xref: /linux-6.15/include/linux/bpf.h (revision 7a4ffec9)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct bpf_arena;
41 struct sock;
42 struct seq_file;
43 struct btf;
44 struct btf_type;
45 struct exception_table_entry;
46 struct seq_operations;
47 struct bpf_iter_aux_info;
48 struct bpf_local_storage;
49 struct bpf_local_storage_map;
50 struct kobject;
51 struct mem_cgroup;
52 struct module;
53 struct bpf_func_state;
54 struct ftrace_ops;
55 struct cgroup;
56 struct bpf_token;
57 struct user_namespace;
58 struct super_block;
59 struct inode;
60 
61 extern struct idr btf_idr;
62 extern spinlock_t btf_idr_lock;
63 extern struct kobject *btf_kobj;
64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65 extern bool bpf_global_ma_set;
66 
67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69 					struct bpf_iter_aux_info *aux);
70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71 typedef unsigned int (*bpf_func_t)(const void *,
72 				   const struct bpf_insn *);
73 struct bpf_iter_seq_info {
74 	const struct seq_operations *seq_ops;
75 	bpf_iter_init_seq_priv_t init_seq_private;
76 	bpf_iter_fini_seq_priv_t fini_seq_private;
77 	u32 seq_priv_size;
78 };
79 
80 /* map is generic key/value storage optionally accessible by eBPF programs */
81 struct bpf_map_ops {
82 	/* funcs callable from userspace (via syscall) */
83 	int (*map_alloc_check)(union bpf_attr *attr);
84 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85 	void (*map_release)(struct bpf_map *map, struct file *map_file);
86 	void (*map_free)(struct bpf_map *map);
87 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88 	void (*map_release_uref)(struct bpf_map *map);
89 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91 				union bpf_attr __user *uattr);
92 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93 					  void *value, u64 flags);
94 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95 					   const union bpf_attr *attr,
96 					   union bpf_attr __user *uattr);
97 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98 				const union bpf_attr *attr,
99 				union bpf_attr __user *uattr);
100 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101 				union bpf_attr __user *uattr);
102 
103 	/* funcs callable from userspace and from eBPF programs */
104 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106 	long (*map_delete_elem)(struct bpf_map *map, void *key);
107 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108 	long (*map_pop_elem)(struct bpf_map *map, void *value);
109 	long (*map_peek_elem)(struct bpf_map *map, void *value);
110 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111 
112 	/* funcs called by prog_array and perf_event_array map */
113 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114 				int fd);
115 	/* If need_defer is true, the implementation should guarantee that
116 	 * the to-be-put element is still alive before the bpf program, which
117 	 * may manipulate it, exists.
118 	 */
119 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123 				  struct seq_file *m);
124 	int (*map_check_btf)(const struct bpf_map *map,
125 			     const struct btf *btf,
126 			     const struct btf_type *key_type,
127 			     const struct btf_type *value_type);
128 
129 	/* Prog poke tracking helpers. */
130 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133 			     struct bpf_prog *new);
134 
135 	/* Direct value access helpers. */
136 	int (*map_direct_value_addr)(const struct bpf_map *map,
137 				     u64 *imm, u32 off);
138 	int (*map_direct_value_meta)(const struct bpf_map *map,
139 				     u64 imm, u32 *off);
140 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142 			     struct poll_table_struct *pts);
143 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144 					       unsigned long len, unsigned long pgoff,
145 					       unsigned long flags);
146 
147 	/* Functions called by bpf_local_storage maps */
148 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149 					void *owner, u32 size);
150 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151 					   void *owner, u32 size);
152 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153 
154 	/* Misc helpers.*/
155 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156 
157 	/* map_meta_equal must be implemented for maps that can be
158 	 * used as an inner map.  It is a runtime check to ensure
159 	 * an inner map can be inserted to an outer map.
160 	 *
161 	 * Some properties of the inner map has been used during the
162 	 * verification time.  When inserting an inner map at the runtime,
163 	 * map_meta_equal has to ensure the inserting map has the same
164 	 * properties that the verifier has used earlier.
165 	 */
166 	bool (*map_meta_equal)(const struct bpf_map *meta0,
167 			       const struct bpf_map *meta1);
168 
169 
170 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171 					      struct bpf_func_state *caller,
172 					      struct bpf_func_state *callee);
173 	long (*map_for_each_callback)(struct bpf_map *map,
174 				     bpf_callback_t callback_fn,
175 				     void *callback_ctx, u64 flags);
176 
177 	u64 (*map_mem_usage)(const struct bpf_map *map);
178 
179 	/* BTF id of struct allocated by map_alloc */
180 	int *map_btf_id;
181 
182 	/* bpf_iter info used to open a seq_file */
183 	const struct bpf_iter_seq_info *iter_seq_info;
184 };
185 
186 enum {
187 	/* Support at most 11 fields in a BTF type */
188 	BTF_FIELDS_MAX	   = 11,
189 };
190 
191 enum btf_field_type {
192 	BPF_SPIN_LOCK  = (1 << 0),
193 	BPF_TIMER      = (1 << 1),
194 	BPF_KPTR_UNREF = (1 << 2),
195 	BPF_KPTR_REF   = (1 << 3),
196 	BPF_KPTR_PERCPU = (1 << 4),
197 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198 	BPF_LIST_HEAD  = (1 << 5),
199 	BPF_LIST_NODE  = (1 << 6),
200 	BPF_RB_ROOT    = (1 << 7),
201 	BPF_RB_NODE    = (1 << 8),
202 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204 	BPF_REFCOUNT   = (1 << 9),
205 	BPF_WORKQUEUE  = (1 << 10),
206 };
207 
208 typedef void (*btf_dtor_kfunc_t)(void *);
209 
210 struct btf_field_kptr {
211 	struct btf *btf;
212 	struct module *module;
213 	/* dtor used if btf_is_kernel(btf), otherwise the type is
214 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
215 	 */
216 	btf_dtor_kfunc_t dtor;
217 	u32 btf_id;
218 };
219 
220 struct btf_field_graph_root {
221 	struct btf *btf;
222 	u32 value_btf_id;
223 	u32 node_offset;
224 	struct btf_record *value_rec;
225 };
226 
227 struct btf_field {
228 	u32 offset;
229 	u32 size;
230 	enum btf_field_type type;
231 	union {
232 		struct btf_field_kptr kptr;
233 		struct btf_field_graph_root graph_root;
234 	};
235 };
236 
237 struct btf_record {
238 	u32 cnt;
239 	u32 field_mask;
240 	int spin_lock_off;
241 	int timer_off;
242 	int wq_off;
243 	int refcount_off;
244 	struct btf_field fields[];
245 };
246 
247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
248 struct bpf_rb_node_kern {
249 	struct rb_node rb_node;
250 	void *owner;
251 } __attribute__((aligned(8)));
252 
253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
254 struct bpf_list_node_kern {
255 	struct list_head list_head;
256 	void *owner;
257 } __attribute__((aligned(8)));
258 
259 struct bpf_map {
260 	const struct bpf_map_ops *ops;
261 	struct bpf_map *inner_map_meta;
262 #ifdef CONFIG_SECURITY
263 	void *security;
264 #endif
265 	enum bpf_map_type map_type;
266 	u32 key_size;
267 	u32 value_size;
268 	u32 max_entries;
269 	u64 map_extra; /* any per-map-type extra fields */
270 	u32 map_flags;
271 	u32 id;
272 	struct btf_record *record;
273 	int numa_node;
274 	u32 btf_key_type_id;
275 	u32 btf_value_type_id;
276 	u32 btf_vmlinux_value_type_id;
277 	struct btf *btf;
278 #ifdef CONFIG_MEMCG
279 	struct obj_cgroup *objcg;
280 #endif
281 	char name[BPF_OBJ_NAME_LEN];
282 	struct mutex freeze_mutex;
283 	atomic64_t refcnt;
284 	atomic64_t usercnt;
285 	/* rcu is used before freeing and work is only used during freeing */
286 	union {
287 		struct work_struct work;
288 		struct rcu_head rcu;
289 	};
290 	atomic64_t writecnt;
291 	/* 'Ownership' of program-containing map is claimed by the first program
292 	 * that is going to use this map or by the first program which FD is
293 	 * stored in the map to make sure that all callers and callees have the
294 	 * same prog type, JITed flag and xdp_has_frags flag.
295 	 */
296 	struct {
297 		const struct btf_type *attach_func_proto;
298 		spinlock_t lock;
299 		enum bpf_prog_type type;
300 		bool jited;
301 		bool xdp_has_frags;
302 	} owner;
303 	bool bypass_spec_v1;
304 	bool frozen; /* write-once; write-protected by freeze_mutex */
305 	bool free_after_mult_rcu_gp;
306 	bool free_after_rcu_gp;
307 	atomic64_t sleepable_refcnt;
308 	s64 __percpu *elem_count;
309 };
310 
311 static inline const char *btf_field_type_name(enum btf_field_type type)
312 {
313 	switch (type) {
314 	case BPF_SPIN_LOCK:
315 		return "bpf_spin_lock";
316 	case BPF_TIMER:
317 		return "bpf_timer";
318 	case BPF_WORKQUEUE:
319 		return "bpf_wq";
320 	case BPF_KPTR_UNREF:
321 	case BPF_KPTR_REF:
322 		return "kptr";
323 	case BPF_KPTR_PERCPU:
324 		return "percpu_kptr";
325 	case BPF_LIST_HEAD:
326 		return "bpf_list_head";
327 	case BPF_LIST_NODE:
328 		return "bpf_list_node";
329 	case BPF_RB_ROOT:
330 		return "bpf_rb_root";
331 	case BPF_RB_NODE:
332 		return "bpf_rb_node";
333 	case BPF_REFCOUNT:
334 		return "bpf_refcount";
335 	default:
336 		WARN_ON_ONCE(1);
337 		return "unknown";
338 	}
339 }
340 
341 static inline u32 btf_field_type_size(enum btf_field_type type)
342 {
343 	switch (type) {
344 	case BPF_SPIN_LOCK:
345 		return sizeof(struct bpf_spin_lock);
346 	case BPF_TIMER:
347 		return sizeof(struct bpf_timer);
348 	case BPF_WORKQUEUE:
349 		return sizeof(struct bpf_wq);
350 	case BPF_KPTR_UNREF:
351 	case BPF_KPTR_REF:
352 	case BPF_KPTR_PERCPU:
353 		return sizeof(u64);
354 	case BPF_LIST_HEAD:
355 		return sizeof(struct bpf_list_head);
356 	case BPF_LIST_NODE:
357 		return sizeof(struct bpf_list_node);
358 	case BPF_RB_ROOT:
359 		return sizeof(struct bpf_rb_root);
360 	case BPF_RB_NODE:
361 		return sizeof(struct bpf_rb_node);
362 	case BPF_REFCOUNT:
363 		return sizeof(struct bpf_refcount);
364 	default:
365 		WARN_ON_ONCE(1);
366 		return 0;
367 	}
368 }
369 
370 static inline u32 btf_field_type_align(enum btf_field_type type)
371 {
372 	switch (type) {
373 	case BPF_SPIN_LOCK:
374 		return __alignof__(struct bpf_spin_lock);
375 	case BPF_TIMER:
376 		return __alignof__(struct bpf_timer);
377 	case BPF_WORKQUEUE:
378 		return __alignof__(struct bpf_wq);
379 	case BPF_KPTR_UNREF:
380 	case BPF_KPTR_REF:
381 	case BPF_KPTR_PERCPU:
382 		return __alignof__(u64);
383 	case BPF_LIST_HEAD:
384 		return __alignof__(struct bpf_list_head);
385 	case BPF_LIST_NODE:
386 		return __alignof__(struct bpf_list_node);
387 	case BPF_RB_ROOT:
388 		return __alignof__(struct bpf_rb_root);
389 	case BPF_RB_NODE:
390 		return __alignof__(struct bpf_rb_node);
391 	case BPF_REFCOUNT:
392 		return __alignof__(struct bpf_refcount);
393 	default:
394 		WARN_ON_ONCE(1);
395 		return 0;
396 	}
397 }
398 
399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
400 {
401 	memset(addr, 0, field->size);
402 
403 	switch (field->type) {
404 	case BPF_REFCOUNT:
405 		refcount_set((refcount_t *)addr, 1);
406 		break;
407 	case BPF_RB_NODE:
408 		RB_CLEAR_NODE((struct rb_node *)addr);
409 		break;
410 	case BPF_LIST_HEAD:
411 	case BPF_LIST_NODE:
412 		INIT_LIST_HEAD((struct list_head *)addr);
413 		break;
414 	case BPF_RB_ROOT:
415 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
416 	case BPF_SPIN_LOCK:
417 	case BPF_TIMER:
418 	case BPF_WORKQUEUE:
419 	case BPF_KPTR_UNREF:
420 	case BPF_KPTR_REF:
421 	case BPF_KPTR_PERCPU:
422 		break;
423 	default:
424 		WARN_ON_ONCE(1);
425 		return;
426 	}
427 }
428 
429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
430 {
431 	if (IS_ERR_OR_NULL(rec))
432 		return false;
433 	return rec->field_mask & type;
434 }
435 
436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
437 {
438 	int i;
439 
440 	if (IS_ERR_OR_NULL(rec))
441 		return;
442 	for (i = 0; i < rec->cnt; i++)
443 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
444 }
445 
446 /* 'dst' must be a temporary buffer and should not point to memory that is being
447  * used in parallel by a bpf program or bpf syscall, otherwise the access from
448  * the bpf program or bpf syscall may be corrupted by the reinitialization,
449  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
450  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
451  * program or bpf syscall.
452  */
453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
454 {
455 	bpf_obj_init(map->record, dst);
456 }
457 
458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
459  * forced to use 'long' read/writes to try to atomically copy long counters.
460  * Best-effort only.  No barriers here, since it _will_ race with concurrent
461  * updates from BPF programs. Called from bpf syscall and mostly used with
462  * size 8 or 16 bytes, so ask compiler to inline it.
463  */
464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
465 {
466 	const long *lsrc = src;
467 	long *ldst = dst;
468 
469 	size /= sizeof(long);
470 	while (size--)
471 		data_race(*ldst++ = *lsrc++);
472 }
473 
474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
475 static inline void bpf_obj_memcpy(struct btf_record *rec,
476 				  void *dst, void *src, u32 size,
477 				  bool long_memcpy)
478 {
479 	u32 curr_off = 0;
480 	int i;
481 
482 	if (IS_ERR_OR_NULL(rec)) {
483 		if (long_memcpy)
484 			bpf_long_memcpy(dst, src, round_up(size, 8));
485 		else
486 			memcpy(dst, src, size);
487 		return;
488 	}
489 
490 	for (i = 0; i < rec->cnt; i++) {
491 		u32 next_off = rec->fields[i].offset;
492 		u32 sz = next_off - curr_off;
493 
494 		memcpy(dst + curr_off, src + curr_off, sz);
495 		curr_off += rec->fields[i].size + sz;
496 	}
497 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
498 }
499 
500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
501 {
502 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
503 }
504 
505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
506 {
507 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
508 }
509 
510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
511 {
512 	u32 curr_off = 0;
513 	int i;
514 
515 	if (IS_ERR_OR_NULL(rec)) {
516 		memset(dst, 0, size);
517 		return;
518 	}
519 
520 	for (i = 0; i < rec->cnt; i++) {
521 		u32 next_off = rec->fields[i].offset;
522 		u32 sz = next_off - curr_off;
523 
524 		memset(dst + curr_off, 0, sz);
525 		curr_off += rec->fields[i].size + sz;
526 	}
527 	memset(dst + curr_off, 0, size - curr_off);
528 }
529 
530 static inline void zero_map_value(struct bpf_map *map, void *dst)
531 {
532 	bpf_obj_memzero(map->record, dst, map->value_size);
533 }
534 
535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
536 			   bool lock_src);
537 void bpf_timer_cancel_and_free(void *timer);
538 void bpf_wq_cancel_and_free(void *timer);
539 void bpf_list_head_free(const struct btf_field *field, void *list_head,
540 			struct bpf_spin_lock *spin_lock);
541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
542 		      struct bpf_spin_lock *spin_lock);
543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
546 
547 struct bpf_offload_dev;
548 struct bpf_offloaded_map;
549 
550 struct bpf_map_dev_ops {
551 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
552 				void *key, void *next_key);
553 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
554 			       void *key, void *value);
555 	int (*map_update_elem)(struct bpf_offloaded_map *map,
556 			       void *key, void *value, u64 flags);
557 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
558 };
559 
560 struct bpf_offloaded_map {
561 	struct bpf_map map;
562 	struct net_device *netdev;
563 	const struct bpf_map_dev_ops *dev_ops;
564 	void *dev_priv;
565 	struct list_head offloads;
566 };
567 
568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
569 {
570 	return container_of(map, struct bpf_offloaded_map, map);
571 }
572 
573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
574 {
575 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
576 }
577 
578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
579 {
580 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
581 		map->ops->map_seq_show_elem;
582 }
583 
584 int map_check_no_btf(const struct bpf_map *map,
585 		     const struct btf *btf,
586 		     const struct btf_type *key_type,
587 		     const struct btf_type *value_type);
588 
589 bool bpf_map_meta_equal(const struct bpf_map *meta0,
590 			const struct bpf_map *meta1);
591 
592 extern const struct bpf_map_ops bpf_map_offload_ops;
593 
594 /* bpf_type_flag contains a set of flags that are applicable to the values of
595  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
596  * or a memory is read-only. We classify types into two categories: base types
597  * and extended types. Extended types are base types combined with a type flag.
598  *
599  * Currently there are no more than 32 base types in arg_type, ret_type and
600  * reg_types.
601  */
602 #define BPF_BASE_TYPE_BITS	8
603 
604 enum bpf_type_flag {
605 	/* PTR may be NULL. */
606 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
607 
608 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
609 	 * compatible with both mutable and immutable memory.
610 	 */
611 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
612 
613 	/* MEM points to BPF ring buffer reservation. */
614 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
615 
616 	/* MEM is in user address space. */
617 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
618 
619 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
620 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
621 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
622 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
623 	 * to the specified cpu.
624 	 */
625 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
626 
627 	/* Indicates that the argument will be released. */
628 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
629 
630 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
631 	 * unreferenced and referenced kptr loaded from map value using a load
632 	 * instruction, so that they can only be dereferenced but not escape the
633 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
634 	 * kfunc or bpf helpers).
635 	 */
636 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
637 
638 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
639 
640 	/* DYNPTR points to memory local to the bpf program. */
641 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
642 
643 	/* DYNPTR points to a kernel-produced ringbuf record. */
644 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
645 
646 	/* Size is known at compile time. */
647 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
648 
649 	/* MEM is of an allocated object of type in program BTF. This is used to
650 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
651 	 */
652 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
653 
654 	/* PTR was passed from the kernel in a trusted context, and may be
655 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
656 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
657 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
658 	 * without invoking bpf_kptr_xchg(). What we really need to know is
659 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
660 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
661 	 * helpers, they do not cover all possible instances of unsafe
662 	 * pointers. For example, a pointer that was obtained from walking a
663 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
664 	 * fact that it may be NULL, invalid, etc. This is due to backwards
665 	 * compatibility requirements, as this was the behavior that was first
666 	 * introduced when kptrs were added. The behavior is now considered
667 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
668 	 *
669 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
670 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
671 	 * For example, pointers passed to tracepoint arguments are considered
672 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
673 	 * callbacks. As alluded to above, pointers that are obtained from
674 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
675 	 * struct task_struct *task is PTR_TRUSTED, then accessing
676 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
677 	 * in a BPF register. Similarly, pointers passed to certain programs
678 	 * types such as kretprobes are not guaranteed to be valid, as they may
679 	 * for example contain an object that was recently freed.
680 	 */
681 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
682 
683 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
684 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
685 
686 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
687 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
688 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
689 	 */
690 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
691 
692 	/* DYNPTR points to sk_buff */
693 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
694 
695 	/* DYNPTR points to xdp_buff */
696 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
697 
698 	/* Memory must be aligned on some architectures, used in combination with
699 	 * MEM_FIXED_SIZE.
700 	 */
701 	MEM_ALIGNED		= BIT(17 + BPF_BASE_TYPE_BITS),
702 
703 	__BPF_TYPE_FLAG_MAX,
704 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
705 };
706 
707 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
708 				 | DYNPTR_TYPE_XDP)
709 
710 /* Max number of base types. */
711 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
712 
713 /* Max number of all types. */
714 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
715 
716 /* function argument constraints */
717 enum bpf_arg_type {
718 	ARG_DONTCARE = 0,	/* unused argument in helper function */
719 
720 	/* the following constraints used to prototype
721 	 * bpf_map_lookup/update/delete_elem() functions
722 	 */
723 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
724 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
725 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
726 
727 	/* Used to prototype bpf_memcmp() and other functions that access data
728 	 * on eBPF program stack
729 	 */
730 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
731 	ARG_PTR_TO_ARENA,
732 
733 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
734 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
735 
736 	ARG_PTR_TO_CTX,		/* pointer to context */
737 	ARG_ANYTHING,		/* any (initialized) argument is ok */
738 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
739 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
740 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
741 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
742 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
743 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
744 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
745 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
746 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
747 	ARG_PTR_TO_STACK,	/* pointer to stack */
748 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
749 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
750 	ARG_KPTR_XCHG_DEST,	/* pointer to destination that kptrs are bpf_kptr_xchg'd into */
751 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
752 	__BPF_ARG_TYPE_MAX,
753 
754 	/* Extended arg_types. */
755 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
756 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
757 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
758 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
759 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
760 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
761 	/* pointer to memory does not need to be initialized, helper function must fill
762 	 * all bytes or clear them in error case.
763 	 */
764 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
765 	/* Pointer to valid memory of size known at compile time. */
766 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
767 
768 	/* This must be the last entry. Its purpose is to ensure the enum is
769 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
770 	 */
771 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
772 };
773 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
774 
775 /* type of values returned from helper functions */
776 enum bpf_return_type {
777 	RET_INTEGER,			/* function returns integer */
778 	RET_VOID,			/* function doesn't return anything */
779 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
780 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
781 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
782 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
783 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
784 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
785 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
786 	__BPF_RET_TYPE_MAX,
787 
788 	/* Extended ret_types. */
789 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
790 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
791 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
792 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
793 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
794 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
795 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
796 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
797 
798 	/* This must be the last entry. Its purpose is to ensure the enum is
799 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
800 	 */
801 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
802 };
803 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
804 
805 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
806  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
807  * instructions after verifying
808  */
809 struct bpf_func_proto {
810 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
811 	bool gpl_only;
812 	bool pkt_access;
813 	bool might_sleep;
814 	/* set to true if helper follows contract for llvm
815 	 * attribute bpf_fastcall:
816 	 * - void functions do not scratch r0
817 	 * - functions taking N arguments scratch only registers r1-rN
818 	 */
819 	bool allow_fastcall;
820 	enum bpf_return_type ret_type;
821 	union {
822 		struct {
823 			enum bpf_arg_type arg1_type;
824 			enum bpf_arg_type arg2_type;
825 			enum bpf_arg_type arg3_type;
826 			enum bpf_arg_type arg4_type;
827 			enum bpf_arg_type arg5_type;
828 		};
829 		enum bpf_arg_type arg_type[5];
830 	};
831 	union {
832 		struct {
833 			u32 *arg1_btf_id;
834 			u32 *arg2_btf_id;
835 			u32 *arg3_btf_id;
836 			u32 *arg4_btf_id;
837 			u32 *arg5_btf_id;
838 		};
839 		u32 *arg_btf_id[5];
840 		struct {
841 			size_t arg1_size;
842 			size_t arg2_size;
843 			size_t arg3_size;
844 			size_t arg4_size;
845 			size_t arg5_size;
846 		};
847 		size_t arg_size[5];
848 	};
849 	int *ret_btf_id; /* return value btf_id */
850 	bool (*allowed)(const struct bpf_prog *prog);
851 };
852 
853 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
854  * the first argument to eBPF programs.
855  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
856  */
857 struct bpf_context;
858 
859 enum bpf_access_type {
860 	BPF_READ = 1,
861 	BPF_WRITE = 2
862 };
863 
864 /* types of values stored in eBPF registers */
865 /* Pointer types represent:
866  * pointer
867  * pointer + imm
868  * pointer + (u16) var
869  * pointer + (u16) var + imm
870  * if (range > 0) then [ptr, ptr + range - off) is safe to access
871  * if (id > 0) means that some 'var' was added
872  * if (off > 0) means that 'imm' was added
873  */
874 enum bpf_reg_type {
875 	NOT_INIT = 0,		 /* nothing was written into register */
876 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
877 	PTR_TO_CTX,		 /* reg points to bpf_context */
878 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
879 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
880 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
881 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
882 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
883 	PTR_TO_PACKET,		 /* reg points to skb->data */
884 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
885 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
886 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
887 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
888 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
889 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
890 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
891 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
892 	 * to be null checked by the BPF program. This does not imply the
893 	 * pointer is _not_ null and in practice this can easily be a null
894 	 * pointer when reading pointer chains. The assumption is program
895 	 * context will handle null pointer dereference typically via fault
896 	 * handling. The verifier must keep this in mind and can make no
897 	 * assumptions about null or non-null when doing branch analysis.
898 	 * Further, when passed into helpers the helpers can not, without
899 	 * additional context, assume the value is non-null.
900 	 */
901 	PTR_TO_BTF_ID,
902 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
903 	 * been checked for null. Used primarily to inform the verifier
904 	 * an explicit null check is required for this struct.
905 	 */
906 	PTR_TO_MEM,		 /* reg points to valid memory region */
907 	PTR_TO_ARENA,
908 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
909 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
910 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
911 	__BPF_REG_TYPE_MAX,
912 
913 	/* Extended reg_types. */
914 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
915 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
916 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
917 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
918 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
919 
920 	/* This must be the last entry. Its purpose is to ensure the enum is
921 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
922 	 */
923 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
924 };
925 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
926 
927 /* The information passed from prog-specific *_is_valid_access
928  * back to the verifier.
929  */
930 struct bpf_insn_access_aux {
931 	enum bpf_reg_type reg_type;
932 	bool is_ldsx;
933 	union {
934 		int ctx_field_size;
935 		struct {
936 			struct btf *btf;
937 			u32 btf_id;
938 		};
939 	};
940 	struct bpf_verifier_log *log; /* for verbose logs */
941 	bool is_retval; /* is accessing function return value ? */
942 };
943 
944 static inline void
945 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
946 {
947 	aux->ctx_field_size = size;
948 }
949 
950 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
951 {
952 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
953 }
954 
955 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
956 {
957 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
958 }
959 
960 struct bpf_prog_ops {
961 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
962 			union bpf_attr __user *uattr);
963 };
964 
965 struct bpf_reg_state;
966 struct bpf_verifier_ops {
967 	/* return eBPF function prototype for verification */
968 	const struct bpf_func_proto *
969 	(*get_func_proto)(enum bpf_func_id func_id,
970 			  const struct bpf_prog *prog);
971 
972 	/* return true if 'size' wide access at offset 'off' within bpf_context
973 	 * with 'type' (read or write) is allowed
974 	 */
975 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
976 				const struct bpf_prog *prog,
977 				struct bpf_insn_access_aux *info);
978 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
979 			    const struct bpf_prog *prog);
980 	int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
981 			    s16 ctx_stack_off);
982 	int (*gen_ld_abs)(const struct bpf_insn *orig,
983 			  struct bpf_insn *insn_buf);
984 	u32 (*convert_ctx_access)(enum bpf_access_type type,
985 				  const struct bpf_insn *src,
986 				  struct bpf_insn *dst,
987 				  struct bpf_prog *prog, u32 *target_size);
988 	int (*btf_struct_access)(struct bpf_verifier_log *log,
989 				 const struct bpf_reg_state *reg,
990 				 int off, int size);
991 };
992 
993 struct bpf_prog_offload_ops {
994 	/* verifier basic callbacks */
995 	int (*insn_hook)(struct bpf_verifier_env *env,
996 			 int insn_idx, int prev_insn_idx);
997 	int (*finalize)(struct bpf_verifier_env *env);
998 	/* verifier optimization callbacks (called after .finalize) */
999 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1000 			    struct bpf_insn *insn);
1001 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1002 	/* program management callbacks */
1003 	int (*prepare)(struct bpf_prog *prog);
1004 	int (*translate)(struct bpf_prog *prog);
1005 	void (*destroy)(struct bpf_prog *prog);
1006 };
1007 
1008 struct bpf_prog_offload {
1009 	struct bpf_prog		*prog;
1010 	struct net_device	*netdev;
1011 	struct bpf_offload_dev	*offdev;
1012 	void			*dev_priv;
1013 	struct list_head	offloads;
1014 	bool			dev_state;
1015 	bool			opt_failed;
1016 	void			*jited_image;
1017 	u32			jited_len;
1018 };
1019 
1020 enum bpf_cgroup_storage_type {
1021 	BPF_CGROUP_STORAGE_SHARED,
1022 	BPF_CGROUP_STORAGE_PERCPU,
1023 	__BPF_CGROUP_STORAGE_MAX
1024 };
1025 
1026 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1027 
1028 /* The longest tracepoint has 12 args.
1029  * See include/trace/bpf_probe.h
1030  */
1031 #define MAX_BPF_FUNC_ARGS 12
1032 
1033 /* The maximum number of arguments passed through registers
1034  * a single function may have.
1035  */
1036 #define MAX_BPF_FUNC_REG_ARGS 5
1037 
1038 /* The argument is a structure. */
1039 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1040 
1041 /* The argument is signed. */
1042 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1043 
1044 struct btf_func_model {
1045 	u8 ret_size;
1046 	u8 ret_flags;
1047 	u8 nr_args;
1048 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1049 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1050 };
1051 
1052 /* Restore arguments before returning from trampoline to let original function
1053  * continue executing. This flag is used for fentry progs when there are no
1054  * fexit progs.
1055  */
1056 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1057 /* Call original function after fentry progs, but before fexit progs.
1058  * Makes sense for fentry/fexit, normal calls and indirect calls.
1059  */
1060 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1061 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1062  * programs only. Should not be used with normal calls and indirect calls.
1063  */
1064 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1065 /* Store IP address of the caller on the trampoline stack,
1066  * so it's available for trampoline's programs.
1067  */
1068 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1069 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1070 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1071 
1072 /* Get original function from stack instead of from provided direct address.
1073  * Makes sense for trampolines with fexit or fmod_ret programs.
1074  */
1075 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1076 
1077 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1078  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1079  */
1080 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1081 
1082 /* Indicate that current trampoline is in a tail call context. Then, it has to
1083  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1084  */
1085 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1086 
1087 /*
1088  * Indicate the trampoline should be suitable to receive indirect calls;
1089  * without this indirectly calling the generated code can result in #UD/#CP,
1090  * depending on the CFI options.
1091  *
1092  * Used by bpf_struct_ops.
1093  *
1094  * Incompatible with FENTRY usage, overloads @func_addr argument.
1095  */
1096 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1097 
1098 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1099  * bytes on x86.
1100  */
1101 enum {
1102 #if defined(__s390x__)
1103 	BPF_MAX_TRAMP_LINKS = 27,
1104 #else
1105 	BPF_MAX_TRAMP_LINKS = 38,
1106 #endif
1107 };
1108 
1109 struct bpf_tramp_links {
1110 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1111 	int nr_links;
1112 };
1113 
1114 struct bpf_tramp_run_ctx;
1115 
1116 /* Different use cases for BPF trampoline:
1117  * 1. replace nop at the function entry (kprobe equivalent)
1118  *    flags = BPF_TRAMP_F_RESTORE_REGS
1119  *    fentry = a set of programs to run before returning from trampoline
1120  *
1121  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1122  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1123  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1124  *    fentry = a set of program to run before calling original function
1125  *    fexit = a set of program to run after original function
1126  *
1127  * 3. replace direct call instruction anywhere in the function body
1128  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1129  *    With flags = 0
1130  *      fentry = a set of programs to run before returning from trampoline
1131  *    With flags = BPF_TRAMP_F_CALL_ORIG
1132  *      orig_call = original callback addr or direct function addr
1133  *      fentry = a set of program to run before calling original function
1134  *      fexit = a set of program to run after original function
1135  */
1136 struct bpf_tramp_image;
1137 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1138 				const struct btf_func_model *m, u32 flags,
1139 				struct bpf_tramp_links *tlinks,
1140 				void *func_addr);
1141 void *arch_alloc_bpf_trampoline(unsigned int size);
1142 void arch_free_bpf_trampoline(void *image, unsigned int size);
1143 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1144 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1145 			     struct bpf_tramp_links *tlinks, void *func_addr);
1146 
1147 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1148 					     struct bpf_tramp_run_ctx *run_ctx);
1149 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1150 					     struct bpf_tramp_run_ctx *run_ctx);
1151 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1152 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1153 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1154 				      struct bpf_tramp_run_ctx *run_ctx);
1155 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1156 				      struct bpf_tramp_run_ctx *run_ctx);
1157 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1158 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1159 
1160 struct bpf_ksym {
1161 	unsigned long		 start;
1162 	unsigned long		 end;
1163 	char			 name[KSYM_NAME_LEN];
1164 	struct list_head	 lnode;
1165 	struct latch_tree_node	 tnode;
1166 	bool			 prog;
1167 };
1168 
1169 enum bpf_tramp_prog_type {
1170 	BPF_TRAMP_FENTRY,
1171 	BPF_TRAMP_FEXIT,
1172 	BPF_TRAMP_MODIFY_RETURN,
1173 	BPF_TRAMP_MAX,
1174 	BPF_TRAMP_REPLACE, /* more than MAX */
1175 };
1176 
1177 struct bpf_tramp_image {
1178 	void *image;
1179 	int size;
1180 	struct bpf_ksym ksym;
1181 	struct percpu_ref pcref;
1182 	void *ip_after_call;
1183 	void *ip_epilogue;
1184 	union {
1185 		struct rcu_head rcu;
1186 		struct work_struct work;
1187 	};
1188 };
1189 
1190 struct bpf_trampoline {
1191 	/* hlist for trampoline_table */
1192 	struct hlist_node hlist;
1193 	struct ftrace_ops *fops;
1194 	/* serializes access to fields of this trampoline */
1195 	struct mutex mutex;
1196 	refcount_t refcnt;
1197 	u32 flags;
1198 	u64 key;
1199 	struct {
1200 		struct btf_func_model model;
1201 		void *addr;
1202 		bool ftrace_managed;
1203 	} func;
1204 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1205 	 * program by replacing one of its functions. func.addr is the address
1206 	 * of the function it replaced.
1207 	 */
1208 	struct bpf_prog *extension_prog;
1209 	/* list of BPF programs using this trampoline */
1210 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1211 	/* Number of attached programs. A counter per kind. */
1212 	int progs_cnt[BPF_TRAMP_MAX];
1213 	/* Executable image of trampoline */
1214 	struct bpf_tramp_image *cur_image;
1215 };
1216 
1217 struct bpf_attach_target_info {
1218 	struct btf_func_model fmodel;
1219 	long tgt_addr;
1220 	struct module *tgt_mod;
1221 	const char *tgt_name;
1222 	const struct btf_type *tgt_type;
1223 };
1224 
1225 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1226 
1227 struct bpf_dispatcher_prog {
1228 	struct bpf_prog *prog;
1229 	refcount_t users;
1230 };
1231 
1232 struct bpf_dispatcher {
1233 	/* dispatcher mutex */
1234 	struct mutex mutex;
1235 	void *func;
1236 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1237 	int num_progs;
1238 	void *image;
1239 	void *rw_image;
1240 	u32 image_off;
1241 	struct bpf_ksym ksym;
1242 #ifdef CONFIG_HAVE_STATIC_CALL
1243 	struct static_call_key *sc_key;
1244 	void *sc_tramp;
1245 #endif
1246 };
1247 
1248 #ifndef __bpfcall
1249 #define __bpfcall __nocfi
1250 #endif
1251 
1252 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1253 	const void *ctx,
1254 	const struct bpf_insn *insnsi,
1255 	bpf_func_t bpf_func)
1256 {
1257 	return bpf_func(ctx, insnsi);
1258 }
1259 
1260 /* the implementation of the opaque uapi struct bpf_dynptr */
1261 struct bpf_dynptr_kern {
1262 	void *data;
1263 	/* Size represents the number of usable bytes of dynptr data.
1264 	 * If for example the offset is at 4 for a local dynptr whose data is
1265 	 * of type u64, the number of usable bytes is 4.
1266 	 *
1267 	 * The upper 8 bits are reserved. It is as follows:
1268 	 * Bits 0 - 23 = size
1269 	 * Bits 24 - 30 = dynptr type
1270 	 * Bit 31 = whether dynptr is read-only
1271 	 */
1272 	u32 size;
1273 	u32 offset;
1274 } __aligned(8);
1275 
1276 enum bpf_dynptr_type {
1277 	BPF_DYNPTR_TYPE_INVALID,
1278 	/* Points to memory that is local to the bpf program */
1279 	BPF_DYNPTR_TYPE_LOCAL,
1280 	/* Underlying data is a ringbuf record */
1281 	BPF_DYNPTR_TYPE_RINGBUF,
1282 	/* Underlying data is a sk_buff */
1283 	BPF_DYNPTR_TYPE_SKB,
1284 	/* Underlying data is a xdp_buff */
1285 	BPF_DYNPTR_TYPE_XDP,
1286 };
1287 
1288 int bpf_dynptr_check_size(u32 size);
1289 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1290 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1291 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1292 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1293 
1294 #ifdef CONFIG_BPF_JIT
1295 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1296 			     struct bpf_trampoline *tr,
1297 			     struct bpf_prog *tgt_prog);
1298 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1299 			       struct bpf_trampoline *tr,
1300 			       struct bpf_prog *tgt_prog);
1301 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1302 					  struct bpf_attach_target_info *tgt_info);
1303 void bpf_trampoline_put(struct bpf_trampoline *tr);
1304 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1305 
1306 /*
1307  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1308  * indirection with a direct call to the bpf program. If the architecture does
1309  * not have STATIC_CALL, avoid a double-indirection.
1310  */
1311 #ifdef CONFIG_HAVE_STATIC_CALL
1312 
1313 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1314 	.sc_key = &STATIC_CALL_KEY(_name),			\
1315 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1316 
1317 #define __BPF_DISPATCHER_SC(name)				\
1318 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1319 
1320 #define __BPF_DISPATCHER_CALL(name)				\
1321 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1322 
1323 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1324 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1325 
1326 #else
1327 #define __BPF_DISPATCHER_SC_INIT(name)
1328 #define __BPF_DISPATCHER_SC(name)
1329 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1330 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1331 #endif
1332 
1333 #define BPF_DISPATCHER_INIT(_name) {				\
1334 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1335 	.func = &_name##_func,					\
1336 	.progs = {},						\
1337 	.num_progs = 0,						\
1338 	.image = NULL,						\
1339 	.image_off = 0,						\
1340 	.ksym = {						\
1341 		.name  = #_name,				\
1342 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1343 	},							\
1344 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1345 }
1346 
1347 #define DEFINE_BPF_DISPATCHER(name)					\
1348 	__BPF_DISPATCHER_SC(name);					\
1349 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1350 		const void *ctx,					\
1351 		const struct bpf_insn *insnsi,				\
1352 		bpf_func_t bpf_func)					\
1353 	{								\
1354 		return __BPF_DISPATCHER_CALL(name);			\
1355 	}								\
1356 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1357 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1358 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1359 
1360 #define DECLARE_BPF_DISPATCHER(name)					\
1361 	unsigned int bpf_dispatcher_##name##_func(			\
1362 		const void *ctx,					\
1363 		const struct bpf_insn *insnsi,				\
1364 		bpf_func_t bpf_func);					\
1365 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1366 
1367 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1368 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1369 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1370 				struct bpf_prog *to);
1371 /* Called only from JIT-enabled code, so there's no need for stubs. */
1372 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1373 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1374 void bpf_ksym_add(struct bpf_ksym *ksym);
1375 void bpf_ksym_del(struct bpf_ksym *ksym);
1376 int bpf_jit_charge_modmem(u32 size);
1377 void bpf_jit_uncharge_modmem(u32 size);
1378 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1379 #else
1380 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1381 					   struct bpf_trampoline *tr,
1382 					   struct bpf_prog *tgt_prog)
1383 {
1384 	return -ENOTSUPP;
1385 }
1386 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1387 					     struct bpf_trampoline *tr,
1388 					     struct bpf_prog *tgt_prog)
1389 {
1390 	return -ENOTSUPP;
1391 }
1392 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1393 							struct bpf_attach_target_info *tgt_info)
1394 {
1395 	return NULL;
1396 }
1397 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1398 #define DEFINE_BPF_DISPATCHER(name)
1399 #define DECLARE_BPF_DISPATCHER(name)
1400 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1401 #define BPF_DISPATCHER_PTR(name) NULL
1402 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1403 					      struct bpf_prog *from,
1404 					      struct bpf_prog *to) {}
1405 static inline bool is_bpf_image_address(unsigned long address)
1406 {
1407 	return false;
1408 }
1409 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1410 {
1411 	return false;
1412 }
1413 #endif
1414 
1415 struct bpf_func_info_aux {
1416 	u16 linkage;
1417 	bool unreliable;
1418 	bool called : 1;
1419 	bool verified : 1;
1420 };
1421 
1422 enum bpf_jit_poke_reason {
1423 	BPF_POKE_REASON_TAIL_CALL,
1424 };
1425 
1426 /* Descriptor of pokes pointing /into/ the JITed image. */
1427 struct bpf_jit_poke_descriptor {
1428 	void *tailcall_target;
1429 	void *tailcall_bypass;
1430 	void *bypass_addr;
1431 	void *aux;
1432 	union {
1433 		struct {
1434 			struct bpf_map *map;
1435 			u32 key;
1436 		} tail_call;
1437 	};
1438 	bool tailcall_target_stable;
1439 	u8 adj_off;
1440 	u16 reason;
1441 	u32 insn_idx;
1442 };
1443 
1444 /* reg_type info for ctx arguments */
1445 struct bpf_ctx_arg_aux {
1446 	u32 offset;
1447 	enum bpf_reg_type reg_type;
1448 	struct btf *btf;
1449 	u32 btf_id;
1450 };
1451 
1452 struct btf_mod_pair {
1453 	struct btf *btf;
1454 	struct module *module;
1455 };
1456 
1457 struct bpf_kfunc_desc_tab;
1458 
1459 struct bpf_prog_aux {
1460 	atomic64_t refcnt;
1461 	u32 used_map_cnt;
1462 	u32 used_btf_cnt;
1463 	u32 max_ctx_offset;
1464 	u32 max_pkt_offset;
1465 	u32 max_tp_access;
1466 	u32 stack_depth;
1467 	u32 id;
1468 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1469 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1470 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1471 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1472 	u32 ctx_arg_info_size;
1473 	u32 max_rdonly_access;
1474 	u32 max_rdwr_access;
1475 	struct btf *attach_btf;
1476 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1477 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1478 	struct bpf_prog *dst_prog;
1479 	struct bpf_trampoline *dst_trampoline;
1480 	enum bpf_prog_type saved_dst_prog_type;
1481 	enum bpf_attach_type saved_dst_attach_type;
1482 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1483 	bool dev_bound; /* Program is bound to the netdev. */
1484 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1485 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1486 	bool attach_tracing_prog; /* true if tracing another tracing program */
1487 	bool func_proto_unreliable;
1488 	bool tail_call_reachable;
1489 	bool xdp_has_frags;
1490 	bool exception_cb;
1491 	bool exception_boundary;
1492 	bool is_extended; /* true if extended by freplace program */
1493 	u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1494 	struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1495 	struct bpf_arena *arena;
1496 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1497 	const struct btf_type *attach_func_proto;
1498 	/* function name for valid attach_btf_id */
1499 	const char *attach_func_name;
1500 	struct bpf_prog **func;
1501 	void *jit_data; /* JIT specific data. arch dependent */
1502 	struct bpf_jit_poke_descriptor *poke_tab;
1503 	struct bpf_kfunc_desc_tab *kfunc_tab;
1504 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1505 	u32 size_poke_tab;
1506 #ifdef CONFIG_FINEIBT
1507 	struct bpf_ksym ksym_prefix;
1508 #endif
1509 	struct bpf_ksym ksym;
1510 	const struct bpf_prog_ops *ops;
1511 	struct bpf_map **used_maps;
1512 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1513 	struct btf_mod_pair *used_btfs;
1514 	struct bpf_prog *prog;
1515 	struct user_struct *user;
1516 	u64 load_time; /* ns since boottime */
1517 	u32 verified_insns;
1518 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1519 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1520 	char name[BPF_OBJ_NAME_LEN];
1521 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1522 #ifdef CONFIG_SECURITY
1523 	void *security;
1524 #endif
1525 	struct bpf_token *token;
1526 	struct bpf_prog_offload *offload;
1527 	struct btf *btf;
1528 	struct bpf_func_info *func_info;
1529 	struct bpf_func_info_aux *func_info_aux;
1530 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1531 	 * has the xlated insn offset.
1532 	 * Both the main and sub prog share the same linfo.
1533 	 * The subprog can access its first linfo by
1534 	 * using the linfo_idx.
1535 	 */
1536 	struct bpf_line_info *linfo;
1537 	/* jited_linfo is the jited addr of the linfo.  It has a
1538 	 * one to one mapping to linfo:
1539 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1540 	 * Both the main and sub prog share the same jited_linfo.
1541 	 * The subprog can access its first jited_linfo by
1542 	 * using the linfo_idx.
1543 	 */
1544 	void **jited_linfo;
1545 	u32 func_info_cnt;
1546 	u32 nr_linfo;
1547 	/* subprog can use linfo_idx to access its first linfo and
1548 	 * jited_linfo.
1549 	 * main prog always has linfo_idx == 0
1550 	 */
1551 	u32 linfo_idx;
1552 	struct module *mod;
1553 	u32 num_exentries;
1554 	struct exception_table_entry *extable;
1555 	union {
1556 		struct work_struct work;
1557 		struct rcu_head	rcu;
1558 	};
1559 };
1560 
1561 struct bpf_prog {
1562 	u16			pages;		/* Number of allocated pages */
1563 	u16			jited:1,	/* Is our filter JIT'ed? */
1564 				jit_requested:1,/* archs need to JIT the prog */
1565 				gpl_compatible:1, /* Is filter GPL compatible? */
1566 				cb_access:1,	/* Is control block accessed? */
1567 				dst_needed:1,	/* Do we need dst entry? */
1568 				blinding_requested:1, /* needs constant blinding */
1569 				blinded:1,	/* Was blinded */
1570 				is_func:1,	/* program is a bpf function */
1571 				kprobe_override:1, /* Do we override a kprobe? */
1572 				has_callchain_buf:1, /* callchain buffer allocated? */
1573 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1574 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1575 				call_get_func_ip:1, /* Do we call get_func_ip() */
1576 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1577 				sleepable:1;	/* BPF program is sleepable */
1578 	enum bpf_prog_type	type;		/* Type of BPF program */
1579 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1580 	u32			len;		/* Number of filter blocks */
1581 	u32			jited_len;	/* Size of jited insns in bytes */
1582 	u8			tag[BPF_TAG_SIZE];
1583 	struct bpf_prog_stats __percpu *stats;
1584 	int __percpu		*active;
1585 	unsigned int		(*bpf_func)(const void *ctx,
1586 					    const struct bpf_insn *insn);
1587 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1588 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1589 	/* Instructions for interpreter */
1590 	union {
1591 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1592 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1593 	};
1594 };
1595 
1596 struct bpf_array_aux {
1597 	/* Programs with direct jumps into programs part of this array. */
1598 	struct list_head poke_progs;
1599 	struct bpf_map *map;
1600 	struct mutex poke_mutex;
1601 	struct work_struct work;
1602 };
1603 
1604 struct bpf_link {
1605 	atomic64_t refcnt;
1606 	u32 id;
1607 	enum bpf_link_type type;
1608 	const struct bpf_link_ops *ops;
1609 	struct bpf_prog *prog;
1610 	/* rcu is used before freeing, work can be used to schedule that
1611 	 * RCU-based freeing before that, so they never overlap
1612 	 */
1613 	union {
1614 		struct rcu_head rcu;
1615 		struct work_struct work;
1616 	};
1617 };
1618 
1619 struct bpf_link_ops {
1620 	void (*release)(struct bpf_link *link);
1621 	/* deallocate link resources callback, called without RCU grace period
1622 	 * waiting
1623 	 */
1624 	void (*dealloc)(struct bpf_link *link);
1625 	/* deallocate link resources callback, called after RCU grace period;
1626 	 * if underlying BPF program is sleepable we go through tasks trace
1627 	 * RCU GP and then "classic" RCU GP
1628 	 */
1629 	void (*dealloc_deferred)(struct bpf_link *link);
1630 	int (*detach)(struct bpf_link *link);
1631 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1632 			   struct bpf_prog *old_prog);
1633 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1634 	int (*fill_link_info)(const struct bpf_link *link,
1635 			      struct bpf_link_info *info);
1636 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1637 			  struct bpf_map *old_map);
1638 	__poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1639 };
1640 
1641 struct bpf_tramp_link {
1642 	struct bpf_link link;
1643 	struct hlist_node tramp_hlist;
1644 	u64 cookie;
1645 };
1646 
1647 struct bpf_shim_tramp_link {
1648 	struct bpf_tramp_link link;
1649 	struct bpf_trampoline *trampoline;
1650 };
1651 
1652 struct bpf_tracing_link {
1653 	struct bpf_tramp_link link;
1654 	enum bpf_attach_type attach_type;
1655 	struct bpf_trampoline *trampoline;
1656 	struct bpf_prog *tgt_prog;
1657 };
1658 
1659 struct bpf_raw_tp_link {
1660 	struct bpf_link link;
1661 	struct bpf_raw_event_map *btp;
1662 	u64 cookie;
1663 };
1664 
1665 struct bpf_link_primer {
1666 	struct bpf_link *link;
1667 	struct file *file;
1668 	int fd;
1669 	u32 id;
1670 };
1671 
1672 struct bpf_mount_opts {
1673 	kuid_t uid;
1674 	kgid_t gid;
1675 	umode_t mode;
1676 
1677 	/* BPF token-related delegation options */
1678 	u64 delegate_cmds;
1679 	u64 delegate_maps;
1680 	u64 delegate_progs;
1681 	u64 delegate_attachs;
1682 };
1683 
1684 struct bpf_token {
1685 	struct work_struct work;
1686 	atomic64_t refcnt;
1687 	struct user_namespace *userns;
1688 	u64 allowed_cmds;
1689 	u64 allowed_maps;
1690 	u64 allowed_progs;
1691 	u64 allowed_attachs;
1692 #ifdef CONFIG_SECURITY
1693 	void *security;
1694 #endif
1695 };
1696 
1697 struct bpf_struct_ops_value;
1698 struct btf_member;
1699 
1700 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1701 /**
1702  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1703  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1704  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1705  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1706  *		  when determining whether the struct_ops progs in the
1707  *		  struct_ops map are valid.
1708  * @init: A callback that is invoked a single time, and before any other
1709  *	  callback, to initialize the structure. A nonzero return value means
1710  *	  the subsystem could not be initialized.
1711  * @check_member: When defined, a callback invoked by the verifier to allow
1712  *		  the subsystem to determine if an entry in the struct_ops map
1713  *		  is valid. A nonzero return value means that the map is
1714  *		  invalid and should be rejected by the verifier.
1715  * @init_member: A callback that is invoked for each member of the struct_ops
1716  *		 map to allow the subsystem to initialize the member. A nonzero
1717  *		 value means the member could not be initialized. This callback
1718  *		 is exclusive with the @type, @type_id, @value_type, and
1719  *		 @value_id fields.
1720  * @reg: A callback that is invoked when the struct_ops map has been
1721  *	 initialized and is being attached to. Zero means the struct_ops map
1722  *	 has been successfully registered and is live. A nonzero return value
1723  *	 means the struct_ops map could not be registered.
1724  * @unreg: A callback that is invoked when the struct_ops map should be
1725  *	   unregistered.
1726  * @update: A callback that is invoked when the live struct_ops map is being
1727  *	    updated to contain new values. This callback is only invoked when
1728  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1729  *	    it is assumed that the struct_ops map cannot be updated.
1730  * @validate: A callback that is invoked after all of the members have been
1731  *	      initialized. This callback should perform static checks on the
1732  *	      map, meaning that it should either fail or succeed
1733  *	      deterministically. A struct_ops map that has been validated may
1734  *	      not necessarily succeed in being registered if the call to @reg
1735  *	      fails. For example, a valid struct_ops map may be loaded, but
1736  *	      then fail to be registered due to there being another active
1737  *	      struct_ops map on the system in the subsystem already. For this
1738  *	      reason, if this callback is not defined, the check is skipped as
1739  *	      the struct_ops map will have final verification performed in
1740  *	      @reg.
1741  * @type: BTF type.
1742  * @value_type: Value type.
1743  * @name: The name of the struct bpf_struct_ops object.
1744  * @func_models: Func models
1745  * @type_id: BTF type id.
1746  * @value_id: BTF value id.
1747  */
1748 struct bpf_struct_ops {
1749 	const struct bpf_verifier_ops *verifier_ops;
1750 	int (*init)(struct btf *btf);
1751 	int (*check_member)(const struct btf_type *t,
1752 			    const struct btf_member *member,
1753 			    const struct bpf_prog *prog);
1754 	int (*init_member)(const struct btf_type *t,
1755 			   const struct btf_member *member,
1756 			   void *kdata, const void *udata);
1757 	int (*reg)(void *kdata, struct bpf_link *link);
1758 	void (*unreg)(void *kdata, struct bpf_link *link);
1759 	int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1760 	int (*validate)(void *kdata);
1761 	void *cfi_stubs;
1762 	struct module *owner;
1763 	const char *name;
1764 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1765 };
1766 
1767 /* Every member of a struct_ops type has an instance even a member is not
1768  * an operator (function pointer). The "info" field will be assigned to
1769  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1770  * argument information required by the verifier to verify the program.
1771  *
1772  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1773  * corresponding entry for an given argument.
1774  */
1775 struct bpf_struct_ops_arg_info {
1776 	struct bpf_ctx_arg_aux *info;
1777 	u32 cnt;
1778 };
1779 
1780 struct bpf_struct_ops_desc {
1781 	struct bpf_struct_ops *st_ops;
1782 
1783 	const struct btf_type *type;
1784 	const struct btf_type *value_type;
1785 	u32 type_id;
1786 	u32 value_id;
1787 
1788 	/* Collection of argument information for each member */
1789 	struct bpf_struct_ops_arg_info *arg_info;
1790 };
1791 
1792 enum bpf_struct_ops_state {
1793 	BPF_STRUCT_OPS_STATE_INIT,
1794 	BPF_STRUCT_OPS_STATE_INUSE,
1795 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1796 	BPF_STRUCT_OPS_STATE_READY,
1797 };
1798 
1799 struct bpf_struct_ops_common_value {
1800 	refcount_t refcnt;
1801 	enum bpf_struct_ops_state state;
1802 };
1803 
1804 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1805 /* This macro helps developer to register a struct_ops type and generate
1806  * type information correctly. Developers should use this macro to register
1807  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1808  */
1809 #define register_bpf_struct_ops(st_ops, type)				\
1810 	({								\
1811 		struct bpf_struct_ops_##type {				\
1812 			struct bpf_struct_ops_common_value common;	\
1813 			struct type data ____cacheline_aligned_in_smp;	\
1814 		};							\
1815 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1816 		__register_bpf_struct_ops(st_ops);			\
1817 	})
1818 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1819 bool bpf_struct_ops_get(const void *kdata);
1820 void bpf_struct_ops_put(const void *kdata);
1821 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1822 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1823 				       void *value);
1824 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1825 				      struct bpf_tramp_link *link,
1826 				      const struct btf_func_model *model,
1827 				      void *stub_func,
1828 				      void **image, u32 *image_off,
1829 				      bool allow_alloc);
1830 void bpf_struct_ops_image_free(void *image);
1831 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1832 {
1833 	if (owner == BPF_MODULE_OWNER)
1834 		return bpf_struct_ops_get(data);
1835 	else
1836 		return try_module_get(owner);
1837 }
1838 static inline void bpf_module_put(const void *data, struct module *owner)
1839 {
1840 	if (owner == BPF_MODULE_OWNER)
1841 		bpf_struct_ops_put(data);
1842 	else
1843 		module_put(owner);
1844 }
1845 int bpf_struct_ops_link_create(union bpf_attr *attr);
1846 
1847 #ifdef CONFIG_NET
1848 /* Define it here to avoid the use of forward declaration */
1849 struct bpf_dummy_ops_state {
1850 	int val;
1851 };
1852 
1853 struct bpf_dummy_ops {
1854 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1855 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1856 		      char a3, unsigned long a4);
1857 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1858 };
1859 
1860 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1861 			    union bpf_attr __user *uattr);
1862 #endif
1863 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1864 			     struct btf *btf,
1865 			     struct bpf_verifier_log *log);
1866 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1867 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1868 #else
1869 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1870 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1871 {
1872 	return try_module_get(owner);
1873 }
1874 static inline void bpf_module_put(const void *data, struct module *owner)
1875 {
1876 	module_put(owner);
1877 }
1878 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1879 {
1880 	return -ENOTSUPP;
1881 }
1882 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1883 						     void *key,
1884 						     void *value)
1885 {
1886 	return -EINVAL;
1887 }
1888 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1889 {
1890 	return -EOPNOTSUPP;
1891 }
1892 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1893 {
1894 }
1895 
1896 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1897 {
1898 }
1899 
1900 #endif
1901 
1902 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1903 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1904 				    int cgroup_atype);
1905 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1906 #else
1907 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1908 						  int cgroup_atype)
1909 {
1910 	return -EOPNOTSUPP;
1911 }
1912 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1913 {
1914 }
1915 #endif
1916 
1917 struct bpf_array {
1918 	struct bpf_map map;
1919 	u32 elem_size;
1920 	u32 index_mask;
1921 	struct bpf_array_aux *aux;
1922 	union {
1923 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1924 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1925 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1926 	};
1927 };
1928 
1929 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1930 #define MAX_TAIL_CALL_CNT 33
1931 
1932 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1933  * It's enum to expose it (and thus make it discoverable) through BTF.
1934  */
1935 enum {
1936 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1937 };
1938 
1939 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1940 				 BPF_F_RDONLY_PROG |	\
1941 				 BPF_F_WRONLY |		\
1942 				 BPF_F_WRONLY_PROG)
1943 
1944 #define BPF_MAP_CAN_READ	BIT(0)
1945 #define BPF_MAP_CAN_WRITE	BIT(1)
1946 
1947 /* Maximum number of user-producer ring buffer samples that can be drained in
1948  * a call to bpf_user_ringbuf_drain().
1949  */
1950 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1951 
1952 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1953 {
1954 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1955 
1956 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1957 	 * not possible.
1958 	 */
1959 	if (access_flags & BPF_F_RDONLY_PROG)
1960 		return BPF_MAP_CAN_READ;
1961 	else if (access_flags & BPF_F_WRONLY_PROG)
1962 		return BPF_MAP_CAN_WRITE;
1963 	else
1964 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1965 }
1966 
1967 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1968 {
1969 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1970 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1971 }
1972 
1973 struct bpf_event_entry {
1974 	struct perf_event *event;
1975 	struct file *perf_file;
1976 	struct file *map_file;
1977 	struct rcu_head rcu;
1978 };
1979 
1980 static inline bool map_type_contains_progs(struct bpf_map *map)
1981 {
1982 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1983 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1984 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1985 }
1986 
1987 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1988 int bpf_prog_calc_tag(struct bpf_prog *fp);
1989 
1990 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1991 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1992 
1993 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1994 					unsigned long off, unsigned long len);
1995 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1996 					const struct bpf_insn *src,
1997 					struct bpf_insn *dst,
1998 					struct bpf_prog *prog,
1999 					u32 *target_size);
2000 
2001 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2002 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2003 
2004 /* an array of programs to be executed under rcu_lock.
2005  *
2006  * Typical usage:
2007  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2008  *
2009  * the structure returned by bpf_prog_array_alloc() should be populated
2010  * with program pointers and the last pointer must be NULL.
2011  * The user has to keep refcnt on the program and make sure the program
2012  * is removed from the array before bpf_prog_put().
2013  * The 'struct bpf_prog_array *' should only be replaced with xchg()
2014  * since other cpus are walking the array of pointers in parallel.
2015  */
2016 struct bpf_prog_array_item {
2017 	struct bpf_prog *prog;
2018 	union {
2019 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2020 		u64 bpf_cookie;
2021 	};
2022 };
2023 
2024 struct bpf_prog_array {
2025 	struct rcu_head rcu;
2026 	struct bpf_prog_array_item items[];
2027 };
2028 
2029 struct bpf_empty_prog_array {
2030 	struct bpf_prog_array hdr;
2031 	struct bpf_prog *null_prog;
2032 };
2033 
2034 /* to avoid allocating empty bpf_prog_array for cgroups that
2035  * don't have bpf program attached use one global 'bpf_empty_prog_array'
2036  * It will not be modified the caller of bpf_prog_array_alloc()
2037  * (since caller requested prog_cnt == 0)
2038  * that pointer should be 'freed' by bpf_prog_array_free()
2039  */
2040 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2041 
2042 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2043 void bpf_prog_array_free(struct bpf_prog_array *progs);
2044 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2045 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2046 int bpf_prog_array_length(struct bpf_prog_array *progs);
2047 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2048 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2049 				__u32 __user *prog_ids, u32 cnt);
2050 
2051 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2052 				struct bpf_prog *old_prog);
2053 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2054 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2055 			     struct bpf_prog *prog);
2056 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2057 			     u32 *prog_ids, u32 request_cnt,
2058 			     u32 *prog_cnt);
2059 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2060 			struct bpf_prog *exclude_prog,
2061 			struct bpf_prog *include_prog,
2062 			u64 bpf_cookie,
2063 			struct bpf_prog_array **new_array);
2064 
2065 struct bpf_run_ctx {};
2066 
2067 struct bpf_cg_run_ctx {
2068 	struct bpf_run_ctx run_ctx;
2069 	const struct bpf_prog_array_item *prog_item;
2070 	int retval;
2071 };
2072 
2073 struct bpf_trace_run_ctx {
2074 	struct bpf_run_ctx run_ctx;
2075 	u64 bpf_cookie;
2076 	bool is_uprobe;
2077 };
2078 
2079 struct bpf_tramp_run_ctx {
2080 	struct bpf_run_ctx run_ctx;
2081 	u64 bpf_cookie;
2082 	struct bpf_run_ctx *saved_run_ctx;
2083 };
2084 
2085 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2086 {
2087 	struct bpf_run_ctx *old_ctx = NULL;
2088 
2089 #ifdef CONFIG_BPF_SYSCALL
2090 	old_ctx = current->bpf_ctx;
2091 	current->bpf_ctx = new_ctx;
2092 #endif
2093 	return old_ctx;
2094 }
2095 
2096 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2097 {
2098 #ifdef CONFIG_BPF_SYSCALL
2099 	current->bpf_ctx = old_ctx;
2100 #endif
2101 }
2102 
2103 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2104 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2105 /* BPF program asks to set CN on the packet. */
2106 #define BPF_RET_SET_CN						(1 << 0)
2107 
2108 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2109 
2110 static __always_inline u32
2111 bpf_prog_run_array(const struct bpf_prog_array *array,
2112 		   const void *ctx, bpf_prog_run_fn run_prog)
2113 {
2114 	const struct bpf_prog_array_item *item;
2115 	const struct bpf_prog *prog;
2116 	struct bpf_run_ctx *old_run_ctx;
2117 	struct bpf_trace_run_ctx run_ctx;
2118 	u32 ret = 1;
2119 
2120 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2121 
2122 	if (unlikely(!array))
2123 		return ret;
2124 
2125 	run_ctx.is_uprobe = false;
2126 
2127 	migrate_disable();
2128 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2129 	item = &array->items[0];
2130 	while ((prog = READ_ONCE(item->prog))) {
2131 		run_ctx.bpf_cookie = item->bpf_cookie;
2132 		ret &= run_prog(prog, ctx);
2133 		item++;
2134 	}
2135 	bpf_reset_run_ctx(old_run_ctx);
2136 	migrate_enable();
2137 	return ret;
2138 }
2139 
2140 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2141  *
2142  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2143  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2144  * in order to use the tasks_trace rcu grace period.
2145  *
2146  * When a non-sleepable program is inside the array, we take the rcu read
2147  * section and disable preemption for that program alone, so it can access
2148  * rcu-protected dynamically sized maps.
2149  */
2150 static __always_inline u32
2151 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2152 			  const void *ctx, bpf_prog_run_fn run_prog)
2153 {
2154 	const struct bpf_prog_array_item *item;
2155 	const struct bpf_prog *prog;
2156 	const struct bpf_prog_array *array;
2157 	struct bpf_run_ctx *old_run_ctx;
2158 	struct bpf_trace_run_ctx run_ctx;
2159 	u32 ret = 1;
2160 
2161 	might_fault();
2162 
2163 	rcu_read_lock_trace();
2164 	migrate_disable();
2165 
2166 	run_ctx.is_uprobe = true;
2167 
2168 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2169 	if (unlikely(!array))
2170 		goto out;
2171 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2172 	item = &array->items[0];
2173 	while ((prog = READ_ONCE(item->prog))) {
2174 		if (!prog->sleepable)
2175 			rcu_read_lock();
2176 
2177 		run_ctx.bpf_cookie = item->bpf_cookie;
2178 		ret &= run_prog(prog, ctx);
2179 		item++;
2180 
2181 		if (!prog->sleepable)
2182 			rcu_read_unlock();
2183 	}
2184 	bpf_reset_run_ctx(old_run_ctx);
2185 out:
2186 	migrate_enable();
2187 	rcu_read_unlock_trace();
2188 	return ret;
2189 }
2190 
2191 #ifdef CONFIG_BPF_SYSCALL
2192 DECLARE_PER_CPU(int, bpf_prog_active);
2193 extern struct mutex bpf_stats_enabled_mutex;
2194 
2195 /*
2196  * Block execution of BPF programs attached to instrumentation (perf,
2197  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2198  * these events can happen inside a region which holds a map bucket lock
2199  * and can deadlock on it.
2200  */
2201 static inline void bpf_disable_instrumentation(void)
2202 {
2203 	migrate_disable();
2204 	this_cpu_inc(bpf_prog_active);
2205 }
2206 
2207 static inline void bpf_enable_instrumentation(void)
2208 {
2209 	this_cpu_dec(bpf_prog_active);
2210 	migrate_enable();
2211 }
2212 
2213 extern const struct super_operations bpf_super_ops;
2214 extern const struct file_operations bpf_map_fops;
2215 extern const struct file_operations bpf_prog_fops;
2216 extern const struct file_operations bpf_iter_fops;
2217 
2218 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2219 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2220 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2221 #define BPF_MAP_TYPE(_id, _ops) \
2222 	extern const struct bpf_map_ops _ops;
2223 #define BPF_LINK_TYPE(_id, _name)
2224 #include <linux/bpf_types.h>
2225 #undef BPF_PROG_TYPE
2226 #undef BPF_MAP_TYPE
2227 #undef BPF_LINK_TYPE
2228 
2229 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2230 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2231 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2232 
2233 struct bpf_prog *bpf_prog_get(u32 ufd);
2234 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2235 				       bool attach_drv);
2236 void bpf_prog_add(struct bpf_prog *prog, int i);
2237 void bpf_prog_sub(struct bpf_prog *prog, int i);
2238 void bpf_prog_inc(struct bpf_prog *prog);
2239 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2240 void bpf_prog_put(struct bpf_prog *prog);
2241 
2242 void bpf_prog_free_id(struct bpf_prog *prog);
2243 void bpf_map_free_id(struct bpf_map *map);
2244 
2245 struct btf_field *btf_record_find(const struct btf_record *rec,
2246 				  u32 offset, u32 field_mask);
2247 void btf_record_free(struct btf_record *rec);
2248 void bpf_map_free_record(struct bpf_map *map);
2249 struct btf_record *btf_record_dup(const struct btf_record *rec);
2250 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2251 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2252 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2253 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2254 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2255 
2256 struct bpf_map *bpf_map_get(u32 ufd);
2257 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2258 
2259 static inline struct bpf_map *__bpf_map_get(struct fd f)
2260 {
2261 	if (fd_empty(f))
2262 		return ERR_PTR(-EBADF);
2263 	if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2264 		return ERR_PTR(-EINVAL);
2265 	return fd_file(f)->private_data;
2266 }
2267 
2268 void bpf_map_inc(struct bpf_map *map);
2269 void bpf_map_inc_with_uref(struct bpf_map *map);
2270 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2271 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2272 void bpf_map_put_with_uref(struct bpf_map *map);
2273 void bpf_map_put(struct bpf_map *map);
2274 void *bpf_map_area_alloc(u64 size, int numa_node);
2275 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2276 void bpf_map_area_free(void *base);
2277 bool bpf_map_write_active(const struct bpf_map *map);
2278 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2279 int  generic_map_lookup_batch(struct bpf_map *map,
2280 			      const union bpf_attr *attr,
2281 			      union bpf_attr __user *uattr);
2282 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2283 			      const union bpf_attr *attr,
2284 			      union bpf_attr __user *uattr);
2285 int  generic_map_delete_batch(struct bpf_map *map,
2286 			      const union bpf_attr *attr,
2287 			      union bpf_attr __user *uattr);
2288 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2289 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2290 
2291 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2292 			unsigned long nr_pages, struct page **page_array);
2293 #ifdef CONFIG_MEMCG
2294 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2295 			   int node);
2296 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2297 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2298 		       gfp_t flags);
2299 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2300 				    size_t align, gfp_t flags);
2301 #else
2302 /*
2303  * These specialized allocators have to be macros for their allocations to be
2304  * accounted separately (to have separate alloc_tag).
2305  */
2306 #define bpf_map_kmalloc_node(_map, _size, _flags, _node)	\
2307 		kmalloc_node(_size, _flags, _node)
2308 #define bpf_map_kzalloc(_map, _size, _flags)			\
2309 		kzalloc(_size, _flags)
2310 #define bpf_map_kvcalloc(_map, _n, _size, _flags)		\
2311 		kvcalloc(_n, _size, _flags)
2312 #define bpf_map_alloc_percpu(_map, _size, _align, _flags)	\
2313 		__alloc_percpu_gfp(_size, _align, _flags)
2314 #endif
2315 
2316 static inline int
2317 bpf_map_init_elem_count(struct bpf_map *map)
2318 {
2319 	size_t size = sizeof(*map->elem_count), align = size;
2320 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2321 
2322 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2323 	if (!map->elem_count)
2324 		return -ENOMEM;
2325 
2326 	return 0;
2327 }
2328 
2329 static inline void
2330 bpf_map_free_elem_count(struct bpf_map *map)
2331 {
2332 	free_percpu(map->elem_count);
2333 }
2334 
2335 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2336 {
2337 	this_cpu_inc(*map->elem_count);
2338 }
2339 
2340 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2341 {
2342 	this_cpu_dec(*map->elem_count);
2343 }
2344 
2345 extern int sysctl_unprivileged_bpf_disabled;
2346 
2347 bool bpf_token_capable(const struct bpf_token *token, int cap);
2348 
2349 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2350 {
2351 	return bpf_token_capable(token, CAP_PERFMON);
2352 }
2353 
2354 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2355 {
2356 	return bpf_token_capable(token, CAP_PERFMON);
2357 }
2358 
2359 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2360 {
2361 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2362 }
2363 
2364 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2365 {
2366 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2367 }
2368 
2369 int bpf_map_new_fd(struct bpf_map *map, int flags);
2370 int bpf_prog_new_fd(struct bpf_prog *prog);
2371 
2372 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2373 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2374 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2375 int bpf_link_settle(struct bpf_link_primer *primer);
2376 void bpf_link_cleanup(struct bpf_link_primer *primer);
2377 void bpf_link_inc(struct bpf_link *link);
2378 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2379 void bpf_link_put(struct bpf_link *link);
2380 int bpf_link_new_fd(struct bpf_link *link);
2381 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2382 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2383 
2384 void bpf_token_inc(struct bpf_token *token);
2385 void bpf_token_put(struct bpf_token *token);
2386 int bpf_token_create(union bpf_attr *attr);
2387 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2388 
2389 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2390 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2391 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2392 			       enum bpf_prog_type prog_type,
2393 			       enum bpf_attach_type attach_type);
2394 
2395 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2396 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2397 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2398 			    umode_t mode);
2399 
2400 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2401 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2402 	extern int bpf_iter_ ## target(args);			\
2403 	int __init bpf_iter_ ## target(args) { return 0; }
2404 
2405 /*
2406  * The task type of iterators.
2407  *
2408  * For BPF task iterators, they can be parameterized with various
2409  * parameters to visit only some of tasks.
2410  *
2411  * BPF_TASK_ITER_ALL (default)
2412  *	Iterate over resources of every task.
2413  *
2414  * BPF_TASK_ITER_TID
2415  *	Iterate over resources of a task/tid.
2416  *
2417  * BPF_TASK_ITER_TGID
2418  *	Iterate over resources of every task of a process / task group.
2419  */
2420 enum bpf_iter_task_type {
2421 	BPF_TASK_ITER_ALL = 0,
2422 	BPF_TASK_ITER_TID,
2423 	BPF_TASK_ITER_TGID,
2424 };
2425 
2426 struct bpf_iter_aux_info {
2427 	/* for map_elem iter */
2428 	struct bpf_map *map;
2429 
2430 	/* for cgroup iter */
2431 	struct {
2432 		struct cgroup *start; /* starting cgroup */
2433 		enum bpf_cgroup_iter_order order;
2434 	} cgroup;
2435 	struct {
2436 		enum bpf_iter_task_type	type;
2437 		u32 pid;
2438 	} task;
2439 };
2440 
2441 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2442 					union bpf_iter_link_info *linfo,
2443 					struct bpf_iter_aux_info *aux);
2444 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2445 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2446 					struct seq_file *seq);
2447 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2448 					 struct bpf_link_info *info);
2449 typedef const struct bpf_func_proto *
2450 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2451 			     const struct bpf_prog *prog);
2452 
2453 enum bpf_iter_feature {
2454 	BPF_ITER_RESCHED	= BIT(0),
2455 };
2456 
2457 #define BPF_ITER_CTX_ARG_MAX 2
2458 struct bpf_iter_reg {
2459 	const char *target;
2460 	bpf_iter_attach_target_t attach_target;
2461 	bpf_iter_detach_target_t detach_target;
2462 	bpf_iter_show_fdinfo_t show_fdinfo;
2463 	bpf_iter_fill_link_info_t fill_link_info;
2464 	bpf_iter_get_func_proto_t get_func_proto;
2465 	u32 ctx_arg_info_size;
2466 	u32 feature;
2467 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2468 	const struct bpf_iter_seq_info *seq_info;
2469 };
2470 
2471 struct bpf_iter_meta {
2472 	__bpf_md_ptr(struct seq_file *, seq);
2473 	u64 session_id;
2474 	u64 seq_num;
2475 };
2476 
2477 struct bpf_iter__bpf_map_elem {
2478 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2479 	__bpf_md_ptr(struct bpf_map *, map);
2480 	__bpf_md_ptr(void *, key);
2481 	__bpf_md_ptr(void *, value);
2482 };
2483 
2484 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2485 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2486 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2487 const struct bpf_func_proto *
2488 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2489 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2490 int bpf_iter_new_fd(struct bpf_link *link);
2491 bool bpf_link_is_iter(struct bpf_link *link);
2492 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2493 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2494 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2495 			      struct seq_file *seq);
2496 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2497 				struct bpf_link_info *info);
2498 
2499 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2500 				   struct bpf_func_state *caller,
2501 				   struct bpf_func_state *callee);
2502 
2503 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2504 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2505 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2506 			   u64 flags);
2507 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2508 			    u64 flags);
2509 
2510 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2511 
2512 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2513 				 void *key, void *value, u64 map_flags);
2514 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2515 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2516 				void *key, void *value, u64 map_flags);
2517 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2518 
2519 int bpf_get_file_flag(int flags);
2520 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2521 			     size_t actual_size);
2522 
2523 /* verify correctness of eBPF program */
2524 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2525 
2526 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2527 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2528 #endif
2529 
2530 struct btf *bpf_get_btf_vmlinux(void);
2531 
2532 /* Map specifics */
2533 struct xdp_frame;
2534 struct sk_buff;
2535 struct bpf_dtab_netdev;
2536 struct bpf_cpu_map_entry;
2537 
2538 void __dev_flush(struct list_head *flush_list);
2539 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2540 		    struct net_device *dev_rx);
2541 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2542 		    struct net_device *dev_rx);
2543 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2544 			  struct bpf_map *map, bool exclude_ingress);
2545 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2546 			     struct bpf_prog *xdp_prog);
2547 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2548 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2549 			   bool exclude_ingress);
2550 
2551 void __cpu_map_flush(struct list_head *flush_list);
2552 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2553 		    struct net_device *dev_rx);
2554 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2555 			     struct sk_buff *skb);
2556 
2557 /* Return map's numa specified by userspace */
2558 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2559 {
2560 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2561 		attr->numa_node : NUMA_NO_NODE;
2562 }
2563 
2564 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2565 int array_map_alloc_check(union bpf_attr *attr);
2566 
2567 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2568 			  union bpf_attr __user *uattr);
2569 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2570 			  union bpf_attr __user *uattr);
2571 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2572 			      const union bpf_attr *kattr,
2573 			      union bpf_attr __user *uattr);
2574 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2575 				     const union bpf_attr *kattr,
2576 				     union bpf_attr __user *uattr);
2577 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2578 			     const union bpf_attr *kattr,
2579 			     union bpf_attr __user *uattr);
2580 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2581 				const union bpf_attr *kattr,
2582 				union bpf_attr __user *uattr);
2583 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2584 			 const union bpf_attr *kattr,
2585 			 union bpf_attr __user *uattr);
2586 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2587 		    const struct bpf_prog *prog,
2588 		    struct bpf_insn_access_aux *info);
2589 
2590 static inline bool bpf_tracing_ctx_access(int off, int size,
2591 					  enum bpf_access_type type)
2592 {
2593 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2594 		return false;
2595 	if (type != BPF_READ)
2596 		return false;
2597 	if (off % size != 0)
2598 		return false;
2599 	return true;
2600 }
2601 
2602 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2603 					      enum bpf_access_type type,
2604 					      const struct bpf_prog *prog,
2605 					      struct bpf_insn_access_aux *info)
2606 {
2607 	if (!bpf_tracing_ctx_access(off, size, type))
2608 		return false;
2609 	return btf_ctx_access(off, size, type, prog, info);
2610 }
2611 
2612 int btf_struct_access(struct bpf_verifier_log *log,
2613 		      const struct bpf_reg_state *reg,
2614 		      int off, int size, enum bpf_access_type atype,
2615 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2616 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2617 			  const struct btf *btf, u32 id, int off,
2618 			  const struct btf *need_btf, u32 need_type_id,
2619 			  bool strict);
2620 
2621 int btf_distill_func_proto(struct bpf_verifier_log *log,
2622 			   struct btf *btf,
2623 			   const struct btf_type *func_proto,
2624 			   const char *func_name,
2625 			   struct btf_func_model *m);
2626 
2627 struct bpf_reg_state;
2628 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2629 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2630 			 struct btf *btf, const struct btf_type *t);
2631 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2632 				    int comp_idx, const char *tag_key);
2633 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2634 			   int comp_idx, const char *tag_key, int last_id);
2635 
2636 struct bpf_prog *bpf_prog_by_id(u32 id);
2637 struct bpf_link *bpf_link_by_id(u32 id);
2638 
2639 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2640 						 const struct bpf_prog *prog);
2641 void bpf_task_storage_free(struct task_struct *task);
2642 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2643 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2644 const struct btf_func_model *
2645 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2646 			 const struct bpf_insn *insn);
2647 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2648 		       u16 btf_fd_idx, u8 **func_addr);
2649 
2650 struct bpf_core_ctx {
2651 	struct bpf_verifier_log *log;
2652 	const struct btf *btf;
2653 };
2654 
2655 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2656 				const struct bpf_reg_state *reg,
2657 				const char *field_name, u32 btf_id, const char *suffix);
2658 
2659 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2660 			       const struct btf *reg_btf, u32 reg_id,
2661 			       const struct btf *arg_btf, u32 arg_id);
2662 
2663 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2664 		   int relo_idx, void *insn);
2665 
2666 static inline bool unprivileged_ebpf_enabled(void)
2667 {
2668 	return !sysctl_unprivileged_bpf_disabled;
2669 }
2670 
2671 /* Not all bpf prog type has the bpf_ctx.
2672  * For the bpf prog type that has initialized the bpf_ctx,
2673  * this function can be used to decide if a kernel function
2674  * is called by a bpf program.
2675  */
2676 static inline bool has_current_bpf_ctx(void)
2677 {
2678 	return !!current->bpf_ctx;
2679 }
2680 
2681 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2682 
2683 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2684 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2685 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2686 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2687 
2688 #else /* !CONFIG_BPF_SYSCALL */
2689 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2690 {
2691 	return ERR_PTR(-EOPNOTSUPP);
2692 }
2693 
2694 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2695 						     enum bpf_prog_type type,
2696 						     bool attach_drv)
2697 {
2698 	return ERR_PTR(-EOPNOTSUPP);
2699 }
2700 
2701 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2702 {
2703 }
2704 
2705 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2706 {
2707 }
2708 
2709 static inline void bpf_prog_put(struct bpf_prog *prog)
2710 {
2711 }
2712 
2713 static inline void bpf_prog_inc(struct bpf_prog *prog)
2714 {
2715 }
2716 
2717 static inline struct bpf_prog *__must_check
2718 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2719 {
2720 	return ERR_PTR(-EOPNOTSUPP);
2721 }
2722 
2723 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2724 				 const struct bpf_link_ops *ops,
2725 				 struct bpf_prog *prog)
2726 {
2727 }
2728 
2729 static inline int bpf_link_prime(struct bpf_link *link,
2730 				 struct bpf_link_primer *primer)
2731 {
2732 	return -EOPNOTSUPP;
2733 }
2734 
2735 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2736 {
2737 	return -EOPNOTSUPP;
2738 }
2739 
2740 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2741 {
2742 }
2743 
2744 static inline void bpf_link_inc(struct bpf_link *link)
2745 {
2746 }
2747 
2748 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2749 {
2750 	return NULL;
2751 }
2752 
2753 static inline void bpf_link_put(struct bpf_link *link)
2754 {
2755 }
2756 
2757 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2758 {
2759 	return -EOPNOTSUPP;
2760 }
2761 
2762 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2763 {
2764 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2765 }
2766 
2767 static inline void bpf_token_inc(struct bpf_token *token)
2768 {
2769 }
2770 
2771 static inline void bpf_token_put(struct bpf_token *token)
2772 {
2773 }
2774 
2775 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2776 {
2777 	return ERR_PTR(-EOPNOTSUPP);
2778 }
2779 
2780 static inline void __dev_flush(struct list_head *flush_list)
2781 {
2782 }
2783 
2784 struct xdp_frame;
2785 struct bpf_dtab_netdev;
2786 struct bpf_cpu_map_entry;
2787 
2788 static inline
2789 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2790 		    struct net_device *dev_rx)
2791 {
2792 	return 0;
2793 }
2794 
2795 static inline
2796 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2797 		    struct net_device *dev_rx)
2798 {
2799 	return 0;
2800 }
2801 
2802 static inline
2803 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2804 			  struct bpf_map *map, bool exclude_ingress)
2805 {
2806 	return 0;
2807 }
2808 
2809 struct sk_buff;
2810 
2811 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2812 					   struct sk_buff *skb,
2813 					   struct bpf_prog *xdp_prog)
2814 {
2815 	return 0;
2816 }
2817 
2818 static inline
2819 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2820 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2821 			   bool exclude_ingress)
2822 {
2823 	return 0;
2824 }
2825 
2826 static inline void __cpu_map_flush(struct list_head *flush_list)
2827 {
2828 }
2829 
2830 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2831 				  struct xdp_frame *xdpf,
2832 				  struct net_device *dev_rx)
2833 {
2834 	return 0;
2835 }
2836 
2837 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2838 					   struct sk_buff *skb)
2839 {
2840 	return -EOPNOTSUPP;
2841 }
2842 
2843 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2844 				enum bpf_prog_type type)
2845 {
2846 	return ERR_PTR(-EOPNOTSUPP);
2847 }
2848 
2849 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2850 					const union bpf_attr *kattr,
2851 					union bpf_attr __user *uattr)
2852 {
2853 	return -ENOTSUPP;
2854 }
2855 
2856 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2857 					const union bpf_attr *kattr,
2858 					union bpf_attr __user *uattr)
2859 {
2860 	return -ENOTSUPP;
2861 }
2862 
2863 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2864 					    const union bpf_attr *kattr,
2865 					    union bpf_attr __user *uattr)
2866 {
2867 	return -ENOTSUPP;
2868 }
2869 
2870 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2871 						   const union bpf_attr *kattr,
2872 						   union bpf_attr __user *uattr)
2873 {
2874 	return -ENOTSUPP;
2875 }
2876 
2877 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2878 					      const union bpf_attr *kattr,
2879 					      union bpf_attr __user *uattr)
2880 {
2881 	return -ENOTSUPP;
2882 }
2883 
2884 static inline void bpf_map_put(struct bpf_map *map)
2885 {
2886 }
2887 
2888 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2889 {
2890 	return ERR_PTR(-ENOTSUPP);
2891 }
2892 
2893 static inline int btf_struct_access(struct bpf_verifier_log *log,
2894 				    const struct bpf_reg_state *reg,
2895 				    int off, int size, enum bpf_access_type atype,
2896 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2897 				    const char **field_name)
2898 {
2899 	return -EACCES;
2900 }
2901 
2902 static inline const struct bpf_func_proto *
2903 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2904 {
2905 	return NULL;
2906 }
2907 
2908 static inline void bpf_task_storage_free(struct task_struct *task)
2909 {
2910 }
2911 
2912 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2913 {
2914 	return false;
2915 }
2916 
2917 static inline const struct btf_func_model *
2918 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2919 			 const struct bpf_insn *insn)
2920 {
2921 	return NULL;
2922 }
2923 
2924 static inline int
2925 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2926 		   u16 btf_fd_idx, u8 **func_addr)
2927 {
2928 	return -ENOTSUPP;
2929 }
2930 
2931 static inline bool unprivileged_ebpf_enabled(void)
2932 {
2933 	return false;
2934 }
2935 
2936 static inline bool has_current_bpf_ctx(void)
2937 {
2938 	return false;
2939 }
2940 
2941 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2942 {
2943 }
2944 
2945 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2946 {
2947 }
2948 
2949 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2950 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2951 {
2952 }
2953 
2954 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2955 {
2956 }
2957 
2958 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2959 {
2960 }
2961 #endif /* CONFIG_BPF_SYSCALL */
2962 
2963 static __always_inline int
2964 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2965 {
2966 	int ret = -EFAULT;
2967 
2968 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2969 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2970 	if (unlikely(ret < 0))
2971 		memset(dst, 0, size);
2972 	return ret;
2973 }
2974 
2975 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
2976 
2977 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2978 						 enum bpf_prog_type type)
2979 {
2980 	return bpf_prog_get_type_dev(ufd, type, false);
2981 }
2982 
2983 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2984 			  struct bpf_map **used_maps, u32 len);
2985 
2986 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2987 
2988 int bpf_prog_offload_compile(struct bpf_prog *prog);
2989 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2990 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2991 			       struct bpf_prog *prog);
2992 
2993 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2994 
2995 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2996 int bpf_map_offload_update_elem(struct bpf_map *map,
2997 				void *key, void *value, u64 flags);
2998 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2999 int bpf_map_offload_get_next_key(struct bpf_map *map,
3000 				 void *key, void *next_key);
3001 
3002 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3003 
3004 struct bpf_offload_dev *
3005 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3006 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3007 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3008 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3009 				    struct net_device *netdev);
3010 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3011 				       struct net_device *netdev);
3012 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3013 
3014 void unpriv_ebpf_notify(int new_state);
3015 
3016 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3017 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3018 			      struct bpf_prog_aux *prog_aux);
3019 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3020 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3021 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3022 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3023 
3024 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3025 {
3026 	return aux->dev_bound;
3027 }
3028 
3029 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3030 {
3031 	return aux->offload_requested;
3032 }
3033 
3034 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3035 
3036 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3037 {
3038 	return unlikely(map->ops == &bpf_map_offload_ops);
3039 }
3040 
3041 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3042 void bpf_map_offload_map_free(struct bpf_map *map);
3043 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3044 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3045 			      const union bpf_attr *kattr,
3046 			      union bpf_attr __user *uattr);
3047 
3048 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3049 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3050 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3051 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3052 			    union bpf_attr __user *uattr);
3053 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3054 
3055 void sock_map_unhash(struct sock *sk);
3056 void sock_map_destroy(struct sock *sk);
3057 void sock_map_close(struct sock *sk, long timeout);
3058 #else
3059 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3060 					    struct bpf_prog_aux *prog_aux)
3061 {
3062 	return -EOPNOTSUPP;
3063 }
3064 
3065 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3066 						u32 func_id)
3067 {
3068 	return NULL;
3069 }
3070 
3071 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3072 					  union bpf_attr *attr)
3073 {
3074 	return -EOPNOTSUPP;
3075 }
3076 
3077 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3078 					     struct bpf_prog *old_prog)
3079 {
3080 	return -EOPNOTSUPP;
3081 }
3082 
3083 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3084 {
3085 }
3086 
3087 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3088 {
3089 	return false;
3090 }
3091 
3092 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3093 {
3094 	return false;
3095 }
3096 
3097 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3098 {
3099 	return false;
3100 }
3101 
3102 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3103 {
3104 	return false;
3105 }
3106 
3107 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3108 {
3109 	return ERR_PTR(-EOPNOTSUPP);
3110 }
3111 
3112 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3113 {
3114 }
3115 
3116 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3117 {
3118 	return 0;
3119 }
3120 
3121 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3122 					    const union bpf_attr *kattr,
3123 					    union bpf_attr __user *uattr)
3124 {
3125 	return -ENOTSUPP;
3126 }
3127 
3128 #ifdef CONFIG_BPF_SYSCALL
3129 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3130 				       struct bpf_prog *prog)
3131 {
3132 	return -EINVAL;
3133 }
3134 
3135 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3136 				       enum bpf_prog_type ptype)
3137 {
3138 	return -EOPNOTSUPP;
3139 }
3140 
3141 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3142 					   u64 flags)
3143 {
3144 	return -EOPNOTSUPP;
3145 }
3146 
3147 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3148 					  union bpf_attr __user *uattr)
3149 {
3150 	return -EINVAL;
3151 }
3152 
3153 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3154 {
3155 	return -EOPNOTSUPP;
3156 }
3157 #endif /* CONFIG_BPF_SYSCALL */
3158 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3159 
3160 static __always_inline void
3161 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3162 {
3163 	const struct bpf_prog_array_item *item;
3164 	struct bpf_prog *prog;
3165 
3166 	if (unlikely(!array))
3167 		return;
3168 
3169 	item = &array->items[0];
3170 	while ((prog = READ_ONCE(item->prog))) {
3171 		bpf_prog_inc_misses_counter(prog);
3172 		item++;
3173 	}
3174 }
3175 
3176 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3177 void bpf_sk_reuseport_detach(struct sock *sk);
3178 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3179 				       void *value);
3180 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3181 				       void *value, u64 map_flags);
3182 #else
3183 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3184 {
3185 }
3186 
3187 #ifdef CONFIG_BPF_SYSCALL
3188 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3189 						     void *key, void *value)
3190 {
3191 	return -EOPNOTSUPP;
3192 }
3193 
3194 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3195 						     void *key, void *value,
3196 						     u64 map_flags)
3197 {
3198 	return -EOPNOTSUPP;
3199 }
3200 #endif /* CONFIG_BPF_SYSCALL */
3201 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3202 
3203 /* verifier prototypes for helper functions called from eBPF programs */
3204 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3205 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3206 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3207 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3208 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3209 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3210 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3211 
3212 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3213 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3214 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3215 extern const struct bpf_func_proto bpf_tail_call_proto;
3216 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3217 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3218 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3219 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3220 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3221 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3222 extern const struct bpf_func_proto bpf_get_stackid_proto;
3223 extern const struct bpf_func_proto bpf_get_stack_proto;
3224 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3225 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3226 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3227 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3228 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3229 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3230 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3231 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3232 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3233 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3234 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3235 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3236 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3237 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3238 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3239 extern const struct bpf_func_proto bpf_spin_lock_proto;
3240 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3241 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3242 extern const struct bpf_func_proto bpf_strtol_proto;
3243 extern const struct bpf_func_proto bpf_strtoul_proto;
3244 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3245 extern const struct bpf_func_proto bpf_jiffies64_proto;
3246 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3247 extern const struct bpf_func_proto bpf_event_output_data_proto;
3248 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3249 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3250 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3251 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3252 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3253 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3254 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3255 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3256 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3257 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3258 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3259 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3260 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3261 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3262 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3263 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3264 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3265 extern const struct bpf_func_proto bpf_snprintf_proto;
3266 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3267 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3268 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3269 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3270 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3271 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3272 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3273 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3274 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3275 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3276 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3277 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3278 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3279 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3280 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3281 extern const struct bpf_func_proto bpf_find_vma_proto;
3282 extern const struct bpf_func_proto bpf_loop_proto;
3283 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3284 extern const struct bpf_func_proto bpf_set_retval_proto;
3285 extern const struct bpf_func_proto bpf_get_retval_proto;
3286 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3287 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3288 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3289 
3290 const struct bpf_func_proto *tracing_prog_func_proto(
3291   enum bpf_func_id func_id, const struct bpf_prog *prog);
3292 
3293 /* Shared helpers among cBPF and eBPF. */
3294 void bpf_user_rnd_init_once(void);
3295 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3296 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3297 
3298 #if defined(CONFIG_NET)
3299 bool bpf_sock_common_is_valid_access(int off, int size,
3300 				     enum bpf_access_type type,
3301 				     struct bpf_insn_access_aux *info);
3302 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3303 			      struct bpf_insn_access_aux *info);
3304 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3305 				const struct bpf_insn *si,
3306 				struct bpf_insn *insn_buf,
3307 				struct bpf_prog *prog,
3308 				u32 *target_size);
3309 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3310 			       struct bpf_dynptr *ptr);
3311 #else
3312 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3313 						   enum bpf_access_type type,
3314 						   struct bpf_insn_access_aux *info)
3315 {
3316 	return false;
3317 }
3318 static inline bool bpf_sock_is_valid_access(int off, int size,
3319 					    enum bpf_access_type type,
3320 					    struct bpf_insn_access_aux *info)
3321 {
3322 	return false;
3323 }
3324 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3325 					      const struct bpf_insn *si,
3326 					      struct bpf_insn *insn_buf,
3327 					      struct bpf_prog *prog,
3328 					      u32 *target_size)
3329 {
3330 	return 0;
3331 }
3332 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3333 					     struct bpf_dynptr *ptr)
3334 {
3335 	return -EOPNOTSUPP;
3336 }
3337 #endif
3338 
3339 #ifdef CONFIG_INET
3340 struct sk_reuseport_kern {
3341 	struct sk_buff *skb;
3342 	struct sock *sk;
3343 	struct sock *selected_sk;
3344 	struct sock *migrating_sk;
3345 	void *data_end;
3346 	u32 hash;
3347 	u32 reuseport_id;
3348 	bool bind_inany;
3349 };
3350 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3351 				  struct bpf_insn_access_aux *info);
3352 
3353 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3354 				    const struct bpf_insn *si,
3355 				    struct bpf_insn *insn_buf,
3356 				    struct bpf_prog *prog,
3357 				    u32 *target_size);
3358 
3359 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3360 				  struct bpf_insn_access_aux *info);
3361 
3362 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3363 				    const struct bpf_insn *si,
3364 				    struct bpf_insn *insn_buf,
3365 				    struct bpf_prog *prog,
3366 				    u32 *target_size);
3367 #else
3368 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3369 						enum bpf_access_type type,
3370 						struct bpf_insn_access_aux *info)
3371 {
3372 	return false;
3373 }
3374 
3375 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3376 						  const struct bpf_insn *si,
3377 						  struct bpf_insn *insn_buf,
3378 						  struct bpf_prog *prog,
3379 						  u32 *target_size)
3380 {
3381 	return 0;
3382 }
3383 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3384 						enum bpf_access_type type,
3385 						struct bpf_insn_access_aux *info)
3386 {
3387 	return false;
3388 }
3389 
3390 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3391 						  const struct bpf_insn *si,
3392 						  struct bpf_insn *insn_buf,
3393 						  struct bpf_prog *prog,
3394 						  u32 *target_size)
3395 {
3396 	return 0;
3397 }
3398 #endif /* CONFIG_INET */
3399 
3400 enum bpf_text_poke_type {
3401 	BPF_MOD_CALL,
3402 	BPF_MOD_JUMP,
3403 };
3404 
3405 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3406 		       void *addr1, void *addr2);
3407 
3408 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3409 			       struct bpf_prog *new, struct bpf_prog *old);
3410 
3411 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3412 int bpf_arch_text_invalidate(void *dst, size_t len);
3413 
3414 struct btf_id_set;
3415 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3416 
3417 #define MAX_BPRINTF_VARARGS		12
3418 #define MAX_BPRINTF_BUF			1024
3419 
3420 struct bpf_bprintf_data {
3421 	u32 *bin_args;
3422 	char *buf;
3423 	bool get_bin_args;
3424 	bool get_buf;
3425 };
3426 
3427 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3428 			u32 num_args, struct bpf_bprintf_data *data);
3429 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3430 
3431 #ifdef CONFIG_BPF_LSM
3432 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3433 void bpf_cgroup_atype_put(int cgroup_atype);
3434 #else
3435 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3436 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3437 #endif /* CONFIG_BPF_LSM */
3438 
3439 struct key;
3440 
3441 #ifdef CONFIG_KEYS
3442 struct bpf_key {
3443 	struct key *key;
3444 	bool has_ref;
3445 };
3446 #endif /* CONFIG_KEYS */
3447 
3448 static inline bool type_is_alloc(u32 type)
3449 {
3450 	return type & MEM_ALLOC;
3451 }
3452 
3453 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3454 {
3455 	if (memcg_bpf_enabled())
3456 		return flags | __GFP_ACCOUNT;
3457 	return flags;
3458 }
3459 
3460 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3461 {
3462 	return prog->aux->func_idx != 0;
3463 }
3464 
3465 #endif /* _LINUX_BPF_H */
3466