member: A callback that is invoked for each member of the struct_ops 1707 * map to allow the subsystem to initialize the member. A nonzero 1708 * value means the member could not be initialized. This callback 1709 * is exclusive with the @type, @type_id, @value_type, and 1710 * @value_id fields. 1711 * @reg: A callback that is invoked when the struct_ops map has been 1712 * initialized and is being attached to. Zero means the struct_ops map 1713 * has been successfully registered and is live. A nonzero return value 1714 * means the struct_ops map could not be registered. 1715 * @unreg: A callback that is invoked when the struct_ops map should be 1716 * unregistered. 1717 * @update: A callback that is invoked when the live struct_ops map is being 1718 * updated to contain new values. This callback is only invoked when 1719 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1720 * it is assumed that the struct_ops map cannot be updated. 1721 * @validate: A callback that is invoked after all of the members have been 1722 * initialized. This callback should perform static checks on the 1723 * map, meaning that it should either fail or succeed 1724 * deterministically. A struct_ops map that has been validated may 1725 * not necessarily succeed in being registered if the call to @reg 1726 * fails. For example, a valid struct_ops map may be loaded, but 1727 * then fail to be registered due to there being another active 1728 * struct_ops map on the system in the subsystem already. For this 1729 * reason, if this callback is not defined, the check is skipped as 1730 * the struct_ops map will have final verification performed in 1731 * @reg. 1732 * @type: BTF type. 1733 * @value_type: Value type. 1734 * @name: The name of the struct bpf_struct_ops object. 1735 * @func_models: Func models 1736 * @type_id: BTF type id. 1737 * @value_id: BTF value id. 1738 */ 1739 struct bpf_struct_ops { 1740 const struct bpf_verifier_ops *verifier_ops; 1741 int (*init)(struct btf *btf); 1742 int (*check_member)(const struct btf_type *t, 1743 const struct btf_member *member, 1744 const struct bpf_prog *prog); 1745 int (*init_member)(const struct btf_type *t, 1746 const struct btf_member *member, 1747 void *kdata, const void *udata); 1748 int (*reg)(void *kdata, struct bpf_link *link); 1749 void (*unreg)(void *kdata, struct bpf_link *link); 1750 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1751 int (*validate)(void *kdata); 1752 void *cfi_stubs; 1753 struct module *owner; 1754 const char *name; 1755 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1756 }; 1757 1758 /* Every member of a struct_ops type has an instance even a member is not 1759 * an operator (function pointer). The "info" field will be assigned to 1760 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1761 * argument information required by the verifier to verify the program. 1762 * 1763 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1764 * corresponding entry for an given argument. 1765 */ 1766 struct bpf_struct_ops_arg_info { 1767 struct bpf_ctx_arg_aux *info; 1768 u32 cnt; 1769 }; 1770 1771 struct bpf_struct_ops_desc { 1772 struct bpf_struct_ops *st_ops; 1773 1774 const struct btf_type *type; 1775 const struct btf_type *value_type; 1776 u32 type_id; 1777 u32 value_id; 1778 1779 /* Collection of argument information for each member */ 1780 struct bpf_struct_ops_arg_info *arg_info; 1781 }; 1782 1783 enum bpf_struct_ops_state { 1784 BPF_STRUCT_OPS_STATE_INIT, 1785 BPF_STRUCT_OPS_STATE_INUSE, 1786 BPF_STRUCT_OPS_STATE_TOBEFREE, 1787 BPF_STRUCT_OPS_STATE_READY, 1788 }; 1789 1790 struct bpf_struct_ops_common_value { 1791 refcount_t refcnt; 1792 enum bpf_struct_ops_state state; 1793 }; 1794 1795 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1796 /* This macro helps developer to register a struct_ops type and generate 1797 * type information correctly. Developers should use this macro to register 1798 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1799 */ 1800 #define register_bpf_struct_ops(st_ops, type) \ 1801 ({ \ 1802 struct bpf_struct_ops_##type { \ 1803 struct bpf_struct_ops_common_value common; \ 1804 struct type data ____cacheline_aligned_in_smp; \ 1805 }; \ 1806 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1807 __register_bpf_struct_ops(st_ops); \ 1808 }) 1809 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1810 bool bpf_struct_ops_get(const void *kdata); 1811 void bpf_struct_ops_put(const void *kdata); 1812 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1813 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1814 void *value); 1815 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1816 struct bpf_tramp_link *link, 1817 const struct btf_func_model *model, 1818 void *stub_func, 1819 void **image, u32 *image_off, 1820 bool allow_alloc); 1821 void bpf_struct_ops_image_free(void *image); 1822 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1823 { 1824 if (owner == BPF_MODULE_OWNER) 1825 return bpf_struct_ops_get(data); 1826 else 1827 return try_module_get(owner); 1828 } 1829 static inline void bpf_module_put(const void *data, struct module *owner) 1830 { 1831 if (owner == BPF_MODULE_OWNER) 1832 bpf_struct_ops_put(data); 1833 else 1834 module_put(owner); 1835 } 1836 int bpf_struct_ops_link_create(union bpf_attr *attr); 1837 1838 #ifdef CONFIG_NET 1839 /* Define it here to avoid the use of forward declaration */ 1840 struct bpf_dummy_ops_state { 1841 int val; 1842 }; 1843 1844 struct bpf_dummy_ops { 1845 int (*test_1)(struct bpf_dummy_ops_state *cb); 1846 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1847 char a3, unsigned long a4); 1848 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1849 }; 1850 1851 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1852 union bpf_attr __user *uattr); 1853 #endif 1854 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1855 struct btf *btf, 1856 struct bpf_verifier_log *log); 1857 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1858 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1859 #else 1860 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1861 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1862 { 1863 return try_module_get(owner); 1864 } 1865 static inline void bpf_module_put(const void *data, struct module *owner) 1866 { 1867 module_put(owner); 1868 } 1869 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1870 { 1871 return -ENOTSUPP; 1872 } 1873 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1874 void *key, 1875 void *value) 1876 { 1877 return -EINVAL; 1878 } 1879 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1880 { 1881 return -EOPNOTSUPP; 1882 } 1883 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1884 { 1885 } 1886 1887 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1888 { 1889 } 1890 1891 #endif 1892 1893 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1894 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1895 int cgroup_atype); 1896 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1897 #else 1898 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1899 int cgroup_atype) 1900 { 1901 return -EOPNOTSUPP; 1902 } 1903 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1904 { 1905 } 1906 #endif 1907 1908 struct bpf_array { 1909 struct bpf_map map; 1910 u32 elem_size; 1911 u32 index_mask; 1912 struct bpf_array_aux *aux; 1913 union { 1914 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1915 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1916 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1917 }; 1918 }; 1919 1920 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1921 #define MAX_TAIL_CALL_CNT 33 1922 1923 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1924 * It's enum to expose it (and thus make it discoverable) through BTF. 1925 */ 1926 enum { 1927 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1928 }; 1929 1930 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1931 BPF_F_RDONLY_PROG | \ 1932 BPF_F_WRONLY | \ 1933 BPF_F_WRONLY_PROG) 1934 1935 #define BPF_MAP_CAN_READ BIT(0) 1936 #define BPF_MAP_CAN_WRITE BIT(1) 1937 1938 /* Maximum number of user-producer ring buffer samples that can be drained in 1939 * a call to bpf_user_ringbuf_drain(). 1940 */ 1941 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1942 1943 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1944 { 1945 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1946 1947 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1948 * not possible. 1949 */ 1950 if (access_flags & BPF_F_RDONLY_PROG) 1951 return BPF_MAP_CAN_READ; 1952 else if (access_flags & BPF_F_WRONLY_PROG) 1953 return BPF_MAP_CAN_WRITE; 1954 else 1955 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1956 } 1957 1958 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1959 { 1960 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1961 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1962 } 1963 1964 struct bpf_event_entry { 1965 struct perf_event *event; 1966 struct file *perf_file; 1967 struct file *map_file; 1968 struct rcu_head rcu; 1969 }; 1970 1971 static inline bool map_type_contains_progs(struct bpf_map *map) 1972 { 1973 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1974 map->map_type == BPF_MAP_TYPE_DEVMAP || 1975 map->map_type == BPF_MAP_TYPE_CPUMAP; 1976 } 1977 1978 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1979 int bpf_prog_calc_tag(struct bpf_prog *fp); 1980 1981 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1982 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1983 1984 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1985 unsigned long off, unsigned long len); 1986 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1987 const struct bpf_insn *src, 1988 struct bpf_insn *dst, 1989 struct bpf_prog *prog, 1990 u32 *target_size); 1991 1992 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1993 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1994 1995 /* an array of programs to be executed under rcu_lock. 1996 * 1997 * Typical usage: 1998 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1999 * 2000 * the structure returned by bpf_prog_array_alloc() should be populated 2001 * with program pointers and the last pointer must be NULL. 2002 * The user has to keep refcnt on the program and make sure the program 2003 * is removed from the array before bpf_prog_put(). 2004 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2005 * since other cpus are walking the array of pointers in parallel. 2006 */ 2007 struct bpf_prog_array_item { 2008 struct bpf_prog *prog; 2009 union { 2010 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2011 u64 bpf_cookie; 2012 }; 2013 }; 2014 2015 struct bpf_prog_array { 2016 struct rcu_head rcu; 2017 struct bpf_prog_array_item items[]; 2018 }; 2019 2020 struct bpf_empty_prog_array { 2021 struct bpf_prog_array hdr; 2022 struct bpf_prog *null_prog; 2023 }; 2024 2025 /* to avoid allocating empty bpf_prog_array for cgroups that 2026 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2027 * It will not be modified the caller of bpf_prog_array_alloc() 2028 * (since caller requested prog_cnt == 0) 2029 * that pointer should be 'freed' by bpf_prog_array_free() 2030 */ 2031 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2032 2033 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2034 void bpf_prog_array_free(struct bpf_prog_array *progs); 2035 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2036 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2037 int bpf_prog_array_length(struct bpf_prog_array *progs); 2038 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2039 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2040 __u32 __user *prog_ids, u32 cnt); 2041 2042 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2043 struct bpf_prog *old_prog); 2044 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2045 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2046 struct bpf_prog *prog); 2047 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2048 u32 *prog_ids, u32 request_cnt, 2049 u32 *prog_cnt); 2050 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2051 struct bpf_prog *exclude_prog, 2052 struct bpf_prog *include_prog, 2053 u64 bpf_cookie, 2054 struct bpf_prog_array **new_array); 2055 2056 struct bpf_run_ctx {}; 2057 2058 struct bpf_cg_run_ctx { 2059 struct bpf_run_ctx run_ctx; 2060 const struct bpf_prog_array_item *prog_item; 2061 int retval; 2062 }; 2063 2064 struct bpf_trace_run_ctx { 2065 struct bpf_run_ctx run_ctx; 2066 u64 bpf_cookie; 2067 bool is_uprobe; 2068 }; 2069 2070 struct bpf_tramp_run_ctx { 2071 struct bpf_run_ctx run_ctx; 2072 u64 bpf_cookie; 2073 struct bpf_run_ctx *saved_run_ctx; 2074 }; 2075 2076 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2077 { 2078 struct bpf_run_ctx *old_ctx = NULL; 2079 2080 #ifdef CONFIG_BPF_SYSCALL 2081 old_ctx = current->bpf_ctx; 2082 current->bpf_ctx = new_ctx; 2083 #endif 2084 return old_ctx; 2085 } 2086 2087 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2088 { 2089 #ifdef CONFIG_BPF_SYSCALL 2090 current->bpf_ctx = old_ctx; 2091 #endif 2092 } 2093 2094 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2095 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2096 /* BPF program asks to set CN on the packet. */ 2097 #define BPF_RET_SET_CN (1 << 0) 2098 2099 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2100 2101 static __always_inline u32 2102 bpf_prog_run_array(const struct bpf_prog_array *array, 2103 const void *ctx, bpf_prog_run_fn run_prog) 2104 { 2105 const struct bpf_prog_array_item *item; 2106 const struct bpf_prog *prog; 2107 struct bpf_run_ctx *old_run_ctx; 2108 struct bpf_trace_run_ctx run_ctx; 2109 u32 ret = 1; 2110 2111 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2112 2113 if (unlikely(!array)) 2114 return ret; 2115 2116 run_ctx.is_uprobe = false; 2117 2118 migrate_disable(); 2119 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2120 item = &array->items[0]; 2121 while ((prog = READ_ONCE(item->prog))) { 2122 run_ctx.bpf_cookie = item->bpf_cookie; 2123 ret &= run_prog(prog, ctx); 2124 item++; 2125 } 2126 bpf_reset_run_ctx(old_run_ctx); 2127 migrate_enable(); 2128 return ret; 2129 } 2130 2131 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2132 * 2133 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2134 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2135 * in order to use the tasks_trace rcu grace period. 2136 * 2137 * When a non-sleepable program is inside the array, we take the rcu read 2138 * section and disable preemption for that program alone, so it can access 2139 * rcu-protected dynamically sized maps. 2140 */ 2141 static __always_inline u32 2142 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2143 const void *ctx, bpf_prog_run_fn run_prog) 2144 { 2145 const struct bpf_prog_array_item *item; 2146 const struct bpf_prog *prog; 2147 const struct bpf_prog_array *array; 2148 struct bpf_run_ctx *old_run_ctx; 2149 struct bpf_trace_run_ctx run_ctx; 2150 u32 ret = 1; 2151 2152 might_fault(); 2153 2154 rcu_read_lock_trace(); 2155 migrate_disable(); 2156 2157 run_ctx.is_uprobe = true; 2158 2159 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2160 if (unlikely(!array)) 2161 goto out; 2162 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2163 item = &array->items[0]; 2164 while ((prog = READ_ONCE(item->prog))) { 2165 if (!prog->sleepable) 2166 rcu_read_lock(); 2167 2168 run_ctx.bpf_cookie = item->bpf_cookie; 2169 ret &= run_prog(prog, ctx); 2170 item++; 2171 2172 if (!prog->sleepable) 2173 rcu_read_unlock(); 2174 } 2175 bpf_reset_run_ctx(old_run_ctx); 2176 out: 2177 migrate_enable(); 2178 rcu_read_unlock_trace(); 2179 return ret; 2180 } 2181 2182 #ifdef CONFIG_BPF_SYSCALL 2183 DECLARE_PER_CPU(int, bpf_prog_active); 2184 extern struct mutex bpf_stats_enabled_mutex; 2185 2186 /* 2187 * Block execution of BPF programs attached to instrumentation (perf, 2188 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2189 * these events can happen inside a region which holds a map bucket lock 2190 * and can deadlock on it. 2191 */ 2192 static inline void bpf_disable_instrumentation(void) 2193 { 2194 migrate_disable(); 2195 this_cpu_inc(bpf_prog_active); 2196 } 2197 2198 static inline void bpf_enable_instrumentation(void) 2199 { 2200 this_cpu_dec(bpf_prog_active); 2201 migrate_enable(); 2202 } 2203 2204 extern const struct super_operations bpf_super_ops; 2205 extern const struct file_operations bpf_map_fops; 2206 extern const struct file_operations bpf_prog_fops; 2207 extern const struct file_operations bpf_iter_fops; 2208 2209 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2210 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2211 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2212 #define BPF_MAP_TYPE(_id, _ops) \ 2213 extern const struct bpf_map_ops _ops; 2214 #define BPF_LINK_TYPE(_id, _name) 2215 #include <linux/bpf_types.h> 2216 #undef BPF_PROG_TYPE 2217 #undef BPF_MAP_TYPE 2218 #undef BPF_LINK_TYPE 2219 2220 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2221 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2222 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2223 2224 struct bpf_prog *bpf_prog_get(u32 ufd); 2225 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2226 bool attach_drv); 2227 void bpf_prog_add(struct bpf_prog *prog, int i); 2228 void bpf_prog_sub(struct bpf_prog *prog, int i); 2229 void bpf_prog_inc(struct bpf_prog *prog); 2230 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2231 void bpf_prog_put(struct bpf_prog *prog); 2232 2233 void bpf_prog_free_id(struct bpf_prog *prog); 2234 void bpf_map_free_id(struct bpf_map *map); 2235 2236 struct btf_field *btf_record_find(const struct btf_record *rec, 2237 u32 offset, u32 field_mask); 2238 void btf_record_free(struct btf_record *rec); 2239 void bpf_map_free_record(struct bpf_map *map); 2240 struct btf_record *btf_record_dup(const struct btf_record *rec); 2241 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2242 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2243 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2244 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2245 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2246 2247 struct bpf_map *bpf_map_get(u32 ufd); 2248 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2249 2250 static inline struct bpf_map *__bpf_map_get(struct fd f) 2251 { 2252 if (fd_empty(f)) 2253 return ERR_PTR(-EBADF); 2254 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2255 return ERR_PTR(-EINVAL); 2256 return fd_file(f)->private_data; 2257 } 2258 2259 void bpf_map_inc(struct bpf_map *map); 2260 void bpf_map_inc_with_uref(struct bpf_map *map); 2261 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2262 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2263 void bpf_map_put_with_uref(struct bpf_map *map); 2264 void bpf_map_put(struct bpf_map *map); 2265 void *bpf_map_area_alloc(u64 size, int numa_node); 2266 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2267 void bpf_map_area_free(void *base); 2268 bool bpf_map_write_active(const struct bpf_map *map); 2269 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2270 int generic_map_lookup_batch(struct bpf_map *map, 2271 const union bpf_attr *attr, 2272 union bpf_attr __user *uattr); 2273 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2274 const union bpf_attr *attr, 2275 union bpf_attr __user *uattr); 2276 int generic_map_delete_batch(struct bpf_map *map, 2277 const union bpf_attr *attr, 2278 union bpf_attr __user *uattr); 2279 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2280 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2281 2282 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2283 unsigned long nr_pages, struct page **page_array); 2284 #ifdef CONFIG_MEMCG 2285 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2286 int node); 2287 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2288 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2289 gfp_t flags); 2290 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2291 size_t align, gfp_t flags); 2292 #else 2293 /* 2294 * These specialized allocators have to be macros for their allocations to be 2295 * accounted separately (to have separate alloc_tag). 2296 */ 2297 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2298 kmalloc_node(_size, _flags, _node) 2299 #define bpf_map_kzalloc(_map, _size, _flags) \ 2300 kzalloc(_size, _flags) 2301 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2302 kvcalloc(_n, _size, _flags) 2303 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2304 __alloc_percpu_gfp(_size, _align, _flags) 2305 #endif 2306 2307 static inline int 2308 bpf_map_init_elem_count(struct bpf_map *map) 2309 { 2310 size_t size = sizeof(*map->elem_count), align = size; 2311 gfp_t flags = GFP_USER | __GFP_NOWARN; 2312 2313 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2314 if (!map->elem_count) 2315 return -ENOMEM; 2316 2317 return 0; 2318 } 2319 2320 static inline void 2321 bpf_map_free_elem_count(struct bpf_map *map) 2322 { 2323 free_percpu(map->elem_count); 2324 } 2325 2326 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2327 { 2328 this_cpu_inc(*map->elem_count); 2329 } 2330 2331 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2332 { 2333 this_cpu_dec(*map->elem_count); 2334 } 2335 2336 extern int sysctl_unprivileged_bpf_disabled; 2337 2338 bool bpf_token_capable(const struct bpf_token *token, int cap); 2339 2340 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2341 { 2342 return bpf_token_capable(token, CAP_PERFMON); 2343 } 2344 2345 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2346 { 2347 return bpf_token_capable(token, CAP_PERFMON); 2348 } 2349 2350 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2351 { 2352 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2353 } 2354 2355 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2356 { 2357 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2358 } 2359 2360 int bpf_map_new_fd(struct bpf_map *map, int flags); 2361 int bpf_prog_new_fd(struct bpf_prog *prog); 2362 2363 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2364 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2365 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2366 int bpf_link_settle(struct bpf_link_primer *primer); 2367 void bpf_link_cleanup(struct bpf_link_primer *primer); 2368 void bpf_link_inc(struct bpf_link *link); 2369 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2370 void bpf_link_put(struct bpf_link *link); 2371 int bpf_link_new_fd(struct bpf_link *link); 2372 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2373 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2374 2375 void bpf_token_inc(struct bpf_token *token); 2376 void bpf_token_put(struct bpf_token *token); 2377 int bpf_token_create(union bpf_attr *attr); 2378 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2379 2380 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2381 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2382 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2383 enum bpf_prog_type prog_type, 2384 enum bpf_attach_type attach_type); 2385 2386 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2387 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2388 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2389 umode_t mode); 2390 2391 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2392 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2393 extern int bpf_iter_ ## target(args); \ 2394 int __init bpf_iter_ ## target(args) { return 0; } 2395 2396 /* 2397 * The task type of iterators. 2398 * 2399 * For BPF task iterators, they can be parameterized with various 2400 * parameters to visit only some of tasks. 2401 * 2402 * BPF_TASK_ITER_ALL (default) 2403 * Iterate over resources of every task. 2404 * 2405 * BPF_TASK_ITER_TID 2406 * Iterate over resources of a task/tid. 2407 * 2408 * BPF_TASK_ITER_TGID 2409 * Iterate over resources of every task of a process / task group. 2410 */ 2411 enum bpf_iter_task_type { 2412 BPF_TASK_ITER_ALL = 0, 2413 BPF_TASK_ITER_TID, 2414 BPF_TASK_ITER_TGID, 2415 }; 2416 2417 struct bpf_iter_aux_info { 2418 /* for map_elem iter */ 2419 struct bpf_map *map; 2420 2421 /* for cgroup iter */ 2422 struct { 2423 struct cgroup *start; /* starting cgroup */ 2424 enum bpf_cgroup_iter_order order; 2425 } cgroup; 2426 struct { 2427 enum bpf_iter_task_type type; 2428 u32 pid; 2429 } task; 2430 }; 2431 2432 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2433 union bpf_iter_link_info *linfo, 2434 struct bpf_iter_aux_info *aux); 2435 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2436 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2437 struct seq_file *seq); 2438 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2439 struct bpf_link_info *info); 2440 typedef const struct bpf_func_proto * 2441 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2442 const struct bpf_prog *prog); 2443 2444 enum bpf_iter_feature { 2445 BPF_ITER_RESCHED = BIT(0), 2446 }; 2447 2448 #define BPF_ITER_CTX_ARG_MAX 2 2449 struct bpf_iter_reg { 2450 const char *target; 2451 bpf_iter_attach_target_t attach_target; 2452 bpf_iter_detach_target_t detach_target; 2453 bpf_iter_show_fdinfo_t show_fdinfo; 2454 bpf_iter_fill_link_info_t fill_link_info; 2455 bpf_iter_get_func_proto_t get_func_proto; 2456 u32 ctx_arg_info_size; 2457 u32 feature; 2458 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2459 const struct bpf_iter_seq_info *seq_info; 2460 }; 2461 2462 struct bpf_iter_meta { 2463 __bpf_md_ptr(struct seq_file *, seq); 2464 u64 session_id; 2465 u64 seq_num; 2466 }; 2467 2468 struct bpf_iter__bpf_map_elem { 2469 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2470 __bpf_md_ptr(struct bpf_map *, map); 2471 __bpf_md_ptr(void *, key); 2472 __bpf_md_ptr(void *, value); 2473 }; 2474 2475 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2476 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2477 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2478 const struct bpf_func_proto * 2479 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2480 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2481 int bpf_iter_new_fd(struct bpf_link *link); 2482 bool bpf_link_is_iter(struct bpf_link *link); 2483 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2484 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2485 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2486 struct seq_file *seq); 2487 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2488 struct bpf_link_info *info); 2489 2490 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2491 struct bpf_func_state *caller, 2492 struct bpf_func_state *callee); 2493 2494 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2495 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2496 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2497 u64 flags); 2498 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2499 u64 flags); 2500 2501 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2502 2503 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2504 void *key, void *value, u64 map_flags); 2505 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2506 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2507 void *key, void *value, u64 map_flags); 2508 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2509 2510 int bpf_get_file_flag(int flags); 2511 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2512 size_t actual_size); 2513 2514 /* verify correctness of eBPF program */ 2515 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2516 2517 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2518 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2519 #endif 2520 2521 struct btf *bpf_get_btf_vmlinux(void); 2522 2523 /* Map specifics */ 2524 struct xdp_frame; 2525 struct sk_buff; 2526 struct bpf_dtab_netdev; 2527 struct bpf_cpu_map_entry; 2528 2529 void __dev_flush(struct list_head *flush_list); 2530 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2531 struct net_device *dev_rx); 2532 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2533 struct net_device *dev_rx); 2534 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2535 struct bpf_map *map, bool exclude_ingress); 2536 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2537 struct bpf_prog *xdp_prog); 2538 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2539 struct bpf_prog *xdp_prog, struct bpf_map *map, 2540 bool exclude_ingress); 2541 2542 void __cpu_map_flush(struct list_head *flush_list); 2543 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2544 struct net_device *dev_rx); 2545 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2546 struct sk_buff *skb); 2547 2548 /* Return map's numa specified by userspace */ 2549 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2550 { 2551 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2552 attr->numa_node : NUMA_NO_NODE; 2553 } 2554 2555 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2556 int array_map_alloc_check(union bpf_attr *attr); 2557 2558 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2559 union bpf_attr __user *uattr); 2560 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2561 union bpf_attr __user *uattr); 2562 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2563 const union bpf_attr *kattr, 2564 union bpf_attr __user *uattr); 2565 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2566 const union bpf_attr *kattr, 2567 union bpf_attr __user *uattr); 2568 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2569 const union bpf_attr *kattr, 2570 union bpf_attr __user *uattr); 2571 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2572 const union bpf_attr *kattr, 2573 union bpf_attr __user *uattr); 2574 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2575 const union bpf_attr *kattr, 2576 union bpf_attr __user *uattr); 2577 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2578 const struct bpf_prog *prog, 2579 struct bpf_insn_access_aux *info); 2580 2581 static inline bool bpf_tracing_ctx_access(int off, int size, 2582 enum bpf_access_type type) 2583 { 2584 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2585 return false; 2586 if (type != BPF_READ) 2587 return false; 2588 if (off % size != 0) 2589 return false; 2590 return true; 2591 } 2592 2593 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2594 enum bpf_access_type type, 2595 const struct bpf_prog *prog, 2596 struct bpf_insn_access_aux *info) 2597 { 2598 if (!bpf_tracing_ctx_access(off, size, type)) 2599 return false; 2600 return btf_ctx_access(off, size, type, prog, info); 2601 } 2602 2603 int btf_struct_access(struct bpf_verifier_log *log, 2604 const struct bpf_reg_state *reg, 2605 int off, int size, enum bpf_access_type atype, 2606 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2607 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2608 const struct btf *btf, u32 id, int off, 2609 const struct btf *need_btf, u32 need_type_id, 2610 bool strict); 2611 2612 int btf_distill_func_proto(struct bpf_verifier_log *log, 2613 struct btf *btf, 2614 const struct btf_type *func_proto, 2615 const char *func_name, 2616 struct btf_func_model *m); 2617 2618 struct bpf_reg_state; 2619 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2620 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2621 struct btf *btf, const struct btf_type *t); 2622 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2623 int comp_idx, const char *tag_key); 2624 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2625 int comp_idx, const char *tag_key, int last_id); 2626 2627 struct bpf_prog *bpf_prog_by_id(u32 id); 2628 struct bpf_link *bpf_link_by_id(u32 id); 2629 2630 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2631 const struct bpf_prog *prog); 2632 void bpf_task_storage_free(struct task_struct *task); 2633 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2634 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2635 const struct btf_func_model * 2636 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2637 const struct bpf_insn *insn); 2638 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2639 u16 btf_fd_idx, u8 **func_addr); 2640 2641 struct bpf_core_ctx { 2642 struct bpf_verifier_log *log; 2643 const struct btf *btf; 2644 }; 2645 2646 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2647 const struct bpf_reg_state *reg, 2648 const char *field_name, u32 btf_id, const char *suffix); 2649 2650 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2651 const struct btf *reg_btf, u32 reg_id, 2652 const struct btf *arg_btf, u32 arg_id); 2653 2654 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2655 int relo_idx, void *insn); 2656 2657 static inline bool unprivileged_ebpf_enabled(void) 2658 { 2659 return !sysctl_unprivileged_bpf_disabled; 2660 } 2661 2662 /* Not all bpf prog type has the bpf_ctx. 2663 * For the bpf prog type that has initialized the bpf_ctx, 2664 * this function can be used to decide if a kernel function 2665 * is called by a bpf program. 2666 */ 2667 static inline bool has_current_bpf_ctx(void) 2668 { 2669 return !!current->bpf_ctx; 2670 } 2671 2672 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2673 2674 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2675 enum bpf_dynptr_type type, u32 offset, u32 size); 2676 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2677 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2678 2679 #else /* !CONFIG_BPF_SYSCALL */ 2680 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2681 { 2682 return ERR_PTR(-EOPNOTSUPP); 2683 } 2684 2685 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2686 enum bpf_prog_type type, 2687 bool attach_drv) 2688 { 2689 return ERR_PTR(-EOPNOTSUPP); 2690 } 2691 2692 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2693 { 2694 } 2695 2696 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2697 { 2698 } 2699 2700 static inline void bpf_prog_put(struct bpf_prog *prog) 2701 { 2702 } 2703 2704 static inline void bpf_prog_inc(struct bpf_prog *prog) 2705 { 2706 } 2707 2708 static inline struct bpf_prog *__must_check 2709 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2710 { 2711 return ERR_PTR(-EOPNOTSUPP); 2712 } 2713 2714 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2715 const struct bpf_link_ops *ops, 2716 struct bpf_prog *prog) 2717 { 2718 } 2719 2720 static inline int bpf_link_prime(struct bpf_link *link, 2721 struct bpf_link_primer *primer) 2722 { 2723 return -EOPNOTSUPP; 2724 } 2725 2726 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2727 { 2728 return -EOPNOTSUPP; 2729 } 2730 2731 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2732 { 2733 } 2734 2735 static inline void bpf_link_inc(struct bpf_link *link) 2736 { 2737 } 2738 2739 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2740 { 2741 return NULL; 2742 } 2743 2744 static inline void bpf_link_put(struct bpf_link *link) 2745 { 2746 } 2747 2748 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2749 { 2750 return -EOPNOTSUPP; 2751 } 2752 2753 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2754 { 2755 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2756 } 2757 2758 static inline void bpf_token_inc(struct bpf_token *token) 2759 { 2760 } 2761 2762 static inline void bpf_token_put(struct bpf_token *token) 2763 { 2764 } 2765 2766 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2767 { 2768 return ERR_PTR(-EOPNOTSUPP); 2769 } 2770 2771 static inline void __dev_flush(struct list_head *flush_list) 2772 { 2773 } 2774 2775 struct xdp_frame; 2776 struct bpf_dtab_netdev; 2777 struct bpf_cpu_map_entry; 2778 2779 static inline 2780 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2781 struct net_device *dev_rx) 2782 { 2783 return 0; 2784 } 2785 2786 static inline 2787 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2788 struct net_device *dev_rx) 2789 { 2790 return 0; 2791 } 2792 2793 static inline 2794 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2795 struct bpf_map *map, bool exclude_ingress) 2796 { 2797 return 0; 2798 } 2799 2800 struct sk_buff; 2801 2802 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2803 struct sk_buff *skb, 2804 struct bpf_prog *xdp_prog) 2805 { 2806 return 0; 2807 } 2808 2809 static inline 2810 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2811 struct bpf_prog *xdp_prog, struct bpf_map *map, 2812 bool exclude_ingress) 2813 { 2814 return 0; 2815 } 2816 2817 static inline void __cpu_map_flush(struct list_head *flush_list) 2818 { 2819 } 2820 2821 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2822 struct xdp_frame *xdpf, 2823 struct net_device *dev_rx) 2824 { 2825 return 0; 2826 } 2827 2828 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2829 struct sk_buff *skb) 2830 { 2831 return -EOPNOTSUPP; 2832 } 2833 2834 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2835 enum bpf_prog_type type) 2836 { 2837 return ERR_PTR(-EOPNOTSUPP); 2838 } 2839 2840 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2841 const union bpf_attr *kattr, 2842 union bpf_attr __user *uattr) 2843 { 2844 return -ENOTSUPP; 2845 } 2846 2847 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2848 const union bpf_attr *kattr, 2849 union bpf_attr __user *uattr) 2850 { 2851 return -ENOTSUPP; 2852 } 2853 2854 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2855 const union bpf_attr *kattr, 2856 union bpf_attr __user *uattr) 2857 { 2858 return -ENOTSUPP; 2859 } 2860 2861 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2862 const union bpf_attr *kattr, 2863 union bpf_attr __user *uattr) 2864 { 2865 return -ENOTSUPP; 2866 } 2867 2868 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2869 const union bpf_attr *kattr, 2870 union bpf_attr __user *uattr) 2871 { 2872 return -ENOTSUPP; 2873 } 2874 2875 static inline void bpf_map_put(struct bpf_map *map) 2876 { 2877 } 2878 2879 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2880 { 2881 return ERR_PTR(-ENOTSUPP); 2882 } 2883 2884 static inline int btf_struct_access(struct bpf_verifier_log *log, 2885 const struct bpf_reg_state *reg, 2886 int off, int size, enum bpf_access_type atype, 2887 u32 *next_btf_id, enum bpf_type_flag *flag, 2888 const char **field_name) 2889 { 2890 return -EACCES; 2891 } 2892 2893 static inline const struct bpf_func_proto * 2894 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2895 { 2896 return NULL; 2897 } 2898 2899 static inline void bpf_task_storage_free(struct task_struct *task) 2900 { 2901 } 2902 2903 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2904 { 2905 return false; 2906 } 2907 2908 static inline const struct btf_func_model * 2909 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2910 const struct bpf_insn *insn) 2911 { 2912 return NULL; 2913 } 2914 2915 static inline int 2916 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2917 u16 btf_fd_idx, u8 **func_addr) 2918 { 2919 return -ENOTSUPP; 2920 } 2921 2922 static inline bool unprivileged_ebpf_enabled(void) 2923 { 2924 return false; 2925 } 2926 2927 static inline bool has_current_bpf_ctx(void) 2928 { 2929 return false; 2930 } 2931 2932 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2933 { 2934 } 2935 2936 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2937 { 2938 } 2939 2940 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2941 enum bpf_dynptr_type type, u32 offset, u32 size) 2942 { 2943 } 2944 2945 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2946 { 2947 } 2948 2949 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2950 { 2951 } 2952 #endif /* CONFIG_BPF_SYSCALL */ 2953 2954 static __always_inline int 2955 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2956 { 2957 int ret = -EFAULT; 2958 2959 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2960 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2961 if (unlikely(ret < 0)) 2962 memset(dst, 0, size); 2963 return ret; 2964 } 2965 2966 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 2967 2968 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2969 enum bpf_prog_type type) 2970 { 2971 return bpf_prog_get_type_dev(ufd, type, false); 2972 } 2973 2974 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2975 struct bpf_map **used_maps, u32 len); 2976 2977 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2978 2979 int bpf_prog_offload_compile(struct bpf_prog *prog); 2980 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2981 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2982 struct bpf_prog *prog); 2983 2984 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2985 2986 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2987 int bpf_map_offload_update_elem(struct bpf_map *map, 2988 void *key, void *value, u64 flags); 2989 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2990 int bpf_map_offload_get_next_key(struct bpf_map *map, 2991 void *key, void *next_key); 2992 2993 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2994 2995 struct bpf_offload_dev * 2996 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2997 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2998 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2999 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3000 struct net_device *netdev); 3001 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3002 struct net_device *netdev); 3003 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3004 3005 void unpriv_ebpf_notify(int new_state); 3006 3007 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3008 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3009 struct bpf_prog_aux *prog_aux); 3010 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3011 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3012 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3013 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3014 3015 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3016 { 3017 return aux->dev_bound; 3018 } 3019 3020 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3021 { 3022 return aux->offload_requested; 3023 } 3024 3025 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3026 3027 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3028 { 3029 return unlikely(map->ops == &bpf_map_offload_ops); 3030 } 3031 3032 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3033 void bpf_map_offload_map_free(struct bpf_map *map); 3034 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3035 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3036 const union bpf_attr *kattr, 3037 union bpf_attr __user *uattr); 3038 3039 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3040 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3041 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3042 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3043 union bpf_attr __user *uattr); 3044 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3045 3046 void sock_map_unhash(struct sock *sk); 3047 void sock_map_destroy(struct sock *sk); 3048 void sock_map_close(struct sock *sk, long timeout); 3049 #else 3050 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3051 struct bpf_prog_aux *prog_aux) 3052 { 3053 return -EOPNOTSUPP; 3054 } 3055 3056 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3057 u32 func_id) 3058 { 3059 return NULL; 3060 } 3061 3062 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3063 union bpf_attr *attr) 3064 { 3065 return -EOPNOTSUPP; 3066 } 3067 3068 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3069 struct bpf_prog *old_prog) 3070 { 3071 return -EOPNOTSUPP; 3072 } 3073 3074 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3075 { 3076 } 3077 3078 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3079 { 3080 return false; 3081 } 3082 3083 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3084 { 3085 return false; 3086 } 3087 3088 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3089 { 3090 return false; 3091 } 3092 3093 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3094 { 3095 return false; 3096 } 3097 3098 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3099 { 3100 return ERR_PTR(-EOPNOTSUPP); 3101 } 3102 3103 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3104 { 3105 } 3106 3107 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3108 { 3109 return 0; 3110 } 3111 3112 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3113 const union bpf_attr *kattr, 3114 union bpf_attr __user *uattr) 3115 { 3116 return -ENOTSUPP; 3117 } 3118 3119 #ifdef CONFIG_BPF_SYSCALL 3120 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3121 struct bpf_prog *prog) 3122 { 3123 return -EINVAL; 3124 } 3125 3126 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3127 enum bpf_prog_type ptype) 3128 { 3129 return -EOPNOTSUPP; 3130 } 3131 3132 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3133 u64 flags) 3134 { 3135 return -EOPNOTSUPP; 3136 } 3137 3138 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3139 union bpf_attr __user *uattr) 3140 { 3141 return -EINVAL; 3142 } 3143 3144 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3145 { 3146 return -EOPNOTSUPP; 3147 } 3148 #endif /* CONFIG_BPF_SYSCALL */ 3149 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3150 3151 static __always_inline void 3152 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3153 { 3154 const struct bpf_prog_array_item *item; 3155 struct bpf_prog *prog; 3156 3157 if (unlikely(!array)) 3158 return; 3159 3160 item = &array->items[0]; 3161 while ((prog = READ_ONCE(item->prog))) { 3162 bpf_prog_inc_misses_counter(prog); 3163 item++; 3164 } 3165 } 3166 3167 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3168 void bpf_sk_reuseport_detach(struct sock *sk); 3169 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3170 void *value); 3171 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3172 void *value, u64 map_flags); 3173 #else 3174 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3175 { 3176 } 3177 3178 #ifdef CONFIG_BPF_SYSCALL 3179 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3180 void *key, void *value) 3181 { 3182 return -EOPNOTSUPP; 3183 } 3184 3185 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3186 void *key, void *value, 3187 u64 map_flags) 3188 { 3189 return -EOPNOTSUPP; 3190 } 3191 #endif /* CONFIG_BPF_SYSCALL */ 3192 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3193 3194 /* verifier prototypes for helper functions called from eBPF programs */ 3195 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3196 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3197 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3198 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3199 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3200 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3201 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3202 3203 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3204 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3205 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3206 extern const struct bpf_func_proto bpf_tail_call_proto; 3207 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3208 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3209 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3210 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3211 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3212 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3213 extern const struct bpf_func_proto bpf_get_stackid_proto; 3214 extern const struct bpf_func_proto bpf_get_stack_proto; 3215 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3216 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3217 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3218 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3219 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3220 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3221 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3222 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3223 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3224 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3225 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3226 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3227 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3228 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3229 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3230 extern const struct bpf_func_proto bpf_spin_lock_proto; 3231 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3232 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3233 extern const struct bpf_func_proto bpf_strtol_proto; 3234 extern const struct bpf_func_proto bpf_strtoul_proto; 3235 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3236 extern const struct bpf_func_proto bpf_jiffies64_proto; 3237 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3238 extern const struct bpf_func_proto bpf_event_output_data_proto; 3239 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3240 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3241 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3242 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3243 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3244 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3245 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3246 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3247 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3248 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3249 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3250 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3251 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3252 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3253 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3254 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3255 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3256 extern const struct bpf_func_proto bpf_snprintf_proto; 3257 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3258 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3259 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3260 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3261 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3262 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3263 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3264 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3265 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3266 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3267 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3268 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3269 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3270 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3271 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3272 extern const struct bpf_func_proto bpf_find_vma_proto; 3273 extern const struct bpf_func_proto bpf_loop_proto; 3274 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3275 extern const struct bpf_func_proto bpf_set_retval_proto; 3276 extern const struct bpf_func_proto bpf_get_retval_proto; 3277 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3278 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3279 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3280 3281 const struct bpf_func_proto *tracing_prog_func_proto( 3282 enum bpf_func_id func_id, const struct bpf_prog *prog); 3283 3284 /* Shared helpers among cBPF and eBPF. */ 3285 void bpf_user_rnd_init_once(void); 3286 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3287 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3288 3289 #if defined(CONFIG_NET) 3290 bool bpf_sock_common_is_valid_access(int off, int size, 3291 enum bpf_access_type type, 3292 struct bpf_insn_access_aux *info); 3293 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3294 struct bpf_insn_access_aux *info); 3295 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3296 const struct bpf_insn *si, 3297 struct bpf_insn *insn_buf, 3298 struct bpf_prog *prog, 3299 u32 *target_size); 3300 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3301 struct bpf_dynptr *ptr); 3302 #else 3303 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3304 enum bpf_access_type type, 3305 struct bpf_insn_access_aux *info) 3306 { 3307 return false; 3308 } 3309 static inline bool bpf_sock_is_valid_access(int off, int size, 3310 enum bpf_access_type type, 3311 struct bpf_insn_access_aux *info) 3312 { 3313 return false; 3314 } 3315 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3316 const struct bpf_insn *si, 3317 struct bpf_insn *insn_buf, 3318 struct bpf_prog *prog, 3319 u32 *target_size) 3320 { 3321 return 0; 3322 } 3323 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3324 struct bpf_dynptr *ptr) 3325 { 3326 return -EOPNOTSUPP; 3327 } 3328 #endif 3329 3330 #ifdef CONFIG_INET 3331 struct sk_reuseport_kern { 3332 struct sk_buff *skb; 3333 struct sock *sk; 3334 struct sock *selected_sk; 3335 struct sock *migrating_sk; 3336 void *data_end; 3337 u32 hash; 3338 u32 reuseport_id; 3339 bool bind_inany; 3340 }; 3341 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3342 struct bpf_insn_access_aux *info); 3343 3344 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3345 const struct bpf_insn *si, 3346 struct bpf_insn *insn_buf, 3347 struct bpf_prog *prog, 3348 u32 *target_size); 3349 3350 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3351 struct bpf_insn_access_aux *info); 3352 3353 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3354 const struct bpf_insn *si, 3355 struct bpf_insn *insn_buf, 3356 struct bpf_prog *prog, 3357 u32 *target_size); 3358 #else 3359 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3360 enum bpf_access_type type, 3361 struct bpf_insn_access_aux *info) 3362 { 3363 return false; 3364 } 3365 3366 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3367 const struct bpf_insn *si, 3368 struct bpf_insn *insn_buf, 3369 struct bpf_prog *prog, 3370 u32 *target_size) 3371 { 3372 return 0; 3373 } 3374 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3375 enum bpf_access_type type, 3376 struct bpf_insn_access_aux *info) 3377 { 3378 return false; 3379 } 3380 3381 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3382 const struct bpf_insn *si, 3383 struct bpf_insn *insn_buf, 3384 struct bpf_prog *prog, 3385 u32 *target_size) 3386 { 3387 return 0; 3388 } 3389 #endif /* CONFIG_INET */ 3390 3391 enum bpf_text_poke_type { 3392 BPF_MOD_CALL, 3393 BPF_MOD_JUMP, 3394 }; 3395 3396 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3397 void *addr1, void *addr2); 3398 3399 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3400 struct bpf_prog *new, struct bpf_prog *old); 3401 3402 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3403 int bpf_arch_text_invalidate(void *dst, size_t len); 3404 3405 struct btf_id_set; 3406 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3407 3408 #define MAX_BPRINTF_VARARGS 12 3409 #define MAX_BPRINTF_BUF 1024 3410 3411 struct bpf_bprintf_data { 3412 u32 *bin_args; 3413 char *buf; 3414 bool get_bin_args; 3415 bool get_buf; 3416 }; 3417 3418 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3419 u32 num_args, struct bpf_bprintf_data *data); 3420 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3421 3422 #ifdef CONFIG_BPF_LSM 3423 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3424 void bpf_cgroup_atype_put(int cgroup_atype); 3425 #else 3426 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3427 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3428 #endif /* CONFIG_BPF_LSM */ 3429 3430 struct key; 3431 3432 #ifdef CONFIG_KEYS 3433 struct bpf_key { 3434 struct key *key; 3435 bool has_ref; 3436 }; 3437 #endif /* CONFIG_KEYS */ 3438 3439 static inline bool type_is_alloc(u32 type) 3440 { 3441 return type & MEM_ALLOC; 3442 } 3443 3444 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3445 { 3446 if (memcg_bpf_enabled()) 3447 return flags | __GFP_ACCOUNT; 3448 return flags; 3449 } 3450 3451 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3452 { 3453 return prog->aux->func_idx != 0; 3454 } 3455 3456 #endif /* _LINUX_BPF_H */ 3457