1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206 }; 207 208 typedef void (*btf_dtor_kfunc_t)(void *); 209 210 struct btf_field_kptr { 211 struct btf *btf; 212 struct module *module; 213 /* dtor used if btf_is_kernel(btf), otherwise the type is 214 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 215 */ 216 btf_dtor_kfunc_t dtor; 217 u32 btf_id; 218 }; 219 220 struct btf_field_graph_root { 221 struct btf *btf; 222 u32 value_btf_id; 223 u32 node_offset; 224 struct btf_record *value_rec; 225 }; 226 227 struct btf_field { 228 u32 offset; 229 u32 size; 230 enum btf_field_type type; 231 union { 232 struct btf_field_kptr kptr; 233 struct btf_field_graph_root graph_root; 234 }; 235 }; 236 237 struct btf_record { 238 u32 cnt; 239 u32 field_mask; 240 int spin_lock_off; 241 int timer_off; 242 int wq_off; 243 int refcount_off; 244 struct btf_field fields[]; 245 }; 246 247 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 248 struct bpf_rb_node_kern { 249 struct rb_node rb_node; 250 void *owner; 251 } __attribute__((aligned(8))); 252 253 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 254 struct bpf_list_node_kern { 255 struct list_head list_head; 256 void *owner; 257 } __attribute__((aligned(8))); 258 259 struct bpf_map { 260 const struct bpf_map_ops *ops; 261 struct bpf_map *inner_map_meta; 262 #ifdef CONFIG_SECURITY 263 void *security; 264 #endif 265 enum bpf_map_type map_type; 266 u32 key_size; 267 u32 value_size; 268 u32 max_entries; 269 u64 map_extra; /* any per-map-type extra fields */ 270 u32 map_flags; 271 u32 id; 272 struct btf_record *record; 273 int numa_node; 274 u32 btf_key_type_id; 275 u32 btf_value_type_id; 276 u32 btf_vmlinux_value_type_id; 277 struct btf *btf; 278 #ifdef CONFIG_MEMCG 279 struct obj_cgroup *objcg; 280 #endif 281 char name[BPF_OBJ_NAME_LEN]; 282 struct mutex freeze_mutex; 283 atomic64_t refcnt; 284 atomic64_t usercnt; 285 /* rcu is used before freeing and work is only used during freeing */ 286 union { 287 struct work_struct work; 288 struct rcu_head rcu; 289 }; 290 atomic64_t writecnt; 291 /* 'Ownership' of program-containing map is claimed by the first program 292 * that is going to use this map or by the first program which FD is 293 * stored in the map to make sure that all callers and callees have the 294 * same prog type, JITed flag and xdp_has_frags flag. 295 */ 296 struct { 297 const struct btf_type *attach_func_proto; 298 spinlock_t lock; 299 enum bpf_prog_type type; 300 bool jited; 301 bool xdp_has_frags; 302 } owner; 303 bool bypass_spec_v1; 304 bool frozen; /* write-once; write-protected by freeze_mutex */ 305 bool free_after_mult_rcu_gp; 306 bool free_after_rcu_gp; 307 atomic64_t sleepable_refcnt; 308 s64 __percpu *elem_count; 309 }; 310 311 static inline const char *btf_field_type_name(enum btf_field_type type) 312 { 313 switch (type) { 314 case BPF_SPIN_LOCK: 315 return "bpf_spin_lock"; 316 case BPF_TIMER: 317 return "bpf_timer"; 318 case BPF_WORKQUEUE: 319 return "bpf_wq"; 320 case BPF_KPTR_UNREF: 321 case BPF_KPTR_REF: 322 return "kptr"; 323 case BPF_KPTR_PERCPU: 324 return "percpu_kptr"; 325 case BPF_LIST_HEAD: 326 return "bpf_list_head"; 327 case BPF_LIST_NODE: 328 return "bpf_list_node"; 329 case BPF_RB_ROOT: 330 return "bpf_rb_root"; 331 case BPF_RB_NODE: 332 return "bpf_rb_node"; 333 case BPF_REFCOUNT: 334 return "bpf_refcount"; 335 default: 336 WARN_ON_ONCE(1); 337 return "unknown"; 338 } 339 } 340 341 static inline u32 btf_field_type_size(enum btf_field_type type) 342 { 343 switch (type) { 344 case BPF_SPIN_LOCK: 345 return sizeof(struct bpf_spin_lock); 346 case BPF_TIMER: 347 return sizeof(struct bpf_timer); 348 case BPF_WORKQUEUE: 349 return sizeof(struct bpf_wq); 350 case BPF_KPTR_UNREF: 351 case BPF_KPTR_REF: 352 case BPF_KPTR_PERCPU: 353 return sizeof(u64); 354 case BPF_LIST_HEAD: 355 return sizeof(struct bpf_list_head); 356 case BPF_LIST_NODE: 357 return sizeof(struct bpf_list_node); 358 case BPF_RB_ROOT: 359 return sizeof(struct bpf_rb_root); 360 case BPF_RB_NODE: 361 return sizeof(struct bpf_rb_node); 362 case BPF_REFCOUNT: 363 return sizeof(struct bpf_refcount); 364 default: 365 WARN_ON_ONCE(1); 366 return 0; 367 } 368 } 369 370 static inline u32 btf_field_type_align(enum btf_field_type type) 371 { 372 switch (type) { 373 case BPF_SPIN_LOCK: 374 return __alignof__(struct bpf_spin_lock); 375 case BPF_TIMER: 376 return __alignof__(struct bpf_timer); 377 case BPF_WORKQUEUE: 378 return __alignof__(struct bpf_wq); 379 case BPF_KPTR_UNREF: 380 case BPF_KPTR_REF: 381 case BPF_KPTR_PERCPU: 382 return __alignof__(u64); 383 case BPF_LIST_HEAD: 384 return __alignof__(struct bpf_list_head); 385 case BPF_LIST_NODE: 386 return __alignof__(struct bpf_list_node); 387 case BPF_RB_ROOT: 388 return __alignof__(struct bpf_rb_root); 389 case BPF_RB_NODE: 390 return __alignof__(struct bpf_rb_node); 391 case BPF_REFCOUNT: 392 return __alignof__(struct bpf_refcount); 393 default: 394 WARN_ON_ONCE(1); 395 return 0; 396 } 397 } 398 399 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 400 { 401 memset(addr, 0, field->size); 402 403 switch (field->type) { 404 case BPF_REFCOUNT: 405 refcount_set((refcount_t *)addr, 1); 406 break; 407 case BPF_RB_NODE: 408 RB_CLEAR_NODE((struct rb_node *)addr); 409 break; 410 case BPF_LIST_HEAD: 411 case BPF_LIST_NODE: 412 INIT_LIST_HEAD((struct list_head *)addr); 413 break; 414 case BPF_RB_ROOT: 415 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 416 case BPF_SPIN_LOCK: 417 case BPF_TIMER: 418 case BPF_WORKQUEUE: 419 case BPF_KPTR_UNREF: 420 case BPF_KPTR_REF: 421 case BPF_KPTR_PERCPU: 422 break; 423 default: 424 WARN_ON_ONCE(1); 425 return; 426 } 427 } 428 429 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 430 { 431 if (IS_ERR_OR_NULL(rec)) 432 return false; 433 return rec->field_mask & type; 434 } 435 436 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 437 { 438 int i; 439 440 if (IS_ERR_OR_NULL(rec)) 441 return; 442 for (i = 0; i < rec->cnt; i++) 443 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 444 } 445 446 /* 'dst' must be a temporary buffer and should not point to memory that is being 447 * used in parallel by a bpf program or bpf syscall, otherwise the access from 448 * the bpf program or bpf syscall may be corrupted by the reinitialization, 449 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 450 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 451 * program or bpf syscall. 452 */ 453 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 454 { 455 bpf_obj_init(map->record, dst); 456 } 457 458 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 459 * forced to use 'long' read/writes to try to atomically copy long counters. 460 * Best-effort only. No barriers here, since it _will_ race with concurrent 461 * updates from BPF programs. Called from bpf syscall and mostly used with 462 * size 8 or 16 bytes, so ask compiler to inline it. 463 */ 464 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 465 { 466 const long *lsrc = src; 467 long *ldst = dst; 468 469 size /= sizeof(long); 470 while (size--) 471 data_race(*ldst++ = *lsrc++); 472 } 473 474 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 475 static inline void bpf_obj_memcpy(struct btf_record *rec, 476 void *dst, void *src, u32 size, 477 bool long_memcpy) 478 { 479 u32 curr_off = 0; 480 int i; 481 482 if (IS_ERR_OR_NULL(rec)) { 483 if (long_memcpy) 484 bpf_long_memcpy(dst, src, round_up(size, 8)); 485 else 486 memcpy(dst, src, size); 487 return; 488 } 489 490 for (i = 0; i < rec->cnt; i++) { 491 u32 next_off = rec->fields[i].offset; 492 u32 sz = next_off - curr_off; 493 494 memcpy(dst + curr_off, src + curr_off, sz); 495 curr_off += rec->fields[i].size + sz; 496 } 497 memcpy(dst + curr_off, src + curr_off, size - curr_off); 498 } 499 500 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 501 { 502 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 503 } 504 505 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 506 { 507 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 508 } 509 510 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 511 { 512 u32 curr_off = 0; 513 int i; 514 515 if (IS_ERR_OR_NULL(rec)) { 516 memset(dst, 0, size); 517 return; 518 } 519 520 for (i = 0; i < rec->cnt; i++) { 521 u32 next_off = rec->fields[i].offset; 522 u32 sz = next_off - curr_off; 523 524 memset(dst + curr_off, 0, sz); 525 curr_off += rec->fields[i].size + sz; 526 } 527 memset(dst + curr_off, 0, size - curr_off); 528 } 529 530 static inline void zero_map_value(struct bpf_map *map, void *dst) 531 { 532 bpf_obj_memzero(map->record, dst, map->value_size); 533 } 534 535 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 536 bool lock_src); 537 void bpf_timer_cancel_and_free(void *timer); 538 void bpf_wq_cancel_and_free(void *timer); 539 void bpf_list_head_free(const struct btf_field *field, void *list_head, 540 struct bpf_spin_lock *spin_lock); 541 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 542 struct bpf_spin_lock *spin_lock); 543 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 544 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 545 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 546 547 struct bpf_offload_dev; 548 struct bpf_offloaded_map; 549 550 struct bpf_map_dev_ops { 551 int (*map_get_next_key)(struct bpf_offloaded_map *map, 552 void *key, void *next_key); 553 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 554 void *key, void *value); 555 int (*map_update_elem)(struct bpf_offloaded_map *map, 556 void *key, void *value, u64 flags); 557 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 558 }; 559 560 struct bpf_offloaded_map { 561 struct bpf_map map; 562 struct net_device *netdev; 563 const struct bpf_map_dev_ops *dev_ops; 564 void *dev_priv; 565 struct list_head offloads; 566 }; 567 568 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 569 { 570 return container_of(map, struct bpf_offloaded_map, map); 571 } 572 573 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 574 { 575 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 576 } 577 578 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 579 { 580 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 581 map->ops->map_seq_show_elem; 582 } 583 584 int map_check_no_btf(const struct bpf_map *map, 585 const struct btf *btf, 586 const struct btf_type *key_type, 587 const struct btf_type *value_type); 588 589 bool bpf_map_meta_equal(const struct bpf_map *meta0, 590 const struct bpf_map *meta1); 591 592 extern const struct bpf_map_ops bpf_map_offload_ops; 593 594 /* bpf_type_flag contains a set of flags that are applicable to the values of 595 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 596 * or a memory is read-only. We classify types into two categories: base types 597 * and extended types. Extended types are base types combined with a type flag. 598 * 599 * Currently there are no more than 32 base types in arg_type, ret_type and 600 * reg_types. 601 */ 602 #define BPF_BASE_TYPE_BITS 8 603 604 enum bpf_type_flag { 605 /* PTR may be NULL. */ 606 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 609 * compatible with both mutable and immutable memory. 610 */ 611 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 612 613 /* MEM points to BPF ring buffer reservation. */ 614 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 615 616 /* MEM is in user address space. */ 617 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 618 619 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 620 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 621 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 622 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 623 * to the specified cpu. 624 */ 625 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 626 627 /* Indicates that the argument will be released. */ 628 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 629 630 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 631 * unreferenced and referenced kptr loaded from map value using a load 632 * instruction, so that they can only be dereferenced but not escape the 633 * BPF program into the kernel (i.e. cannot be passed as arguments to 634 * kfunc or bpf helpers). 635 */ 636 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 637 638 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 639 640 /* DYNPTR points to memory local to the bpf program. */ 641 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 642 643 /* DYNPTR points to a kernel-produced ringbuf record. */ 644 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 645 646 /* Size is known at compile time. */ 647 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 648 649 /* MEM is of an allocated object of type in program BTF. This is used to 650 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 651 */ 652 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 653 654 /* PTR was passed from the kernel in a trusted context, and may be 655 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 656 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 657 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 658 * without invoking bpf_kptr_xchg(). What we really need to know is 659 * whether a pointer is safe to pass to a kfunc or BPF helper function. 660 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 661 * helpers, they do not cover all possible instances of unsafe 662 * pointers. For example, a pointer that was obtained from walking a 663 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 664 * fact that it may be NULL, invalid, etc. This is due to backwards 665 * compatibility requirements, as this was the behavior that was first 666 * introduced when kptrs were added. The behavior is now considered 667 * deprecated, and PTR_UNTRUSTED will eventually be removed. 668 * 669 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 670 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 671 * For example, pointers passed to tracepoint arguments are considered 672 * PTR_TRUSTED, as are pointers that are passed to struct_ops 673 * callbacks. As alluded to above, pointers that are obtained from 674 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 675 * struct task_struct *task is PTR_TRUSTED, then accessing 676 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 677 * in a BPF register. Similarly, pointers passed to certain programs 678 * types such as kretprobes are not guaranteed to be valid, as they may 679 * for example contain an object that was recently freed. 680 */ 681 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 682 683 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 684 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 685 686 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 687 * Currently only valid for linked-list and rbtree nodes. If the nodes 688 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 689 */ 690 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 691 692 /* DYNPTR points to sk_buff */ 693 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 694 695 /* DYNPTR points to xdp_buff */ 696 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 697 698 /* Memory must be aligned on some architectures, used in combination with 699 * MEM_FIXED_SIZE. 700 */ 701 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 702 703 __BPF_TYPE_FLAG_MAX, 704 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 705 }; 706 707 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 708 | DYNPTR_TYPE_XDP) 709 710 /* Max number of base types. */ 711 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 712 713 /* Max number of all types. */ 714 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 715 716 /* function argument constraints */ 717 enum bpf_arg_type { 718 ARG_DONTCARE = 0, /* unused argument in helper function */ 719 720 /* the following constraints used to prototype 721 * bpf_map_lookup/update/delete_elem() functions 722 */ 723 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 724 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 725 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 726 727 /* Used to prototype bpf_memcmp() and other functions that access data 728 * on eBPF program stack 729 */ 730 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 731 ARG_PTR_TO_ARENA, 732 733 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 734 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 735 736 ARG_PTR_TO_CTX, /* pointer to context */ 737 ARG_ANYTHING, /* any (initialized) argument is ok */ 738 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 739 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 740 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 741 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 742 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 743 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 744 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 745 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 746 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 747 ARG_PTR_TO_STACK, /* pointer to stack */ 748 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 749 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 750 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 751 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 752 __BPF_ARG_TYPE_MAX, 753 754 /* Extended arg_types. */ 755 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 756 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 757 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 758 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 759 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 760 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 761 /* pointer to memory does not need to be initialized, helper function must fill 762 * all bytes or clear them in error case. 763 */ 764 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 765 /* Pointer to valid memory of size known at compile time. */ 766 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 767 768 /* This must be the last entry. Its purpose is to ensure the enum is 769 * wide enough to hold the higher bits reserved for bpf_type_flag. 770 */ 771 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 772 }; 773 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 774 775 /* type of values returned from helper functions */ 776 enum bpf_return_type { 777 RET_INTEGER, /* function returns integer */ 778 RET_VOID, /* function doesn't return anything */ 779 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 780 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 781 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 782 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 783 RET_PTR_TO_MEM, /* returns a pointer to memory */ 784 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 785 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 786 __BPF_RET_TYPE_MAX, 787 788 /* Extended ret_types. */ 789 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 790 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 791 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 792 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 793 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 794 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 795 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 796 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 797 798 /* This must be the last entry. Its purpose is to ensure the enum is 799 * wide enough to hold the higher bits reserved for bpf_type_flag. 800 */ 801 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 802 }; 803 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 804 805 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 806 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 807 * instructions after verifying 808 */ 809 struct bpf_func_proto { 810 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 811 bool gpl_only; 812 bool pkt_access; 813 bool might_sleep; 814 /* set to true if helper follows contract for llvm 815 * attribute bpf_fastcall: 816 * - void functions do not scratch r0 817 * - functions taking N arguments scratch only registers r1-rN 818 */ 819 bool allow_fastcall; 820 enum bpf_return_type ret_type; 821 union { 822 struct { 823 enum bpf_arg_type arg1_type; 824 enum bpf_arg_type arg2_type; 825 enum bpf_arg_type arg3_type; 826 enum bpf_arg_type arg4_type; 827 enum bpf_arg_type arg5_type; 828 }; 829 enum bpf_arg_type arg_type[5]; 830 }; 831 union { 832 struct { 833 u32 *arg1_btf_id; 834 u32 *arg2_btf_id; 835 u32 *arg3_btf_id; 836 u32 *arg4_btf_id; 837 u32 *arg5_btf_id; 838 }; 839 u32 *arg_btf_id[5]; 840 struct { 841 size_t arg1_size; 842 size_t arg2_size; 843 size_t arg3_size; 844 size_t arg4_size; 845 size_t arg5_size; 846 }; 847 size_t arg_size[5]; 848 }; 849 int *ret_btf_id; /* return value btf_id */ 850 bool (*allowed)(const struct bpf_prog *prog); 851 }; 852 853 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 854 * the first argument to eBPF programs. 855 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 856 */ 857 struct bpf_context; 858 859 enum bpf_access_type { 860 BPF_READ = 1, 861 BPF_WRITE = 2 862 }; 863 864 /* types of values stored in eBPF registers */ 865 /* Pointer types represent: 866 * pointer 867 * pointer + imm 868 * pointer + (u16) var 869 * pointer + (u16) var + imm 870 * if (range > 0) then [ptr, ptr + range - off) is safe to access 871 * if (id > 0) means that some 'var' was added 872 * if (off > 0) means that 'imm' was added 873 */ 874 enum bpf_reg_type { 875 NOT_INIT = 0, /* nothing was written into register */ 876 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 877 PTR_TO_CTX, /* reg points to bpf_context */ 878 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 879 PTR_TO_MAP_VALUE, /* reg points to map element value */ 880 PTR_TO_MAP_KEY, /* reg points to a map element key */ 881 PTR_TO_STACK, /* reg == frame_pointer + offset */ 882 PTR_TO_PACKET_META, /* skb->data - meta_len */ 883 PTR_TO_PACKET, /* reg points to skb->data */ 884 PTR_TO_PACKET_END, /* skb->data + headlen */ 885 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 886 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 887 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 888 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 889 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 890 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 891 /* PTR_TO_BTF_ID points to a kernel struct that does not need 892 * to be null checked by the BPF program. This does not imply the 893 * pointer is _not_ null and in practice this can easily be a null 894 * pointer when reading pointer chains. The assumption is program 895 * context will handle null pointer dereference typically via fault 896 * handling. The verifier must keep this in mind and can make no 897 * assumptions about null or non-null when doing branch analysis. 898 * Further, when passed into helpers the helpers can not, without 899 * additional context, assume the value is non-null. 900 */ 901 PTR_TO_BTF_ID, 902 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 903 * been checked for null. Used primarily to inform the verifier 904 * an explicit null check is required for this struct. 905 */ 906 PTR_TO_MEM, /* reg points to valid memory region */ 907 PTR_TO_ARENA, 908 PTR_TO_BUF, /* reg points to a read/write buffer */ 909 PTR_TO_FUNC, /* reg points to a bpf program function */ 910 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 911 __BPF_REG_TYPE_MAX, 912 913 /* Extended reg_types. */ 914 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 915 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 916 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 917 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 918 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 919 920 /* This must be the last entry. Its purpose is to ensure the enum is 921 * wide enough to hold the higher bits reserved for bpf_type_flag. 922 */ 923 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 924 }; 925 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 926 927 /* The information passed from prog-specific *_is_valid_access 928 * back to the verifier. 929 */ 930 struct bpf_insn_access_aux { 931 enum bpf_reg_type reg_type; 932 bool is_ldsx; 933 union { 934 int ctx_field_size; 935 struct { 936 struct btf *btf; 937 u32 btf_id; 938 }; 939 }; 940 struct bpf_verifier_log *log; /* for verbose logs */ 941 bool is_retval; /* is accessing function return value ? */ 942 }; 943 944 static inline void 945 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 946 { 947 aux->ctx_field_size = size; 948 } 949 950 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 951 { 952 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 953 } 954 955 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 956 { 957 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 958 } 959 960 struct bpf_prog_ops { 961 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 962 union bpf_attr __user *uattr); 963 }; 964 965 struct bpf_reg_state; 966 struct bpf_verifier_ops { 967 /* return eBPF function prototype for verification */ 968 const struct bpf_func_proto * 969 (*get_func_proto)(enum bpf_func_id func_id, 970 const struct bpf_prog *prog); 971 972 /* return true if 'size' wide access at offset 'off' within bpf_context 973 * with 'type' (read or write) is allowed 974 */ 975 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 976 const struct bpf_prog *prog, 977 struct bpf_insn_access_aux *info); 978 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 979 const struct bpf_prog *prog); 980 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 981 s16 ctx_stack_off); 982 int (*gen_ld_abs)(const struct bpf_insn *orig, 983 struct bpf_insn *insn_buf); 984 u32 (*convert_ctx_access)(enum bpf_access_type type, 985 const struct bpf_insn *src, 986 struct bpf_insn *dst, 987 struct bpf_prog *prog, u32 *target_size); 988 int (*btf_struct_access)(struct bpf_verifier_log *log, 989 const struct bpf_reg_state *reg, 990 int off, int size); 991 }; 992 993 struct bpf_prog_offload_ops { 994 /* verifier basic callbacks */ 995 int (*insn_hook)(struct bpf_verifier_env *env, 996 int insn_idx, int prev_insn_idx); 997 int (*finalize)(struct bpf_verifier_env *env); 998 /* verifier optimization callbacks (called after .finalize) */ 999 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1000 struct bpf_insn *insn); 1001 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1002 /* program management callbacks */ 1003 int (*prepare)(struct bpf_prog *prog); 1004 int (*translate)(struct bpf_prog *prog); 1005 void (*destroy)(struct bpf_prog *prog); 1006 }; 1007 1008 struct bpf_prog_offload { 1009 struct bpf_prog *prog; 1010 struct net_device *netdev; 1011 struct bpf_offload_dev *offdev; 1012 void *dev_priv; 1013 struct list_head offloads; 1014 bool dev_state; 1015 bool opt_failed; 1016 void *jited_image; 1017 u32 jited_len; 1018 }; 1019 1020 enum bpf_cgroup_storage_type { 1021 BPF_CGROUP_STORAGE_SHARED, 1022 BPF_CGROUP_STORAGE_PERCPU, 1023 __BPF_CGROUP_STORAGE_MAX 1024 }; 1025 1026 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1027 1028 /* The longest tracepoint has 12 args. 1029 * See include/trace/bpf_probe.h 1030 */ 1031 #define MAX_BPF_FUNC_ARGS 12 1032 1033 /* The maximum number of arguments passed through registers 1034 * a single function may have. 1035 */ 1036 #define MAX_BPF_FUNC_REG_ARGS 5 1037 1038 /* The argument is a structure. */ 1039 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1040 1041 /* The argument is signed. */ 1042 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1043 1044 struct btf_func_model { 1045 u8 ret_size; 1046 u8 ret_flags; 1047 u8 nr_args; 1048 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1049 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1050 }; 1051 1052 /* Restore arguments before returning from trampoline to let original function 1053 * continue executing. This flag is used for fentry progs when there are no 1054 * fexit progs. 1055 */ 1056 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1057 /* Call original function after fentry progs, but before fexit progs. 1058 * Makes sense for fentry/fexit, normal calls and indirect calls. 1059 */ 1060 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1061 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1062 * programs only. Should not be used with normal calls and indirect calls. 1063 */ 1064 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1065 /* Store IP address of the caller on the trampoline stack, 1066 * so it's available for trampoline's programs. 1067 */ 1068 #define BPF_TRAMP_F_IP_ARG BIT(3) 1069 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1070 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1071 1072 /* Get original function from stack instead of from provided direct address. 1073 * Makes sense for trampolines with fexit or fmod_ret programs. 1074 */ 1075 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1076 1077 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1078 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1079 */ 1080 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1081 1082 /* Indicate that current trampoline is in a tail call context. Then, it has to 1083 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1084 */ 1085 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1086 1087 /* 1088 * Indicate the trampoline should be suitable to receive indirect calls; 1089 * without this indirectly calling the generated code can result in #UD/#CP, 1090 * depending on the CFI options. 1091 * 1092 * Used by bpf_struct_ops. 1093 * 1094 * Incompatible with FENTRY usage, overloads @func_addr argument. 1095 */ 1096 #define BPF_TRAMP_F_INDIRECT BIT(8) 1097 1098 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1099 * bytes on x86. 1100 */ 1101 enum { 1102 #if defined(__s390x__) 1103 BPF_MAX_TRAMP_LINKS = 27, 1104 #else 1105 BPF_MAX_TRAMP_LINKS = 38, 1106 #endif 1107 }; 1108 1109 struct bpf_tramp_links { 1110 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1111 int nr_links; 1112 }; 1113 1114 struct bpf_tramp_run_ctx; 1115 1116 /* Different use cases for BPF trampoline: 1117 * 1. replace nop at the function entry (kprobe equivalent) 1118 * flags = BPF_TRAMP_F_RESTORE_REGS 1119 * fentry = a set of programs to run before returning from trampoline 1120 * 1121 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1122 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1123 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1124 * fentry = a set of program to run before calling original function 1125 * fexit = a set of program to run after original function 1126 * 1127 * 3. replace direct call instruction anywhere in the function body 1128 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1129 * With flags = 0 1130 * fentry = a set of programs to run before returning from trampoline 1131 * With flags = BPF_TRAMP_F_CALL_ORIG 1132 * orig_call = original callback addr or direct function addr 1133 * fentry = a set of program to run before calling original function 1134 * fexit = a set of program to run after original function 1135 */ 1136 struct bpf_tramp_image; 1137 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1138 const struct btf_func_model *m, u32 flags, 1139 struct bpf_tramp_links *tlinks, 1140 void *func_addr); 1141 void *arch_alloc_bpf_trampoline(unsigned int size); 1142 void arch_free_bpf_trampoline(void *image, unsigned int size); 1143 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1144 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1145 struct bpf_tramp_links *tlinks, void *func_addr); 1146 1147 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1148 struct bpf_tramp_run_ctx *run_ctx); 1149 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1150 struct bpf_tramp_run_ctx *run_ctx); 1151 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1152 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1153 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1154 struct bpf_tramp_run_ctx *run_ctx); 1155 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1156 struct bpf_tramp_run_ctx *run_ctx); 1157 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1158 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1159 1160 struct bpf_ksym { 1161 unsigned long start; 1162 unsigned long end; 1163 char name[KSYM_NAME_LEN]; 1164 struct list_head lnode; 1165 struct latch_tree_node tnode; 1166 bool prog; 1167 }; 1168 1169 enum bpf_tramp_prog_type { 1170 BPF_TRAMP_FENTRY, 1171 BPF_TRAMP_FEXIT, 1172 BPF_TRAMP_MODIFY_RETURN, 1173 BPF_TRAMP_MAX, 1174 BPF_TRAMP_REPLACE, /* more than MAX */ 1175 }; 1176 1177 struct bpf_tramp_image { 1178 void *image; 1179 int size; 1180 struct bpf_ksym ksym; 1181 struct percpu_ref pcref; 1182 void *ip_after_call; 1183 void *ip_epilogue; 1184 union { 1185 struct rcu_head rcu; 1186 struct work_struct work; 1187 }; 1188 }; 1189 1190 struct bpf_trampoline { 1191 /* hlist for trampoline_table */ 1192 struct hlist_node hlist; 1193 struct ftrace_ops *fops; 1194 /* serializes access to fields of this trampoline */ 1195 struct mutex mutex; 1196 refcount_t refcnt; 1197 u32 flags; 1198 u64 key; 1199 struct { 1200 struct btf_func_model model; 1201 void *addr; 1202 bool ftrace_managed; 1203 } func; 1204 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1205 * program by replacing one of its functions. func.addr is the address 1206 * of the function it replaced. 1207 */ 1208 struct bpf_prog *extension_prog; 1209 /* list of BPF programs using this trampoline */ 1210 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1211 /* Number of attached programs. A counter per kind. */ 1212 int progs_cnt[BPF_TRAMP_MAX]; 1213 /* Executable image of trampoline */ 1214 struct bpf_tramp_image *cur_image; 1215 }; 1216 1217 struct bpf_attach_target_info { 1218 struct btf_func_model fmodel; 1219 long tgt_addr; 1220 struct module *tgt_mod; 1221 const char *tgt_name; 1222 const struct btf_type *tgt_type; 1223 }; 1224 1225 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1226 1227 struct bpf_dispatcher_prog { 1228 struct bpf_prog *prog; 1229 refcount_t users; 1230 }; 1231 1232 struct bpf_dispatcher { 1233 /* dispatcher mutex */ 1234 struct mutex mutex; 1235 void *func; 1236 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1237 int num_progs; 1238 void *image; 1239 void *rw_image; 1240 u32 image_off; 1241 struct bpf_ksym ksym; 1242 #ifdef CONFIG_HAVE_STATIC_CALL 1243 struct static_call_key *sc_key; 1244 void *sc_tramp; 1245 #endif 1246 }; 1247 1248 #ifndef __bpfcall 1249 #define __bpfcall __nocfi 1250 #endif 1251 1252 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1253 const void *ctx, 1254 const struct bpf_insn *insnsi, 1255 bpf_func_t bpf_func) 1256 { 1257 return bpf_func(ctx, insnsi); 1258 } 1259 1260 /* the implementation of the opaque uapi struct bpf_dynptr */ 1261 struct bpf_dynptr_kern { 1262 void *data; 1263 /* Size represents the number of usable bytes of dynptr data. 1264 * If for example the offset is at 4 for a local dynptr whose data is 1265 * of type u64, the number of usable bytes is 4. 1266 * 1267 * The upper 8 bits are reserved. It is as follows: 1268 * Bits 0 - 23 = size 1269 * Bits 24 - 30 = dynptr type 1270 * Bit 31 = whether dynptr is read-only 1271 */ 1272 u32 size; 1273 u32 offset; 1274 } __aligned(8); 1275 1276 enum bpf_dynptr_type { 1277 BPF_DYNPTR_TYPE_INVALID, 1278 /* Points to memory that is local to the bpf program */ 1279 BPF_DYNPTR_TYPE_LOCAL, 1280 /* Underlying data is a ringbuf record */ 1281 BPF_DYNPTR_TYPE_RINGBUF, 1282 /* Underlying data is a sk_buff */ 1283 BPF_DYNPTR_TYPE_SKB, 1284 /* Underlying data is a xdp_buff */ 1285 BPF_DYNPTR_TYPE_XDP, 1286 }; 1287 1288 int bpf_dynptr_check_size(u32 size); 1289 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1290 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1291 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1292 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1293 1294 #ifdef CONFIG_BPF_JIT 1295 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1296 struct bpf_trampoline *tr, 1297 struct bpf_prog *tgt_prog); 1298 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1299 struct bpf_trampoline *tr, 1300 struct bpf_prog *tgt_prog); 1301 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1302 struct bpf_attach_target_info *tgt_info); 1303 void bpf_trampoline_put(struct bpf_trampoline *tr); 1304 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1305 1306 /* 1307 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1308 * indirection with a direct call to the bpf program. If the architecture does 1309 * not have STATIC_CALL, avoid a double-indirection. 1310 */ 1311 #ifdef CONFIG_HAVE_STATIC_CALL 1312 1313 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1314 .sc_key = &STATIC_CALL_KEY(_name), \ 1315 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1316 1317 #define __BPF_DISPATCHER_SC(name) \ 1318 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1319 1320 #define __BPF_DISPATCHER_CALL(name) \ 1321 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1322 1323 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1324 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1325 1326 #else 1327 #define __BPF_DISPATCHER_SC_INIT(name) 1328 #define __BPF_DISPATCHER_SC(name) 1329 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1330 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1331 #endif 1332 1333 #define BPF_DISPATCHER_INIT(_name) { \ 1334 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1335 .func = &_name##_func, \ 1336 .progs = {}, \ 1337 .num_progs = 0, \ 1338 .image = NULL, \ 1339 .image_off = 0, \ 1340 .ksym = { \ 1341 .name = #_name, \ 1342 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1343 }, \ 1344 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1345 } 1346 1347 #define DEFINE_BPF_DISPATCHER(name) \ 1348 __BPF_DISPATCHER_SC(name); \ 1349 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1350 const void *ctx, \ 1351 const struct bpf_insn *insnsi, \ 1352 bpf_func_t bpf_func) \ 1353 { \ 1354 return __BPF_DISPATCHER_CALL(name); \ 1355 } \ 1356 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1357 struct bpf_dispatcher bpf_dispatcher_##name = \ 1358 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1359 1360 #define DECLARE_BPF_DISPATCHER(name) \ 1361 unsigned int bpf_dispatcher_##name##_func( \ 1362 const void *ctx, \ 1363 const struct bpf_insn *insnsi, \ 1364 bpf_func_t bpf_func); \ 1365 extern struct bpf_dispatcher bpf_dispatcher_##name; 1366 1367 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1368 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1369 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1370 struct bpf_prog *to); 1371 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1372 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1373 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1374 void bpf_ksym_add(struct bpf_ksym *ksym); 1375 void bpf_ksym_del(struct bpf_ksym *ksym); 1376 int bpf_jit_charge_modmem(u32 size); 1377 void bpf_jit_uncharge_modmem(u32 size); 1378 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1379 #else 1380 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1381 struct bpf_trampoline *tr, 1382 struct bpf_prog *tgt_prog) 1383 { 1384 return -ENOTSUPP; 1385 } 1386 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1387 struct bpf_trampoline *tr, 1388 struct bpf_prog *tgt_prog) 1389 { 1390 return -ENOTSUPP; 1391 } 1392 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1393 struct bpf_attach_target_info *tgt_info) 1394 { 1395 return NULL; 1396 } 1397 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1398 #define DEFINE_BPF_DISPATCHER(name) 1399 #define DECLARE_BPF_DISPATCHER(name) 1400 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1401 #define BPF_DISPATCHER_PTR(name) NULL 1402 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1403 struct bpf_prog *from, 1404 struct bpf_prog *to) {} 1405 static inline bool is_bpf_image_address(unsigned long address) 1406 { 1407 return false; 1408 } 1409 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1410 { 1411 return false; 1412 } 1413 #endif 1414 1415 struct bpf_func_info_aux { 1416 u16 linkage; 1417 bool unreliable; 1418 bool called : 1; 1419 bool verified : 1; 1420 }; 1421 1422 enum bpf_jit_poke_reason { 1423 BPF_POKE_REASON_TAIL_CALL, 1424 }; 1425 1426 /* Descriptor of pokes pointing /into/ the JITed image. */ 1427 struct bpf_jit_poke_descriptor { 1428 void *tailcall_target; 1429 void *tailcall_bypass; 1430 void *bypass_addr; 1431 void *aux; 1432 union { 1433 struct { 1434 struct bpf_map *map; 1435 u32 key; 1436 } tail_call; 1437 }; 1438 bool tailcall_target_stable; 1439 u8 adj_off; 1440 u16 reason; 1441 u32 insn_idx; 1442 }; 1443 1444 /* reg_type info for ctx arguments */ 1445 struct bpf_ctx_arg_aux { 1446 u32 offset; 1447 enum bpf_reg_type reg_type; 1448 struct btf *btf; 1449 u32 btf_id; 1450 }; 1451 1452 struct btf_mod_pair { 1453 struct btf *btf; 1454 struct module *module; 1455 }; 1456 1457 struct bpf_kfunc_desc_tab; 1458 1459 struct bpf_prog_aux { 1460 atomic64_t refcnt; 1461 u32 used_map_cnt; 1462 u32 used_btf_cnt; 1463 u32 max_ctx_offset; 1464 u32 max_pkt_offset; 1465 u32 max_tp_access; 1466 u32 stack_depth; 1467 u32 id; 1468 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1469 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1470 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1471 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1472 u32 ctx_arg_info_size; 1473 u32 max_rdonly_access; 1474 u32 max_rdwr_access; 1475 struct btf *attach_btf; 1476 const struct bpf_ctx_arg_aux *ctx_arg_info; 1477 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1478 struct bpf_prog *dst_prog; 1479 struct bpf_trampoline *dst_trampoline; 1480 enum bpf_prog_type saved_dst_prog_type; 1481 enum bpf_attach_type saved_dst_attach_type; 1482 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1483 bool dev_bound; /* Program is bound to the netdev. */ 1484 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1485 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1486 bool attach_tracing_prog; /* true if tracing another tracing program */ 1487 bool func_proto_unreliable; 1488 bool tail_call_reachable; 1489 bool xdp_has_frags; 1490 bool exception_cb; 1491 bool exception_boundary; 1492 bool is_extended; /* true if extended by freplace program */ 1493 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ 1494 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ 1495 struct bpf_arena *arena; 1496 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1497 const struct btf_type *attach_func_proto; 1498 /* function name for valid attach_btf_id */ 1499 const char *attach_func_name; 1500 struct bpf_prog **func; 1501 void *jit_data; /* JIT specific data. arch dependent */ 1502 struct bpf_jit_poke_descriptor *poke_tab; 1503 struct bpf_kfunc_desc_tab *kfunc_tab; 1504 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1505 u32 size_poke_tab; 1506 #ifdef CONFIG_FINEIBT 1507 struct bpf_ksym ksym_prefix; 1508 #endif 1509 struct bpf_ksym ksym; 1510 const struct bpf_prog_ops *ops; 1511 struct bpf_map **used_maps; 1512 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1513 struct btf_mod_pair *used_btfs; 1514 struct bpf_prog *prog; 1515 struct user_struct *user; 1516 u64 load_time; /* ns since boottime */ 1517 u32 verified_insns; 1518 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1519 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1520 char name[BPF_OBJ_NAME_LEN]; 1521 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1522 #ifdef CONFIG_SECURITY 1523 void *security; 1524 #endif 1525 struct bpf_token *token; 1526 struct bpf_prog_offload *offload; 1527 struct btf *btf; 1528 struct bpf_func_info *func_info; 1529 struct bpf_func_info_aux *func_info_aux; 1530 /* bpf_line_info loaded from userspace. linfo->insn_off 1531 * has the xlated insn offset. 1532 * Both the main and sub prog share the same linfo. 1533 * The subprog can access its first linfo by 1534 * using the linfo_idx. 1535 */ 1536 struct bpf_line_info *linfo; 1537 /* jited_linfo is the jited addr of the linfo. It has a 1538 * one to one mapping to linfo: 1539 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1540 * Both the main and sub prog share the same jited_linfo. 1541 * The subprog can access its first jited_linfo by 1542 * using the linfo_idx. 1543 */ 1544 void **jited_linfo; 1545 u32 func_info_cnt; 1546 u32 nr_linfo; 1547 /* subprog can use linfo_idx to access its first linfo and 1548 * jited_linfo. 1549 * main prog always has linfo_idx == 0 1550 */ 1551 u32 linfo_idx; 1552 struct module *mod; 1553 u32 num_exentries; 1554 struct exception_table_entry *extable; 1555 union { 1556 struct work_struct work; 1557 struct rcu_head rcu; 1558 }; 1559 }; 1560 1561 struct bpf_prog { 1562 u16 pages; /* Number of allocated pages */ 1563 u16 jited:1, /* Is our filter JIT'ed? */ 1564 jit_requested:1,/* archs need to JIT the prog */ 1565 gpl_compatible:1, /* Is filter GPL compatible? */ 1566 cb_access:1, /* Is control block accessed? */ 1567 dst_needed:1, /* Do we need dst entry? */ 1568 blinding_requested:1, /* needs constant blinding */ 1569 blinded:1, /* Was blinded */ 1570 is_func:1, /* program is a bpf function */ 1571 kprobe_override:1, /* Do we override a kprobe? */ 1572 has_callchain_buf:1, /* callchain buffer allocated? */ 1573 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1574 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1575 call_get_func_ip:1, /* Do we call get_func_ip() */ 1576 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1577 sleepable:1; /* BPF program is sleepable */ 1578 enum bpf_prog_type type; /* Type of BPF program */ 1579 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1580 u32 len; /* Number of filter blocks */ 1581 u32 jited_len; /* Size of jited insns in bytes */ 1582 u8 tag[BPF_TAG_SIZE]; 1583 struct bpf_prog_stats __percpu *stats; 1584 int __percpu *active; 1585 unsigned int (*bpf_func)(const void *ctx, 1586 const struct bpf_insn *insn); 1587 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1588 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1589 /* Instructions for interpreter */ 1590 union { 1591 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1592 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1593 }; 1594 }; 1595 1596 struct bpf_array_aux { 1597 /* Programs with direct jumps into programs part of this array. */ 1598 struct list_head poke_progs; 1599 struct bpf_map *map; 1600 struct mutex poke_mutex; 1601 struct work_struct work; 1602 }; 1603 1604 struct bpf_link { 1605 atomic64_t refcnt; 1606 u32 id; 1607 enum bpf_link_type type; 1608 const struct bpf_link_ops *ops; 1609 struct bpf_prog *prog; 1610 /* rcu is used before freeing, work can be used to schedule that 1611 * RCU-based freeing before that, so they never overlap 1612 */ 1613 union { 1614 struct rcu_head rcu; 1615 struct work_struct work; 1616 }; 1617 }; 1618 1619 struct bpf_link_ops { 1620 void (*release)(struct bpf_link *link); 1621 /* deallocate link resources callback, called without RCU grace period 1622 * waiting 1623 */ 1624 void (*dealloc)(struct bpf_link *link); 1625 /* deallocate link resources callback, called after RCU grace period; 1626 * if underlying BPF program is sleepable we go through tasks trace 1627 * RCU GP and then "classic" RCU GP 1628 */ 1629 void (*dealloc_deferred)(struct bpf_link *link); 1630 int (*detach)(struct bpf_link *link); 1631 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1632 struct bpf_prog *old_prog); 1633 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1634 int (*fill_link_info)(const struct bpf_link *link, 1635 struct bpf_link_info *info); 1636 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1637 struct bpf_map *old_map); 1638 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1639 }; 1640 1641 struct bpf_tramp_link { 1642 struct bpf_link link; 1643 struct hlist_node tramp_hlist; 1644 u64 cookie; 1645 }; 1646 1647 struct bpf_shim_tramp_link { 1648 struct bpf_tramp_link link; 1649 struct bpf_trampoline *trampoline; 1650 }; 1651 1652 struct bpf_tracing_link { 1653 struct bpf_tramp_link link; 1654 enum bpf_attach_type attach_type; 1655 struct bpf_trampoline *trampoline; 1656 struct bpf_prog *tgt_prog; 1657 }; 1658 1659 struct bpf_raw_tp_link { 1660 struct bpf_link link; 1661 struct bpf_raw_event_map *btp; 1662 u64 cookie; 1663 }; 1664 1665 struct bpf_link_primer { 1666 struct bpf_link *link; 1667 struct file *file; 1668 int fd; 1669 u32 id; 1670 }; 1671 1672 struct bpf_mount_opts { 1673 kuid_t uid; 1674 kgid_t gid; 1675 umode_t mode; 1676 1677 /* BPF token-related delegation options */ 1678 u64 delegate_cmds; 1679 u64 delegate_maps; 1680 u64 delegate_progs; 1681 u64 delegate_attachs; 1682 }; 1683 1684 struct bpf_token { 1685 struct work_struct work; 1686 atomic64_t refcnt; 1687 struct user_namespace *userns; 1688 u64 allowed_cmds; 1689 u64 allowed_maps; 1690 u64 allowed_progs; 1691 u64 allowed_attachs; 1692 #ifdef CONFIG_SECURITY 1693 void *security; 1694 #endif 1695 }; 1696 1697 struct bpf_struct_ops_value; 1698 struct btf_member; 1699 1700 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1701 /** 1702 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1703 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1704 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1705 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1706 * when determining whether the struct_ops progs in the 1707 * struct_ops map are valid. 1708 * @init: A callback that is invoked a single time, and before any other 1709 * callback, to initialize the structure. A nonzero return value means 1710 * the subsystem could not be initialized. 1711 * @check_member: When defined, a callback invoked by the verifier to allow 1712 * the subsystem to determine if an entry in the struct_ops map 1713 * is valid. A nonzero return value means that the map is 1714 * invalid and should be rejected by the verifier. 1715 * @init_member: A callback that is invoked for each member of the struct_ops 1716 * map to allow the subsystem to initialize the member. A nonzero 1717 * value means the member could not be initialized. This callback 1718 * is exclusive with the @type, @type_id, @value_type, and 1719 * @value_id fields. 1720 * @reg: A callback that is invoked when the struct_ops map has been 1721 * initialized and is being attached to. Zero means the struct_ops map 1722 * has been successfully registered and is live. A nonzero return value 1723 * means the struct_ops map could not be registered. 1724 * @unreg: A callback that is invoked when the struct_ops map should be 1725 * unregistered. 1726 * @update: A callback that is invoked when the live struct_ops map is being 1727 * updated to contain new values. This callback is only invoked when 1728 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1729 * it is assumed that the struct_ops map cannot be updated. 1730 * @validate: A callback that is invoked after all of the members have been 1731 * initialized. This callback should perform static checks on the 1732 * map, meaning that it should either fail or succeed 1733 * deterministically. A struct_ops map that has been validated may 1734 * not necessarily succeed in being registered if the call to @reg 1735 * fails. For example, a valid struct_ops map may be loaded, but 1736 * then fail to be registered due to there being another active 1737 * struct_ops map on the system in the subsystem already. For this 1738 * reason, if this callback is not defined, the check is skipped as 1739 * the struct_ops map will have final verification performed in 1740 * @reg. 1741 * @type: BTF type. 1742 * @value_type: Value type. 1743 * @name: The name of the struct bpf_struct_ops object. 1744 * @func_models: Func models 1745 * @type_id: BTF type id. 1746 * @value_id: BTF value id. 1747 */ 1748 struct bpf_struct_ops { 1749 const struct bpf_verifier_ops *verifier_ops; 1750 int (*init)(struct btf *btf); 1751 int (*check_member)(const struct btf_type *t, 1752 const struct btf_member *member, 1753 const struct bpf_prog *prog); 1754 int (*init_member)(const struct btf_type *t, 1755 const struct btf_member *member, 1756 void *kdata, const void *udata); 1757 int (*reg)(void *kdata, struct bpf_link *link); 1758 void (*unreg)(void *kdata, struct bpf_link *link); 1759 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1760 int (*validate)(void *kdata); 1761 void *cfi_stubs; 1762 struct module *owner; 1763 const char *name; 1764 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1765 }; 1766 1767 /* Every member of a struct_ops type has an instance even a member is not 1768 * an operator (function pointer). The "info" field will be assigned to 1769 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1770 * argument information required by the verifier to verify the program. 1771 * 1772 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1773 * corresponding entry for an given argument. 1774 */ 1775 struct bpf_struct_ops_arg_info { 1776 struct bpf_ctx_arg_aux *info; 1777 u32 cnt; 1778 }; 1779 1780 struct bpf_struct_ops_desc { 1781 struct bpf_struct_ops *st_ops; 1782 1783 const struct btf_type *type; 1784 const struct btf_type *value_type; 1785 u32 type_id; 1786 u32 value_id; 1787 1788 /* Collection of argument information for each member */ 1789 struct bpf_struct_ops_arg_info *arg_info; 1790 }; 1791 1792 enum bpf_struct_ops_state { 1793 BPF_STRUCT_OPS_STATE_INIT, 1794 BPF_STRUCT_OPS_STATE_INUSE, 1795 BPF_STRUCT_OPS_STATE_TOBEFREE, 1796 BPF_STRUCT_OPS_STATE_READY, 1797 }; 1798 1799 struct bpf_struct_ops_common_value { 1800 refcount_t refcnt; 1801 enum bpf_struct_ops_state state; 1802 }; 1803 1804 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1805 /* This macro helps developer to register a struct_ops type and generate 1806 * type information correctly. Developers should use this macro to register 1807 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1808 */ 1809 #define register_bpf_struct_ops(st_ops, type) \ 1810 ({ \ 1811 struct bpf_struct_ops_##type { \ 1812 struct bpf_struct_ops_common_value common; \ 1813 struct type data ____cacheline_aligned_in_smp; \ 1814 }; \ 1815 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1816 __register_bpf_struct_ops(st_ops); \ 1817 }) 1818 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1819 bool bpf_struct_ops_get(const void *kdata); 1820 void bpf_struct_ops_put(const void *kdata); 1821 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1822 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1823 void *value); 1824 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1825 struct bpf_tramp_link *link, 1826 const struct btf_func_model *model, 1827 void *stub_func, 1828 void **image, u32 *image_off, 1829 bool allow_alloc); 1830 void bpf_struct_ops_image_free(void *image); 1831 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1832 { 1833 if (owner == BPF_MODULE_OWNER) 1834 return bpf_struct_ops_get(data); 1835 else 1836 return try_module_get(owner); 1837 } 1838 static inline void bpf_module_put(const void *data, struct module *owner) 1839 { 1840 if (owner == BPF_MODULE_OWNER) 1841 bpf_struct_ops_put(data); 1842 else 1843 module_put(owner); 1844 } 1845 int bpf_struct_ops_link_create(union bpf_attr *attr); 1846 1847 #ifdef CONFIG_NET 1848 /* Define it here to avoid the use of forward declaration */ 1849 struct bpf_dummy_ops_state { 1850 int val; 1851 }; 1852 1853 struct bpf_dummy_ops { 1854 int (*test_1)(struct bpf_dummy_ops_state *cb); 1855 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1856 char a3, unsigned long a4); 1857 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1858 }; 1859 1860 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1861 union bpf_attr __user *uattr); 1862 #endif 1863 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1864 struct btf *btf, 1865 struct bpf_verifier_log *log); 1866 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1867 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1868 #else 1869 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1870 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1871 { 1872 return try_module_get(owner); 1873 } 1874 static inline void bpf_module_put(const void *data, struct module *owner) 1875 { 1876 module_put(owner); 1877 } 1878 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1879 { 1880 return -ENOTSUPP; 1881 } 1882 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1883 void *key, 1884 void *value) 1885 { 1886 return -EINVAL; 1887 } 1888 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1889 { 1890 return -EOPNOTSUPP; 1891 } 1892 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1893 { 1894 } 1895 1896 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1897 { 1898 } 1899 1900 #endif 1901 1902 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1903 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1904 int cgroup_atype); 1905 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1906 #else 1907 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1908 int cgroup_atype) 1909 { 1910 return -EOPNOTSUPP; 1911 } 1912 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1913 { 1914 } 1915 #endif 1916 1917 struct bpf_array { 1918 struct bpf_map map; 1919 u32 elem_size; 1920 u32 index_mask; 1921 struct bpf_array_aux *aux; 1922 union { 1923 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1924 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1925 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1926 }; 1927 }; 1928 1929 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1930 #define MAX_TAIL_CALL_CNT 33 1931 1932 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1933 * It's enum to expose it (and thus make it discoverable) through BTF. 1934 */ 1935 enum { 1936 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1937 }; 1938 1939 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1940 BPF_F_RDONLY_PROG | \ 1941 BPF_F_WRONLY | \ 1942 BPF_F_WRONLY_PROG) 1943 1944 #define BPF_MAP_CAN_READ BIT(0) 1945 #define BPF_MAP_CAN_WRITE BIT(1) 1946 1947 /* Maximum number of user-producer ring buffer samples that can be drained in 1948 * a call to bpf_user_ringbuf_drain(). 1949 */ 1950 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1951 1952 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1953 { 1954 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1955 1956 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1957 * not possible. 1958 */ 1959 if (access_flags & BPF_F_RDONLY_PROG) 1960 return BPF_MAP_CAN_READ; 1961 else if (access_flags & BPF_F_WRONLY_PROG) 1962 return BPF_MAP_CAN_WRITE; 1963 else 1964 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1965 } 1966 1967 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1968 { 1969 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1970 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1971 } 1972 1973 struct bpf_event_entry { 1974 struct perf_event *event; 1975 struct file *perf_file; 1976 struct file *map_file; 1977 struct rcu_head rcu; 1978 }; 1979 1980 static inline bool map_type_contains_progs(struct bpf_map *map) 1981 { 1982 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1983 map->map_type == BPF_MAP_TYPE_DEVMAP || 1984 map->map_type == BPF_MAP_TYPE_CPUMAP; 1985 } 1986 1987 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1988 int bpf_prog_calc_tag(struct bpf_prog *fp); 1989 1990 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1991 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1992 1993 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1994 unsigned long off, unsigned long len); 1995 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1996 const struct bpf_insn *src, 1997 struct bpf_insn *dst, 1998 struct bpf_prog *prog, 1999 u32 *target_size); 2000 2001 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2002 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2003 2004 /* an array of programs to be executed under rcu_lock. 2005 * 2006 * Typical usage: 2007 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2008 * 2009 * the structure returned by bpf_prog_array_alloc() should be populated 2010 * with program pointers and the last pointer must be NULL. 2011 * The user has to keep refcnt on the program and make sure the program 2012 * is removed from the array before bpf_prog_put(). 2013 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2014 * since other cpus are walking the array of pointers in parallel. 2015 */ 2016 struct bpf_prog_array_item { 2017 struct bpf_prog *prog; 2018 union { 2019 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2020 u64 bpf_cookie; 2021 }; 2022 }; 2023 2024 struct bpf_prog_array { 2025 struct rcu_head rcu; 2026 struct bpf_prog_array_item items[]; 2027 }; 2028 2029 struct bpf_empty_prog_array { 2030 struct bpf_prog_array hdr; 2031 struct bpf_prog *null_prog; 2032 }; 2033 2034 /* to avoid allocating empty bpf_prog_array for cgroups that 2035 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2036 * It will not be modified the caller of bpf_prog_array_alloc() 2037 * (since caller requested prog_cnt == 0) 2038 * that pointer should be 'freed' by bpf_prog_array_free() 2039 */ 2040 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2041 2042 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2043 void bpf_prog_array_free(struct bpf_prog_array *progs); 2044 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2045 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2046 int bpf_prog_array_length(struct bpf_prog_array *progs); 2047 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2048 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2049 __u32 __user *prog_ids, u32 cnt); 2050 2051 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2052 struct bpf_prog *old_prog); 2053 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2054 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2055 struct bpf_prog *prog); 2056 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2057 u32 *prog_ids, u32 request_cnt, 2058 u32 *prog_cnt); 2059 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2060 struct bpf_prog *exclude_prog, 2061 struct bpf_prog *include_prog, 2062 u64 bpf_cookie, 2063 struct bpf_prog_array **new_array); 2064 2065 struct bpf_run_ctx {}; 2066 2067 struct bpf_cg_run_ctx { 2068 struct bpf_run_ctx run_ctx; 2069 const struct bpf_prog_array_item *prog_item; 2070 int retval; 2071 }; 2072 2073 struct bpf_trace_run_ctx { 2074 struct bpf_run_ctx run_ctx; 2075 u64 bpf_cookie; 2076 bool is_uprobe; 2077 }; 2078 2079 struct bpf_tramp_run_ctx { 2080 struct bpf_run_ctx run_ctx; 2081 u64 bpf_cookie; 2082 struct bpf_run_ctx *saved_run_ctx; 2083 }; 2084 2085 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2086 { 2087 struct bpf_run_ctx *old_ctx = NULL; 2088 2089 #ifdef CONFIG_BPF_SYSCALL 2090 old_ctx = current->bpf_ctx; 2091 current->bpf_ctx = new_ctx; 2092 #endif 2093 return old_ctx; 2094 } 2095 2096 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2097 { 2098 #ifdef CONFIG_BPF_SYSCALL 2099 current->bpf_ctx = old_ctx; 2100 #endif 2101 } 2102 2103 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2104 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2105 /* BPF program asks to set CN on the packet. */ 2106 #define BPF_RET_SET_CN (1 << 0) 2107 2108 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2109 2110 static __always_inline u32 2111 bpf_prog_run_array(const struct bpf_prog_array *array, 2112 const void *ctx, bpf_prog_run_fn run_prog) 2113 { 2114 const struct bpf_prog_array_item *item; 2115 const struct bpf_prog *prog; 2116 struct bpf_run_ctx *old_run_ctx; 2117 struct bpf_trace_run_ctx run_ctx; 2118 u32 ret = 1; 2119 2120 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2121 2122 if (unlikely(!array)) 2123 return ret; 2124 2125 run_ctx.is_uprobe = false; 2126 2127 migrate_disable(); 2128 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2129 item = &array->items[0]; 2130 while ((prog = READ_ONCE(item->prog))) { 2131 run_ctx.bpf_cookie = item->bpf_cookie; 2132 ret &= run_prog(prog, ctx); 2133 item++; 2134 } 2135 bpf_reset_run_ctx(old_run_ctx); 2136 migrate_enable(); 2137 return ret; 2138 } 2139 2140 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2141 * 2142 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2143 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2144 * in order to use the tasks_trace rcu grace period. 2145 * 2146 * When a non-sleepable program is inside the array, we take the rcu read 2147 * section and disable preemption for that program alone, so it can access 2148 * rcu-protected dynamically sized maps. 2149 */ 2150 static __always_inline u32 2151 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2152 const void *ctx, bpf_prog_run_fn run_prog) 2153 { 2154 const struct bpf_prog_array_item *item; 2155 const struct bpf_prog *prog; 2156 const struct bpf_prog_array *array; 2157 struct bpf_run_ctx *old_run_ctx; 2158 struct bpf_trace_run_ctx run_ctx; 2159 u32 ret = 1; 2160 2161 might_fault(); 2162 2163 rcu_read_lock_trace(); 2164 migrate_disable(); 2165 2166 run_ctx.is_uprobe = true; 2167 2168 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2169 if (unlikely(!array)) 2170 goto out; 2171 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2172 item = &array->items[0]; 2173 while ((prog = READ_ONCE(item->prog))) { 2174 if (!prog->sleepable) 2175 rcu_read_lock(); 2176 2177 run_ctx.bpf_cookie = item->bpf_cookie; 2178 ret &= run_prog(prog, ctx); 2179 item++; 2180 2181 if (!prog->sleepable) 2182 rcu_read_unlock(); 2183 } 2184 bpf_reset_run_ctx(old_run_ctx); 2185 out: 2186 migrate_enable(); 2187 rcu_read_unlock_trace(); 2188 return ret; 2189 } 2190 2191 #ifdef CONFIG_BPF_SYSCALL 2192 DECLARE_PER_CPU(int, bpf_prog_active); 2193 extern struct mutex bpf_stats_enabled_mutex; 2194 2195 /* 2196 * Block execution of BPF programs attached to instrumentation (perf, 2197 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2198 * these events can happen inside a region which holds a map bucket lock 2199 * and can deadlock on it. 2200 */ 2201 static inline void bpf_disable_instrumentation(void) 2202 { 2203 migrate_disable(); 2204 this_cpu_inc(bpf_prog_active); 2205 } 2206 2207 static inline void bpf_enable_instrumentation(void) 2208 { 2209 this_cpu_dec(bpf_prog_active); 2210 migrate_enable(); 2211 } 2212 2213 extern const struct super_operations bpf_super_ops; 2214 extern const struct file_operations bpf_map_fops; 2215 extern const struct file_operations bpf_prog_fops; 2216 extern const struct file_operations bpf_iter_fops; 2217 2218 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2219 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2220 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2221 #define BPF_MAP_TYPE(_id, _ops) \ 2222 extern const struct bpf_map_ops _ops; 2223 #define BPF_LINK_TYPE(_id, _name) 2224 #include <linux/bpf_types.h> 2225 #undef BPF_PROG_TYPE 2226 #undef BPF_MAP_TYPE 2227 #undef BPF_LINK_TYPE 2228 2229 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2230 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2231 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2232 2233 struct bpf_prog *bpf_prog_get(u32 ufd); 2234 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2235 bool attach_drv); 2236 void bpf_prog_add(struct bpf_prog *prog, int i); 2237 void bpf_prog_sub(struct bpf_prog *prog, int i); 2238 void bpf_prog_inc(struct bpf_prog *prog); 2239 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2240 void bpf_prog_put(struct bpf_prog *prog); 2241 2242 void bpf_prog_free_id(struct bpf_prog *prog); 2243 void bpf_map_free_id(struct bpf_map *map); 2244 2245 struct btf_field *btf_record_find(const struct btf_record *rec, 2246 u32 offset, u32 field_mask); 2247 void btf_record_free(struct btf_record *rec); 2248 void bpf_map_free_record(struct bpf_map *map); 2249 struct btf_record *btf_record_dup(const struct btf_record *rec); 2250 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2251 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2252 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2253 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2254 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2255 2256 struct bpf_map *bpf_map_get(u32 ufd); 2257 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2258 2259 static inline struct bpf_map *__bpf_map_get(struct fd f) 2260 { 2261 if (fd_empty(f)) 2262 return ERR_PTR(-EBADF); 2263 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2264 return ERR_PTR(-EINVAL); 2265 return fd_file(f)->private_data; 2266 } 2267 2268 void bpf_map_inc(struct bpf_map *map); 2269 void bpf_map_inc_with_uref(struct bpf_map *map); 2270 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2271 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2272 void bpf_map_put_with_uref(struct bpf_map *map); 2273 void bpf_map_put(struct bpf_map *map); 2274 void *bpf_map_area_alloc(u64 size, int numa_node); 2275 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2276 void bpf_map_area_free(void *base); 2277 bool bpf_map_write_active(const struct bpf_map *map); 2278 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2279 int generic_map_lookup_batch(struct bpf_map *map, 2280 const union bpf_attr *attr, 2281 union bpf_attr __user *uattr); 2282 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2283 const union bpf_attr *attr, 2284 union bpf_attr __user *uattr); 2285 int generic_map_delete_batch(struct bpf_map *map, 2286 const union bpf_attr *attr, 2287 union bpf_attr __user *uattr); 2288 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2289 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2290 2291 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2292 unsigned long nr_pages, struct page **page_array); 2293 #ifdef CONFIG_MEMCG 2294 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2295 int node); 2296 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2297 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2298 gfp_t flags); 2299 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2300 size_t align, gfp_t flags); 2301 #else 2302 /* 2303 * These specialized allocators have to be macros for their allocations to be 2304 * accounted separately (to have separate alloc_tag). 2305 */ 2306 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2307 kmalloc_node(_size, _flags, _node) 2308 #define bpf_map_kzalloc(_map, _size, _flags) \ 2309 kzalloc(_size, _flags) 2310 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2311 kvcalloc(_n, _size, _flags) 2312 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2313 __alloc_percpu_gfp(_size, _align, _flags) 2314 #endif 2315 2316 static inline int 2317 bpf_map_init_elem_count(struct bpf_map *map) 2318 { 2319 size_t size = sizeof(*map->elem_count), align = size; 2320 gfp_t flags = GFP_USER | __GFP_NOWARN; 2321 2322 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2323 if (!map->elem_count) 2324 return -ENOMEM; 2325 2326 return 0; 2327 } 2328 2329 static inline void 2330 bpf_map_free_elem_count(struct bpf_map *map) 2331 { 2332 free_percpu(map->elem_count); 2333 } 2334 2335 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2336 { 2337 this_cpu_inc(*map->elem_count); 2338 } 2339 2340 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2341 { 2342 this_cpu_dec(*map->elem_count); 2343 } 2344 2345 extern int sysctl_unprivileged_bpf_disabled; 2346 2347 bool bpf_token_capable(const struct bpf_token *token, int cap); 2348 2349 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2350 { 2351 return bpf_token_capable(token, CAP_PERFMON); 2352 } 2353 2354 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2355 { 2356 return bpf_token_capable(token, CAP_PERFMON); 2357 } 2358 2359 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2360 { 2361 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2362 } 2363 2364 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2365 { 2366 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2367 } 2368 2369 int bpf_map_new_fd(struct bpf_map *map, int flags); 2370 int bpf_prog_new_fd(struct bpf_prog *prog); 2371 2372 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2373 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2374 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2375 int bpf_link_settle(struct bpf_link_primer *primer); 2376 void bpf_link_cleanup(struct bpf_link_primer *primer); 2377 void bpf_link_inc(struct bpf_link *link); 2378 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2379 void bpf_link_put(struct bpf_link *link); 2380 int bpf_link_new_fd(struct bpf_link *link); 2381 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2382 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2383 2384 void bpf_token_inc(struct bpf_token *token); 2385 void bpf_token_put(struct bpf_token *token); 2386 int bpf_token_create(union bpf_attr *attr); 2387 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2388 2389 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2390 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2391 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2392 enum bpf_prog_type prog_type, 2393 enum bpf_attach_type attach_type); 2394 2395 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2396 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2397 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2398 umode_t mode); 2399 2400 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2401 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2402 extern int bpf_iter_ ## target(args); \ 2403 int __init bpf_iter_ ## target(args) { return 0; } 2404 2405 /* 2406 * The task type of iterators. 2407 * 2408 * For BPF task iterators, they can be parameterized with various 2409 * parameters to visit only some of tasks. 2410 * 2411 * BPF_TASK_ITER_ALL (default) 2412 * Iterate over resources of every task. 2413 * 2414 * BPF_TASK_ITER_TID 2415 * Iterate over resources of a task/tid. 2416 * 2417 * BPF_TASK_ITER_TGID 2418 * Iterate over resources of every task of a process / task group. 2419 */ 2420 enum bpf_iter_task_type { 2421 BPF_TASK_ITER_ALL = 0, 2422 BPF_TASK_ITER_TID, 2423 BPF_TASK_ITER_TGID, 2424 }; 2425 2426 struct bpf_iter_aux_info { 2427 /* for map_elem iter */ 2428 struct bpf_map *map; 2429 2430 /* for cgroup iter */ 2431 struct { 2432 struct cgroup *start; /* starting cgroup */ 2433 enum bpf_cgroup_iter_order order; 2434 } cgroup; 2435 struct { 2436 enum bpf_iter_task_type type; 2437 u32 pid; 2438 } task; 2439 }; 2440 2441 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2442 union bpf_iter_link_info *linfo, 2443 struct bpf_iter_aux_info *aux); 2444 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2445 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2446 struct seq_file *seq); 2447 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2448 struct bpf_link_info *info); 2449 typedef const struct bpf_func_proto * 2450 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2451 const struct bpf_prog *prog); 2452 2453 enum bpf_iter_feature { 2454 BPF_ITER_RESCHED = BIT(0), 2455 }; 2456 2457 #define BPF_ITER_CTX_ARG_MAX 2 2458 struct bpf_iter_reg { 2459 const char *target; 2460 bpf_iter_attach_target_t attach_target; 2461 bpf_iter_detach_target_t detach_target; 2462 bpf_iter_show_fdinfo_t show_fdinfo; 2463 bpf_iter_fill_link_info_t fill_link_info; 2464 bpf_iter_get_func_proto_t get_func_proto; 2465 u32 ctx_arg_info_size; 2466 u32 feature; 2467 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2468 const struct bpf_iter_seq_info *seq_info; 2469 }; 2470 2471 struct bpf_iter_meta { 2472 __bpf_md_ptr(struct seq_file *, seq); 2473 u64 session_id; 2474 u64 seq_num; 2475 }; 2476 2477 struct bpf_iter__bpf_map_elem { 2478 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2479 __bpf_md_ptr(struct bpf_map *, map); 2480 __bpf_md_ptr(void *, key); 2481 __bpf_md_ptr(void *, value); 2482 }; 2483 2484 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2485 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2486 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2487 const struct bpf_func_proto * 2488 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2489 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2490 int bpf_iter_new_fd(struct bpf_link *link); 2491 bool bpf_link_is_iter(struct bpf_link *link); 2492 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2493 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2494 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2495 struct seq_file *seq); 2496 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2497 struct bpf_link_info *info); 2498 2499 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2500 struct bpf_func_state *caller, 2501 struct bpf_func_state *callee); 2502 2503 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2504 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2505 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2506 u64 flags); 2507 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2508 u64 flags); 2509 2510 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2511 2512 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2513 void *key, void *value, u64 map_flags); 2514 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2515 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2516 void *key, void *value, u64 map_flags); 2517 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2518 2519 int bpf_get_file_flag(int flags); 2520 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2521 size_t actual_size); 2522 2523 /* verify correctness of eBPF program */ 2524 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2525 2526 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2527 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2528 #endif 2529 2530 struct btf *bpf_get_btf_vmlinux(void); 2531 2532 /* Map specifics */ 2533 struct xdp_frame; 2534 struct sk_buff; 2535 struct bpf_dtab_netdev; 2536 struct bpf_cpu_map_entry; 2537 2538 void __dev_flush(struct list_head *flush_list); 2539 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2540 struct net_device *dev_rx); 2541 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2542 struct net_device *dev_rx); 2543 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2544 struct bpf_map *map, bool exclude_ingress); 2545 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2546 struct bpf_prog *xdp_prog); 2547 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2548 struct bpf_prog *xdp_prog, struct bpf_map *map, 2549 bool exclude_ingress); 2550 2551 void __cpu_map_flush(struct list_head *flush_list); 2552 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2553 struct net_device *dev_rx); 2554 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2555 struct sk_buff *skb); 2556 2557 /* Return map's numa specified by userspace */ 2558 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2559 { 2560 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2561 attr->numa_node : NUMA_NO_NODE; 2562 } 2563 2564 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2565 int array_map_alloc_check(union bpf_attr *attr); 2566 2567 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2568 union bpf_attr __user *uattr); 2569 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2570 union bpf_attr __user *uattr); 2571 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2572 const union bpf_attr *kattr, 2573 union bpf_attr __user *uattr); 2574 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2575 const union bpf_attr *kattr, 2576 union bpf_attr __user *uattr); 2577 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2578 const union bpf_attr *kattr, 2579 union bpf_attr __user *uattr); 2580 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2581 const union bpf_attr *kattr, 2582 union bpf_attr __user *uattr); 2583 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2584 const union bpf_attr *kattr, 2585 union bpf_attr __user *uattr); 2586 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2587 const struct bpf_prog *prog, 2588 struct bpf_insn_access_aux *info); 2589 2590 static inline bool bpf_tracing_ctx_access(int off, int size, 2591 enum bpf_access_type type) 2592 { 2593 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2594 return false; 2595 if (type != BPF_READ) 2596 return false; 2597 if (off % size != 0) 2598 return false; 2599 return true; 2600 } 2601 2602 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2603 enum bpf_access_type type, 2604 const struct bpf_prog *prog, 2605 struct bpf_insn_access_aux *info) 2606 { 2607 if (!bpf_tracing_ctx_access(off, size, type)) 2608 return false; 2609 return btf_ctx_access(off, size, type, prog, info); 2610 } 2611 2612 int btf_struct_access(struct bpf_verifier_log *log, 2613 const struct bpf_reg_state *reg, 2614 int off, int size, enum bpf_access_type atype, 2615 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2616 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2617 const struct btf *btf, u32 id, int off, 2618 const struct btf *need_btf, u32 need_type_id, 2619 bool strict); 2620 2621 int btf_distill_func_proto(struct bpf_verifier_log *log, 2622 struct btf *btf, 2623 const struct btf_type *func_proto, 2624 const char *func_name, 2625 struct btf_func_model *m); 2626 2627 struct bpf_reg_state; 2628 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2629 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2630 struct btf *btf, const struct btf_type *t); 2631 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2632 int comp_idx, const char *tag_key); 2633 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2634 int comp_idx, const char *tag_key, int last_id); 2635 2636 struct bpf_prog *bpf_prog_by_id(u32 id); 2637 struct bpf_link *bpf_link_by_id(u32 id); 2638 2639 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2640 const struct bpf_prog *prog); 2641 void bpf_task_storage_free(struct task_struct *task); 2642 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2643 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2644 const struct btf_func_model * 2645 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2646 const struct bpf_insn *insn); 2647 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2648 u16 btf_fd_idx, u8 **func_addr); 2649 2650 struct bpf_core_ctx { 2651 struct bpf_verifier_log *log; 2652 const struct btf *btf; 2653 }; 2654 2655 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2656 const struct bpf_reg_state *reg, 2657 const char *field_name, u32 btf_id, const char *suffix); 2658 2659 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2660 const struct btf *reg_btf, u32 reg_id, 2661 const struct btf *arg_btf, u32 arg_id); 2662 2663 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2664 int relo_idx, void *insn); 2665 2666 static inline bool unprivileged_ebpf_enabled(void) 2667 { 2668 return !sysctl_unprivileged_bpf_disabled; 2669 } 2670 2671 /* Not all bpf prog type has the bpf_ctx. 2672 * For the bpf prog type that has initialized the bpf_ctx, 2673 * this function can be used to decide if a kernel function 2674 * is called by a bpf program. 2675 */ 2676 static inline bool has_current_bpf_ctx(void) 2677 { 2678 return !!current->bpf_ctx; 2679 } 2680 2681 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2682 2683 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2684 enum bpf_dynptr_type type, u32 offset, u32 size); 2685 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2686 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2687 2688 #else /* !CONFIG_BPF_SYSCALL */ 2689 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2690 { 2691 return ERR_PTR(-EOPNOTSUPP); 2692 } 2693 2694 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2695 enum bpf_prog_type type, 2696 bool attach_drv) 2697 { 2698 return ERR_PTR(-EOPNOTSUPP); 2699 } 2700 2701 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2702 { 2703 } 2704 2705 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2706 { 2707 } 2708 2709 static inline void bpf_prog_put(struct bpf_prog *prog) 2710 { 2711 } 2712 2713 static inline void bpf_prog_inc(struct bpf_prog *prog) 2714 { 2715 } 2716 2717 static inline struct bpf_prog *__must_check 2718 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2719 { 2720 return ERR_PTR(-EOPNOTSUPP); 2721 } 2722 2723 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2724 const struct bpf_link_ops *ops, 2725 struct bpf_prog *prog) 2726 { 2727 } 2728 2729 static inline int bpf_link_prime(struct bpf_link *link, 2730 struct bpf_link_primer *primer) 2731 { 2732 return -EOPNOTSUPP; 2733 } 2734 2735 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2736 { 2737 return -EOPNOTSUPP; 2738 } 2739 2740 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2741 { 2742 } 2743 2744 static inline void bpf_link_inc(struct bpf_link *link) 2745 { 2746 } 2747 2748 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2749 { 2750 return NULL; 2751 } 2752 2753 static inline void bpf_link_put(struct bpf_link *link) 2754 { 2755 } 2756 2757 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2758 { 2759 return -EOPNOTSUPP; 2760 } 2761 2762 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2763 { 2764 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2765 } 2766 2767 static inline void bpf_token_inc(struct bpf_token *token) 2768 { 2769 } 2770 2771 static inline void bpf_token_put(struct bpf_token *token) 2772 { 2773 } 2774 2775 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2776 { 2777 return ERR_PTR(-EOPNOTSUPP); 2778 } 2779 2780 static inline void __dev_flush(struct list_head *flush_list) 2781 { 2782 } 2783 2784 struct xdp_frame; 2785 struct bpf_dtab_netdev; 2786 struct bpf_cpu_map_entry; 2787 2788 static inline 2789 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2790 struct net_device *dev_rx) 2791 { 2792 return 0; 2793 } 2794 2795 static inline 2796 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2797 struct net_device *dev_rx) 2798 { 2799 return 0; 2800 } 2801 2802 static inline 2803 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2804 struct bpf_map *map, bool exclude_ingress) 2805 { 2806 return 0; 2807 } 2808 2809 struct sk_buff; 2810 2811 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2812 struct sk_buff *skb, 2813 struct bpf_prog *xdp_prog) 2814 { 2815 return 0; 2816 } 2817 2818 static inline 2819 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2820 struct bpf_prog *xdp_prog, struct bpf_map *map, 2821 bool exclude_ingress) 2822 { 2823 return 0; 2824 } 2825 2826 static inline void __cpu_map_flush(struct list_head *flush_list) 2827 { 2828 } 2829 2830 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2831 struct xdp_frame *xdpf, 2832 struct net_device *dev_rx) 2833 { 2834 return 0; 2835 } 2836 2837 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2838 struct sk_buff *skb) 2839 { 2840 return -EOPNOTSUPP; 2841 } 2842 2843 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2844 enum bpf_prog_type type) 2845 { 2846 return ERR_PTR(-EOPNOTSUPP); 2847 } 2848 2849 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2850 const union bpf_attr *kattr, 2851 union bpf_attr __user *uattr) 2852 { 2853 return -ENOTSUPP; 2854 } 2855 2856 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2857 const union bpf_attr *kattr, 2858 union bpf_attr __user *uattr) 2859 { 2860 return -ENOTSUPP; 2861 } 2862 2863 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2864 const union bpf_attr *kattr, 2865 union bpf_attr __user *uattr) 2866 { 2867 return -ENOTSUPP; 2868 } 2869 2870 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2871 const union bpf_attr *kattr, 2872 union bpf_attr __user *uattr) 2873 { 2874 return -ENOTSUPP; 2875 } 2876 2877 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2878 const union bpf_attr *kattr, 2879 union bpf_attr __user *uattr) 2880 { 2881 return -ENOTSUPP; 2882 } 2883 2884 static inline void bpf_map_put(struct bpf_map *map) 2885 { 2886 } 2887 2888 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2889 { 2890 return ERR_PTR(-ENOTSUPP); 2891 } 2892 2893 static inline int btf_struct_access(struct bpf_verifier_log *log, 2894 const struct bpf_reg_state *reg, 2895 int off, int size, enum bpf_access_type atype, 2896 u32 *next_btf_id, enum bpf_type_flag *flag, 2897 const char **field_name) 2898 { 2899 return -EACCES; 2900 } 2901 2902 static inline const struct bpf_func_proto * 2903 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2904 { 2905 return NULL; 2906 } 2907 2908 static inline void bpf_task_storage_free(struct task_struct *task) 2909 { 2910 } 2911 2912 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2913 { 2914 return false; 2915 } 2916 2917 static inline const struct btf_func_model * 2918 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2919 const struct bpf_insn *insn) 2920 { 2921 return NULL; 2922 } 2923 2924 static inline int 2925 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2926 u16 btf_fd_idx, u8 **func_addr) 2927 { 2928 return -ENOTSUPP; 2929 } 2930 2931 static inline bool unprivileged_ebpf_enabled(void) 2932 { 2933 return false; 2934 } 2935 2936 static inline bool has_current_bpf_ctx(void) 2937 { 2938 return false; 2939 } 2940 2941 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2942 { 2943 } 2944 2945 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2946 { 2947 } 2948 2949 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2950 enum bpf_dynptr_type type, u32 offset, u32 size) 2951 { 2952 } 2953 2954 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2955 { 2956 } 2957 2958 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2959 { 2960 } 2961 #endif /* CONFIG_BPF_SYSCALL */ 2962 2963 static __always_inline int 2964 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2965 { 2966 int ret = -EFAULT; 2967 2968 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2969 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2970 if (unlikely(ret < 0)) 2971 memset(dst, 0, size); 2972 return ret; 2973 } 2974 2975 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 2976 2977 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2978 enum bpf_prog_type type) 2979 { 2980 return bpf_prog_get_type_dev(ufd, type, false); 2981 } 2982 2983 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2984 struct bpf_map **used_maps, u32 len); 2985 2986 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2987 2988 int bpf_prog_offload_compile(struct bpf_prog *prog); 2989 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2990 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2991 struct bpf_prog *prog); 2992 2993 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2994 2995 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2996 int bpf_map_offload_update_elem(struct bpf_map *map, 2997 void *key, void *value, u64 flags); 2998 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2999 int bpf_map_offload_get_next_key(struct bpf_map *map, 3000 void *key, void *next_key); 3001 3002 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3003 3004 struct bpf_offload_dev * 3005 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3006 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3007 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3008 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3009 struct net_device *netdev); 3010 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3011 struct net_device *netdev); 3012 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3013 3014 void unpriv_ebpf_notify(int new_state); 3015 3016 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3017 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3018 struct bpf_prog_aux *prog_aux); 3019 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3020 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3021 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3022 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3023 3024 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3025 { 3026 return aux->dev_bound; 3027 } 3028 3029 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3030 { 3031 return aux->offload_requested; 3032 } 3033 3034 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3035 3036 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3037 { 3038 return unlikely(map->ops == &bpf_map_offload_ops); 3039 } 3040 3041 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3042 void bpf_map_offload_map_free(struct bpf_map *map); 3043 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3044 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3045 const union bpf_attr *kattr, 3046 union bpf_attr __user *uattr); 3047 3048 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3049 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3050 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3051 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3052 union bpf_attr __user *uattr); 3053 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3054 3055 void sock_map_unhash(struct sock *sk); 3056 void sock_map_destroy(struct sock *sk); 3057 void sock_map_close(struct sock *sk, long timeout); 3058 #else 3059 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3060 struct bpf_prog_aux *prog_aux) 3061 { 3062 return -EOPNOTSUPP; 3063 } 3064 3065 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3066 u32 func_id) 3067 { 3068 return NULL; 3069 } 3070 3071 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3072 union bpf_attr *attr) 3073 { 3074 return -EOPNOTSUPP; 3075 } 3076 3077 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3078 struct bpf_prog *old_prog) 3079 { 3080 return -EOPNOTSUPP; 3081 } 3082 3083 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3084 { 3085 } 3086 3087 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3088 { 3089 return false; 3090 } 3091 3092 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3093 { 3094 return false; 3095 } 3096 3097 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3098 { 3099 return false; 3100 } 3101 3102 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3103 { 3104 return false; 3105 } 3106 3107 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3108 { 3109 return ERR_PTR(-EOPNOTSUPP); 3110 } 3111 3112 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3113 { 3114 } 3115 3116 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3117 { 3118 return 0; 3119 } 3120 3121 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3122 const union bpf_attr *kattr, 3123 union bpf_attr __user *uattr) 3124 { 3125 return -ENOTSUPP; 3126 } 3127 3128 #ifdef CONFIG_BPF_SYSCALL 3129 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3130 struct bpf_prog *prog) 3131 { 3132 return -EINVAL; 3133 } 3134 3135 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3136 enum bpf_prog_type ptype) 3137 { 3138 return -EOPNOTSUPP; 3139 } 3140 3141 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3142 u64 flags) 3143 { 3144 return -EOPNOTSUPP; 3145 } 3146 3147 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3148 union bpf_attr __user *uattr) 3149 { 3150 return -EINVAL; 3151 } 3152 3153 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3154 { 3155 return -EOPNOTSUPP; 3156 } 3157 #endif /* CONFIG_BPF_SYSCALL */ 3158 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3159 3160 static __always_inline void 3161 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3162 { 3163 const struct bpf_prog_array_item *item; 3164 struct bpf_prog *prog; 3165 3166 if (unlikely(!array)) 3167 return; 3168 3169 item = &array->items[0]; 3170 while ((prog = READ_ONCE(item->prog))) { 3171 bpf_prog_inc_misses_counter(prog); 3172 item++; 3173 } 3174 } 3175 3176 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3177 void bpf_sk_reuseport_detach(struct sock *sk); 3178 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3179 void *value); 3180 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3181 void *value, u64 map_flags); 3182 #else 3183 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3184 { 3185 } 3186 3187 #ifdef CONFIG_BPF_SYSCALL 3188 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3189 void *key, void *value) 3190 { 3191 return -EOPNOTSUPP; 3192 } 3193 3194 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3195 void *key, void *value, 3196 u64 map_flags) 3197 { 3198 return -EOPNOTSUPP; 3199 } 3200 #endif /* CONFIG_BPF_SYSCALL */ 3201 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3202 3203 /* verifier prototypes for helper functions called from eBPF programs */ 3204 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3205 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3206 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3207 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3208 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3209 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3210 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3211 3212 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3213 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3214 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3215 extern const struct bpf_func_proto bpf_tail_call_proto; 3216 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3217 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3218 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3219 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3220 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3221 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3222 extern const struct bpf_func_proto bpf_get_stackid_proto; 3223 extern const struct bpf_func_proto bpf_get_stack_proto; 3224 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3225 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3226 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3227 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3228 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3229 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3230 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3231 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3232 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3233 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3234 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3235 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3236 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3237 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3238 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3239 extern const struct bpf_func_proto bpf_spin_lock_proto; 3240 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3241 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3242 extern const struct bpf_func_proto bpf_strtol_proto; 3243 extern const struct bpf_func_proto bpf_strtoul_proto; 3244 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3245 extern const struct bpf_func_proto bpf_jiffies64_proto; 3246 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3247 extern const struct bpf_func_proto bpf_event_output_data_proto; 3248 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3249 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3250 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3251 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3252 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3253 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3254 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3255 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3256 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3257 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3258 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3259 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3260 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3261 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3262 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3263 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3264 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3265 extern const struct bpf_func_proto bpf_snprintf_proto; 3266 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3267 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3268 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3269 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3270 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3271 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3272 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3273 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3274 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3275 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3276 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3277 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3278 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3279 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3280 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3281 extern const struct bpf_func_proto bpf_find_vma_proto; 3282 extern const struct bpf_func_proto bpf_loop_proto; 3283 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3284 extern const struct bpf_func_proto bpf_set_retval_proto; 3285 extern const struct bpf_func_proto bpf_get_retval_proto; 3286 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3287 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3288 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3289 3290 const struct bpf_func_proto *tracing_prog_func_proto( 3291 enum bpf_func_id func_id, const struct bpf_prog *prog); 3292 3293 /* Shared helpers among cBPF and eBPF. */ 3294 void bpf_user_rnd_init_once(void); 3295 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3296 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3297 3298 #if defined(CONFIG_NET) 3299 bool bpf_sock_common_is_valid_access(int off, int size, 3300 enum bpf_access_type type, 3301 struct bpf_insn_access_aux *info); 3302 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3303 struct bpf_insn_access_aux *info); 3304 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3305 const struct bpf_insn *si, 3306 struct bpf_insn *insn_buf, 3307 struct bpf_prog *prog, 3308 u32 *target_size); 3309 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3310 struct bpf_dynptr *ptr); 3311 #else 3312 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3313 enum bpf_access_type type, 3314 struct bpf_insn_access_aux *info) 3315 { 3316 return false; 3317 } 3318 static inline bool bpf_sock_is_valid_access(int off, int size, 3319 enum bpf_access_type type, 3320 struct bpf_insn_access_aux *info) 3321 { 3322 return false; 3323 } 3324 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3325 const struct bpf_insn *si, 3326 struct bpf_insn *insn_buf, 3327 struct bpf_prog *prog, 3328 u32 *target_size) 3329 { 3330 return 0; 3331 } 3332 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3333 struct bpf_dynptr *ptr) 3334 { 3335 return -EOPNOTSUPP; 3336 } 3337 #endif 3338 3339 #ifdef CONFIG_INET 3340 struct sk_reuseport_kern { 3341 struct sk_buff *skb; 3342 struct sock *sk; 3343 struct sock *selected_sk; 3344 struct sock *migrating_sk; 3345 void *data_end; 3346 u32 hash; 3347 u32 reuseport_id; 3348 bool bind_inany; 3349 }; 3350 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3351 struct bpf_insn_access_aux *info); 3352 3353 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3354 const struct bpf_insn *si, 3355 struct bpf_insn *insn_buf, 3356 struct bpf_prog *prog, 3357 u32 *target_size); 3358 3359 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3360 struct bpf_insn_access_aux *info); 3361 3362 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3363 const struct bpf_insn *si, 3364 struct bpf_insn *insn_buf, 3365 struct bpf_prog *prog, 3366 u32 *target_size); 3367 #else 3368 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3369 enum bpf_access_type type, 3370 struct bpf_insn_access_aux *info) 3371 { 3372 return false; 3373 } 3374 3375 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3376 const struct bpf_insn *si, 3377 struct bpf_insn *insn_buf, 3378 struct bpf_prog *prog, 3379 u32 *target_size) 3380 { 3381 return 0; 3382 } 3383 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3384 enum bpf_access_type type, 3385 struct bpf_insn_access_aux *info) 3386 { 3387 return false; 3388 } 3389 3390 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3391 const struct bpf_insn *si, 3392 struct bpf_insn *insn_buf, 3393 struct bpf_prog *prog, 3394 u32 *target_size) 3395 { 3396 return 0; 3397 } 3398 #endif /* CONFIG_INET */ 3399 3400 enum bpf_text_poke_type { 3401 BPF_MOD_CALL, 3402 BPF_MOD_JUMP, 3403 }; 3404 3405 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3406 void *addr1, void *addr2); 3407 3408 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3409 struct bpf_prog *new, struct bpf_prog *old); 3410 3411 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3412 int bpf_arch_text_invalidate(void *dst, size_t len); 3413 3414 struct btf_id_set; 3415 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3416 3417 #define MAX_BPRINTF_VARARGS 12 3418 #define MAX_BPRINTF_BUF 1024 3419 3420 struct bpf_bprintf_data { 3421 u32 *bin_args; 3422 char *buf; 3423 bool get_bin_args; 3424 bool get_buf; 3425 }; 3426 3427 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3428 u32 num_args, struct bpf_bprintf_data *data); 3429 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3430 3431 #ifdef CONFIG_BPF_LSM 3432 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3433 void bpf_cgroup_atype_put(int cgroup_atype); 3434 #else 3435 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3436 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3437 #endif /* CONFIG_BPF_LSM */ 3438 3439 struct key; 3440 3441 #ifdef CONFIG_KEYS 3442 struct bpf_key { 3443 struct key *key; 3444 bool has_ref; 3445 }; 3446 #endif /* CONFIG_KEYS */ 3447 3448 static inline bool type_is_alloc(u32 type) 3449 { 3450 return type & MEM_ALLOC; 3451 } 3452 3453 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3454 { 3455 if (memcg_bpf_enabled()) 3456 return flags | __GFP_ACCOUNT; 3457 return flags; 3458 } 3459 3460 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3461 { 3462 return prog->aux->func_idx != 0; 3463 } 3464 3465 #endif /* _LINUX_BPF_H */ 3466