xref: /linux-6.15/include/linux/bpf.h (revision 7c8ce4ff)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60 
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66 
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 					struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 				   const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 	const struct seq_operations *seq_ops;
75 	bpf_iter_init_seq_priv_t init_seq_private;
76 	bpf_iter_fini_seq_priv_t fini_seq_private;
77 	u32 seq_priv_size;
78 };
79 
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 	/* funcs callable from userspace (via syscall) */
83 	int (*map_alloc_check)(union bpf_attr *attr);
84 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 	void (*map_release)(struct bpf_map *map, struct file *map_file);
86 	void (*map_free)(struct bpf_map *map);
87 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 	void (*map_release_uref)(struct bpf_map *map);
89 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 				union bpf_attr __user *uattr);
92 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 					  void *value, u64 flags);
94 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 					   const union bpf_attr *attr,
96 					   union bpf_attr __user *uattr);
97 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 				const union bpf_attr *attr,
99 				union bpf_attr __user *uattr);
100 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 
103 	/* funcs callable from userspace and from eBPF programs */
104 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 	long (*map_delete_elem)(struct bpf_map *map, void *key);
107 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 	long (*map_pop_elem)(struct bpf_map *map, void *value);
109 	long (*map_peek_elem)(struct bpf_map *map, void *value);
110 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111 
112 	/* funcs called by prog_array and perf_event_array map */
113 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 				int fd);
115 	/* If need_defer is true, the implementation should guarantee that
116 	 * the to-be-put element is still alive before the bpf program, which
117 	 * may manipulate it, exists.
118 	 */
119 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 				  struct seq_file *m);
124 	int (*map_check_btf)(const struct bpf_map *map,
125 			     const struct btf *btf,
126 			     const struct btf_type *key_type,
127 			     const struct btf_type *value_type);
128 
129 	/* Prog poke tracking helpers. */
130 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 			     struct bpf_prog *new);
134 
135 	/* Direct value access helpers. */
136 	int (*map_direct_value_addr)(const struct bpf_map *map,
137 				     u64 *imm, u32 off);
138 	int (*map_direct_value_meta)(const struct bpf_map *map,
139 				     u64 imm, u32 *off);
140 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 			     struct poll_table_struct *pts);
143 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 					       unsigned long len, unsigned long pgoff,
145 					       unsigned long flags);
146 
147 	/* Functions called by bpf_local_storage maps */
148 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 					void *owner, u32 size);
150 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 					   void *owner, u32 size);
152 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153 
154 	/* Misc helpers.*/
155 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156 
157 	/* map_meta_equal must be implemented for maps that can be
158 	 * used as an inner map.  It is a runtime check to ensure
159 	 * an inner map can be inserted to an outer map.
160 	 *
161 	 * Some properties of the inner map has been used during the
162 	 * verification time.  When inserting an inner map at the runtime,
163 	 * map_meta_equal has to ensure the inserting map has the same
164 	 * properties that the verifier has used earlier.
165 	 */
166 	bool (*map_meta_equal)(const struct bpf_map *meta0,
167 			       const struct bpf_map *meta1);
168 
169 
170 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 					      struct bpf_func_state *caller,
172 					      struct bpf_func_state *callee);
173 	long (*map_for_each_callback)(struct bpf_map *map,
174 				     bpf_callback_t callback_fn,
175 				     void *callback_ctx, u64 flags);
176 
177 	u64 (*map_mem_usage)(const struct bpf_map *map);
178 
179 	/* BTF id of struct allocated by map_alloc */
180 	int *map_btf_id;
181 
182 	/* bpf_iter info used to open a seq_file */
183 	const struct bpf_iter_seq_info *iter_seq_info;
184 };
185 
186 enum {
187 	/* Support at most 11 fields in a BTF type */
188 	BTF_FIELDS_MAX	   = 11,
189 };
190 
191 enum btf_field_type {
192 	BPF_SPIN_LOCK  = (1 << 0),
193 	BPF_TIMER      = (1 << 1),
194 	BPF_KPTR_UNREF = (1 << 2),
195 	BPF_KPTR_REF   = (1 << 3),
196 	BPF_KPTR_PERCPU = (1 << 4),
197 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 	BPF_LIST_HEAD  = (1 << 5),
199 	BPF_LIST_NODE  = (1 << 6),
200 	BPF_RB_ROOT    = (1 << 7),
201 	BPF_RB_NODE    = (1 << 8),
202 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 	BPF_REFCOUNT   = (1 << 9),
205 	BPF_WORKQUEUE  = (1 << 10),
206 	BPF_UPTR       = (1 << 11),
207 };
208 
209 typedef void (*btf_dtor_kfunc_t)(void *);
210 
211 struct btf_field_kptr {
212 	struct btf *btf;
213 	struct module *module;
214 	/* dtor used if btf_is_kernel(btf), otherwise the type is
215 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
216 	 */
217 	btf_dtor_kfunc_t dtor;
218 	u32 btf_id;
219 };
220 
221 struct btf_field_graph_root {
222 	struct btf *btf;
223 	u32 value_btf_id;
224 	u32 node_offset;
225 	struct btf_record *value_rec;
226 };
227 
228 struct btf_field {
229 	u32 offset;
230 	u32 size;
231 	enum btf_field_type type;
232 	union {
233 		struct btf_field_kptr kptr;
234 		struct btf_field_graph_root graph_root;
235 	};
236 };
237 
238 struct btf_record {
239 	u32 cnt;
240 	u32 field_mask;
241 	int spin_lock_off;
242 	int timer_off;
243 	int wq_off;
244 	int refcount_off;
245 	struct btf_field fields[];
246 };
247 
248 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
249 struct bpf_rb_node_kern {
250 	struct rb_node rb_node;
251 	void *owner;
252 } __attribute__((aligned(8)));
253 
254 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
255 struct bpf_list_node_kern {
256 	struct list_head list_head;
257 	void *owner;
258 } __attribute__((aligned(8)));
259 
260 struct bpf_map {
261 	const struct bpf_map_ops *ops;
262 	struct bpf_map *inner_map_meta;
263 #ifdef CONFIG_SECURITY
264 	void *security;
265 #endif
266 	enum bpf_map_type map_type;
267 	u32 key_size;
268 	u32 value_size;
269 	u32 max_entries;
270 	u64 map_extra; /* any per-map-type extra fields */
271 	u32 map_flags;
272 	u32 id;
273 	struct btf_record *record;
274 	int numa_node;
275 	u32 btf_key_type_id;
276 	u32 btf_value_type_id;
277 	u32 btf_vmlinux_value_type_id;
278 	struct btf *btf;
279 #ifdef CONFIG_MEMCG
280 	struct obj_cgroup *objcg;
281 #endif
282 	char name[BPF_OBJ_NAME_LEN];
283 	struct mutex freeze_mutex;
284 	atomic64_t refcnt;
285 	atomic64_t usercnt;
286 	/* rcu is used before freeing and work is only used during freeing */
287 	union {
288 		struct work_struct work;
289 		struct rcu_head rcu;
290 	};
291 	atomic64_t writecnt;
292 	/* 'Ownership' of program-containing map is claimed by the first program
293 	 * that is going to use this map or by the first program which FD is
294 	 * stored in the map to make sure that all callers and callees have the
295 	 * same prog type, JITed flag and xdp_has_frags flag.
296 	 */
297 	struct {
298 		const struct btf_type *attach_func_proto;
299 		spinlock_t lock;
300 		enum bpf_prog_type type;
301 		bool jited;
302 		bool xdp_has_frags;
303 	} owner;
304 	bool bypass_spec_v1;
305 	bool frozen; /* write-once; write-protected by freeze_mutex */
306 	bool free_after_mult_rcu_gp;
307 	bool free_after_rcu_gp;
308 	atomic64_t sleepable_refcnt;
309 	s64 __percpu *elem_count;
310 };
311 
312 static inline const char *btf_field_type_name(enum btf_field_type type)
313 {
314 	switch (type) {
315 	case BPF_SPIN_LOCK:
316 		return "bpf_spin_lock";
317 	case BPF_TIMER:
318 		return "bpf_timer";
319 	case BPF_WORKQUEUE:
320 		return "bpf_wq";
321 	case BPF_KPTR_UNREF:
322 	case BPF_KPTR_REF:
323 		return "kptr";
324 	case BPF_KPTR_PERCPU:
325 		return "percpu_kptr";
326 	case BPF_UPTR:
327 		return "uptr";
328 	case BPF_LIST_HEAD:
329 		return "bpf_list_head";
330 	case BPF_LIST_NODE:
331 		return "bpf_list_node";
332 	case BPF_RB_ROOT:
333 		return "bpf_rb_root";
334 	case BPF_RB_NODE:
335 		return "bpf_rb_node";
336 	case BPF_REFCOUNT:
337 		return "bpf_refcount";
338 	default:
339 		WARN_ON_ONCE(1);
340 		return "unknown";
341 	}
342 }
343 
344 static inline u32 btf_field_type_size(enum btf_field_type type)
345 {
346 	switch (type) {
347 	case BPF_SPIN_LOCK:
348 		return sizeof(struct bpf_spin_lock);
349 	case BPF_TIMER:
350 		return sizeof(struct bpf_timer);
351 	case BPF_WORKQUEUE:
352 		return sizeof(struct bpf_wq);
353 	case BPF_KPTR_UNREF:
354 	case BPF_KPTR_REF:
355 	case BPF_KPTR_PERCPU:
356 	case BPF_UPTR:
357 		return sizeof(u64);
358 	case BPF_LIST_HEAD:
359 		return sizeof(struct bpf_list_head);
360 	case BPF_LIST_NODE:
361 		return sizeof(struct bpf_list_node);
362 	case BPF_RB_ROOT:
363 		return sizeof(struct bpf_rb_root);
364 	case BPF_RB_NODE:
365 		return sizeof(struct bpf_rb_node);
366 	case BPF_REFCOUNT:
367 		return sizeof(struct bpf_refcount);
368 	default:
369 		WARN_ON_ONCE(1);
370 		return 0;
371 	}
372 }
373 
374 static inline u32 btf_field_type_align(enum btf_field_type type)
375 {
376 	switch (type) {
377 	case BPF_SPIN_LOCK:
378 		return __alignof__(struct bpf_spin_lock);
379 	case BPF_TIMER:
380 		return __alignof__(struct bpf_timer);
381 	case BPF_WORKQUEUE:
382 		return __alignof__(struct bpf_wq);
383 	case BPF_KPTR_UNREF:
384 	case BPF_KPTR_REF:
385 	case BPF_KPTR_PERCPU:
386 	case BPF_UPTR:
387 		return __alignof__(u64);
388 	case BPF_LIST_HEAD:
389 		return __alignof__(struct bpf_list_head);
390 	case BPF_LIST_NODE:
391 		return __alignof__(struct bpf_list_node);
392 	case BPF_RB_ROOT:
393 		return __alignof__(struct bpf_rb_root);
394 	case BPF_RB_NODE:
395 		return __alignof__(struct bpf_rb_node);
396 	case BPF_REFCOUNT:
397 		return __alignof__(struct bpf_refcount);
398 	default:
399 		WARN_ON_ONCE(1);
400 		return 0;
401 	}
402 }
403 
404 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
405 {
406 	memset(addr, 0, field->size);
407 
408 	switch (field->type) {
409 	case BPF_REFCOUNT:
410 		refcount_set((refcount_t *)addr, 1);
411 		break;
412 	case BPF_RB_NODE:
413 		RB_CLEAR_NODE((struct rb_node *)addr);
414 		break;
415 	case BPF_LIST_HEAD:
416 	case BPF_LIST_NODE:
417 		INIT_LIST_HEAD((struct list_head *)addr);
418 		break;
419 	case BPF_RB_ROOT:
420 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
421 	case BPF_SPIN_LOCK:
422 	case BPF_TIMER:
423 	case BPF_WORKQUEUE:
424 	case BPF_KPTR_UNREF:
425 	case BPF_KPTR_REF:
426 	case BPF_KPTR_PERCPU:
427 	case BPF_UPTR:
428 		break;
429 	default:
430 		WARN_ON_ONCE(1);
431 		return;
432 	}
433 }
434 
435 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
436 {
437 	if (IS_ERR_OR_NULL(rec))
438 		return false;
439 	return rec->field_mask & type;
440 }
441 
442 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
443 {
444 	int i;
445 
446 	if (IS_ERR_OR_NULL(rec))
447 		return;
448 	for (i = 0; i < rec->cnt; i++)
449 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
450 }
451 
452 /* 'dst' must be a temporary buffer and should not point to memory that is being
453  * used in parallel by a bpf program or bpf syscall, otherwise the access from
454  * the bpf program or bpf syscall may be corrupted by the reinitialization,
455  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
456  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
457  * program or bpf syscall.
458  */
459 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
460 {
461 	bpf_obj_init(map->record, dst);
462 }
463 
464 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
465  * forced to use 'long' read/writes to try to atomically copy long counters.
466  * Best-effort only.  No barriers here, since it _will_ race with concurrent
467  * updates from BPF programs. Called from bpf syscall and mostly used with
468  * size 8 or 16 bytes, so ask compiler to inline it.
469  */
470 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
471 {
472 	const long *lsrc = src;
473 	long *ldst = dst;
474 
475 	size /= sizeof(long);
476 	while (size--)
477 		data_race(*ldst++ = *lsrc++);
478 }
479 
480 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
481 static inline void bpf_obj_memcpy(struct btf_record *rec,
482 				  void *dst, void *src, u32 size,
483 				  bool long_memcpy)
484 {
485 	u32 curr_off = 0;
486 	int i;
487 
488 	if (IS_ERR_OR_NULL(rec)) {
489 		if (long_memcpy)
490 			bpf_long_memcpy(dst, src, round_up(size, 8));
491 		else
492 			memcpy(dst, src, size);
493 		return;
494 	}
495 
496 	for (i = 0; i < rec->cnt; i++) {
497 		u32 next_off = rec->fields[i].offset;
498 		u32 sz = next_off - curr_off;
499 
500 		memcpy(dst + curr_off, src + curr_off, sz);
501 		curr_off += rec->fields[i].size + sz;
502 	}
503 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
504 }
505 
506 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
507 {
508 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
509 }
510 
511 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
512 {
513 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
514 }
515 
516 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
517 {
518 	unsigned long *src_uptr, *dst_uptr;
519 	const struct btf_field *field;
520 	int i;
521 
522 	if (!btf_record_has_field(rec, BPF_UPTR))
523 		return;
524 
525 	for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
526 		if (field->type != BPF_UPTR)
527 			continue;
528 
529 		src_uptr = src + field->offset;
530 		dst_uptr = dst + field->offset;
531 		swap(*src_uptr, *dst_uptr);
532 	}
533 }
534 
535 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
536 {
537 	u32 curr_off = 0;
538 	int i;
539 
540 	if (IS_ERR_OR_NULL(rec)) {
541 		memset(dst, 0, size);
542 		return;
543 	}
544 
545 	for (i = 0; i < rec->cnt; i++) {
546 		u32 next_off = rec->fields[i].offset;
547 		u32 sz = next_off - curr_off;
548 
549 		memset(dst + curr_off, 0, sz);
550 		curr_off += rec->fields[i].size + sz;
551 	}
552 	memset(dst + curr_off, 0, size - curr_off);
553 }
554 
555 static inline void zero_map_value(struct bpf_map *map, void *dst)
556 {
557 	bpf_obj_memzero(map->record, dst, map->value_size);
558 }
559 
560 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
561 			   bool lock_src);
562 void bpf_timer_cancel_and_free(void *timer);
563 void bpf_wq_cancel_and_free(void *timer);
564 void bpf_list_head_free(const struct btf_field *field, void *list_head,
565 			struct bpf_spin_lock *spin_lock);
566 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
567 		      struct bpf_spin_lock *spin_lock);
568 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
569 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
570 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
571 
572 struct bpf_offload_dev;
573 struct bpf_offloaded_map;
574 
575 struct bpf_map_dev_ops {
576 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
577 				void *key, void *next_key);
578 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
579 			       void *key, void *value);
580 	int (*map_update_elem)(struct bpf_offloaded_map *map,
581 			       void *key, void *value, u64 flags);
582 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
583 };
584 
585 struct bpf_offloaded_map {
586 	struct bpf_map map;
587 	struct net_device *netdev;
588 	const struct bpf_map_dev_ops *dev_ops;
589 	void *dev_priv;
590 	struct list_head offloads;
591 };
592 
593 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
594 {
595 	return container_of(map, struct bpf_offloaded_map, map);
596 }
597 
598 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
599 {
600 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
601 }
602 
603 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
604 {
605 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
606 		map->ops->map_seq_show_elem;
607 }
608 
609 int map_check_no_btf(const struct bpf_map *map,
610 		     const struct btf *btf,
611 		     const struct btf_type *key_type,
612 		     const struct btf_type *value_type);
613 
614 bool bpf_map_meta_equal(const struct bpf_map *meta0,
615 			const struct bpf_map *meta1);
616 
617 extern const struct bpf_map_ops bpf_map_offload_ops;
618 
619 /* bpf_type_flag contains a set of flags that are applicable to the values of
620  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
621  * or a memory is read-only. We classify types into two categories: base types
622  * and extended types. Extended types are base types combined with a type flag.
623  *
624  * Currently there are no more than 32 base types in arg_type, ret_type and
625  * reg_types.
626  */
627 #define BPF_BASE_TYPE_BITS	8
628 
629 enum bpf_type_flag {
630 	/* PTR may be NULL. */
631 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
632 
633 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
634 	 * compatible with both mutable and immutable memory.
635 	 */
636 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
637 
638 	/* MEM points to BPF ring buffer reservation. */
639 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
640 
641 	/* MEM is in user address space. */
642 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
643 
644 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
645 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
646 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
647 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
648 	 * to the specified cpu.
649 	 */
650 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
651 
652 	/* Indicates that the argument will be released. */
653 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
654 
655 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
656 	 * unreferenced and referenced kptr loaded from map value using a load
657 	 * instruction, so that they can only be dereferenced but not escape the
658 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
659 	 * kfunc or bpf helpers).
660 	 */
661 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
662 
663 	/* MEM can be uninitialized. */
664 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
665 
666 	/* DYNPTR points to memory local to the bpf program. */
667 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
668 
669 	/* DYNPTR points to a kernel-produced ringbuf record. */
670 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
671 
672 	/* Size is known at compile time. */
673 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
674 
675 	/* MEM is of an allocated object of type in program BTF. This is used to
676 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
677 	 */
678 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
679 
680 	/* PTR was passed from the kernel in a trusted context, and may be
681 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
682 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
683 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
684 	 * without invoking bpf_kptr_xchg(). What we really need to know is
685 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
686 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
687 	 * helpers, they do not cover all possible instances of unsafe
688 	 * pointers. For example, a pointer that was obtained from walking a
689 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
690 	 * fact that it may be NULL, invalid, etc. This is due to backwards
691 	 * compatibility requirements, as this was the behavior that was first
692 	 * introduced when kptrs were added. The behavior is now considered
693 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
694 	 *
695 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
696 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
697 	 * For example, pointers passed to tracepoint arguments are considered
698 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
699 	 * callbacks. As alluded to above, pointers that are obtained from
700 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
701 	 * struct task_struct *task is PTR_TRUSTED, then accessing
702 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
703 	 * in a BPF register. Similarly, pointers passed to certain programs
704 	 * types such as kretprobes are not guaranteed to be valid, as they may
705 	 * for example contain an object that was recently freed.
706 	 */
707 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
708 
709 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
710 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
711 
712 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
713 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
714 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
715 	 */
716 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
717 
718 	/* DYNPTR points to sk_buff */
719 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
720 
721 	/* DYNPTR points to xdp_buff */
722 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
723 
724 	/* Memory must be aligned on some architectures, used in combination with
725 	 * MEM_FIXED_SIZE.
726 	 */
727 	MEM_ALIGNED		= BIT(17 + BPF_BASE_TYPE_BITS),
728 
729 	/* MEM is being written to, often combined with MEM_UNINIT. Non-presence
730 	 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
731 	 * MEM_UNINIT means that memory needs to be initialized since it is also
732 	 * read.
733 	 */
734 	MEM_WRITE		= BIT(18 + BPF_BASE_TYPE_BITS),
735 
736 	__BPF_TYPE_FLAG_MAX,
737 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
738 };
739 
740 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
741 				 | DYNPTR_TYPE_XDP)
742 
743 /* Max number of base types. */
744 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
745 
746 /* Max number of all types. */
747 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
748 
749 /* function argument constraints */
750 enum bpf_arg_type {
751 	ARG_DONTCARE = 0,	/* unused argument in helper function */
752 
753 	/* the following constraints used to prototype
754 	 * bpf_map_lookup/update/delete_elem() functions
755 	 */
756 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
757 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
758 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
759 
760 	/* Used to prototype bpf_memcmp() and other functions that access data
761 	 * on eBPF program stack
762 	 */
763 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
764 	ARG_PTR_TO_ARENA,
765 
766 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
767 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
768 
769 	ARG_PTR_TO_CTX,		/* pointer to context */
770 	ARG_ANYTHING,		/* any (initialized) argument is ok */
771 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
772 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
773 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
774 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
775 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
776 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
777 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
778 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
779 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
780 	ARG_PTR_TO_STACK,	/* pointer to stack */
781 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
782 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
783 	ARG_KPTR_XCHG_DEST,	/* pointer to destination that kptrs are bpf_kptr_xchg'd into */
784 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
785 	__BPF_ARG_TYPE_MAX,
786 
787 	/* Extended arg_types. */
788 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
789 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
790 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
791 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
792 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
793 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
794 	/* Pointer to memory does not need to be initialized, since helper function
795 	 * fills all bytes or clears them in error case.
796 	 */
797 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
798 	/* Pointer to valid memory of size known at compile time. */
799 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
800 
801 	/* This must be the last entry. Its purpose is to ensure the enum is
802 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
803 	 */
804 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
805 };
806 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
807 
808 /* type of values returned from helper functions */
809 enum bpf_return_type {
810 	RET_INTEGER,			/* function returns integer */
811 	RET_VOID,			/* function doesn't return anything */
812 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
813 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
814 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
815 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
816 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
817 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
818 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
819 	__BPF_RET_TYPE_MAX,
820 
821 	/* Extended ret_types. */
822 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
823 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
824 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
825 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
826 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
827 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
828 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
829 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
830 
831 	/* This must be the last entry. Its purpose is to ensure the enum is
832 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
833 	 */
834 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
835 };
836 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
837 
838 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
839  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
840  * instructions after verifying
841  */
842 struct bpf_func_proto {
843 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
844 	bool gpl_only;
845 	bool pkt_access;
846 	bool might_sleep;
847 	/* set to true if helper follows contract for llvm
848 	 * attribute bpf_fastcall:
849 	 * - void functions do not scratch r0
850 	 * - functions taking N arguments scratch only registers r1-rN
851 	 */
852 	bool allow_fastcall;
853 	enum bpf_return_type ret_type;
854 	union {
855 		struct {
856 			enum bpf_arg_type arg1_type;
857 			enum bpf_arg_type arg2_type;
858 			enum bpf_arg_type arg3_type;
859 			enum bpf_arg_type arg4_type;
860 			enum bpf_arg_type arg5_type;
861 		};
862 		enum bpf_arg_type arg_type[5];
863 	};
864 	union {
865 		struct {
866 			u32 *arg1_btf_id;
867 			u32 *arg2_btf_id;
868 			u32 *arg3_btf_id;
869 			u32 *arg4_btf_id;
870 			u32 *arg5_btf_id;
871 		};
872 		u32 *arg_btf_id[5];
873 		struct {
874 			size_t arg1_size;
875 			size_t arg2_size;
876 			size_t arg3_size;
877 			size_t arg4_size;
878 			size_t arg5_size;
879 		};
880 		size_t arg_size[5];
881 	};
882 	int *ret_btf_id; /* return value btf_id */
883 	bool (*allowed)(const struct bpf_prog *prog);
884 };
885 
886 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
887  * the first argument to eBPF programs.
888  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
889  */
890 struct bpf_context;
891 
892 enum bpf_access_type {
893 	BPF_READ = 1,
894 	BPF_WRITE = 2
895 };
896 
897 /* types of values stored in eBPF registers */
898 /* Pointer types represent:
899  * pointer
900  * pointer + imm
901  * pointer + (u16) var
902  * pointer + (u16) var + imm
903  * if (range > 0) then [ptr, ptr + range - off) is safe to access
904  * if (id > 0) means that some 'var' was added
905  * if (off > 0) means that 'imm' was added
906  */
907 enum bpf_reg_type {
908 	NOT_INIT = 0,		 /* nothing was written into register */
909 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
910 	PTR_TO_CTX,		 /* reg points to bpf_context */
911 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
912 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
913 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
914 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
915 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
916 	PTR_TO_PACKET,		 /* reg points to skb->data */
917 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
918 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
919 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
920 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
921 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
922 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
923 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
924 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
925 	 * to be null checked by the BPF program. This does not imply the
926 	 * pointer is _not_ null and in practice this can easily be a null
927 	 * pointer when reading pointer chains. The assumption is program
928 	 * context will handle null pointer dereference typically via fault
929 	 * handling. The verifier must keep this in mind and can make no
930 	 * assumptions about null or non-null when doing branch analysis.
931 	 * Further, when passed into helpers the helpers can not, without
932 	 * additional context, assume the value is non-null.
933 	 */
934 	PTR_TO_BTF_ID,
935 	PTR_TO_MEM,		 /* reg points to valid memory region */
936 	PTR_TO_ARENA,
937 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
938 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
939 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
940 	__BPF_REG_TYPE_MAX,
941 
942 	/* Extended reg_types. */
943 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
944 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
945 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
946 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
947 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
948 	 * been checked for null. Used primarily to inform the verifier
949 	 * an explicit null check is required for this struct.
950 	 */
951 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
952 
953 	/* This must be the last entry. Its purpose is to ensure the enum is
954 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
955 	 */
956 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
957 };
958 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
959 
960 /* The information passed from prog-specific *_is_valid_access
961  * back to the verifier.
962  */
963 struct bpf_insn_access_aux {
964 	enum bpf_reg_type reg_type;
965 	bool is_ldsx;
966 	union {
967 		int ctx_field_size;
968 		struct {
969 			struct btf *btf;
970 			u32 btf_id;
971 		};
972 	};
973 	struct bpf_verifier_log *log; /* for verbose logs */
974 	bool is_retval; /* is accessing function return value ? */
975 };
976 
977 static inline void
978 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
979 {
980 	aux->ctx_field_size = size;
981 }
982 
983 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
984 {
985 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
986 }
987 
988 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
989 {
990 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
991 }
992 
993 struct bpf_prog_ops {
994 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
995 			union bpf_attr __user *uattr);
996 };
997 
998 struct bpf_reg_state;
999 struct bpf_verifier_ops {
1000 	/* return eBPF function prototype for verification */
1001 	const struct bpf_func_proto *
1002 	(*get_func_proto)(enum bpf_func_id func_id,
1003 			  const struct bpf_prog *prog);
1004 
1005 	/* return true if 'size' wide access at offset 'off' within bpf_context
1006 	 * with 'type' (read or write) is allowed
1007 	 */
1008 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1009 				const struct bpf_prog *prog,
1010 				struct bpf_insn_access_aux *info);
1011 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1012 			    const struct bpf_prog *prog);
1013 	int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1014 			    s16 ctx_stack_off);
1015 	int (*gen_ld_abs)(const struct bpf_insn *orig,
1016 			  struct bpf_insn *insn_buf);
1017 	u32 (*convert_ctx_access)(enum bpf_access_type type,
1018 				  const struct bpf_insn *src,
1019 				  struct bpf_insn *dst,
1020 				  struct bpf_prog *prog, u32 *target_size);
1021 	int (*btf_struct_access)(struct bpf_verifier_log *log,
1022 				 const struct bpf_reg_state *reg,
1023 				 int off, int size);
1024 };
1025 
1026 struct bpf_prog_offload_ops {
1027 	/* verifier basic callbacks */
1028 	int (*insn_hook)(struct bpf_verifier_env *env,
1029 			 int insn_idx, int prev_insn_idx);
1030 	int (*finalize)(struct bpf_verifier_env *env);
1031 	/* verifier optimization callbacks (called after .finalize) */
1032 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1033 			    struct bpf_insn *insn);
1034 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1035 	/* program management callbacks */
1036 	int (*prepare)(struct bpf_prog *prog);
1037 	int (*translate)(struct bpf_prog *prog);
1038 	void (*destroy)(struct bpf_prog *prog);
1039 };
1040 
1041 struct bpf_prog_offload {
1042 	struct bpf_prog		*prog;
1043 	struct net_device	*netdev;
1044 	struct bpf_offload_dev	*offdev;
1045 	void			*dev_priv;
1046 	struct list_head	offloads;
1047 	bool			dev_state;
1048 	bool			opt_failed;
1049 	void			*jited_image;
1050 	u32			jited_len;
1051 };
1052 
1053 enum bpf_cgroup_storage_type {
1054 	BPF_CGROUP_STORAGE_SHARED,
1055 	BPF_CGROUP_STORAGE_PERCPU,
1056 	__BPF_CGROUP_STORAGE_MAX
1057 };
1058 
1059 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1060 
1061 /* The longest tracepoint has 12 args.
1062  * See include/trace/bpf_probe.h
1063  */
1064 #define MAX_BPF_FUNC_ARGS 12
1065 
1066 /* The maximum number of arguments passed through registers
1067  * a single function may have.
1068  */
1069 #define MAX_BPF_FUNC_REG_ARGS 5
1070 
1071 /* The argument is a structure. */
1072 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1073 
1074 /* The argument is signed. */
1075 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1076 
1077 struct btf_func_model {
1078 	u8 ret_size;
1079 	u8 ret_flags;
1080 	u8 nr_args;
1081 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1082 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1083 };
1084 
1085 /* Restore arguments before returning from trampoline to let original function
1086  * continue executing. This flag is used for fentry progs when there are no
1087  * fexit progs.
1088  */
1089 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1090 /* Call original function after fentry progs, but before fexit progs.
1091  * Makes sense for fentry/fexit, normal calls and indirect calls.
1092  */
1093 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1094 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1095  * programs only. Should not be used with normal calls and indirect calls.
1096  */
1097 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1098 /* Store IP address of the caller on the trampoline stack,
1099  * so it's available for trampoline's programs.
1100  */
1101 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1102 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1103 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1104 
1105 /* Get original function from stack instead of from provided direct address.
1106  * Makes sense for trampolines with fexit or fmod_ret programs.
1107  */
1108 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1109 
1110 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1111  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1112  */
1113 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1114 
1115 /* Indicate that current trampoline is in a tail call context. Then, it has to
1116  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1117  */
1118 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1119 
1120 /*
1121  * Indicate the trampoline should be suitable to receive indirect calls;
1122  * without this indirectly calling the generated code can result in #UD/#CP,
1123  * depending on the CFI options.
1124  *
1125  * Used by bpf_struct_ops.
1126  *
1127  * Incompatible with FENTRY usage, overloads @func_addr argument.
1128  */
1129 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1130 
1131 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1132  * bytes on x86.
1133  */
1134 enum {
1135 #if defined(__s390x__)
1136 	BPF_MAX_TRAMP_LINKS = 27,
1137 #else
1138 	BPF_MAX_TRAMP_LINKS = 38,
1139 #endif
1140 };
1141 
1142 struct bpf_tramp_links {
1143 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1144 	int nr_links;
1145 };
1146 
1147 struct bpf_tramp_run_ctx;
1148 
1149 /* Different use cases for BPF trampoline:
1150  * 1. replace nop at the function entry (kprobe equivalent)
1151  *    flags = BPF_TRAMP_F_RESTORE_REGS
1152  *    fentry = a set of programs to run before returning from trampoline
1153  *
1154  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1155  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1156  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1157  *    fentry = a set of program to run before calling original function
1158  *    fexit = a set of program to run after original function
1159  *
1160  * 3. replace direct call instruction anywhere in the function body
1161  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1162  *    With flags = 0
1163  *      fentry = a set of programs to run before returning from trampoline
1164  *    With flags = BPF_TRAMP_F_CALL_ORIG
1165  *      orig_call = original callback addr or direct function addr
1166  *      fentry = a set of program to run before calling original function
1167  *      fexit = a set of program to run after original function
1168  */
1169 struct bpf_tramp_image;
1170 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1171 				const struct btf_func_model *m, u32 flags,
1172 				struct bpf_tramp_links *tlinks,
1173 				void *func_addr);
1174 void *arch_alloc_bpf_trampoline(unsigned int size);
1175 void arch_free_bpf_trampoline(void *image, unsigned int size);
1176 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1177 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1178 			     struct bpf_tramp_links *tlinks, void *func_addr);
1179 
1180 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1181 					     struct bpf_tramp_run_ctx *run_ctx);
1182 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1183 					     struct bpf_tramp_run_ctx *run_ctx);
1184 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1185 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1186 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1187 				      struct bpf_tramp_run_ctx *run_ctx);
1188 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1189 				      struct bpf_tramp_run_ctx *run_ctx);
1190 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1191 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1192 
1193 struct bpf_ksym {
1194 	unsigned long		 start;
1195 	unsigned long		 end;
1196 	char			 name[KSYM_NAME_LEN];
1197 	struct list_head	 lnode;
1198 	struct latch_tree_node	 tnode;
1199 	bool			 prog;
1200 };
1201 
1202 enum bpf_tramp_prog_type {
1203 	BPF_TRAMP_FENTRY,
1204 	BPF_TRAMP_FEXIT,
1205 	BPF_TRAMP_MODIFY_RETURN,
1206 	BPF_TRAMP_MAX,
1207 	BPF_TRAMP_REPLACE, /* more than MAX */
1208 };
1209 
1210 struct bpf_tramp_image {
1211 	void *image;
1212 	int size;
1213 	struct bpf_ksym ksym;
1214 	struct percpu_ref pcref;
1215 	void *ip_after_call;
1216 	void *ip_epilogue;
1217 	union {
1218 		struct rcu_head rcu;
1219 		struct work_struct work;
1220 	};
1221 };
1222 
1223 struct bpf_trampoline {
1224 	/* hlist for trampoline_table */
1225 	struct hlist_node hlist;
1226 	struct ftrace_ops *fops;
1227 	/* serializes access to fields of this trampoline */
1228 	struct mutex mutex;
1229 	refcount_t refcnt;
1230 	u32 flags;
1231 	u64 key;
1232 	struct {
1233 		struct btf_func_model model;
1234 		void *addr;
1235 		bool ftrace_managed;
1236 	} func;
1237 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1238 	 * program by replacing one of its functions. func.addr is the address
1239 	 * of the function it replaced.
1240 	 */
1241 	struct bpf_prog *extension_prog;
1242 	/* list of BPF programs using this trampoline */
1243 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1244 	/* Number of attached programs. A counter per kind. */
1245 	int progs_cnt[BPF_TRAMP_MAX];
1246 	/* Executable image of trampoline */
1247 	struct bpf_tramp_image *cur_image;
1248 };
1249 
1250 struct bpf_attach_target_info {
1251 	struct btf_func_model fmodel;
1252 	long tgt_addr;
1253 	struct module *tgt_mod;
1254 	const char *tgt_name;
1255 	const struct btf_type *tgt_type;
1256 };
1257 
1258 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1259 
1260 struct bpf_dispatcher_prog {
1261 	struct bpf_prog *prog;
1262 	refcount_t users;
1263 };
1264 
1265 struct bpf_dispatcher {
1266 	/* dispatcher mutex */
1267 	struct mutex mutex;
1268 	void *func;
1269 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1270 	int num_progs;
1271 	void *image;
1272 	void *rw_image;
1273 	u32 image_off;
1274 	struct bpf_ksym ksym;
1275 #ifdef CONFIG_HAVE_STATIC_CALL
1276 	struct static_call_key *sc_key;
1277 	void *sc_tramp;
1278 #endif
1279 };
1280 
1281 #ifndef __bpfcall
1282 #define __bpfcall __nocfi
1283 #endif
1284 
1285 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1286 	const void *ctx,
1287 	const struct bpf_insn *insnsi,
1288 	bpf_func_t bpf_func)
1289 {
1290 	return bpf_func(ctx, insnsi);
1291 }
1292 
1293 /* the implementation of the opaque uapi struct bpf_dynptr */
1294 struct bpf_dynptr_kern {
1295 	void *data;
1296 	/* Size represents the number of usable bytes of dynptr data.
1297 	 * If for example the offset is at 4 for a local dynptr whose data is
1298 	 * of type u64, the number of usable bytes is 4.
1299 	 *
1300 	 * The upper 8 bits are reserved. It is as follows:
1301 	 * Bits 0 - 23 = size
1302 	 * Bits 24 - 30 = dynptr type
1303 	 * Bit 31 = whether dynptr is read-only
1304 	 */
1305 	u32 size;
1306 	u32 offset;
1307 } __aligned(8);
1308 
1309 enum bpf_dynptr_type {
1310 	BPF_DYNPTR_TYPE_INVALID,
1311 	/* Points to memory that is local to the bpf program */
1312 	BPF_DYNPTR_TYPE_LOCAL,
1313 	/* Underlying data is a ringbuf record */
1314 	BPF_DYNPTR_TYPE_RINGBUF,
1315 	/* Underlying data is a sk_buff */
1316 	BPF_DYNPTR_TYPE_SKB,
1317 	/* Underlying data is a xdp_buff */
1318 	BPF_DYNPTR_TYPE_XDP,
1319 };
1320 
1321 int bpf_dynptr_check_size(u32 size);
1322 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1323 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1324 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1325 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1326 
1327 #ifdef CONFIG_BPF_JIT
1328 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1329 			     struct bpf_trampoline *tr,
1330 			     struct bpf_prog *tgt_prog);
1331 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1332 			       struct bpf_trampoline *tr,
1333 			       struct bpf_prog *tgt_prog);
1334 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1335 					  struct bpf_attach_target_info *tgt_info);
1336 void bpf_trampoline_put(struct bpf_trampoline *tr);
1337 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1338 
1339 /*
1340  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1341  * indirection with a direct call to the bpf program. If the architecture does
1342  * not have STATIC_CALL, avoid a double-indirection.
1343  */
1344 #ifdef CONFIG_HAVE_STATIC_CALL
1345 
1346 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1347 	.sc_key = &STATIC_CALL_KEY(_name),			\
1348 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1349 
1350 #define __BPF_DISPATCHER_SC(name)				\
1351 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1352 
1353 #define __BPF_DISPATCHER_CALL(name)				\
1354 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1355 
1356 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1357 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1358 
1359 #else
1360 #define __BPF_DISPATCHER_SC_INIT(name)
1361 #define __BPF_DISPATCHER_SC(name)
1362 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1363 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1364 #endif
1365 
1366 #define BPF_DISPATCHER_INIT(_name) {				\
1367 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1368 	.func = &_name##_func,					\
1369 	.progs = {},						\
1370 	.num_progs = 0,						\
1371 	.image = NULL,						\
1372 	.image_off = 0,						\
1373 	.ksym = {						\
1374 		.name  = #_name,				\
1375 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1376 	},							\
1377 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1378 }
1379 
1380 #define DEFINE_BPF_DISPATCHER(name)					\
1381 	__BPF_DISPATCHER_SC(name);					\
1382 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1383 		const void *ctx,					\
1384 		const struct bpf_insn *insnsi,				\
1385 		bpf_func_t bpf_func)					\
1386 	{								\
1387 		return __BPF_DISPATCHER_CALL(name);			\
1388 	}								\
1389 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1390 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1391 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1392 
1393 #define DECLARE_BPF_DISPATCHER(name)					\
1394 	unsigned int bpf_dispatcher_##name##_func(			\
1395 		const void *ctx,					\
1396 		const struct bpf_insn *insnsi,				\
1397 		bpf_func_t bpf_func);					\
1398 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1399 
1400 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1401 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1402 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1403 				struct bpf_prog *to);
1404 /* Called only from JIT-enabled code, so there's no need for stubs. */
1405 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1406 void bpf_image_ksym_add(struct bpf_ksym *ksym);
1407 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1408 void bpf_ksym_add(struct bpf_ksym *ksym);
1409 void bpf_ksym_del(struct bpf_ksym *ksym);
1410 int bpf_jit_charge_modmem(u32 size);
1411 void bpf_jit_uncharge_modmem(u32 size);
1412 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1413 #else
1414 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1415 					   struct bpf_trampoline *tr,
1416 					   struct bpf_prog *tgt_prog)
1417 {
1418 	return -ENOTSUPP;
1419 }
1420 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1421 					     struct bpf_trampoline *tr,
1422 					     struct bpf_prog *tgt_prog)
1423 {
1424 	return -ENOTSUPP;
1425 }
1426 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1427 							struct bpf_attach_target_info *tgt_info)
1428 {
1429 	return NULL;
1430 }
1431 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1432 #define DEFINE_BPF_DISPATCHER(name)
1433 #define DECLARE_BPF_DISPATCHER(name)
1434 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1435 #define BPF_DISPATCHER_PTR(name) NULL
1436 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1437 					      struct bpf_prog *from,
1438 					      struct bpf_prog *to) {}
1439 static inline bool is_bpf_image_address(unsigned long address)
1440 {
1441 	return false;
1442 }
1443 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1444 {
1445 	return false;
1446 }
1447 #endif
1448 
1449 struct bpf_func_info_aux {
1450 	u16 linkage;
1451 	bool unreliable;
1452 	bool called : 1;
1453 	bool verified : 1;
1454 };
1455 
1456 enum bpf_jit_poke_reason {
1457 	BPF_POKE_REASON_TAIL_CALL,
1458 };
1459 
1460 /* Descriptor of pokes pointing /into/ the JITed image. */
1461 struct bpf_jit_poke_descriptor {
1462 	void *tailcall_target;
1463 	void *tailcall_bypass;
1464 	void *bypass_addr;
1465 	void *aux;
1466 	union {
1467 		struct {
1468 			struct bpf_map *map;
1469 			u32 key;
1470 		} tail_call;
1471 	};
1472 	bool tailcall_target_stable;
1473 	u8 adj_off;
1474 	u16 reason;
1475 	u32 insn_idx;
1476 };
1477 
1478 /* reg_type info for ctx arguments */
1479 struct bpf_ctx_arg_aux {
1480 	u32 offset;
1481 	enum bpf_reg_type reg_type;
1482 	struct btf *btf;
1483 	u32 btf_id;
1484 };
1485 
1486 struct btf_mod_pair {
1487 	struct btf *btf;
1488 	struct module *module;
1489 };
1490 
1491 struct bpf_kfunc_desc_tab;
1492 
1493 struct bpf_prog_aux {
1494 	atomic64_t refcnt;
1495 	u32 used_map_cnt;
1496 	u32 used_btf_cnt;
1497 	u32 max_ctx_offset;
1498 	u32 max_pkt_offset;
1499 	u32 max_tp_access;
1500 	u32 stack_depth;
1501 	u32 id;
1502 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1503 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1504 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1505 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1506 	u32 ctx_arg_info_size;
1507 	u32 max_rdonly_access;
1508 	u32 max_rdwr_access;
1509 	struct btf *attach_btf;
1510 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1511 	void __percpu *priv_stack_ptr;
1512 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1513 	struct bpf_prog *dst_prog;
1514 	struct bpf_trampoline *dst_trampoline;
1515 	enum bpf_prog_type saved_dst_prog_type;
1516 	enum bpf_attach_type saved_dst_attach_type;
1517 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1518 	bool dev_bound; /* Program is bound to the netdev. */
1519 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1520 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1521 	bool attach_tracing_prog; /* true if tracing another tracing program */
1522 	bool func_proto_unreliable;
1523 	bool tail_call_reachable;
1524 	bool xdp_has_frags;
1525 	bool exception_cb;
1526 	bool exception_boundary;
1527 	bool is_extended; /* true if extended by freplace program */
1528 	bool jits_use_priv_stack;
1529 	bool priv_stack_requested;
1530 	u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1531 	struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1532 	struct bpf_arena *arena;
1533 	void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1534 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1535 	const struct btf_type *attach_func_proto;
1536 	/* function name for valid attach_btf_id */
1537 	const char *attach_func_name;
1538 	struct bpf_prog **func;
1539 	void *jit_data; /* JIT specific data. arch dependent */
1540 	struct bpf_jit_poke_descriptor *poke_tab;
1541 	struct bpf_kfunc_desc_tab *kfunc_tab;
1542 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1543 	u32 size_poke_tab;
1544 #ifdef CONFIG_FINEIBT
1545 	struct bpf_ksym ksym_prefix;
1546 #endif
1547 	struct bpf_ksym ksym;
1548 	const struct bpf_prog_ops *ops;
1549 	struct bpf_map **used_maps;
1550 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1551 	struct btf_mod_pair *used_btfs;
1552 	struct bpf_prog *prog;
1553 	struct user_struct *user;
1554 	u64 load_time; /* ns since boottime */
1555 	u32 verified_insns;
1556 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1557 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1558 	char name[BPF_OBJ_NAME_LEN];
1559 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1560 #ifdef CONFIG_SECURITY
1561 	void *security;
1562 #endif
1563 	struct bpf_token *token;
1564 	struct bpf_prog_offload *offload;
1565 	struct btf *btf;
1566 	struct bpf_func_info *func_info;
1567 	struct bpf_func_info_aux *func_info_aux;
1568 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1569 	 * has the xlated insn offset.
1570 	 * Both the main and sub prog share the same linfo.
1571 	 * The subprog can access its first linfo by
1572 	 * using the linfo_idx.
1573 	 */
1574 	struct bpf_line_info *linfo;
1575 	/* jited_linfo is the jited addr of the linfo.  It has a
1576 	 * one to one mapping to linfo:
1577 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1578 	 * Both the main and sub prog share the same jited_linfo.
1579 	 * The subprog can access its first jited_linfo by
1580 	 * using the linfo_idx.
1581 	 */
1582 	void **jited_linfo;
1583 	u32 func_info_cnt;
1584 	u32 nr_linfo;
1585 	/* subprog can use linfo_idx to access its first linfo and
1586 	 * jited_linfo.
1587 	 * main prog always has linfo_idx == 0
1588 	 */
1589 	u32 linfo_idx;
1590 	struct module *mod;
1591 	u32 num_exentries;
1592 	struct exception_table_entry *extable;
1593 	union {
1594 		struct work_struct work;
1595 		struct rcu_head	rcu;
1596 	};
1597 };
1598 
1599 struct bpf_prog {
1600 	u16			pages;		/* Number of allocated pages */
1601 	u16			jited:1,	/* Is our filter JIT'ed? */
1602 				jit_requested:1,/* archs need to JIT the prog */
1603 				gpl_compatible:1, /* Is filter GPL compatible? */
1604 				cb_access:1,	/* Is control block accessed? */
1605 				dst_needed:1,	/* Do we need dst entry? */
1606 				blinding_requested:1, /* needs constant blinding */
1607 				blinded:1,	/* Was blinded */
1608 				is_func:1,	/* program is a bpf function */
1609 				kprobe_override:1, /* Do we override a kprobe? */
1610 				has_callchain_buf:1, /* callchain buffer allocated? */
1611 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1612 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1613 				call_get_func_ip:1, /* Do we call get_func_ip() */
1614 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1615 				sleepable:1;	/* BPF program is sleepable */
1616 	enum bpf_prog_type	type;		/* Type of BPF program */
1617 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1618 	u32			len;		/* Number of filter blocks */
1619 	u32			jited_len;	/* Size of jited insns in bytes */
1620 	u8			tag[BPF_TAG_SIZE];
1621 	struct bpf_prog_stats __percpu *stats;
1622 	int __percpu		*active;
1623 	unsigned int		(*bpf_func)(const void *ctx,
1624 					    const struct bpf_insn *insn);
1625 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1626 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1627 	/* Instructions for interpreter */
1628 	union {
1629 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1630 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1631 	};
1632 };
1633 
1634 struct bpf_array_aux {
1635 	/* Programs with direct jumps into programs part of this array. */
1636 	struct list_head poke_progs;
1637 	struct bpf_map *map;
1638 	struct mutex poke_mutex;
1639 	struct work_struct work;
1640 };
1641 
1642 struct bpf_link {
1643 	atomic64_t refcnt;
1644 	u32 id;
1645 	enum bpf_link_type type;
1646 	const struct bpf_link_ops *ops;
1647 	struct bpf_prog *prog;
1648 	/* rcu is used before freeing, work can be used to schedule that
1649 	 * RCU-based freeing before that, so they never overlap
1650 	 */
1651 	union {
1652 		struct rcu_head rcu;
1653 		struct work_struct work;
1654 	};
1655 };
1656 
1657 struct bpf_link_ops {
1658 	void (*release)(struct bpf_link *link);
1659 	/* deallocate link resources callback, called without RCU grace period
1660 	 * waiting
1661 	 */
1662 	void (*dealloc)(struct bpf_link *link);
1663 	/* deallocate link resources callback, called after RCU grace period;
1664 	 * if underlying BPF program is sleepable we go through tasks trace
1665 	 * RCU GP and then "classic" RCU GP
1666 	 */
1667 	void (*dealloc_deferred)(struct bpf_link *link);
1668 	int (*detach)(struct bpf_link *link);
1669 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1670 			   struct bpf_prog *old_prog);
1671 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1672 	int (*fill_link_info)(const struct bpf_link *link,
1673 			      struct bpf_link_info *info);
1674 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1675 			  struct bpf_map *old_map);
1676 	__poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1677 };
1678 
1679 struct bpf_tramp_link {
1680 	struct bpf_link link;
1681 	struct hlist_node tramp_hlist;
1682 	u64 cookie;
1683 };
1684 
1685 struct bpf_shim_tramp_link {
1686 	struct bpf_tramp_link link;
1687 	struct bpf_trampoline *trampoline;
1688 };
1689 
1690 struct bpf_tracing_link {
1691 	struct bpf_tramp_link link;
1692 	enum bpf_attach_type attach_type;
1693 	struct bpf_trampoline *trampoline;
1694 	struct bpf_prog *tgt_prog;
1695 };
1696 
1697 struct bpf_raw_tp_link {
1698 	struct bpf_link link;
1699 	struct bpf_raw_event_map *btp;
1700 	u64 cookie;
1701 };
1702 
1703 struct bpf_link_primer {
1704 	struct bpf_link *link;
1705 	struct file *file;
1706 	int fd;
1707 	u32 id;
1708 };
1709 
1710 struct bpf_mount_opts {
1711 	kuid_t uid;
1712 	kgid_t gid;
1713 	umode_t mode;
1714 
1715 	/* BPF token-related delegation options */
1716 	u64 delegate_cmds;
1717 	u64 delegate_maps;
1718 	u64 delegate_progs;
1719 	u64 delegate_attachs;
1720 };
1721 
1722 struct bpf_token {
1723 	struct work_struct work;
1724 	atomic64_t refcnt;
1725 	struct user_namespace *userns;
1726 	u64 allowed_cmds;
1727 	u64 allowed_maps;
1728 	u64 allowed_progs;
1729 	u64 allowed_attachs;
1730 #ifdef CONFIG_SECURITY
1731 	void *security;
1732 #endif
1733 };
1734 
1735 struct bpf_struct_ops_value;
1736 struct btf_member;
1737 
1738 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1739 /**
1740  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1741  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1742  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1743  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1744  *		  when determining whether the struct_ops progs in the
1745  *		  struct_ops map are valid.
1746  * @init: A callback that is invoked a single time, and before any other
1747  *	  callback, to initialize the structure. A nonzero return value means
1748  *	  the subsystem could not be initialized.
1749  * @check_member: When defined, a callback invoked by the verifier to allow
1750  *		  the subsystem to determine if an entry in the struct_ops map
1751  *		  is valid. A nonzero return value means that the map is
1752  *		  invalid and should be rejected by the verifier.
1753  * @init_member: A callback that is invoked for each member of the struct_ops
1754  *		 map to allow the subsystem to initialize the member. A nonzero
1755  *		 value means the member could not be initialized. This callback
1756  *		 is exclusive with the @type, @type_id, @value_type, and
1757  *		 @value_id fields.
1758  * @reg: A callback that is invoked when the struct_ops map has been
1759  *	 initialized and is being attached to. Zero means the struct_ops map
1760  *	 has been successfully registered and is live. A nonzero return value
1761  *	 means the struct_ops map could not be registered.
1762  * @unreg: A callback that is invoked when the struct_ops map should be
1763  *	   unregistered.
1764  * @update: A callback that is invoked when the live struct_ops map is being
1765  *	    updated to contain new values. This callback is only invoked when
1766  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1767  *	    it is assumed that the struct_ops map cannot be updated.
1768  * @validate: A callback that is invoked after all of the members have been
1769  *	      initialized. This callback should perform static checks on the
1770  *	      map, meaning that it should either fail or succeed
1771  *	      deterministically. A struct_ops map that has been validated may
1772  *	      not necessarily succeed in being registered if the call to @reg
1773  *	      fails. For example, a valid struct_ops map may be loaded, but
1774  *	      then fail to be registered due to there being another active
1775  *	      struct_ops map on the system in the subsystem already. For this
1776  *	      reason, if this callback is not defined, the check is skipped as
1777  *	      the struct_ops map will have final verification performed in
1778  *	      @reg.
1779  * @type: BTF type.
1780  * @value_type: Value type.
1781  * @name: The name of the struct bpf_struct_ops object.
1782  * @func_models: Func models
1783  * @type_id: BTF type id.
1784  * @value_id: BTF value id.
1785  */
1786 struct bpf_struct_ops {
1787 	const struct bpf_verifier_ops *verifier_ops;
1788 	int (*init)(struct btf *btf);
1789 	int (*check_member)(const struct btf_type *t,
1790 			    const struct btf_member *member,
1791 			    const struct bpf_prog *prog);
1792 	int (*init_member)(const struct btf_type *t,
1793 			   const struct btf_member *member,
1794 			   void *kdata, const void *udata);
1795 	int (*reg)(void *kdata, struct bpf_link *link);
1796 	void (*unreg)(void *kdata, struct bpf_link *link);
1797 	int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1798 	int (*validate)(void *kdata);
1799 	void *cfi_stubs;
1800 	struct module *owner;
1801 	const char *name;
1802 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1803 };
1804 
1805 /* Every member of a struct_ops type has an instance even a member is not
1806  * an operator (function pointer). The "info" field will be assigned to
1807  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1808  * argument information required by the verifier to verify the program.
1809  *
1810  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1811  * corresponding entry for an given argument.
1812  */
1813 struct bpf_struct_ops_arg_info {
1814 	struct bpf_ctx_arg_aux *info;
1815 	u32 cnt;
1816 };
1817 
1818 struct bpf_struct_ops_desc {
1819 	struct bpf_struct_ops *st_ops;
1820 
1821 	const struct btf_type *type;
1822 	const struct btf_type *value_type;
1823 	u32 type_id;
1824 	u32 value_id;
1825 
1826 	/* Collection of argument information for each member */
1827 	struct bpf_struct_ops_arg_info *arg_info;
1828 };
1829 
1830 enum bpf_struct_ops_state {
1831 	BPF_STRUCT_OPS_STATE_INIT,
1832 	BPF_STRUCT_OPS_STATE_INUSE,
1833 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1834 	BPF_STRUCT_OPS_STATE_READY,
1835 };
1836 
1837 struct bpf_struct_ops_common_value {
1838 	refcount_t refcnt;
1839 	enum bpf_struct_ops_state state;
1840 };
1841 
1842 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1843 /* This macro helps developer to register a struct_ops type and generate
1844  * type information correctly. Developers should use this macro to register
1845  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1846  */
1847 #define register_bpf_struct_ops(st_ops, type)				\
1848 	({								\
1849 		struct bpf_struct_ops_##type {				\
1850 			struct bpf_struct_ops_common_value common;	\
1851 			struct type data ____cacheline_aligned_in_smp;	\
1852 		};							\
1853 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1854 		__register_bpf_struct_ops(st_ops);			\
1855 	})
1856 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1857 bool bpf_struct_ops_get(const void *kdata);
1858 void bpf_struct_ops_put(const void *kdata);
1859 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1860 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1861 				       void *value);
1862 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1863 				      struct bpf_tramp_link *link,
1864 				      const struct btf_func_model *model,
1865 				      void *stub_func,
1866 				      void **image, u32 *image_off,
1867 				      bool allow_alloc);
1868 void bpf_struct_ops_image_free(void *image);
1869 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1870 {
1871 	if (owner == BPF_MODULE_OWNER)
1872 		return bpf_struct_ops_get(data);
1873 	else
1874 		return try_module_get(owner);
1875 }
1876 static inline void bpf_module_put(const void *data, struct module *owner)
1877 {
1878 	if (owner == BPF_MODULE_OWNER)
1879 		bpf_struct_ops_put(data);
1880 	else
1881 		module_put(owner);
1882 }
1883 int bpf_struct_ops_link_create(union bpf_attr *attr);
1884 
1885 #ifdef CONFIG_NET
1886 /* Define it here to avoid the use of forward declaration */
1887 struct bpf_dummy_ops_state {
1888 	int val;
1889 };
1890 
1891 struct bpf_dummy_ops {
1892 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1893 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1894 		      char a3, unsigned long a4);
1895 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1896 };
1897 
1898 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1899 			    union bpf_attr __user *uattr);
1900 #endif
1901 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1902 			     struct btf *btf,
1903 			     struct bpf_verifier_log *log);
1904 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1905 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1906 #else
1907 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1908 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1909 {
1910 	return try_module_get(owner);
1911 }
1912 static inline void bpf_module_put(const void *data, struct module *owner)
1913 {
1914 	module_put(owner);
1915 }
1916 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1917 {
1918 	return -ENOTSUPP;
1919 }
1920 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1921 						     void *key,
1922 						     void *value)
1923 {
1924 	return -EINVAL;
1925 }
1926 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1927 {
1928 	return -EOPNOTSUPP;
1929 }
1930 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1931 {
1932 }
1933 
1934 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1935 {
1936 }
1937 
1938 #endif
1939 
1940 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1941 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1942 				    int cgroup_atype);
1943 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1944 #else
1945 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1946 						  int cgroup_atype)
1947 {
1948 	return -EOPNOTSUPP;
1949 }
1950 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1951 {
1952 }
1953 #endif
1954 
1955 struct bpf_array {
1956 	struct bpf_map map;
1957 	u32 elem_size;
1958 	u32 index_mask;
1959 	struct bpf_array_aux *aux;
1960 	union {
1961 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1962 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1963 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1964 	};
1965 };
1966 
1967 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1968 #define MAX_TAIL_CALL_CNT 33
1969 
1970 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1971  * It's enum to expose it (and thus make it discoverable) through BTF.
1972  */
1973 enum {
1974 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1975 };
1976 
1977 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1978 				 BPF_F_RDONLY_PROG |	\
1979 				 BPF_F_WRONLY |		\
1980 				 BPF_F_WRONLY_PROG)
1981 
1982 #define BPF_MAP_CAN_READ	BIT(0)
1983 #define BPF_MAP_CAN_WRITE	BIT(1)
1984 
1985 /* Maximum number of user-producer ring buffer samples that can be drained in
1986  * a call to bpf_user_ringbuf_drain().
1987  */
1988 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1989 
1990 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1991 {
1992 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1993 
1994 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1995 	 * not possible.
1996 	 */
1997 	if (access_flags & BPF_F_RDONLY_PROG)
1998 		return BPF_MAP_CAN_READ;
1999 	else if (access_flags & BPF_F_WRONLY_PROG)
2000 		return BPF_MAP_CAN_WRITE;
2001 	else
2002 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2003 }
2004 
2005 static inline bool bpf_map_flags_access_ok(u32 access_flags)
2006 {
2007 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2008 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2009 }
2010 
2011 struct bpf_event_entry {
2012 	struct perf_event *event;
2013 	struct file *perf_file;
2014 	struct file *map_file;
2015 	struct rcu_head rcu;
2016 };
2017 
2018 static inline bool map_type_contains_progs(struct bpf_map *map)
2019 {
2020 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2021 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
2022 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
2023 }
2024 
2025 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2026 int bpf_prog_calc_tag(struct bpf_prog *fp);
2027 
2028 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2029 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2030 
2031 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2032 					unsigned long off, unsigned long len);
2033 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2034 					const struct bpf_insn *src,
2035 					struct bpf_insn *dst,
2036 					struct bpf_prog *prog,
2037 					u32 *target_size);
2038 
2039 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2040 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2041 
2042 /* an array of programs to be executed under rcu_lock.
2043  *
2044  * Typical usage:
2045  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2046  *
2047  * the structure returned by bpf_prog_array_alloc() should be populated
2048  * with program pointers and the last pointer must be NULL.
2049  * The user has to keep refcnt on the program and make sure the program
2050  * is removed from the array before bpf_prog_put().
2051  * The 'struct bpf_prog_array *' should only be replaced with xchg()
2052  * since other cpus are walking the array of pointers in parallel.
2053  */
2054 struct bpf_prog_array_item {
2055 	struct bpf_prog *prog;
2056 	union {
2057 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2058 		u64 bpf_cookie;
2059 	};
2060 };
2061 
2062 struct bpf_prog_array {
2063 	struct rcu_head rcu;
2064 	struct bpf_prog_array_item items[];
2065 };
2066 
2067 struct bpf_empty_prog_array {
2068 	struct bpf_prog_array hdr;
2069 	struct bpf_prog *null_prog;
2070 };
2071 
2072 /* to avoid allocating empty bpf_prog_array for cgroups that
2073  * don't have bpf program attached use one global 'bpf_empty_prog_array'
2074  * It will not be modified the caller of bpf_prog_array_alloc()
2075  * (since caller requested prog_cnt == 0)
2076  * that pointer should be 'freed' by bpf_prog_array_free()
2077  */
2078 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2079 
2080 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2081 void bpf_prog_array_free(struct bpf_prog_array *progs);
2082 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2083 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2084 int bpf_prog_array_length(struct bpf_prog_array *progs);
2085 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2086 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2087 				__u32 __user *prog_ids, u32 cnt);
2088 
2089 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2090 				struct bpf_prog *old_prog);
2091 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2092 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2093 			     struct bpf_prog *prog);
2094 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2095 			     u32 *prog_ids, u32 request_cnt,
2096 			     u32 *prog_cnt);
2097 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2098 			struct bpf_prog *exclude_prog,
2099 			struct bpf_prog *include_prog,
2100 			u64 bpf_cookie,
2101 			struct bpf_prog_array **new_array);
2102 
2103 struct bpf_run_ctx {};
2104 
2105 struct bpf_cg_run_ctx {
2106 	struct bpf_run_ctx run_ctx;
2107 	const struct bpf_prog_array_item *prog_item;
2108 	int retval;
2109 };
2110 
2111 struct bpf_trace_run_ctx {
2112 	struct bpf_run_ctx run_ctx;
2113 	u64 bpf_cookie;
2114 	bool is_uprobe;
2115 };
2116 
2117 struct bpf_tramp_run_ctx {
2118 	struct bpf_run_ctx run_ctx;
2119 	u64 bpf_cookie;
2120 	struct bpf_run_ctx *saved_run_ctx;
2121 };
2122 
2123 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2124 {
2125 	struct bpf_run_ctx *old_ctx = NULL;
2126 
2127 #ifdef CONFIG_BPF_SYSCALL
2128 	old_ctx = current->bpf_ctx;
2129 	current->bpf_ctx = new_ctx;
2130 #endif
2131 	return old_ctx;
2132 }
2133 
2134 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2135 {
2136 #ifdef CONFIG_BPF_SYSCALL
2137 	current->bpf_ctx = old_ctx;
2138 #endif
2139 }
2140 
2141 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2142 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2143 /* BPF program asks to set CN on the packet. */
2144 #define BPF_RET_SET_CN						(1 << 0)
2145 
2146 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2147 
2148 static __always_inline u32
2149 bpf_prog_run_array(const struct bpf_prog_array *array,
2150 		   const void *ctx, bpf_prog_run_fn run_prog)
2151 {
2152 	const struct bpf_prog_array_item *item;
2153 	const struct bpf_prog *prog;
2154 	struct bpf_run_ctx *old_run_ctx;
2155 	struct bpf_trace_run_ctx run_ctx;
2156 	u32 ret = 1;
2157 
2158 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2159 
2160 	if (unlikely(!array))
2161 		return ret;
2162 
2163 	run_ctx.is_uprobe = false;
2164 
2165 	migrate_disable();
2166 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2167 	item = &array->items[0];
2168 	while ((prog = READ_ONCE(item->prog))) {
2169 		run_ctx.bpf_cookie = item->bpf_cookie;
2170 		ret &= run_prog(prog, ctx);
2171 		item++;
2172 	}
2173 	bpf_reset_run_ctx(old_run_ctx);
2174 	migrate_enable();
2175 	return ret;
2176 }
2177 
2178 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2179  *
2180  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2181  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2182  * in order to use the tasks_trace rcu grace period.
2183  *
2184  * When a non-sleepable program is inside the array, we take the rcu read
2185  * section and disable preemption for that program alone, so it can access
2186  * rcu-protected dynamically sized maps.
2187  */
2188 static __always_inline u32
2189 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2190 			  const void *ctx, bpf_prog_run_fn run_prog)
2191 {
2192 	const struct bpf_prog_array_item *item;
2193 	const struct bpf_prog *prog;
2194 	const struct bpf_prog_array *array;
2195 	struct bpf_run_ctx *old_run_ctx;
2196 	struct bpf_trace_run_ctx run_ctx;
2197 	u32 ret = 1;
2198 
2199 	might_fault();
2200 
2201 	rcu_read_lock_trace();
2202 	migrate_disable();
2203 
2204 	run_ctx.is_uprobe = true;
2205 
2206 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2207 	if (unlikely(!array))
2208 		goto out;
2209 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2210 	item = &array->items[0];
2211 	while ((prog = READ_ONCE(item->prog))) {
2212 		if (!prog->sleepable)
2213 			rcu_read_lock();
2214 
2215 		run_ctx.bpf_cookie = item->bpf_cookie;
2216 		ret &= run_prog(prog, ctx);
2217 		item++;
2218 
2219 		if (!prog->sleepable)
2220 			rcu_read_unlock();
2221 	}
2222 	bpf_reset_run_ctx(old_run_ctx);
2223 out:
2224 	migrate_enable();
2225 	rcu_read_unlock_trace();
2226 	return ret;
2227 }
2228 
2229 #ifdef CONFIG_BPF_SYSCALL
2230 DECLARE_PER_CPU(int, bpf_prog_active);
2231 extern struct mutex bpf_stats_enabled_mutex;
2232 
2233 /*
2234  * Block execution of BPF programs attached to instrumentation (perf,
2235  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2236  * these events can happen inside a region which holds a map bucket lock
2237  * and can deadlock on it.
2238  */
2239 static inline void bpf_disable_instrumentation(void)
2240 {
2241 	migrate_disable();
2242 	this_cpu_inc(bpf_prog_active);
2243 }
2244 
2245 static inline void bpf_enable_instrumentation(void)
2246 {
2247 	this_cpu_dec(bpf_prog_active);
2248 	migrate_enable();
2249 }
2250 
2251 extern const struct super_operations bpf_super_ops;
2252 extern const struct file_operations bpf_map_fops;
2253 extern const struct file_operations bpf_prog_fops;
2254 extern const struct file_operations bpf_iter_fops;
2255 
2256 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2257 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2258 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2259 #define BPF_MAP_TYPE(_id, _ops) \
2260 	extern const struct bpf_map_ops _ops;
2261 #define BPF_LINK_TYPE(_id, _name)
2262 #include <linux/bpf_types.h>
2263 #undef BPF_PROG_TYPE
2264 #undef BPF_MAP_TYPE
2265 #undef BPF_LINK_TYPE
2266 
2267 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2268 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2269 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2270 
2271 struct bpf_prog *bpf_prog_get(u32 ufd);
2272 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2273 				       bool attach_drv);
2274 void bpf_prog_add(struct bpf_prog *prog, int i);
2275 void bpf_prog_sub(struct bpf_prog *prog, int i);
2276 void bpf_prog_inc(struct bpf_prog *prog);
2277 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2278 void bpf_prog_put(struct bpf_prog *prog);
2279 
2280 void bpf_prog_free_id(struct bpf_prog *prog);
2281 void bpf_map_free_id(struct bpf_map *map);
2282 
2283 struct btf_field *btf_record_find(const struct btf_record *rec,
2284 				  u32 offset, u32 field_mask);
2285 void btf_record_free(struct btf_record *rec);
2286 void bpf_map_free_record(struct bpf_map *map);
2287 struct btf_record *btf_record_dup(const struct btf_record *rec);
2288 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2289 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2290 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2291 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2292 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2293 
2294 struct bpf_map *bpf_map_get(u32 ufd);
2295 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2296 
2297 static inline struct bpf_map *__bpf_map_get(struct fd f)
2298 {
2299 	if (fd_empty(f))
2300 		return ERR_PTR(-EBADF);
2301 	if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2302 		return ERR_PTR(-EINVAL);
2303 	return fd_file(f)->private_data;
2304 }
2305 
2306 void bpf_map_inc(struct bpf_map *map);
2307 void bpf_map_inc_with_uref(struct bpf_map *map);
2308 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2309 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2310 void bpf_map_put_with_uref(struct bpf_map *map);
2311 void bpf_map_put(struct bpf_map *map);
2312 void *bpf_map_area_alloc(u64 size, int numa_node);
2313 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2314 void bpf_map_area_free(void *base);
2315 bool bpf_map_write_active(const struct bpf_map *map);
2316 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2317 int  generic_map_lookup_batch(struct bpf_map *map,
2318 			      const union bpf_attr *attr,
2319 			      union bpf_attr __user *uattr);
2320 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2321 			      const union bpf_attr *attr,
2322 			      union bpf_attr __user *uattr);
2323 int  generic_map_delete_batch(struct bpf_map *map,
2324 			      const union bpf_attr *attr,
2325 			      union bpf_attr __user *uattr);
2326 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2327 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2328 
2329 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2330 			unsigned long nr_pages, struct page **page_array);
2331 #ifdef CONFIG_MEMCG
2332 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2333 			   int node);
2334 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2335 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2336 		       gfp_t flags);
2337 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2338 				    size_t align, gfp_t flags);
2339 #else
2340 /*
2341  * These specialized allocators have to be macros for their allocations to be
2342  * accounted separately (to have separate alloc_tag).
2343  */
2344 #define bpf_map_kmalloc_node(_map, _size, _flags, _node)	\
2345 		kmalloc_node(_size, _flags, _node)
2346 #define bpf_map_kzalloc(_map, _size, _flags)			\
2347 		kzalloc(_size, _flags)
2348 #define bpf_map_kvcalloc(_map, _n, _size, _flags)		\
2349 		kvcalloc(_n, _size, _flags)
2350 #define bpf_map_alloc_percpu(_map, _size, _align, _flags)	\
2351 		__alloc_percpu_gfp(_size, _align, _flags)
2352 #endif
2353 
2354 static inline int
2355 bpf_map_init_elem_count(struct bpf_map *map)
2356 {
2357 	size_t size = sizeof(*map->elem_count), align = size;
2358 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2359 
2360 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2361 	if (!map->elem_count)
2362 		return -ENOMEM;
2363 
2364 	return 0;
2365 }
2366 
2367 static inline void
2368 bpf_map_free_elem_count(struct bpf_map *map)
2369 {
2370 	free_percpu(map->elem_count);
2371 }
2372 
2373 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2374 {
2375 	this_cpu_inc(*map->elem_count);
2376 }
2377 
2378 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2379 {
2380 	this_cpu_dec(*map->elem_count);
2381 }
2382 
2383 extern int sysctl_unprivileged_bpf_disabled;
2384 
2385 bool bpf_token_capable(const struct bpf_token *token, int cap);
2386 
2387 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2388 {
2389 	return bpf_token_capable(token, CAP_PERFMON);
2390 }
2391 
2392 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2393 {
2394 	return bpf_token_capable(token, CAP_PERFMON);
2395 }
2396 
2397 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2398 {
2399 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2400 }
2401 
2402 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2403 {
2404 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2405 }
2406 
2407 int bpf_map_new_fd(struct bpf_map *map, int flags);
2408 int bpf_prog_new_fd(struct bpf_prog *prog);
2409 
2410 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2411 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2412 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2413 int bpf_link_settle(struct bpf_link_primer *primer);
2414 void bpf_link_cleanup(struct bpf_link_primer *primer);
2415 void bpf_link_inc(struct bpf_link *link);
2416 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2417 void bpf_link_put(struct bpf_link *link);
2418 int bpf_link_new_fd(struct bpf_link *link);
2419 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2420 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2421 
2422 void bpf_token_inc(struct bpf_token *token);
2423 void bpf_token_put(struct bpf_token *token);
2424 int bpf_token_create(union bpf_attr *attr);
2425 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2426 
2427 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2428 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2429 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2430 			       enum bpf_prog_type prog_type,
2431 			       enum bpf_attach_type attach_type);
2432 
2433 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2434 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2435 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2436 			    umode_t mode);
2437 
2438 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2439 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2440 	extern int bpf_iter_ ## target(args);			\
2441 	int __init bpf_iter_ ## target(args) { return 0; }
2442 
2443 /*
2444  * The task type of iterators.
2445  *
2446  * For BPF task iterators, they can be parameterized with various
2447  * parameters to visit only some of tasks.
2448  *
2449  * BPF_TASK_ITER_ALL (default)
2450  *	Iterate over resources of every task.
2451  *
2452  * BPF_TASK_ITER_TID
2453  *	Iterate over resources of a task/tid.
2454  *
2455  * BPF_TASK_ITER_TGID
2456  *	Iterate over resources of every task of a process / task group.
2457  */
2458 enum bpf_iter_task_type {
2459 	BPF_TASK_ITER_ALL = 0,
2460 	BPF_TASK_ITER_TID,
2461 	BPF_TASK_ITER_TGID,
2462 };
2463 
2464 struct bpf_iter_aux_info {
2465 	/* for map_elem iter */
2466 	struct bpf_map *map;
2467 
2468 	/* for cgroup iter */
2469 	struct {
2470 		struct cgroup *start; /* starting cgroup */
2471 		enum bpf_cgroup_iter_order order;
2472 	} cgroup;
2473 	struct {
2474 		enum bpf_iter_task_type	type;
2475 		u32 pid;
2476 	} task;
2477 };
2478 
2479 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2480 					union bpf_iter_link_info *linfo,
2481 					struct bpf_iter_aux_info *aux);
2482 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2483 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2484 					struct seq_file *seq);
2485 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2486 					 struct bpf_link_info *info);
2487 typedef const struct bpf_func_proto *
2488 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2489 			     const struct bpf_prog *prog);
2490 
2491 enum bpf_iter_feature {
2492 	BPF_ITER_RESCHED	= BIT(0),
2493 };
2494 
2495 #define BPF_ITER_CTX_ARG_MAX 2
2496 struct bpf_iter_reg {
2497 	const char *target;
2498 	bpf_iter_attach_target_t attach_target;
2499 	bpf_iter_detach_target_t detach_target;
2500 	bpf_iter_show_fdinfo_t show_fdinfo;
2501 	bpf_iter_fill_link_info_t fill_link_info;
2502 	bpf_iter_get_func_proto_t get_func_proto;
2503 	u32 ctx_arg_info_size;
2504 	u32 feature;
2505 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2506 	const struct bpf_iter_seq_info *seq_info;
2507 };
2508 
2509 struct bpf_iter_meta {
2510 	__bpf_md_ptr(struct seq_file *, seq);
2511 	u64 session_id;
2512 	u64 seq_num;
2513 };
2514 
2515 struct bpf_iter__bpf_map_elem {
2516 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2517 	__bpf_md_ptr(struct bpf_map *, map);
2518 	__bpf_md_ptr(void *, key);
2519 	__bpf_md_ptr(void *, value);
2520 };
2521 
2522 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2523 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2524 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2525 const struct bpf_func_proto *
2526 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2527 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2528 int bpf_iter_new_fd(struct bpf_link *link);
2529 bool bpf_link_is_iter(struct bpf_link *link);
2530 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2531 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2532 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2533 			      struct seq_file *seq);
2534 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2535 				struct bpf_link_info *info);
2536 
2537 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2538 				   struct bpf_func_state *caller,
2539 				   struct bpf_func_state *callee);
2540 
2541 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2542 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2543 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2544 			   u64 flags);
2545 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2546 			    u64 flags);
2547 
2548 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2549 
2550 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2551 				 void *key, void *value, u64 map_flags);
2552 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2553 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2554 				void *key, void *value, u64 map_flags);
2555 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2556 
2557 int bpf_get_file_flag(int flags);
2558 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2559 			     size_t actual_size);
2560 
2561 /* verify correctness of eBPF program */
2562 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2563 
2564 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2565 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2566 #endif
2567 
2568 struct btf *bpf_get_btf_vmlinux(void);
2569 
2570 /* Map specifics */
2571 struct xdp_frame;
2572 struct sk_buff;
2573 struct bpf_dtab_netdev;
2574 struct bpf_cpu_map_entry;
2575 
2576 void __dev_flush(struct list_head *flush_list);
2577 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2578 		    struct net_device *dev_rx);
2579 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2580 		    struct net_device *dev_rx);
2581 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2582 			  struct bpf_map *map, bool exclude_ingress);
2583 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2584 			     struct bpf_prog *xdp_prog);
2585 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2586 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2587 			   bool exclude_ingress);
2588 
2589 void __cpu_map_flush(struct list_head *flush_list);
2590 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2591 		    struct net_device *dev_rx);
2592 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2593 			     struct sk_buff *skb);
2594 
2595 /* Return map's numa specified by userspace */
2596 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2597 {
2598 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2599 		attr->numa_node : NUMA_NO_NODE;
2600 }
2601 
2602 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2603 int array_map_alloc_check(union bpf_attr *attr);
2604 
2605 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2606 			  union bpf_attr __user *uattr);
2607 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2608 			  union bpf_attr __user *uattr);
2609 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2610 			      const union bpf_attr *kattr,
2611 			      union bpf_attr __user *uattr);
2612 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2613 				     const union bpf_attr *kattr,
2614 				     union bpf_attr __user *uattr);
2615 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2616 			     const union bpf_attr *kattr,
2617 			     union bpf_attr __user *uattr);
2618 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2619 				const union bpf_attr *kattr,
2620 				union bpf_attr __user *uattr);
2621 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2622 			 const union bpf_attr *kattr,
2623 			 union bpf_attr __user *uattr);
2624 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2625 		    const struct bpf_prog *prog,
2626 		    struct bpf_insn_access_aux *info);
2627 
2628 static inline bool bpf_tracing_ctx_access(int off, int size,
2629 					  enum bpf_access_type type)
2630 {
2631 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2632 		return false;
2633 	if (type != BPF_READ)
2634 		return false;
2635 	if (off % size != 0)
2636 		return false;
2637 	return true;
2638 }
2639 
2640 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2641 					      enum bpf_access_type type,
2642 					      const struct bpf_prog *prog,
2643 					      struct bpf_insn_access_aux *info)
2644 {
2645 	if (!bpf_tracing_ctx_access(off, size, type))
2646 		return false;
2647 	return btf_ctx_access(off, size, type, prog, info);
2648 }
2649 
2650 int btf_struct_access(struct bpf_verifier_log *log,
2651 		      const struct bpf_reg_state *reg,
2652 		      int off, int size, enum bpf_access_type atype,
2653 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2654 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2655 			  const struct btf *btf, u32 id, int off,
2656 			  const struct btf *need_btf, u32 need_type_id,
2657 			  bool strict);
2658 
2659 int btf_distill_func_proto(struct bpf_verifier_log *log,
2660 			   struct btf *btf,
2661 			   const struct btf_type *func_proto,
2662 			   const char *func_name,
2663 			   struct btf_func_model *m);
2664 
2665 struct bpf_reg_state;
2666 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2667 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2668 			 struct btf *btf, const struct btf_type *t);
2669 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2670 				    int comp_idx, const char *tag_key);
2671 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2672 			   int comp_idx, const char *tag_key, int last_id);
2673 
2674 struct bpf_prog *bpf_prog_by_id(u32 id);
2675 struct bpf_link *bpf_link_by_id(u32 id);
2676 
2677 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2678 						 const struct bpf_prog *prog);
2679 void bpf_task_storage_free(struct task_struct *task);
2680 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2681 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2682 const struct btf_func_model *
2683 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2684 			 const struct bpf_insn *insn);
2685 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2686 		       u16 btf_fd_idx, u8 **func_addr);
2687 
2688 struct bpf_core_ctx {
2689 	struct bpf_verifier_log *log;
2690 	const struct btf *btf;
2691 };
2692 
2693 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2694 				const struct bpf_reg_state *reg,
2695 				const char *field_name, u32 btf_id, const char *suffix);
2696 
2697 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2698 			       const struct btf *reg_btf, u32 reg_id,
2699 			       const struct btf *arg_btf, u32 arg_id);
2700 
2701 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2702 		   int relo_idx, void *insn);
2703 
2704 static inline bool unprivileged_ebpf_enabled(void)
2705 {
2706 	return !sysctl_unprivileged_bpf_disabled;
2707 }
2708 
2709 /* Not all bpf prog type has the bpf_ctx.
2710  * For the bpf prog type that has initialized the bpf_ctx,
2711  * this function can be used to decide if a kernel function
2712  * is called by a bpf program.
2713  */
2714 static inline bool has_current_bpf_ctx(void)
2715 {
2716 	return !!current->bpf_ctx;
2717 }
2718 
2719 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2720 
2721 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2722 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2723 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2724 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2725 
2726 #else /* !CONFIG_BPF_SYSCALL */
2727 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2728 {
2729 	return ERR_PTR(-EOPNOTSUPP);
2730 }
2731 
2732 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2733 						     enum bpf_prog_type type,
2734 						     bool attach_drv)
2735 {
2736 	return ERR_PTR(-EOPNOTSUPP);
2737 }
2738 
2739 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2740 {
2741 }
2742 
2743 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2744 {
2745 }
2746 
2747 static inline void bpf_prog_put(struct bpf_prog *prog)
2748 {
2749 }
2750 
2751 static inline void bpf_prog_inc(struct bpf_prog *prog)
2752 {
2753 }
2754 
2755 static inline struct bpf_prog *__must_check
2756 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2757 {
2758 	return ERR_PTR(-EOPNOTSUPP);
2759 }
2760 
2761 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2762 				 const struct bpf_link_ops *ops,
2763 				 struct bpf_prog *prog)
2764 {
2765 }
2766 
2767 static inline int bpf_link_prime(struct bpf_link *link,
2768 				 struct bpf_link_primer *primer)
2769 {
2770 	return -EOPNOTSUPP;
2771 }
2772 
2773 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2774 {
2775 	return -EOPNOTSUPP;
2776 }
2777 
2778 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2779 {
2780 }
2781 
2782 static inline void bpf_link_inc(struct bpf_link *link)
2783 {
2784 }
2785 
2786 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2787 {
2788 	return NULL;
2789 }
2790 
2791 static inline void bpf_link_put(struct bpf_link *link)
2792 {
2793 }
2794 
2795 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2796 {
2797 	return -EOPNOTSUPP;
2798 }
2799 
2800 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2801 {
2802 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2803 }
2804 
2805 static inline void bpf_token_inc(struct bpf_token *token)
2806 {
2807 }
2808 
2809 static inline void bpf_token_put(struct bpf_token *token)
2810 {
2811 }
2812 
2813 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2814 {
2815 	return ERR_PTR(-EOPNOTSUPP);
2816 }
2817 
2818 static inline void __dev_flush(struct list_head *flush_list)
2819 {
2820 }
2821 
2822 struct xdp_frame;
2823 struct bpf_dtab_netdev;
2824 struct bpf_cpu_map_entry;
2825 
2826 static inline
2827 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2828 		    struct net_device *dev_rx)
2829 {
2830 	return 0;
2831 }
2832 
2833 static inline
2834 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2835 		    struct net_device *dev_rx)
2836 {
2837 	return 0;
2838 }
2839 
2840 static inline
2841 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2842 			  struct bpf_map *map, bool exclude_ingress)
2843 {
2844 	return 0;
2845 }
2846 
2847 struct sk_buff;
2848 
2849 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2850 					   struct sk_buff *skb,
2851 					   struct bpf_prog *xdp_prog)
2852 {
2853 	return 0;
2854 }
2855 
2856 static inline
2857 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2858 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2859 			   bool exclude_ingress)
2860 {
2861 	return 0;
2862 }
2863 
2864 static inline void __cpu_map_flush(struct list_head *flush_list)
2865 {
2866 }
2867 
2868 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2869 				  struct xdp_frame *xdpf,
2870 				  struct net_device *dev_rx)
2871 {
2872 	return 0;
2873 }
2874 
2875 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2876 					   struct sk_buff *skb)
2877 {
2878 	return -EOPNOTSUPP;
2879 }
2880 
2881 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2882 				enum bpf_prog_type type)
2883 {
2884 	return ERR_PTR(-EOPNOTSUPP);
2885 }
2886 
2887 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2888 					const union bpf_attr *kattr,
2889 					union bpf_attr __user *uattr)
2890 {
2891 	return -ENOTSUPP;
2892 }
2893 
2894 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2895 					const union bpf_attr *kattr,
2896 					union bpf_attr __user *uattr)
2897 {
2898 	return -ENOTSUPP;
2899 }
2900 
2901 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2902 					    const union bpf_attr *kattr,
2903 					    union bpf_attr __user *uattr)
2904 {
2905 	return -ENOTSUPP;
2906 }
2907 
2908 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2909 						   const union bpf_attr *kattr,
2910 						   union bpf_attr __user *uattr)
2911 {
2912 	return -ENOTSUPP;
2913 }
2914 
2915 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2916 					      const union bpf_attr *kattr,
2917 					      union bpf_attr __user *uattr)
2918 {
2919 	return -ENOTSUPP;
2920 }
2921 
2922 static inline void bpf_map_put(struct bpf_map *map)
2923 {
2924 }
2925 
2926 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2927 {
2928 	return ERR_PTR(-ENOTSUPP);
2929 }
2930 
2931 static inline int btf_struct_access(struct bpf_verifier_log *log,
2932 				    const struct bpf_reg_state *reg,
2933 				    int off, int size, enum bpf_access_type atype,
2934 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2935 				    const char **field_name)
2936 {
2937 	return -EACCES;
2938 }
2939 
2940 static inline const struct bpf_func_proto *
2941 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2942 {
2943 	return NULL;
2944 }
2945 
2946 static inline void bpf_task_storage_free(struct task_struct *task)
2947 {
2948 }
2949 
2950 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2951 {
2952 	return false;
2953 }
2954 
2955 static inline const struct btf_func_model *
2956 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2957 			 const struct bpf_insn *insn)
2958 {
2959 	return NULL;
2960 }
2961 
2962 static inline int
2963 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2964 		   u16 btf_fd_idx, u8 **func_addr)
2965 {
2966 	return -ENOTSUPP;
2967 }
2968 
2969 static inline bool unprivileged_ebpf_enabled(void)
2970 {
2971 	return false;
2972 }
2973 
2974 static inline bool has_current_bpf_ctx(void)
2975 {
2976 	return false;
2977 }
2978 
2979 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2980 {
2981 }
2982 
2983 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2984 {
2985 }
2986 
2987 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2988 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2989 {
2990 }
2991 
2992 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2993 {
2994 }
2995 
2996 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2997 {
2998 }
2999 #endif /* CONFIG_BPF_SYSCALL */
3000 
3001 static __always_inline int
3002 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3003 {
3004 	int ret = -EFAULT;
3005 
3006 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
3007 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3008 	if (unlikely(ret < 0))
3009 		memset(dst, 0, size);
3010 	return ret;
3011 }
3012 
3013 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3014 
3015 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3016 						 enum bpf_prog_type type)
3017 {
3018 	return bpf_prog_get_type_dev(ufd, type, false);
3019 }
3020 
3021 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3022 			  struct bpf_map **used_maps, u32 len);
3023 
3024 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3025 
3026 int bpf_prog_offload_compile(struct bpf_prog *prog);
3027 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3028 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3029 			       struct bpf_prog *prog);
3030 
3031 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3032 
3033 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3034 int bpf_map_offload_update_elem(struct bpf_map *map,
3035 				void *key, void *value, u64 flags);
3036 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3037 int bpf_map_offload_get_next_key(struct bpf_map *map,
3038 				 void *key, void *next_key);
3039 
3040 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3041 
3042 struct bpf_offload_dev *
3043 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3044 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3045 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3046 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3047 				    struct net_device *netdev);
3048 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3049 				       struct net_device *netdev);
3050 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3051 
3052 void unpriv_ebpf_notify(int new_state);
3053 
3054 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3055 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3056 			      struct bpf_prog_aux *prog_aux);
3057 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3058 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3059 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3060 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3061 
3062 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3063 {
3064 	return aux->dev_bound;
3065 }
3066 
3067 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3068 {
3069 	return aux->offload_requested;
3070 }
3071 
3072 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3073 
3074 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3075 {
3076 	return unlikely(map->ops == &bpf_map_offload_ops);
3077 }
3078 
3079 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3080 void bpf_map_offload_map_free(struct bpf_map *map);
3081 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3082 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3083 			      const union bpf_attr *kattr,
3084 			      union bpf_attr __user *uattr);
3085 
3086 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3087 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3088 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3089 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3090 			    union bpf_attr __user *uattr);
3091 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3092 
3093 void sock_map_unhash(struct sock *sk);
3094 void sock_map_destroy(struct sock *sk);
3095 void sock_map_close(struct sock *sk, long timeout);
3096 #else
3097 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3098 					    struct bpf_prog_aux *prog_aux)
3099 {
3100 	return -EOPNOTSUPP;
3101 }
3102 
3103 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3104 						u32 func_id)
3105 {
3106 	return NULL;
3107 }
3108 
3109 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3110 					  union bpf_attr *attr)
3111 {
3112 	return -EOPNOTSUPP;
3113 }
3114 
3115 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3116 					     struct bpf_prog *old_prog)
3117 {
3118 	return -EOPNOTSUPP;
3119 }
3120 
3121 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3122 {
3123 }
3124 
3125 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3126 {
3127 	return false;
3128 }
3129 
3130 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3131 {
3132 	return false;
3133 }
3134 
3135 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3136 {
3137 	return false;
3138 }
3139 
3140 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3141 {
3142 	return false;
3143 }
3144 
3145 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3146 {
3147 	return ERR_PTR(-EOPNOTSUPP);
3148 }
3149 
3150 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3151 {
3152 }
3153 
3154 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3155 {
3156 	return 0;
3157 }
3158 
3159 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3160 					    const union bpf_attr *kattr,
3161 					    union bpf_attr __user *uattr)
3162 {
3163 	return -ENOTSUPP;
3164 }
3165 
3166 #ifdef CONFIG_BPF_SYSCALL
3167 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3168 				       struct bpf_prog *prog)
3169 {
3170 	return -EINVAL;
3171 }
3172 
3173 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3174 				       enum bpf_prog_type ptype)
3175 {
3176 	return -EOPNOTSUPP;
3177 }
3178 
3179 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3180 					   u64 flags)
3181 {
3182 	return -EOPNOTSUPP;
3183 }
3184 
3185 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3186 					  union bpf_attr __user *uattr)
3187 {
3188 	return -EINVAL;
3189 }
3190 
3191 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3192 {
3193 	return -EOPNOTSUPP;
3194 }
3195 #endif /* CONFIG_BPF_SYSCALL */
3196 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3197 
3198 static __always_inline void
3199 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3200 {
3201 	const struct bpf_prog_array_item *item;
3202 	struct bpf_prog *prog;
3203 
3204 	if (unlikely(!array))
3205 		return;
3206 
3207 	item = &array->items[0];
3208 	while ((prog = READ_ONCE(item->prog))) {
3209 		bpf_prog_inc_misses_counter(prog);
3210 		item++;
3211 	}
3212 }
3213 
3214 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3215 void bpf_sk_reuseport_detach(struct sock *sk);
3216 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3217 				       void *value);
3218 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3219 				       void *value, u64 map_flags);
3220 #else
3221 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3222 {
3223 }
3224 
3225 #ifdef CONFIG_BPF_SYSCALL
3226 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3227 						     void *key, void *value)
3228 {
3229 	return -EOPNOTSUPP;
3230 }
3231 
3232 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3233 						     void *key, void *value,
3234 						     u64 map_flags)
3235 {
3236 	return -EOPNOTSUPP;
3237 }
3238 #endif /* CONFIG_BPF_SYSCALL */
3239 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3240 
3241 /* verifier prototypes for helper functions called from eBPF programs */
3242 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3243 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3244 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3245 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3246 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3247 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3248 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3249 
3250 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3251 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3252 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3253 extern const struct bpf_func_proto bpf_tail_call_proto;
3254 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3255 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3256 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3257 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3258 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3259 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3260 extern const struct bpf_func_proto bpf_get_stackid_proto;
3261 extern const struct bpf_func_proto bpf_get_stack_proto;
3262 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3263 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3264 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3265 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3266 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3267 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3268 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3269 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3270 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3271 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3272 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3273 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3274 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3275 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3276 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3277 extern const struct bpf_func_proto bpf_spin_lock_proto;
3278 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3279 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3280 extern const struct bpf_func_proto bpf_strtol_proto;
3281 extern const struct bpf_func_proto bpf_strtoul_proto;
3282 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3283 extern const struct bpf_func_proto bpf_jiffies64_proto;
3284 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3285 extern const struct bpf_func_proto bpf_event_output_data_proto;
3286 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3287 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3288 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3289 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3290 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3291 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3292 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3293 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3294 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3295 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3296 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3297 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3298 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3299 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3300 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3301 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3302 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3303 extern const struct bpf_func_proto bpf_snprintf_proto;
3304 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3305 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3306 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3307 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3308 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3309 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3310 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3311 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3312 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3313 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3314 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3315 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3316 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3317 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3318 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3319 extern const struct bpf_func_proto bpf_find_vma_proto;
3320 extern const struct bpf_func_proto bpf_loop_proto;
3321 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3322 extern const struct bpf_func_proto bpf_set_retval_proto;
3323 extern const struct bpf_func_proto bpf_get_retval_proto;
3324 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3325 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3326 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3327 
3328 const struct bpf_func_proto *tracing_prog_func_proto(
3329   enum bpf_func_id func_id, const struct bpf_prog *prog);
3330 
3331 /* Shared helpers among cBPF and eBPF. */
3332 void bpf_user_rnd_init_once(void);
3333 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3334 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3335 
3336 #if defined(CONFIG_NET)
3337 bool bpf_sock_common_is_valid_access(int off, int size,
3338 				     enum bpf_access_type type,
3339 				     struct bpf_insn_access_aux *info);
3340 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3341 			      struct bpf_insn_access_aux *info);
3342 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3343 				const struct bpf_insn *si,
3344 				struct bpf_insn *insn_buf,
3345 				struct bpf_prog *prog,
3346 				u32 *target_size);
3347 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3348 			       struct bpf_dynptr *ptr);
3349 #else
3350 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3351 						   enum bpf_access_type type,
3352 						   struct bpf_insn_access_aux *info)
3353 {
3354 	return false;
3355 }
3356 static inline bool bpf_sock_is_valid_access(int off, int size,
3357 					    enum bpf_access_type type,
3358 					    struct bpf_insn_access_aux *info)
3359 {
3360 	return false;
3361 }
3362 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3363 					      const struct bpf_insn *si,
3364 					      struct bpf_insn *insn_buf,
3365 					      struct bpf_prog *prog,
3366 					      u32 *target_size)
3367 {
3368 	return 0;
3369 }
3370 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3371 					     struct bpf_dynptr *ptr)
3372 {
3373 	return -EOPNOTSUPP;
3374 }
3375 #endif
3376 
3377 #ifdef CONFIG_INET
3378 struct sk_reuseport_kern {
3379 	struct sk_buff *skb;
3380 	struct sock *sk;
3381 	struct sock *selected_sk;
3382 	struct sock *migrating_sk;
3383 	void *data_end;
3384 	u32 hash;
3385 	u32 reuseport_id;
3386 	bool bind_inany;
3387 };
3388 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3389 				  struct bpf_insn_access_aux *info);
3390 
3391 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3392 				    const struct bpf_insn *si,
3393 				    struct bpf_insn *insn_buf,
3394 				    struct bpf_prog *prog,
3395 				    u32 *target_size);
3396 
3397 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3398 				  struct bpf_insn_access_aux *info);
3399 
3400 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3401 				    const struct bpf_insn *si,
3402 				    struct bpf_insn *insn_buf,
3403 				    struct bpf_prog *prog,
3404 				    u32 *target_size);
3405 #else
3406 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3407 						enum bpf_access_type type,
3408 						struct bpf_insn_access_aux *info)
3409 {
3410 	return false;
3411 }
3412 
3413 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3414 						  const struct bpf_insn *si,
3415 						  struct bpf_insn *insn_buf,
3416 						  struct bpf_prog *prog,
3417 						  u32 *target_size)
3418 {
3419 	return 0;
3420 }
3421 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3422 						enum bpf_access_type type,
3423 						struct bpf_insn_access_aux *info)
3424 {
3425 	return false;
3426 }
3427 
3428 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3429 						  const struct bpf_insn *si,
3430 						  struct bpf_insn *insn_buf,
3431 						  struct bpf_prog *prog,
3432 						  u32 *target_size)
3433 {
3434 	return 0;
3435 }
3436 #endif /* CONFIG_INET */
3437 
3438 enum bpf_text_poke_type {
3439 	BPF_MOD_CALL,
3440 	BPF_MOD_JUMP,
3441 };
3442 
3443 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3444 		       void *addr1, void *addr2);
3445 
3446 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3447 			       struct bpf_prog *new, struct bpf_prog *old);
3448 
3449 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3450 int bpf_arch_text_invalidate(void *dst, size_t len);
3451 
3452 struct btf_id_set;
3453 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3454 
3455 #define MAX_BPRINTF_VARARGS		12
3456 #define MAX_BPRINTF_BUF			1024
3457 
3458 struct bpf_bprintf_data {
3459 	u32 *bin_args;
3460 	char *buf;
3461 	bool get_bin_args;
3462 	bool get_buf;
3463 };
3464 
3465 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3466 			u32 num_args, struct bpf_bprintf_data *data);
3467 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3468 
3469 #ifdef CONFIG_BPF_LSM
3470 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3471 void bpf_cgroup_atype_put(int cgroup_atype);
3472 #else
3473 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3474 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3475 #endif /* CONFIG_BPF_LSM */
3476 
3477 struct key;
3478 
3479 #ifdef CONFIG_KEYS
3480 struct bpf_key {
3481 	struct key *key;
3482 	bool has_ref;
3483 };
3484 #endif /* CONFIG_KEYS */
3485 
3486 static inline bool type_is_alloc(u32 type)
3487 {
3488 	return type & MEM_ALLOC;
3489 }
3490 
3491 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3492 {
3493 	if (memcg_bpf_enabled())
3494 		return flags | __GFP_ACCOUNT;
3495 	return flags;
3496 }
3497 
3498 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3499 {
3500 	return prog->aux->func_idx != 0;
3501 }
3502 
3503 static inline bool bpf_prog_is_raw_tp(const struct bpf_prog *prog)
3504 {
3505 	return prog->type == BPF_PROG_TYPE_TRACING &&
3506 	       prog->expected_attach_type == BPF_TRACE_RAW_TP;
3507 }
3508 
3509 #endif /* _LINUX_BPF_H */
3510