1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 10 fields in a BTF type */ 188 BTF_FIELDS_MAX = 10, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 }; 206 207 typedef void (*btf_dtor_kfunc_t)(void *); 208 209 struct btf_field_kptr { 210 struct btf *btf; 211 struct module *module; 212 /* dtor used if btf_is_kernel(btf), otherwise the type is 213 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 214 */ 215 btf_dtor_kfunc_t dtor; 216 u32 btf_id; 217 }; 218 219 struct btf_field_graph_root { 220 struct btf *btf; 221 u32 value_btf_id; 222 u32 node_offset; 223 struct btf_record *value_rec; 224 }; 225 226 struct btf_field { 227 u32 offset; 228 u32 size; 229 enum btf_field_type type; 230 union { 231 struct btf_field_kptr kptr; 232 struct btf_field_graph_root graph_root; 233 }; 234 }; 235 236 struct btf_record { 237 u32 cnt; 238 u32 field_mask; 239 int spin_lock_off; 240 int timer_off; 241 int refcount_off; 242 struct btf_field fields[]; 243 }; 244 245 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 246 struct bpf_rb_node_kern { 247 struct rb_node rb_node; 248 void *owner; 249 } __attribute__((aligned(8))); 250 251 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 252 struct bpf_list_node_kern { 253 struct list_head list_head; 254 void *owner; 255 } __attribute__((aligned(8))); 256 257 struct bpf_map { 258 const struct bpf_map_ops *ops; 259 struct bpf_map *inner_map_meta; 260 #ifdef CONFIG_SECURITY 261 void *security; 262 #endif 263 enum bpf_map_type map_type; 264 u32 key_size; 265 u32 value_size; 266 u32 max_entries; 267 u64 map_extra; /* any per-map-type extra fields */ 268 u32 map_flags; 269 u32 id; 270 struct btf_record *record; 271 int numa_node; 272 u32 btf_key_type_id; 273 u32 btf_value_type_id; 274 u32 btf_vmlinux_value_type_id; 275 struct btf *btf; 276 #ifdef CONFIG_MEMCG_KMEM 277 struct obj_cgroup *objcg; 278 #endif 279 char name[BPF_OBJ_NAME_LEN]; 280 struct mutex freeze_mutex; 281 atomic64_t refcnt; 282 atomic64_t usercnt; 283 /* rcu is used before freeing and work is only used during freeing */ 284 union { 285 struct work_struct work; 286 struct rcu_head rcu; 287 }; 288 atomic64_t writecnt; 289 /* 'Ownership' of program-containing map is claimed by the first program 290 * that is going to use this map or by the first program which FD is 291 * stored in the map to make sure that all callers and callees have the 292 * same prog type, JITed flag and xdp_has_frags flag. 293 */ 294 struct { 295 spinlock_t lock; 296 enum bpf_prog_type type; 297 bool jited; 298 bool xdp_has_frags; 299 } owner; 300 bool bypass_spec_v1; 301 bool frozen; /* write-once; write-protected by freeze_mutex */ 302 bool free_after_mult_rcu_gp; 303 bool free_after_rcu_gp; 304 atomic64_t sleepable_refcnt; 305 s64 __percpu *elem_count; 306 }; 307 308 static inline const char *btf_field_type_name(enum btf_field_type type) 309 { 310 switch (type) { 311 case BPF_SPIN_LOCK: 312 return "bpf_spin_lock"; 313 case BPF_TIMER: 314 return "bpf_timer"; 315 case BPF_KPTR_UNREF: 316 case BPF_KPTR_REF: 317 return "kptr"; 318 case BPF_KPTR_PERCPU: 319 return "percpu_kptr"; 320 case BPF_LIST_HEAD: 321 return "bpf_list_head"; 322 case BPF_LIST_NODE: 323 return "bpf_list_node"; 324 case BPF_RB_ROOT: 325 return "bpf_rb_root"; 326 case BPF_RB_NODE: 327 return "bpf_rb_node"; 328 case BPF_REFCOUNT: 329 return "bpf_refcount"; 330 default: 331 WARN_ON_ONCE(1); 332 return "unknown"; 333 } 334 } 335 336 static inline u32 btf_field_type_size(enum btf_field_type type) 337 { 338 switch (type) { 339 case BPF_SPIN_LOCK: 340 return sizeof(struct bpf_spin_lock); 341 case BPF_TIMER: 342 return sizeof(struct bpf_timer); 343 case BPF_KPTR_UNREF: 344 case BPF_KPTR_REF: 345 case BPF_KPTR_PERCPU: 346 return sizeof(u64); 347 case BPF_LIST_HEAD: 348 return sizeof(struct bpf_list_head); 349 case BPF_LIST_NODE: 350 return sizeof(struct bpf_list_node); 351 case BPF_RB_ROOT: 352 return sizeof(struct bpf_rb_root); 353 case BPF_RB_NODE: 354 return sizeof(struct bpf_rb_node); 355 case BPF_REFCOUNT: 356 return sizeof(struct bpf_refcount); 357 default: 358 WARN_ON_ONCE(1); 359 return 0; 360 } 361 } 362 363 static inline u32 btf_field_type_align(enum btf_field_type type) 364 { 365 switch (type) { 366 case BPF_SPIN_LOCK: 367 return __alignof__(struct bpf_spin_lock); 368 case BPF_TIMER: 369 return __alignof__(struct bpf_timer); 370 case BPF_KPTR_UNREF: 371 case BPF_KPTR_REF: 372 case BPF_KPTR_PERCPU: 373 return __alignof__(u64); 374 case BPF_LIST_HEAD: 375 return __alignof__(struct bpf_list_head); 376 case BPF_LIST_NODE: 377 return __alignof__(struct bpf_list_node); 378 case BPF_RB_ROOT: 379 return __alignof__(struct bpf_rb_root); 380 case BPF_RB_NODE: 381 return __alignof__(struct bpf_rb_node); 382 case BPF_REFCOUNT: 383 return __alignof__(struct bpf_refcount); 384 default: 385 WARN_ON_ONCE(1); 386 return 0; 387 } 388 } 389 390 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 391 { 392 memset(addr, 0, field->size); 393 394 switch (field->type) { 395 case BPF_REFCOUNT: 396 refcount_set((refcount_t *)addr, 1); 397 break; 398 case BPF_RB_NODE: 399 RB_CLEAR_NODE((struct rb_node *)addr); 400 break; 401 case BPF_LIST_HEAD: 402 case BPF_LIST_NODE: 403 INIT_LIST_HEAD((struct list_head *)addr); 404 break; 405 case BPF_RB_ROOT: 406 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 407 case BPF_SPIN_LOCK: 408 case BPF_TIMER: 409 case BPF_KPTR_UNREF: 410 case BPF_KPTR_REF: 411 case BPF_KPTR_PERCPU: 412 break; 413 default: 414 WARN_ON_ONCE(1); 415 return; 416 } 417 } 418 419 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 420 { 421 if (IS_ERR_OR_NULL(rec)) 422 return false; 423 return rec->field_mask & type; 424 } 425 426 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 427 { 428 int i; 429 430 if (IS_ERR_OR_NULL(rec)) 431 return; 432 for (i = 0; i < rec->cnt; i++) 433 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 434 } 435 436 /* 'dst' must be a temporary buffer and should not point to memory that is being 437 * used in parallel by a bpf program or bpf syscall, otherwise the access from 438 * the bpf program or bpf syscall may be corrupted by the reinitialization, 439 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 440 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 441 * program or bpf syscall. 442 */ 443 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 444 { 445 bpf_obj_init(map->record, dst); 446 } 447 448 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 449 * forced to use 'long' read/writes to try to atomically copy long counters. 450 * Best-effort only. No barriers here, since it _will_ race with concurrent 451 * updates from BPF programs. Called from bpf syscall and mostly used with 452 * size 8 or 16 bytes, so ask compiler to inline it. 453 */ 454 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 455 { 456 const long *lsrc = src; 457 long *ldst = dst; 458 459 size /= sizeof(long); 460 while (size--) 461 data_race(*ldst++ = *lsrc++); 462 } 463 464 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 465 static inline void bpf_obj_memcpy(struct btf_record *rec, 466 void *dst, void *src, u32 size, 467 bool long_memcpy) 468 { 469 u32 curr_off = 0; 470 int i; 471 472 if (IS_ERR_OR_NULL(rec)) { 473 if (long_memcpy) 474 bpf_long_memcpy(dst, src, round_up(size, 8)); 475 else 476 memcpy(dst, src, size); 477 return; 478 } 479 480 for (i = 0; i < rec->cnt; i++) { 481 u32 next_off = rec->fields[i].offset; 482 u32 sz = next_off - curr_off; 483 484 memcpy(dst + curr_off, src + curr_off, sz); 485 curr_off += rec->fields[i].size + sz; 486 } 487 memcpy(dst + curr_off, src + curr_off, size - curr_off); 488 } 489 490 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 491 { 492 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 493 } 494 495 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 496 { 497 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 498 } 499 500 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 501 { 502 u32 curr_off = 0; 503 int i; 504 505 if (IS_ERR_OR_NULL(rec)) { 506 memset(dst, 0, size); 507 return; 508 } 509 510 for (i = 0; i < rec->cnt; i++) { 511 u32 next_off = rec->fields[i].offset; 512 u32 sz = next_off - curr_off; 513 514 memset(dst + curr_off, 0, sz); 515 curr_off += rec->fields[i].size + sz; 516 } 517 memset(dst + curr_off, 0, size - curr_off); 518 } 519 520 static inline void zero_map_value(struct bpf_map *map, void *dst) 521 { 522 bpf_obj_memzero(map->record, dst, map->value_size); 523 } 524 525 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 526 bool lock_src); 527 void bpf_timer_cancel_and_free(void *timer); 528 void bpf_list_head_free(const struct btf_field *field, void *list_head, 529 struct bpf_spin_lock *spin_lock); 530 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 531 struct bpf_spin_lock *spin_lock); 532 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 533 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 534 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 535 536 struct bpf_offload_dev; 537 struct bpf_offloaded_map; 538 539 struct bpf_map_dev_ops { 540 int (*map_get_next_key)(struct bpf_offloaded_map *map, 541 void *key, void *next_key); 542 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 543 void *key, void *value); 544 int (*map_update_elem)(struct bpf_offloaded_map *map, 545 void *key, void *value, u64 flags); 546 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 547 }; 548 549 struct bpf_offloaded_map { 550 struct bpf_map map; 551 struct net_device *netdev; 552 const struct bpf_map_dev_ops *dev_ops; 553 void *dev_priv; 554 struct list_head offloads; 555 }; 556 557 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 558 { 559 return container_of(map, struct bpf_offloaded_map, map); 560 } 561 562 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 563 { 564 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 565 } 566 567 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 568 { 569 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 570 map->ops->map_seq_show_elem; 571 } 572 573 int map_check_no_btf(const struct bpf_map *map, 574 const struct btf *btf, 575 const struct btf_type *key_type, 576 const struct btf_type *value_type); 577 578 bool bpf_map_meta_equal(const struct bpf_map *meta0, 579 const struct bpf_map *meta1); 580 581 extern const struct bpf_map_ops bpf_map_offload_ops; 582 583 /* bpf_type_flag contains a set of flags that are applicable to the values of 584 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 585 * or a memory is read-only. We classify types into two categories: base types 586 * and extended types. Extended types are base types combined with a type flag. 587 * 588 * Currently there are no more than 32 base types in arg_type, ret_type and 589 * reg_types. 590 */ 591 #define BPF_BASE_TYPE_BITS 8 592 593 enum bpf_type_flag { 594 /* PTR may be NULL. */ 595 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 596 597 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 598 * compatible with both mutable and immutable memory. 599 */ 600 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 601 602 /* MEM points to BPF ring buffer reservation. */ 603 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 604 605 /* MEM is in user address space. */ 606 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 607 608 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 609 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 610 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 611 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 612 * to the specified cpu. 613 */ 614 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 615 616 /* Indicates that the argument will be released. */ 617 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 618 619 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 620 * unreferenced and referenced kptr loaded from map value using a load 621 * instruction, so that they can only be dereferenced but not escape the 622 * BPF program into the kernel (i.e. cannot be passed as arguments to 623 * kfunc or bpf helpers). 624 */ 625 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 626 627 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 628 629 /* DYNPTR points to memory local to the bpf program. */ 630 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 631 632 /* DYNPTR points to a kernel-produced ringbuf record. */ 633 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 634 635 /* Size is known at compile time. */ 636 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 637 638 /* MEM is of an allocated object of type in program BTF. This is used to 639 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 640 */ 641 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 642 643 /* PTR was passed from the kernel in a trusted context, and may be 644 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 645 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 646 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 647 * without invoking bpf_kptr_xchg(). What we really need to know is 648 * whether a pointer is safe to pass to a kfunc or BPF helper function. 649 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 650 * helpers, they do not cover all possible instances of unsafe 651 * pointers. For example, a pointer that was obtained from walking a 652 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 653 * fact that it may be NULL, invalid, etc. This is due to backwards 654 * compatibility requirements, as this was the behavior that was first 655 * introduced when kptrs were added. The behavior is now considered 656 * deprecated, and PTR_UNTRUSTED will eventually be removed. 657 * 658 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 659 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 660 * For example, pointers passed to tracepoint arguments are considered 661 * PTR_TRUSTED, as are pointers that are passed to struct_ops 662 * callbacks. As alluded to above, pointers that are obtained from 663 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 664 * struct task_struct *task is PTR_TRUSTED, then accessing 665 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 666 * in a BPF register. Similarly, pointers passed to certain programs 667 * types such as kretprobes are not guaranteed to be valid, as they may 668 * for example contain an object that was recently freed. 669 */ 670 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 671 672 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 673 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 674 675 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 676 * Currently only valid for linked-list and rbtree nodes. If the nodes 677 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 678 */ 679 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 680 681 /* DYNPTR points to sk_buff */ 682 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 683 684 /* DYNPTR points to xdp_buff */ 685 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 686 687 __BPF_TYPE_FLAG_MAX, 688 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 689 }; 690 691 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 692 | DYNPTR_TYPE_XDP) 693 694 /* Max number of base types. */ 695 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 696 697 /* Max number of all types. */ 698 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 699 700 /* function argument constraints */ 701 enum bpf_arg_type { 702 ARG_DONTCARE = 0, /* unused argument in helper function */ 703 704 /* the following constraints used to prototype 705 * bpf_map_lookup/update/delete_elem() functions 706 */ 707 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 708 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 709 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 710 711 /* Used to prototype bpf_memcmp() and other functions that access data 712 * on eBPF program stack 713 */ 714 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 715 ARG_PTR_TO_ARENA, 716 717 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 718 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 719 720 ARG_PTR_TO_CTX, /* pointer to context */ 721 ARG_ANYTHING, /* any (initialized) argument is ok */ 722 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 723 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 724 ARG_PTR_TO_INT, /* pointer to int */ 725 ARG_PTR_TO_LONG, /* pointer to long */ 726 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 727 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 728 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 729 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 730 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 731 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 732 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 733 ARG_PTR_TO_STACK, /* pointer to stack */ 734 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 735 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 736 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 737 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 738 __BPF_ARG_TYPE_MAX, 739 740 /* Extended arg_types. */ 741 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 742 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 743 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 744 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 745 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 746 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 747 /* pointer to memory does not need to be initialized, helper function must fill 748 * all bytes or clear them in error case. 749 */ 750 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 751 /* Pointer to valid memory of size known at compile time. */ 752 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 753 754 /* This must be the last entry. Its purpose is to ensure the enum is 755 * wide enough to hold the higher bits reserved for bpf_type_flag. 756 */ 757 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 758 }; 759 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 760 761 /* type of values returned from helper functions */ 762 enum bpf_return_type { 763 RET_INTEGER, /* function returns integer */ 764 RET_VOID, /* function doesn't return anything */ 765 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 766 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 767 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 768 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 769 RET_PTR_TO_MEM, /* returns a pointer to memory */ 770 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 771 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 772 __BPF_RET_TYPE_MAX, 773 774 /* Extended ret_types. */ 775 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 776 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 777 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 778 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 779 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 780 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 781 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 782 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 783 784 /* This must be the last entry. Its purpose is to ensure the enum is 785 * wide enough to hold the higher bits reserved for bpf_type_flag. 786 */ 787 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 788 }; 789 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 790 791 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 792 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 793 * instructions after verifying 794 */ 795 struct bpf_func_proto { 796 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 797 bool gpl_only; 798 bool pkt_access; 799 bool might_sleep; 800 enum bpf_return_type ret_type; 801 union { 802 struct { 803 enum bpf_arg_type arg1_type; 804 enum bpf_arg_type arg2_type; 805 enum bpf_arg_type arg3_type; 806 enum bpf_arg_type arg4_type; 807 enum bpf_arg_type arg5_type; 808 }; 809 enum bpf_arg_type arg_type[5]; 810 }; 811 union { 812 struct { 813 u32 *arg1_btf_id; 814 u32 *arg2_btf_id; 815 u32 *arg3_btf_id; 816 u32 *arg4_btf_id; 817 u32 *arg5_btf_id; 818 }; 819 u32 *arg_btf_id[5]; 820 struct { 821 size_t arg1_size; 822 size_t arg2_size; 823 size_t arg3_size; 824 size_t arg4_size; 825 size_t arg5_size; 826 }; 827 size_t arg_size[5]; 828 }; 829 int *ret_btf_id; /* return value btf_id */ 830 bool (*allowed)(const struct bpf_prog *prog); 831 }; 832 833 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 834 * the first argument to eBPF programs. 835 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 836 */ 837 struct bpf_context; 838 839 enum bpf_access_type { 840 BPF_READ = 1, 841 BPF_WRITE = 2 842 }; 843 844 /* types of values stored in eBPF registers */ 845 /* Pointer types represent: 846 * pointer 847 * pointer + imm 848 * pointer + (u16) var 849 * pointer + (u16) var + imm 850 * if (range > 0) then [ptr, ptr + range - off) is safe to access 851 * if (id > 0) means that some 'var' was added 852 * if (off > 0) means that 'imm' was added 853 */ 854 enum bpf_reg_type { 855 NOT_INIT = 0, /* nothing was written into register */ 856 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 857 PTR_TO_CTX, /* reg points to bpf_context */ 858 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 859 PTR_TO_MAP_VALUE, /* reg points to map element value */ 860 PTR_TO_MAP_KEY, /* reg points to a map element key */ 861 PTR_TO_STACK, /* reg == frame_pointer + offset */ 862 PTR_TO_PACKET_META, /* skb->data - meta_len */ 863 PTR_TO_PACKET, /* reg points to skb->data */ 864 PTR_TO_PACKET_END, /* skb->data + headlen */ 865 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 866 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 867 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 868 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 869 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 870 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 871 /* PTR_TO_BTF_ID points to a kernel struct that does not need 872 * to be null checked by the BPF program. This does not imply the 873 * pointer is _not_ null and in practice this can easily be a null 874 * pointer when reading pointer chains. The assumption is program 875 * context will handle null pointer dereference typically via fault 876 * handling. The verifier must keep this in mind and can make no 877 * assumptions about null or non-null when doing branch analysis. 878 * Further, when passed into helpers the helpers can not, without 879 * additional context, assume the value is non-null. 880 */ 881 PTR_TO_BTF_ID, 882 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 883 * been checked for null. Used primarily to inform the verifier 884 * an explicit null check is required for this struct. 885 */ 886 PTR_TO_MEM, /* reg points to valid memory region */ 887 PTR_TO_ARENA, 888 PTR_TO_BUF, /* reg points to a read/write buffer */ 889 PTR_TO_FUNC, /* reg points to a bpf program function */ 890 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 891 __BPF_REG_TYPE_MAX, 892 893 /* Extended reg_types. */ 894 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 895 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 896 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 897 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 898 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 899 900 /* This must be the last entry. Its purpose is to ensure the enum is 901 * wide enough to hold the higher bits reserved for bpf_type_flag. 902 */ 903 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 904 }; 905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 906 907 /* The information passed from prog-specific *_is_valid_access 908 * back to the verifier. 909 */ 910 struct bpf_insn_access_aux { 911 enum bpf_reg_type reg_type; 912 union { 913 int ctx_field_size; 914 struct { 915 struct btf *btf; 916 u32 btf_id; 917 }; 918 }; 919 struct bpf_verifier_log *log; /* for verbose logs */ 920 }; 921 922 static inline void 923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 924 { 925 aux->ctx_field_size = size; 926 } 927 928 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 929 { 930 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 931 } 932 933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 934 { 935 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 936 } 937 938 struct bpf_prog_ops { 939 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 940 union bpf_attr __user *uattr); 941 }; 942 943 struct bpf_reg_state; 944 struct bpf_verifier_ops { 945 /* return eBPF function prototype for verification */ 946 const struct bpf_func_proto * 947 (*get_func_proto)(enum bpf_func_id func_id, 948 const struct bpf_prog *prog); 949 950 /* return true if 'size' wide access at offset 'off' within bpf_context 951 * with 'type' (read or write) is allowed 952 */ 953 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 954 const struct bpf_prog *prog, 955 struct bpf_insn_access_aux *info); 956 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 957 const struct bpf_prog *prog); 958 int (*gen_ld_abs)(const struct bpf_insn *orig, 959 struct bpf_insn *insn_buf); 960 u32 (*convert_ctx_access)(enum bpf_access_type type, 961 const struct bpf_insn *src, 962 struct bpf_insn *dst, 963 struct bpf_prog *prog, u32 *target_size); 964 int (*btf_struct_access)(struct bpf_verifier_log *log, 965 const struct bpf_reg_state *reg, 966 int off, int size); 967 }; 968 969 struct bpf_prog_offload_ops { 970 /* verifier basic callbacks */ 971 int (*insn_hook)(struct bpf_verifier_env *env, 972 int insn_idx, int prev_insn_idx); 973 int (*finalize)(struct bpf_verifier_env *env); 974 /* verifier optimization callbacks (called after .finalize) */ 975 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 976 struct bpf_insn *insn); 977 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 978 /* program management callbacks */ 979 int (*prepare)(struct bpf_prog *prog); 980 int (*translate)(struct bpf_prog *prog); 981 void (*destroy)(struct bpf_prog *prog); 982 }; 983 984 struct bpf_prog_offload { 985 struct bpf_prog *prog; 986 struct net_device *netdev; 987 struct bpf_offload_dev *offdev; 988 void *dev_priv; 989 struct list_head offloads; 990 bool dev_state; 991 bool opt_failed; 992 void *jited_image; 993 u32 jited_len; 994 }; 995 996 enum bpf_cgroup_storage_type { 997 BPF_CGROUP_STORAGE_SHARED, 998 BPF_CGROUP_STORAGE_PERCPU, 999 __BPF_CGROUP_STORAGE_MAX 1000 }; 1001 1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1003 1004 /* The longest tracepoint has 12 args. 1005 * See include/trace/bpf_probe.h 1006 */ 1007 #define MAX_BPF_FUNC_ARGS 12 1008 1009 /* The maximum number of arguments passed through registers 1010 * a single function may have. 1011 */ 1012 #define MAX_BPF_FUNC_REG_ARGS 5 1013 1014 /* The argument is a structure. */ 1015 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1016 1017 /* The argument is signed. */ 1018 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1019 1020 struct btf_func_model { 1021 u8 ret_size; 1022 u8 ret_flags; 1023 u8 nr_args; 1024 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1025 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1026 }; 1027 1028 /* Restore arguments before returning from trampoline to let original function 1029 * continue executing. This flag is used for fentry progs when there are no 1030 * fexit progs. 1031 */ 1032 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1033 /* Call original function after fentry progs, but before fexit progs. 1034 * Makes sense for fentry/fexit, normal calls and indirect calls. 1035 */ 1036 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1037 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1038 * programs only. Should not be used with normal calls and indirect calls. 1039 */ 1040 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1041 /* Store IP address of the caller on the trampoline stack, 1042 * so it's available for trampoline's programs. 1043 */ 1044 #define BPF_TRAMP_F_IP_ARG BIT(3) 1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1046 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1047 1048 /* Get original function from stack instead of from provided direct address. 1049 * Makes sense for trampolines with fexit or fmod_ret programs. 1050 */ 1051 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1052 1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1054 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1055 */ 1056 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1057 1058 /* Indicate that current trampoline is in a tail call context. Then, it has to 1059 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1060 */ 1061 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1062 1063 /* 1064 * Indicate the trampoline should be suitable to receive indirect calls; 1065 * without this indirectly calling the generated code can result in #UD/#CP, 1066 * depending on the CFI options. 1067 * 1068 * Used by bpf_struct_ops. 1069 * 1070 * Incompatible with FENTRY usage, overloads @func_addr argument. 1071 */ 1072 #define BPF_TRAMP_F_INDIRECT BIT(8) 1073 1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1075 * bytes on x86. 1076 */ 1077 enum { 1078 #if defined(__s390x__) 1079 BPF_MAX_TRAMP_LINKS = 27, 1080 #else 1081 BPF_MAX_TRAMP_LINKS = 38, 1082 #endif 1083 }; 1084 1085 struct bpf_tramp_links { 1086 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1087 int nr_links; 1088 }; 1089 1090 struct bpf_tramp_run_ctx; 1091 1092 /* Different use cases for BPF trampoline: 1093 * 1. replace nop at the function entry (kprobe equivalent) 1094 * flags = BPF_TRAMP_F_RESTORE_REGS 1095 * fentry = a set of programs to run before returning from trampoline 1096 * 1097 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1098 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1099 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1100 * fentry = a set of program to run before calling original function 1101 * fexit = a set of program to run after original function 1102 * 1103 * 3. replace direct call instruction anywhere in the function body 1104 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1105 * With flags = 0 1106 * fentry = a set of programs to run before returning from trampoline 1107 * With flags = BPF_TRAMP_F_CALL_ORIG 1108 * orig_call = original callback addr or direct function addr 1109 * fentry = a set of program to run before calling original function 1110 * fexit = a set of program to run after original function 1111 */ 1112 struct bpf_tramp_image; 1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1114 const struct btf_func_model *m, u32 flags, 1115 struct bpf_tramp_links *tlinks, 1116 void *func_addr); 1117 void *arch_alloc_bpf_trampoline(unsigned int size); 1118 void arch_free_bpf_trampoline(void *image, unsigned int size); 1119 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1120 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1121 struct bpf_tramp_links *tlinks, void *func_addr); 1122 1123 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1124 struct bpf_tramp_run_ctx *run_ctx); 1125 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1126 struct bpf_tramp_run_ctx *run_ctx); 1127 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1128 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1129 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1130 struct bpf_tramp_run_ctx *run_ctx); 1131 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1132 struct bpf_tramp_run_ctx *run_ctx); 1133 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1134 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1135 1136 struct bpf_ksym { 1137 unsigned long start; 1138 unsigned long end; 1139 char name[KSYM_NAME_LEN]; 1140 struct list_head lnode; 1141 struct latch_tree_node tnode; 1142 bool prog; 1143 }; 1144 1145 enum bpf_tramp_prog_type { 1146 BPF_TRAMP_FENTRY, 1147 BPF_TRAMP_FEXIT, 1148 BPF_TRAMP_MODIFY_RETURN, 1149 BPF_TRAMP_MAX, 1150 BPF_TRAMP_REPLACE, /* more than MAX */ 1151 }; 1152 1153 struct bpf_tramp_image { 1154 void *image; 1155 int size; 1156 struct bpf_ksym ksym; 1157 struct percpu_ref pcref; 1158 void *ip_after_call; 1159 void *ip_epilogue; 1160 union { 1161 struct rcu_head rcu; 1162 struct work_struct work; 1163 }; 1164 }; 1165 1166 struct bpf_trampoline { 1167 /* hlist for trampoline_table */ 1168 struct hlist_node hlist; 1169 struct ftrace_ops *fops; 1170 /* serializes access to fields of this trampoline */ 1171 struct mutex mutex; 1172 refcount_t refcnt; 1173 u32 flags; 1174 u64 key; 1175 struct { 1176 struct btf_func_model model; 1177 void *addr; 1178 bool ftrace_managed; 1179 } func; 1180 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1181 * program by replacing one of its functions. func.addr is the address 1182 * of the function it replaced. 1183 */ 1184 struct bpf_prog *extension_prog; 1185 /* list of BPF programs using this trampoline */ 1186 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1187 /* Number of attached programs. A counter per kind. */ 1188 int progs_cnt[BPF_TRAMP_MAX]; 1189 /* Executable image of trampoline */ 1190 struct bpf_tramp_image *cur_image; 1191 }; 1192 1193 struct bpf_attach_target_info { 1194 struct btf_func_model fmodel; 1195 long tgt_addr; 1196 struct module *tgt_mod; 1197 const char *tgt_name; 1198 const struct btf_type *tgt_type; 1199 }; 1200 1201 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1202 1203 struct bpf_dispatcher_prog { 1204 struct bpf_prog *prog; 1205 refcount_t users; 1206 }; 1207 1208 struct bpf_dispatcher { 1209 /* dispatcher mutex */ 1210 struct mutex mutex; 1211 void *func; 1212 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1213 int num_progs; 1214 void *image; 1215 void *rw_image; 1216 u32 image_off; 1217 struct bpf_ksym ksym; 1218 #ifdef CONFIG_HAVE_STATIC_CALL 1219 struct static_call_key *sc_key; 1220 void *sc_tramp; 1221 #endif 1222 }; 1223 1224 #ifndef __bpfcall 1225 #define __bpfcall __nocfi 1226 #endif 1227 1228 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1229 const void *ctx, 1230 const struct bpf_insn *insnsi, 1231 bpf_func_t bpf_func) 1232 { 1233 return bpf_func(ctx, insnsi); 1234 } 1235 1236 /* the implementation of the opaque uapi struct bpf_dynptr */ 1237 struct bpf_dynptr_kern { 1238 void *data; 1239 /* Size represents the number of usable bytes of dynptr data. 1240 * If for example the offset is at 4 for a local dynptr whose data is 1241 * of type u64, the number of usable bytes is 4. 1242 * 1243 * The upper 8 bits are reserved. It is as follows: 1244 * Bits 0 - 23 = size 1245 * Bits 24 - 30 = dynptr type 1246 * Bit 31 = whether dynptr is read-only 1247 */ 1248 u32 size; 1249 u32 offset; 1250 } __aligned(8); 1251 1252 enum bpf_dynptr_type { 1253 BPF_DYNPTR_TYPE_INVALID, 1254 /* Points to memory that is local to the bpf program */ 1255 BPF_DYNPTR_TYPE_LOCAL, 1256 /* Underlying data is a ringbuf record */ 1257 BPF_DYNPTR_TYPE_RINGBUF, 1258 /* Underlying data is a sk_buff */ 1259 BPF_DYNPTR_TYPE_SKB, 1260 /* Underlying data is a xdp_buff */ 1261 BPF_DYNPTR_TYPE_XDP, 1262 }; 1263 1264 int bpf_dynptr_check_size(u32 size); 1265 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1266 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1267 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1268 1269 #ifdef CONFIG_BPF_JIT 1270 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1271 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1272 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1273 struct bpf_attach_target_info *tgt_info); 1274 void bpf_trampoline_put(struct bpf_trampoline *tr); 1275 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1276 1277 /* 1278 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1279 * indirection with a direct call to the bpf program. If the architecture does 1280 * not have STATIC_CALL, avoid a double-indirection. 1281 */ 1282 #ifdef CONFIG_HAVE_STATIC_CALL 1283 1284 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1285 .sc_key = &STATIC_CALL_KEY(_name), \ 1286 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1287 1288 #define __BPF_DISPATCHER_SC(name) \ 1289 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1290 1291 #define __BPF_DISPATCHER_CALL(name) \ 1292 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1293 1294 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1295 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1296 1297 #else 1298 #define __BPF_DISPATCHER_SC_INIT(name) 1299 #define __BPF_DISPATCHER_SC(name) 1300 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1301 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1302 #endif 1303 1304 #define BPF_DISPATCHER_INIT(_name) { \ 1305 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1306 .func = &_name##_func, \ 1307 .progs = {}, \ 1308 .num_progs = 0, \ 1309 .image = NULL, \ 1310 .image_off = 0, \ 1311 .ksym = { \ 1312 .name = #_name, \ 1313 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1314 }, \ 1315 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1316 } 1317 1318 #define DEFINE_BPF_DISPATCHER(name) \ 1319 __BPF_DISPATCHER_SC(name); \ 1320 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1321 const void *ctx, \ 1322 const struct bpf_insn *insnsi, \ 1323 bpf_func_t bpf_func) \ 1324 { \ 1325 return __BPF_DISPATCHER_CALL(name); \ 1326 } \ 1327 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1328 struct bpf_dispatcher bpf_dispatcher_##name = \ 1329 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1330 1331 #define DECLARE_BPF_DISPATCHER(name) \ 1332 unsigned int bpf_dispatcher_##name##_func( \ 1333 const void *ctx, \ 1334 const struct bpf_insn *insnsi, \ 1335 bpf_func_t bpf_func); \ 1336 extern struct bpf_dispatcher bpf_dispatcher_##name; 1337 1338 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1339 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1340 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1341 struct bpf_prog *to); 1342 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1343 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1344 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1345 void bpf_ksym_add(struct bpf_ksym *ksym); 1346 void bpf_ksym_del(struct bpf_ksym *ksym); 1347 int bpf_jit_charge_modmem(u32 size); 1348 void bpf_jit_uncharge_modmem(u32 size); 1349 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1350 #else 1351 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1352 struct bpf_trampoline *tr) 1353 { 1354 return -ENOTSUPP; 1355 } 1356 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1357 struct bpf_trampoline *tr) 1358 { 1359 return -ENOTSUPP; 1360 } 1361 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1362 struct bpf_attach_target_info *tgt_info) 1363 { 1364 return NULL; 1365 } 1366 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1367 #define DEFINE_BPF_DISPATCHER(name) 1368 #define DECLARE_BPF_DISPATCHER(name) 1369 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1370 #define BPF_DISPATCHER_PTR(name) NULL 1371 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1372 struct bpf_prog *from, 1373 struct bpf_prog *to) {} 1374 static inline bool is_bpf_image_address(unsigned long address) 1375 { 1376 return false; 1377 } 1378 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1379 { 1380 return false; 1381 } 1382 #endif 1383 1384 struct bpf_func_info_aux { 1385 u16 linkage; 1386 bool unreliable; 1387 bool called : 1; 1388 bool verified : 1; 1389 }; 1390 1391 enum bpf_jit_poke_reason { 1392 BPF_POKE_REASON_TAIL_CALL, 1393 }; 1394 1395 /* Descriptor of pokes pointing /into/ the JITed image. */ 1396 struct bpf_jit_poke_descriptor { 1397 void *tailcall_target; 1398 void *tailcall_bypass; 1399 void *bypass_addr; 1400 void *aux; 1401 union { 1402 struct { 1403 struct bpf_map *map; 1404 u32 key; 1405 } tail_call; 1406 }; 1407 bool tailcall_target_stable; 1408 u8 adj_off; 1409 u16 reason; 1410 u32 insn_idx; 1411 }; 1412 1413 /* reg_type info for ctx arguments */ 1414 struct bpf_ctx_arg_aux { 1415 u32 offset; 1416 enum bpf_reg_type reg_type; 1417 struct btf *btf; 1418 u32 btf_id; 1419 }; 1420 1421 struct btf_mod_pair { 1422 struct btf *btf; 1423 struct module *module; 1424 }; 1425 1426 struct bpf_kfunc_desc_tab; 1427 1428 struct bpf_prog_aux { 1429 atomic64_t refcnt; 1430 u32 used_map_cnt; 1431 u32 used_btf_cnt; 1432 u32 max_ctx_offset; 1433 u32 max_pkt_offset; 1434 u32 max_tp_access; 1435 u32 stack_depth; 1436 u32 id; 1437 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1438 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1439 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1440 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1441 u32 ctx_arg_info_size; 1442 u32 max_rdonly_access; 1443 u32 max_rdwr_access; 1444 struct btf *attach_btf; 1445 const struct bpf_ctx_arg_aux *ctx_arg_info; 1446 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1447 struct bpf_prog *dst_prog; 1448 struct bpf_trampoline *dst_trampoline; 1449 enum bpf_prog_type saved_dst_prog_type; 1450 enum bpf_attach_type saved_dst_attach_type; 1451 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1452 bool dev_bound; /* Program is bound to the netdev. */ 1453 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1454 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1455 bool attach_tracing_prog; /* true if tracing another tracing program */ 1456 bool func_proto_unreliable; 1457 bool tail_call_reachable; 1458 bool xdp_has_frags; 1459 bool exception_cb; 1460 bool exception_boundary; 1461 struct bpf_arena *arena; 1462 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1463 const struct btf_type *attach_func_proto; 1464 /* function name for valid attach_btf_id */ 1465 const char *attach_func_name; 1466 struct bpf_prog **func; 1467 void *jit_data; /* JIT specific data. arch dependent */ 1468 struct bpf_jit_poke_descriptor *poke_tab; 1469 struct bpf_kfunc_desc_tab *kfunc_tab; 1470 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1471 u32 size_poke_tab; 1472 #ifdef CONFIG_FINEIBT 1473 struct bpf_ksym ksym_prefix; 1474 #endif 1475 struct bpf_ksym ksym; 1476 const struct bpf_prog_ops *ops; 1477 struct bpf_map **used_maps; 1478 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1479 struct btf_mod_pair *used_btfs; 1480 struct bpf_prog *prog; 1481 struct user_struct *user; 1482 u64 load_time; /* ns since boottime */ 1483 u32 verified_insns; 1484 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1485 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1486 char name[BPF_OBJ_NAME_LEN]; 1487 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1488 #ifdef CONFIG_SECURITY 1489 void *security; 1490 #endif 1491 struct bpf_token *token; 1492 struct bpf_prog_offload *offload; 1493 struct btf *btf; 1494 struct bpf_func_info *func_info; 1495 struct bpf_func_info_aux *func_info_aux; 1496 /* bpf_line_info loaded from userspace. linfo->insn_off 1497 * has the xlated insn offset. 1498 * Both the main and sub prog share the same linfo. 1499 * The subprog can access its first linfo by 1500 * using the linfo_idx. 1501 */ 1502 struct bpf_line_info *linfo; 1503 /* jited_linfo is the jited addr of the linfo. It has a 1504 * one to one mapping to linfo: 1505 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1506 * Both the main and sub prog share the same jited_linfo. 1507 * The subprog can access its first jited_linfo by 1508 * using the linfo_idx. 1509 */ 1510 void **jited_linfo; 1511 u32 func_info_cnt; 1512 u32 nr_linfo; 1513 /* subprog can use linfo_idx to access its first linfo and 1514 * jited_linfo. 1515 * main prog always has linfo_idx == 0 1516 */ 1517 u32 linfo_idx; 1518 struct module *mod; 1519 u32 num_exentries; 1520 struct exception_table_entry *extable; 1521 union { 1522 struct work_struct work; 1523 struct rcu_head rcu; 1524 }; 1525 }; 1526 1527 struct bpf_prog { 1528 u16 pages; /* Number of allocated pages */ 1529 u16 jited:1, /* Is our filter JIT'ed? */ 1530 jit_requested:1,/* archs need to JIT the prog */ 1531 gpl_compatible:1, /* Is filter GPL compatible? */ 1532 cb_access:1, /* Is control block accessed? */ 1533 dst_needed:1, /* Do we need dst entry? */ 1534 blinding_requested:1, /* needs constant blinding */ 1535 blinded:1, /* Was blinded */ 1536 is_func:1, /* program is a bpf function */ 1537 kprobe_override:1, /* Do we override a kprobe? */ 1538 has_callchain_buf:1, /* callchain buffer allocated? */ 1539 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1540 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1541 call_get_func_ip:1, /* Do we call get_func_ip() */ 1542 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1543 sleepable:1; /* BPF program is sleepable */ 1544 enum bpf_prog_type type; /* Type of BPF program */ 1545 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1546 u32 len; /* Number of filter blocks */ 1547 u32 jited_len; /* Size of jited insns in bytes */ 1548 u8 tag[BPF_TAG_SIZE]; 1549 struct bpf_prog_stats __percpu *stats; 1550 int __percpu *active; 1551 unsigned int (*bpf_func)(const void *ctx, 1552 const struct bpf_insn *insn); 1553 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1554 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1555 /* Instructions for interpreter */ 1556 union { 1557 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1558 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1559 }; 1560 }; 1561 1562 struct bpf_array_aux { 1563 /* Programs with direct jumps into programs part of this array. */ 1564 struct list_head poke_progs; 1565 struct bpf_map *map; 1566 struct mutex poke_mutex; 1567 struct work_struct work; 1568 }; 1569 1570 struct bpf_link { 1571 atomic64_t refcnt; 1572 u32 id; 1573 enum bpf_link_type type; 1574 const struct bpf_link_ops *ops; 1575 struct bpf_prog *prog; 1576 struct work_struct work; 1577 }; 1578 1579 struct bpf_link_ops { 1580 void (*release)(struct bpf_link *link); 1581 void (*dealloc)(struct bpf_link *link); 1582 int (*detach)(struct bpf_link *link); 1583 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1584 struct bpf_prog *old_prog); 1585 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1586 int (*fill_link_info)(const struct bpf_link *link, 1587 struct bpf_link_info *info); 1588 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1589 struct bpf_map *old_map); 1590 }; 1591 1592 struct bpf_tramp_link { 1593 struct bpf_link link; 1594 struct hlist_node tramp_hlist; 1595 u64 cookie; 1596 }; 1597 1598 struct bpf_shim_tramp_link { 1599 struct bpf_tramp_link link; 1600 struct bpf_trampoline *trampoline; 1601 }; 1602 1603 struct bpf_tracing_link { 1604 struct bpf_tramp_link link; 1605 enum bpf_attach_type attach_type; 1606 struct bpf_trampoline *trampoline; 1607 struct bpf_prog *tgt_prog; 1608 }; 1609 1610 struct bpf_raw_tp_link { 1611 struct bpf_link link; 1612 struct bpf_raw_event_map *btp; 1613 u64 cookie; 1614 }; 1615 1616 struct bpf_link_primer { 1617 struct bpf_link *link; 1618 struct file *file; 1619 int fd; 1620 u32 id; 1621 }; 1622 1623 struct bpf_mount_opts { 1624 kuid_t uid; 1625 kgid_t gid; 1626 umode_t mode; 1627 1628 /* BPF token-related delegation options */ 1629 u64 delegate_cmds; 1630 u64 delegate_maps; 1631 u64 delegate_progs; 1632 u64 delegate_attachs; 1633 }; 1634 1635 struct bpf_token { 1636 struct work_struct work; 1637 atomic64_t refcnt; 1638 struct user_namespace *userns; 1639 u64 allowed_cmds; 1640 u64 allowed_maps; 1641 u64 allowed_progs; 1642 u64 allowed_attachs; 1643 #ifdef CONFIG_SECURITY 1644 void *security; 1645 #endif 1646 }; 1647 1648 struct bpf_struct_ops_value; 1649 struct btf_member; 1650 1651 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1652 /** 1653 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1654 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1655 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1656 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1657 * when determining whether the struct_ops progs in the 1658 * struct_ops map are valid. 1659 * @init: A callback that is invoked a single time, and before any other 1660 * callback, to initialize the structure. A nonzero return value means 1661 * the subsystem could not be initialized. 1662 * @check_member: When defined, a callback invoked by the verifier to allow 1663 * the subsystem to determine if an entry in the struct_ops map 1664 * is valid. A nonzero return value means that the map is 1665 * invalid and should be rejected by the verifier. 1666 * @init_member: A callback that is invoked for each member of the struct_ops 1667 * map to allow the subsystem to initialize the member. A nonzero 1668 * value means the member could not be initialized. This callback 1669 * is exclusive with the @type, @type_id, @value_type, and 1670 * @value_id fields. 1671 * @reg: A callback that is invoked when the struct_ops map has been 1672 * initialized and is being attached to. Zero means the struct_ops map 1673 * has been successfully registered and is live. A nonzero return value 1674 * means the struct_ops map could not be registered. 1675 * @unreg: A callback that is invoked when the struct_ops map should be 1676 * unregistered. 1677 * @update: A callback that is invoked when the live struct_ops map is being 1678 * updated to contain new values. This callback is only invoked when 1679 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1680 * it is assumed that the struct_ops map cannot be updated. 1681 * @validate: A callback that is invoked after all of the members have been 1682 * initialized. This callback should perform static checks on the 1683 * map, meaning that it should either fail or succeed 1684 * deterministically. A struct_ops map that has been validated may 1685 * not necessarily succeed in being registered if the call to @reg 1686 * fails. For example, a valid struct_ops map may be loaded, but 1687 * then fail to be registered due to there being another active 1688 * struct_ops map on the system in the subsystem already. For this 1689 * reason, if this callback is not defined, the check is skipped as 1690 * the struct_ops map will have final verification performed in 1691 * @reg. 1692 * @type: BTF type. 1693 * @value_type: Value type. 1694 * @name: The name of the struct bpf_struct_ops object. 1695 * @func_models: Func models 1696 * @type_id: BTF type id. 1697 * @value_id: BTF value id. 1698 */ 1699 struct bpf_struct_ops { 1700 const struct bpf_verifier_ops *verifier_ops; 1701 int (*init)(struct btf *btf); 1702 int (*check_member)(const struct btf_type *t, 1703 const struct btf_member *member, 1704 const struct bpf_prog *prog); 1705 int (*init_member)(const struct btf_type *t, 1706 const struct btf_member *member, 1707 void *kdata, const void *udata); 1708 int (*reg)(void *kdata); 1709 void (*unreg)(void *kdata); 1710 int (*update)(void *kdata, void *old_kdata); 1711 int (*validate)(void *kdata); 1712 void *cfi_stubs; 1713 struct module *owner; 1714 const char *name; 1715 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1716 }; 1717 1718 /* Every member of a struct_ops type has an instance even a member is not 1719 * an operator (function pointer). The "info" field will be assigned to 1720 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1721 * argument information required by the verifier to verify the program. 1722 * 1723 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1724 * corresponding entry for an given argument. 1725 */ 1726 struct bpf_struct_ops_arg_info { 1727 struct bpf_ctx_arg_aux *info; 1728 u32 cnt; 1729 }; 1730 1731 struct bpf_struct_ops_desc { 1732 struct bpf_struct_ops *st_ops; 1733 1734 const struct btf_type *type; 1735 const struct btf_type *value_type; 1736 u32 type_id; 1737 u32 value_id; 1738 1739 /* Collection of argument information for each member */ 1740 struct bpf_struct_ops_arg_info *arg_info; 1741 }; 1742 1743 enum bpf_struct_ops_state { 1744 BPF_STRUCT_OPS_STATE_INIT, 1745 BPF_STRUCT_OPS_STATE_INUSE, 1746 BPF_STRUCT_OPS_STATE_TOBEFREE, 1747 BPF_STRUCT_OPS_STATE_READY, 1748 }; 1749 1750 struct bpf_struct_ops_common_value { 1751 refcount_t refcnt; 1752 enum bpf_struct_ops_state state; 1753 }; 1754 1755 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1756 /* This macro helps developer to register a struct_ops type and generate 1757 * type information correctly. Developers should use this macro to register 1758 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1759 */ 1760 #define register_bpf_struct_ops(st_ops, type) \ 1761 ({ \ 1762 struct bpf_struct_ops_##type { \ 1763 struct bpf_struct_ops_common_value common; \ 1764 struct type data ____cacheline_aligned_in_smp; \ 1765 }; \ 1766 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1767 __register_bpf_struct_ops(st_ops); \ 1768 }) 1769 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1770 bool bpf_struct_ops_get(const void *kdata); 1771 void bpf_struct_ops_put(const void *kdata); 1772 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1773 void *value); 1774 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1775 struct bpf_tramp_link *link, 1776 const struct btf_func_model *model, 1777 void *stub_func, 1778 void **image, u32 *image_off, 1779 bool allow_alloc); 1780 void bpf_struct_ops_image_free(void *image); 1781 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1782 { 1783 if (owner == BPF_MODULE_OWNER) 1784 return bpf_struct_ops_get(data); 1785 else 1786 return try_module_get(owner); 1787 } 1788 static inline void bpf_module_put(const void *data, struct module *owner) 1789 { 1790 if (owner == BPF_MODULE_OWNER) 1791 bpf_struct_ops_put(data); 1792 else 1793 module_put(owner); 1794 } 1795 int bpf_struct_ops_link_create(union bpf_attr *attr); 1796 1797 #ifdef CONFIG_NET 1798 /* Define it here to avoid the use of forward declaration */ 1799 struct bpf_dummy_ops_state { 1800 int val; 1801 }; 1802 1803 struct bpf_dummy_ops { 1804 int (*test_1)(struct bpf_dummy_ops_state *cb); 1805 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1806 char a3, unsigned long a4); 1807 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1808 }; 1809 1810 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1811 union bpf_attr __user *uattr); 1812 #endif 1813 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1814 struct btf *btf, 1815 struct bpf_verifier_log *log); 1816 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1817 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1818 #else 1819 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1820 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1821 { 1822 return try_module_get(owner); 1823 } 1824 static inline void bpf_module_put(const void *data, struct module *owner) 1825 { 1826 module_put(owner); 1827 } 1828 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1829 void *key, 1830 void *value) 1831 { 1832 return -EINVAL; 1833 } 1834 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1835 { 1836 return -EOPNOTSUPP; 1837 } 1838 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1839 { 1840 } 1841 1842 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1843 { 1844 } 1845 1846 #endif 1847 1848 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1849 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1850 int cgroup_atype); 1851 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1852 #else 1853 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1854 int cgroup_atype) 1855 { 1856 return -EOPNOTSUPP; 1857 } 1858 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1859 { 1860 } 1861 #endif 1862 1863 struct bpf_array { 1864 struct bpf_map map; 1865 u32 elem_size; 1866 u32 index_mask; 1867 struct bpf_array_aux *aux; 1868 union { 1869 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1870 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1871 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1872 }; 1873 }; 1874 1875 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1876 #define MAX_TAIL_CALL_CNT 33 1877 1878 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1879 * It's enum to expose it (and thus make it discoverable) through BTF. 1880 */ 1881 enum { 1882 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1883 }; 1884 1885 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1886 BPF_F_RDONLY_PROG | \ 1887 BPF_F_WRONLY | \ 1888 BPF_F_WRONLY_PROG) 1889 1890 #define BPF_MAP_CAN_READ BIT(0) 1891 #define BPF_MAP_CAN_WRITE BIT(1) 1892 1893 /* Maximum number of user-producer ring buffer samples that can be drained in 1894 * a call to bpf_user_ringbuf_drain(). 1895 */ 1896 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1897 1898 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1899 { 1900 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1901 1902 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1903 * not possible. 1904 */ 1905 if (access_flags & BPF_F_RDONLY_PROG) 1906 return BPF_MAP_CAN_READ; 1907 else if (access_flags & BPF_F_WRONLY_PROG) 1908 return BPF_MAP_CAN_WRITE; 1909 else 1910 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1911 } 1912 1913 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1914 { 1915 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1916 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1917 } 1918 1919 struct bpf_event_entry { 1920 struct perf_event *event; 1921 struct file *perf_file; 1922 struct file *map_file; 1923 struct rcu_head rcu; 1924 }; 1925 1926 static inline bool map_type_contains_progs(struct bpf_map *map) 1927 { 1928 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1929 map->map_type == BPF_MAP_TYPE_DEVMAP || 1930 map->map_type == BPF_MAP_TYPE_CPUMAP; 1931 } 1932 1933 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1934 int bpf_prog_calc_tag(struct bpf_prog *fp); 1935 1936 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1937 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1938 1939 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1940 unsigned long off, unsigned long len); 1941 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1942 const struct bpf_insn *src, 1943 struct bpf_insn *dst, 1944 struct bpf_prog *prog, 1945 u32 *target_size); 1946 1947 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1948 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1949 1950 /* an array of programs to be executed under rcu_lock. 1951 * 1952 * Typical usage: 1953 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1954 * 1955 * the structure returned by bpf_prog_array_alloc() should be populated 1956 * with program pointers and the last pointer must be NULL. 1957 * The user has to keep refcnt on the program and make sure the program 1958 * is removed from the array before bpf_prog_put(). 1959 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1960 * since other cpus are walking the array of pointers in parallel. 1961 */ 1962 struct bpf_prog_array_item { 1963 struct bpf_prog *prog; 1964 union { 1965 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1966 u64 bpf_cookie; 1967 }; 1968 }; 1969 1970 struct bpf_prog_array { 1971 struct rcu_head rcu; 1972 struct bpf_prog_array_item items[]; 1973 }; 1974 1975 struct bpf_empty_prog_array { 1976 struct bpf_prog_array hdr; 1977 struct bpf_prog *null_prog; 1978 }; 1979 1980 /* to avoid allocating empty bpf_prog_array for cgroups that 1981 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1982 * It will not be modified the caller of bpf_prog_array_alloc() 1983 * (since caller requested prog_cnt == 0) 1984 * that pointer should be 'freed' by bpf_prog_array_free() 1985 */ 1986 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1987 1988 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1989 void bpf_prog_array_free(struct bpf_prog_array *progs); 1990 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1991 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1992 int bpf_prog_array_length(struct bpf_prog_array *progs); 1993 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1994 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1995 __u32 __user *prog_ids, u32 cnt); 1996 1997 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1998 struct bpf_prog *old_prog); 1999 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2000 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2001 struct bpf_prog *prog); 2002 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2003 u32 *prog_ids, u32 request_cnt, 2004 u32 *prog_cnt); 2005 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2006 struct bpf_prog *exclude_prog, 2007 struct bpf_prog *include_prog, 2008 u64 bpf_cookie, 2009 struct bpf_prog_array **new_array); 2010 2011 struct bpf_run_ctx {}; 2012 2013 struct bpf_cg_run_ctx { 2014 struct bpf_run_ctx run_ctx; 2015 const struct bpf_prog_array_item *prog_item; 2016 int retval; 2017 }; 2018 2019 struct bpf_trace_run_ctx { 2020 struct bpf_run_ctx run_ctx; 2021 u64 bpf_cookie; 2022 bool is_uprobe; 2023 }; 2024 2025 struct bpf_tramp_run_ctx { 2026 struct bpf_run_ctx run_ctx; 2027 u64 bpf_cookie; 2028 struct bpf_run_ctx *saved_run_ctx; 2029 }; 2030 2031 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2032 { 2033 struct bpf_run_ctx *old_ctx = NULL; 2034 2035 #ifdef CONFIG_BPF_SYSCALL 2036 old_ctx = current->bpf_ctx; 2037 current->bpf_ctx = new_ctx; 2038 #endif 2039 return old_ctx; 2040 } 2041 2042 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2043 { 2044 #ifdef CONFIG_BPF_SYSCALL 2045 current->bpf_ctx = old_ctx; 2046 #endif 2047 } 2048 2049 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2050 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2051 /* BPF program asks to set CN on the packet. */ 2052 #define BPF_RET_SET_CN (1 << 0) 2053 2054 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2055 2056 static __always_inline u32 2057 bpf_prog_run_array(const struct bpf_prog_array *array, 2058 const void *ctx, bpf_prog_run_fn run_prog) 2059 { 2060 const struct bpf_prog_array_item *item; 2061 const struct bpf_prog *prog; 2062 struct bpf_run_ctx *old_run_ctx; 2063 struct bpf_trace_run_ctx run_ctx; 2064 u32 ret = 1; 2065 2066 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2067 2068 if (unlikely(!array)) 2069 return ret; 2070 2071 run_ctx.is_uprobe = false; 2072 2073 migrate_disable(); 2074 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2075 item = &array->items[0]; 2076 while ((prog = READ_ONCE(item->prog))) { 2077 run_ctx.bpf_cookie = item->bpf_cookie; 2078 ret &= run_prog(prog, ctx); 2079 item++; 2080 } 2081 bpf_reset_run_ctx(old_run_ctx); 2082 migrate_enable(); 2083 return ret; 2084 } 2085 2086 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2087 * 2088 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2089 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2090 * in order to use the tasks_trace rcu grace period. 2091 * 2092 * When a non-sleepable program is inside the array, we take the rcu read 2093 * section and disable preemption for that program alone, so it can access 2094 * rcu-protected dynamically sized maps. 2095 */ 2096 static __always_inline u32 2097 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2098 const void *ctx, bpf_prog_run_fn run_prog) 2099 { 2100 const struct bpf_prog_array_item *item; 2101 const struct bpf_prog *prog; 2102 const struct bpf_prog_array *array; 2103 struct bpf_run_ctx *old_run_ctx; 2104 struct bpf_trace_run_ctx run_ctx; 2105 u32 ret = 1; 2106 2107 might_fault(); 2108 2109 rcu_read_lock_trace(); 2110 migrate_disable(); 2111 2112 run_ctx.is_uprobe = true; 2113 2114 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2115 if (unlikely(!array)) 2116 goto out; 2117 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2118 item = &array->items[0]; 2119 while ((prog = READ_ONCE(item->prog))) { 2120 if (!prog->sleepable) 2121 rcu_read_lock(); 2122 2123 run_ctx.bpf_cookie = item->bpf_cookie; 2124 ret &= run_prog(prog, ctx); 2125 item++; 2126 2127 if (!prog->sleepable) 2128 rcu_read_unlock(); 2129 } 2130 bpf_reset_run_ctx(old_run_ctx); 2131 out: 2132 migrate_enable(); 2133 rcu_read_unlock_trace(); 2134 return ret; 2135 } 2136 2137 #ifdef CONFIG_BPF_SYSCALL 2138 DECLARE_PER_CPU(int, bpf_prog_active); 2139 extern struct mutex bpf_stats_enabled_mutex; 2140 2141 /* 2142 * Block execution of BPF programs attached to instrumentation (perf, 2143 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2144 * these events can happen inside a region which holds a map bucket lock 2145 * and can deadlock on it. 2146 */ 2147 static inline void bpf_disable_instrumentation(void) 2148 { 2149 migrate_disable(); 2150 this_cpu_inc(bpf_prog_active); 2151 } 2152 2153 static inline void bpf_enable_instrumentation(void) 2154 { 2155 this_cpu_dec(bpf_prog_active); 2156 migrate_enable(); 2157 } 2158 2159 extern const struct super_operations bpf_super_ops; 2160 extern const struct file_operations bpf_map_fops; 2161 extern const struct file_operations bpf_prog_fops; 2162 extern const struct file_operations bpf_iter_fops; 2163 2164 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2165 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2166 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2167 #define BPF_MAP_TYPE(_id, _ops) \ 2168 extern const struct bpf_map_ops _ops; 2169 #define BPF_LINK_TYPE(_id, _name) 2170 #include <linux/bpf_types.h> 2171 #undef BPF_PROG_TYPE 2172 #undef BPF_MAP_TYPE 2173 #undef BPF_LINK_TYPE 2174 2175 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2176 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2177 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2178 2179 struct bpf_prog *bpf_prog_get(u32 ufd); 2180 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2181 bool attach_drv); 2182 void bpf_prog_add(struct bpf_prog *prog, int i); 2183 void bpf_prog_sub(struct bpf_prog *prog, int i); 2184 void bpf_prog_inc(struct bpf_prog *prog); 2185 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2186 void bpf_prog_put(struct bpf_prog *prog); 2187 2188 void bpf_prog_free_id(struct bpf_prog *prog); 2189 void bpf_map_free_id(struct bpf_map *map); 2190 2191 struct btf_field *btf_record_find(const struct btf_record *rec, 2192 u32 offset, u32 field_mask); 2193 void btf_record_free(struct btf_record *rec); 2194 void bpf_map_free_record(struct bpf_map *map); 2195 struct btf_record *btf_record_dup(const struct btf_record *rec); 2196 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2197 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2198 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2199 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2200 2201 struct bpf_map *bpf_map_get(u32 ufd); 2202 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2203 struct bpf_map *__bpf_map_get(struct fd f); 2204 void bpf_map_inc(struct bpf_map *map); 2205 void bpf_map_inc_with_uref(struct bpf_map *map); 2206 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2207 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2208 void bpf_map_put_with_uref(struct bpf_map *map); 2209 void bpf_map_put(struct bpf_map *map); 2210 void *bpf_map_area_alloc(u64 size, int numa_node); 2211 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2212 void bpf_map_area_free(void *base); 2213 bool bpf_map_write_active(const struct bpf_map *map); 2214 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2215 int generic_map_lookup_batch(struct bpf_map *map, 2216 const union bpf_attr *attr, 2217 union bpf_attr __user *uattr); 2218 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2219 const union bpf_attr *attr, 2220 union bpf_attr __user *uattr); 2221 int generic_map_delete_batch(struct bpf_map *map, 2222 const union bpf_attr *attr, 2223 union bpf_attr __user *uattr); 2224 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2225 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2226 2227 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2228 unsigned long nr_pages, struct page **page_array); 2229 #ifdef CONFIG_MEMCG_KMEM 2230 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2231 int node); 2232 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2233 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2234 gfp_t flags); 2235 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2236 size_t align, gfp_t flags); 2237 #else 2238 static inline void * 2239 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2240 int node) 2241 { 2242 return kmalloc_node(size, flags, node); 2243 } 2244 2245 static inline void * 2246 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 2247 { 2248 return kzalloc(size, flags); 2249 } 2250 2251 static inline void * 2252 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 2253 { 2254 return kvcalloc(n, size, flags); 2255 } 2256 2257 static inline void __percpu * 2258 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 2259 gfp_t flags) 2260 { 2261 return __alloc_percpu_gfp(size, align, flags); 2262 } 2263 #endif 2264 2265 static inline int 2266 bpf_map_init_elem_count(struct bpf_map *map) 2267 { 2268 size_t size = sizeof(*map->elem_count), align = size; 2269 gfp_t flags = GFP_USER | __GFP_NOWARN; 2270 2271 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2272 if (!map->elem_count) 2273 return -ENOMEM; 2274 2275 return 0; 2276 } 2277 2278 static inline void 2279 bpf_map_free_elem_count(struct bpf_map *map) 2280 { 2281 free_percpu(map->elem_count); 2282 } 2283 2284 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2285 { 2286 this_cpu_inc(*map->elem_count); 2287 } 2288 2289 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2290 { 2291 this_cpu_dec(*map->elem_count); 2292 } 2293 2294 extern int sysctl_unprivileged_bpf_disabled; 2295 2296 bool bpf_token_capable(const struct bpf_token *token, int cap); 2297 2298 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2299 { 2300 return bpf_token_capable(token, CAP_PERFMON); 2301 } 2302 2303 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2304 { 2305 return bpf_token_capable(token, CAP_PERFMON); 2306 } 2307 2308 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2309 { 2310 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2311 } 2312 2313 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2314 { 2315 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2316 } 2317 2318 int bpf_map_new_fd(struct bpf_map *map, int flags); 2319 int bpf_prog_new_fd(struct bpf_prog *prog); 2320 2321 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2322 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2323 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2324 int bpf_link_settle(struct bpf_link_primer *primer); 2325 void bpf_link_cleanup(struct bpf_link_primer *primer); 2326 void bpf_link_inc(struct bpf_link *link); 2327 void bpf_link_put(struct bpf_link *link); 2328 int bpf_link_new_fd(struct bpf_link *link); 2329 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2330 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2331 2332 void bpf_token_inc(struct bpf_token *token); 2333 void bpf_token_put(struct bpf_token *token); 2334 int bpf_token_create(union bpf_attr *attr); 2335 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2336 2337 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2338 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2339 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2340 enum bpf_prog_type prog_type, 2341 enum bpf_attach_type attach_type); 2342 2343 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2344 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2345 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2346 umode_t mode); 2347 2348 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2349 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2350 extern int bpf_iter_ ## target(args); \ 2351 int __init bpf_iter_ ## target(args) { return 0; } 2352 2353 /* 2354 * The task type of iterators. 2355 * 2356 * For BPF task iterators, they can be parameterized with various 2357 * parameters to visit only some of tasks. 2358 * 2359 * BPF_TASK_ITER_ALL (default) 2360 * Iterate over resources of every task. 2361 * 2362 * BPF_TASK_ITER_TID 2363 * Iterate over resources of a task/tid. 2364 * 2365 * BPF_TASK_ITER_TGID 2366 * Iterate over resources of every task of a process / task group. 2367 */ 2368 enum bpf_iter_task_type { 2369 BPF_TASK_ITER_ALL = 0, 2370 BPF_TASK_ITER_TID, 2371 BPF_TASK_ITER_TGID, 2372 }; 2373 2374 struct bpf_iter_aux_info { 2375 /* for map_elem iter */ 2376 struct bpf_map *map; 2377 2378 /* for cgroup iter */ 2379 struct { 2380 struct cgroup *start; /* starting cgroup */ 2381 enum bpf_cgroup_iter_order order; 2382 } cgroup; 2383 struct { 2384 enum bpf_iter_task_type type; 2385 u32 pid; 2386 } task; 2387 }; 2388 2389 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2390 union bpf_iter_link_info *linfo, 2391 struct bpf_iter_aux_info *aux); 2392 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2393 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2394 struct seq_file *seq); 2395 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2396 struct bpf_link_info *info); 2397 typedef const struct bpf_func_proto * 2398 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2399 const struct bpf_prog *prog); 2400 2401 enum bpf_iter_feature { 2402 BPF_ITER_RESCHED = BIT(0), 2403 }; 2404 2405 #define BPF_ITER_CTX_ARG_MAX 2 2406 struct bpf_iter_reg { 2407 const char *target; 2408 bpf_iter_attach_target_t attach_target; 2409 bpf_iter_detach_target_t detach_target; 2410 bpf_iter_show_fdinfo_t show_fdinfo; 2411 bpf_iter_fill_link_info_t fill_link_info; 2412 bpf_iter_get_func_proto_t get_func_proto; 2413 u32 ctx_arg_info_size; 2414 u32 feature; 2415 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2416 const struct bpf_iter_seq_info *seq_info; 2417 }; 2418 2419 struct bpf_iter_meta { 2420 __bpf_md_ptr(struct seq_file *, seq); 2421 u64 session_id; 2422 u64 seq_num; 2423 }; 2424 2425 struct bpf_iter__bpf_map_elem { 2426 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2427 __bpf_md_ptr(struct bpf_map *, map); 2428 __bpf_md_ptr(void *, key); 2429 __bpf_md_ptr(void *, value); 2430 }; 2431 2432 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2433 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2434 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2435 const struct bpf_func_proto * 2436 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2437 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2438 int bpf_iter_new_fd(struct bpf_link *link); 2439 bool bpf_link_is_iter(struct bpf_link *link); 2440 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2441 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2442 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2443 struct seq_file *seq); 2444 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2445 struct bpf_link_info *info); 2446 2447 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2448 struct bpf_func_state *caller, 2449 struct bpf_func_state *callee); 2450 2451 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2452 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2453 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2454 u64 flags); 2455 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2456 u64 flags); 2457 2458 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2459 2460 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2461 void *key, void *value, u64 map_flags); 2462 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2463 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2464 void *key, void *value, u64 map_flags); 2465 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2466 2467 int bpf_get_file_flag(int flags); 2468 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2469 size_t actual_size); 2470 2471 /* verify correctness of eBPF program */ 2472 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2473 2474 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2475 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2476 #endif 2477 2478 struct btf *bpf_get_btf_vmlinux(void); 2479 2480 /* Map specifics */ 2481 struct xdp_frame; 2482 struct sk_buff; 2483 struct bpf_dtab_netdev; 2484 struct bpf_cpu_map_entry; 2485 2486 void __dev_flush(void); 2487 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2488 struct net_device *dev_rx); 2489 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2490 struct net_device *dev_rx); 2491 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2492 struct bpf_map *map, bool exclude_ingress); 2493 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2494 struct bpf_prog *xdp_prog); 2495 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2496 struct bpf_prog *xdp_prog, struct bpf_map *map, 2497 bool exclude_ingress); 2498 2499 void __cpu_map_flush(void); 2500 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2501 struct net_device *dev_rx); 2502 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2503 struct sk_buff *skb); 2504 2505 /* Return map's numa specified by userspace */ 2506 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2507 { 2508 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2509 attr->numa_node : NUMA_NO_NODE; 2510 } 2511 2512 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2513 int array_map_alloc_check(union bpf_attr *attr); 2514 2515 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2516 union bpf_attr __user *uattr); 2517 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2518 union bpf_attr __user *uattr); 2519 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2520 const union bpf_attr *kattr, 2521 union bpf_attr __user *uattr); 2522 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2523 const union bpf_attr *kattr, 2524 union bpf_attr __user *uattr); 2525 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2526 const union bpf_attr *kattr, 2527 union bpf_attr __user *uattr); 2528 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2529 const union bpf_attr *kattr, 2530 union bpf_attr __user *uattr); 2531 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2532 const union bpf_attr *kattr, 2533 union bpf_attr __user *uattr); 2534 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2535 const struct bpf_prog *prog, 2536 struct bpf_insn_access_aux *info); 2537 2538 static inline bool bpf_tracing_ctx_access(int off, int size, 2539 enum bpf_access_type type) 2540 { 2541 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2542 return false; 2543 if (type != BPF_READ) 2544 return false; 2545 if (off % size != 0) 2546 return false; 2547 return true; 2548 } 2549 2550 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2551 enum bpf_access_type type, 2552 const struct bpf_prog *prog, 2553 struct bpf_insn_access_aux *info) 2554 { 2555 if (!bpf_tracing_ctx_access(off, size, type)) 2556 return false; 2557 return btf_ctx_access(off, size, type, prog, info); 2558 } 2559 2560 int btf_struct_access(struct bpf_verifier_log *log, 2561 const struct bpf_reg_state *reg, 2562 int off, int size, enum bpf_access_type atype, 2563 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2564 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2565 const struct btf *btf, u32 id, int off, 2566 const struct btf *need_btf, u32 need_type_id, 2567 bool strict); 2568 2569 int btf_distill_func_proto(struct bpf_verifier_log *log, 2570 struct btf *btf, 2571 const struct btf_type *func_proto, 2572 const char *func_name, 2573 struct btf_func_model *m); 2574 2575 struct bpf_reg_state; 2576 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2577 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2578 struct btf *btf, const struct btf_type *t); 2579 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2580 int comp_idx, const char *tag_key); 2581 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2582 int comp_idx, const char *tag_key, int last_id); 2583 2584 struct bpf_prog *bpf_prog_by_id(u32 id); 2585 struct bpf_link *bpf_link_by_id(u32 id); 2586 2587 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2588 const struct bpf_prog *prog); 2589 void bpf_task_storage_free(struct task_struct *task); 2590 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2591 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2592 const struct btf_func_model * 2593 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2594 const struct bpf_insn *insn); 2595 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2596 u16 btf_fd_idx, u8 **func_addr); 2597 2598 struct bpf_core_ctx { 2599 struct bpf_verifier_log *log; 2600 const struct btf *btf; 2601 }; 2602 2603 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2604 const struct bpf_reg_state *reg, 2605 const char *field_name, u32 btf_id, const char *suffix); 2606 2607 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2608 const struct btf *reg_btf, u32 reg_id, 2609 const struct btf *arg_btf, u32 arg_id); 2610 2611 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2612 int relo_idx, void *insn); 2613 2614 static inline bool unprivileged_ebpf_enabled(void) 2615 { 2616 return !sysctl_unprivileged_bpf_disabled; 2617 } 2618 2619 /* Not all bpf prog type has the bpf_ctx. 2620 * For the bpf prog type that has initialized the bpf_ctx, 2621 * this function can be used to decide if a kernel function 2622 * is called by a bpf program. 2623 */ 2624 static inline bool has_current_bpf_ctx(void) 2625 { 2626 return !!current->bpf_ctx; 2627 } 2628 2629 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2630 2631 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2632 enum bpf_dynptr_type type, u32 offset, u32 size); 2633 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2634 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2635 2636 bool dev_check_flush(void); 2637 bool cpu_map_check_flush(void); 2638 #else /* !CONFIG_BPF_SYSCALL */ 2639 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2640 { 2641 return ERR_PTR(-EOPNOTSUPP); 2642 } 2643 2644 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2645 enum bpf_prog_type type, 2646 bool attach_drv) 2647 { 2648 return ERR_PTR(-EOPNOTSUPP); 2649 } 2650 2651 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2652 { 2653 } 2654 2655 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2656 { 2657 } 2658 2659 static inline void bpf_prog_put(struct bpf_prog *prog) 2660 { 2661 } 2662 2663 static inline void bpf_prog_inc(struct bpf_prog *prog) 2664 { 2665 } 2666 2667 static inline struct bpf_prog *__must_check 2668 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2669 { 2670 return ERR_PTR(-EOPNOTSUPP); 2671 } 2672 2673 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2674 const struct bpf_link_ops *ops, 2675 struct bpf_prog *prog) 2676 { 2677 } 2678 2679 static inline int bpf_link_prime(struct bpf_link *link, 2680 struct bpf_link_primer *primer) 2681 { 2682 return -EOPNOTSUPP; 2683 } 2684 2685 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2686 { 2687 return -EOPNOTSUPP; 2688 } 2689 2690 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2691 { 2692 } 2693 2694 static inline void bpf_link_inc(struct bpf_link *link) 2695 { 2696 } 2697 2698 static inline void bpf_link_put(struct bpf_link *link) 2699 { 2700 } 2701 2702 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2703 { 2704 return -EOPNOTSUPP; 2705 } 2706 2707 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2708 { 2709 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2710 } 2711 2712 static inline void bpf_token_inc(struct bpf_token *token) 2713 { 2714 } 2715 2716 static inline void bpf_token_put(struct bpf_token *token) 2717 { 2718 } 2719 2720 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2721 { 2722 return ERR_PTR(-EOPNOTSUPP); 2723 } 2724 2725 static inline void __dev_flush(void) 2726 { 2727 } 2728 2729 struct xdp_frame; 2730 struct bpf_dtab_netdev; 2731 struct bpf_cpu_map_entry; 2732 2733 static inline 2734 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2735 struct net_device *dev_rx) 2736 { 2737 return 0; 2738 } 2739 2740 static inline 2741 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2742 struct net_device *dev_rx) 2743 { 2744 return 0; 2745 } 2746 2747 static inline 2748 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2749 struct bpf_map *map, bool exclude_ingress) 2750 { 2751 return 0; 2752 } 2753 2754 struct sk_buff; 2755 2756 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2757 struct sk_buff *skb, 2758 struct bpf_prog *xdp_prog) 2759 { 2760 return 0; 2761 } 2762 2763 static inline 2764 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2765 struct bpf_prog *xdp_prog, struct bpf_map *map, 2766 bool exclude_ingress) 2767 { 2768 return 0; 2769 } 2770 2771 static inline void __cpu_map_flush(void) 2772 { 2773 } 2774 2775 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2776 struct xdp_frame *xdpf, 2777 struct net_device *dev_rx) 2778 { 2779 return 0; 2780 } 2781 2782 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2783 struct sk_buff *skb) 2784 { 2785 return -EOPNOTSUPP; 2786 } 2787 2788 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2789 enum bpf_prog_type type) 2790 { 2791 return ERR_PTR(-EOPNOTSUPP); 2792 } 2793 2794 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2795 const union bpf_attr *kattr, 2796 union bpf_attr __user *uattr) 2797 { 2798 return -ENOTSUPP; 2799 } 2800 2801 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2802 const union bpf_attr *kattr, 2803 union bpf_attr __user *uattr) 2804 { 2805 return -ENOTSUPP; 2806 } 2807 2808 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2809 const union bpf_attr *kattr, 2810 union bpf_attr __user *uattr) 2811 { 2812 return -ENOTSUPP; 2813 } 2814 2815 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2816 const union bpf_attr *kattr, 2817 union bpf_attr __user *uattr) 2818 { 2819 return -ENOTSUPP; 2820 } 2821 2822 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2823 const union bpf_attr *kattr, 2824 union bpf_attr __user *uattr) 2825 { 2826 return -ENOTSUPP; 2827 } 2828 2829 static inline void bpf_map_put(struct bpf_map *map) 2830 { 2831 } 2832 2833 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2834 { 2835 return ERR_PTR(-ENOTSUPP); 2836 } 2837 2838 static inline int btf_struct_access(struct bpf_verifier_log *log, 2839 const struct bpf_reg_state *reg, 2840 int off, int size, enum bpf_access_type atype, 2841 u32 *next_btf_id, enum bpf_type_flag *flag, 2842 const char **field_name) 2843 { 2844 return -EACCES; 2845 } 2846 2847 static inline const struct bpf_func_proto * 2848 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2849 { 2850 return NULL; 2851 } 2852 2853 static inline void bpf_task_storage_free(struct task_struct *task) 2854 { 2855 } 2856 2857 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2858 { 2859 return false; 2860 } 2861 2862 static inline const struct btf_func_model * 2863 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2864 const struct bpf_insn *insn) 2865 { 2866 return NULL; 2867 } 2868 2869 static inline int 2870 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2871 u16 btf_fd_idx, u8 **func_addr) 2872 { 2873 return -ENOTSUPP; 2874 } 2875 2876 static inline bool unprivileged_ebpf_enabled(void) 2877 { 2878 return false; 2879 } 2880 2881 static inline bool has_current_bpf_ctx(void) 2882 { 2883 return false; 2884 } 2885 2886 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2887 { 2888 } 2889 2890 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2891 { 2892 } 2893 2894 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2895 enum bpf_dynptr_type type, u32 offset, u32 size) 2896 { 2897 } 2898 2899 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2900 { 2901 } 2902 2903 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2904 { 2905 } 2906 #endif /* CONFIG_BPF_SYSCALL */ 2907 2908 static __always_inline int 2909 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2910 { 2911 int ret = -EFAULT; 2912 2913 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2914 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2915 if (unlikely(ret < 0)) 2916 memset(dst, 0, size); 2917 return ret; 2918 } 2919 2920 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2921 struct btf_mod_pair *used_btfs, u32 len); 2922 2923 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2924 enum bpf_prog_type type) 2925 { 2926 return bpf_prog_get_type_dev(ufd, type, false); 2927 } 2928 2929 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2930 struct bpf_map **used_maps, u32 len); 2931 2932 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2933 2934 int bpf_prog_offload_compile(struct bpf_prog *prog); 2935 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2936 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2937 struct bpf_prog *prog); 2938 2939 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2940 2941 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2942 int bpf_map_offload_update_elem(struct bpf_map *map, 2943 void *key, void *value, u64 flags); 2944 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2945 int bpf_map_offload_get_next_key(struct bpf_map *map, 2946 void *key, void *next_key); 2947 2948 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2949 2950 struct bpf_offload_dev * 2951 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2952 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2953 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2954 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2955 struct net_device *netdev); 2956 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2957 struct net_device *netdev); 2958 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2959 2960 void unpriv_ebpf_notify(int new_state); 2961 2962 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2963 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2964 struct bpf_prog_aux *prog_aux); 2965 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2966 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2967 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2968 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2969 2970 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2971 { 2972 return aux->dev_bound; 2973 } 2974 2975 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2976 { 2977 return aux->offload_requested; 2978 } 2979 2980 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2981 2982 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2983 { 2984 return unlikely(map->ops == &bpf_map_offload_ops); 2985 } 2986 2987 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2988 void bpf_map_offload_map_free(struct bpf_map *map); 2989 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2990 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2991 const union bpf_attr *kattr, 2992 union bpf_attr __user *uattr); 2993 2994 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2995 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2996 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2997 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2998 union bpf_attr __user *uattr); 2999 3000 void sock_map_unhash(struct sock *sk); 3001 void sock_map_destroy(struct sock *sk); 3002 void sock_map_close(struct sock *sk, long timeout); 3003 #else 3004 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3005 struct bpf_prog_aux *prog_aux) 3006 { 3007 return -EOPNOTSUPP; 3008 } 3009 3010 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3011 u32 func_id) 3012 { 3013 return NULL; 3014 } 3015 3016 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3017 union bpf_attr *attr) 3018 { 3019 return -EOPNOTSUPP; 3020 } 3021 3022 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3023 struct bpf_prog *old_prog) 3024 { 3025 return -EOPNOTSUPP; 3026 } 3027 3028 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3029 { 3030 } 3031 3032 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3033 { 3034 return false; 3035 } 3036 3037 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3038 { 3039 return false; 3040 } 3041 3042 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3043 { 3044 return false; 3045 } 3046 3047 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3048 { 3049 return false; 3050 } 3051 3052 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3053 { 3054 return ERR_PTR(-EOPNOTSUPP); 3055 } 3056 3057 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3058 { 3059 } 3060 3061 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3062 { 3063 return 0; 3064 } 3065 3066 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3067 const union bpf_attr *kattr, 3068 union bpf_attr __user *uattr) 3069 { 3070 return -ENOTSUPP; 3071 } 3072 3073 #ifdef CONFIG_BPF_SYSCALL 3074 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3075 struct bpf_prog *prog) 3076 { 3077 return -EINVAL; 3078 } 3079 3080 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3081 enum bpf_prog_type ptype) 3082 { 3083 return -EOPNOTSUPP; 3084 } 3085 3086 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3087 u64 flags) 3088 { 3089 return -EOPNOTSUPP; 3090 } 3091 3092 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3093 union bpf_attr __user *uattr) 3094 { 3095 return -EINVAL; 3096 } 3097 #endif /* CONFIG_BPF_SYSCALL */ 3098 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3099 3100 static __always_inline void 3101 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3102 { 3103 const struct bpf_prog_array_item *item; 3104 struct bpf_prog *prog; 3105 3106 if (unlikely(!array)) 3107 return; 3108 3109 item = &array->items[0]; 3110 while ((prog = READ_ONCE(item->prog))) { 3111 bpf_prog_inc_misses_counter(prog); 3112 item++; 3113 } 3114 } 3115 3116 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3117 void bpf_sk_reuseport_detach(struct sock *sk); 3118 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3119 void *value); 3120 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3121 void *value, u64 map_flags); 3122 #else 3123 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3124 { 3125 } 3126 3127 #ifdef CONFIG_BPF_SYSCALL 3128 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3129 void *key, void *value) 3130 { 3131 return -EOPNOTSUPP; 3132 } 3133 3134 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3135 void *key, void *value, 3136 u64 map_flags) 3137 { 3138 return -EOPNOTSUPP; 3139 } 3140 #endif /* CONFIG_BPF_SYSCALL */ 3141 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3142 3143 /* verifier prototypes for helper functions called from eBPF programs */ 3144 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3145 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3146 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3147 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3148 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3149 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3150 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3151 3152 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3153 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3154 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3155 extern const struct bpf_func_proto bpf_tail_call_proto; 3156 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3157 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3158 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3159 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3160 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3161 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3162 extern const struct bpf_func_proto bpf_get_stackid_proto; 3163 extern const struct bpf_func_proto bpf_get_stack_proto; 3164 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3165 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3166 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3167 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3168 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3169 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3170 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3171 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3172 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3173 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3174 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3175 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3176 extern const struct bpf_func_proto bpf_spin_lock_proto; 3177 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3178 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3179 extern const struct bpf_func_proto bpf_strtol_proto; 3180 extern const struct bpf_func_proto bpf_strtoul_proto; 3181 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3182 extern const struct bpf_func_proto bpf_jiffies64_proto; 3183 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3184 extern const struct bpf_func_proto bpf_event_output_data_proto; 3185 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3186 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3187 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3188 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3189 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3190 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3191 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3192 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3193 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3194 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3195 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3196 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3197 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3198 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3199 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3200 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3201 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3202 extern const struct bpf_func_proto bpf_snprintf_proto; 3203 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3204 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3205 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3206 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3207 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3208 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3209 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3210 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3211 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3212 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3213 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3214 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3215 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3216 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3217 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3218 extern const struct bpf_func_proto bpf_find_vma_proto; 3219 extern const struct bpf_func_proto bpf_loop_proto; 3220 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3221 extern const struct bpf_func_proto bpf_set_retval_proto; 3222 extern const struct bpf_func_proto bpf_get_retval_proto; 3223 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3224 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3225 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3226 3227 const struct bpf_func_proto *tracing_prog_func_proto( 3228 enum bpf_func_id func_id, const struct bpf_prog *prog); 3229 3230 /* Shared helpers among cBPF and eBPF. */ 3231 void bpf_user_rnd_init_once(void); 3232 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3233 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3234 3235 #if defined(CONFIG_NET) 3236 bool bpf_sock_common_is_valid_access(int off, int size, 3237 enum bpf_access_type type, 3238 struct bpf_insn_access_aux *info); 3239 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3240 struct bpf_insn_access_aux *info); 3241 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3242 const struct bpf_insn *si, 3243 struct bpf_insn *insn_buf, 3244 struct bpf_prog *prog, 3245 u32 *target_size); 3246 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3247 struct bpf_dynptr_kern *ptr); 3248 #else 3249 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3250 enum bpf_access_type type, 3251 struct bpf_insn_access_aux *info) 3252 { 3253 return false; 3254 } 3255 static inline bool bpf_sock_is_valid_access(int off, int size, 3256 enum bpf_access_type type, 3257 struct bpf_insn_access_aux *info) 3258 { 3259 return false; 3260 } 3261 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3262 const struct bpf_insn *si, 3263 struct bpf_insn *insn_buf, 3264 struct bpf_prog *prog, 3265 u32 *target_size) 3266 { 3267 return 0; 3268 } 3269 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3270 struct bpf_dynptr_kern *ptr) 3271 { 3272 return -EOPNOTSUPP; 3273 } 3274 #endif 3275 3276 #ifdef CONFIG_INET 3277 struct sk_reuseport_kern { 3278 struct sk_buff *skb; 3279 struct sock *sk; 3280 struct sock *selected_sk; 3281 struct sock *migrating_sk; 3282 void *data_end; 3283 u32 hash; 3284 u32 reuseport_id; 3285 bool bind_inany; 3286 }; 3287 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3288 struct bpf_insn_access_aux *info); 3289 3290 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3291 const struct bpf_insn *si, 3292 struct bpf_insn *insn_buf, 3293 struct bpf_prog *prog, 3294 u32 *target_size); 3295 3296 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3297 struct bpf_insn_access_aux *info); 3298 3299 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3300 const struct bpf_insn *si, 3301 struct bpf_insn *insn_buf, 3302 struct bpf_prog *prog, 3303 u32 *target_size); 3304 #else 3305 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3306 enum bpf_access_type type, 3307 struct bpf_insn_access_aux *info) 3308 { 3309 return false; 3310 } 3311 3312 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3313 const struct bpf_insn *si, 3314 struct bpf_insn *insn_buf, 3315 struct bpf_prog *prog, 3316 u32 *target_size) 3317 { 3318 return 0; 3319 } 3320 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3321 enum bpf_access_type type, 3322 struct bpf_insn_access_aux *info) 3323 { 3324 return false; 3325 } 3326 3327 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3328 const struct bpf_insn *si, 3329 struct bpf_insn *insn_buf, 3330 struct bpf_prog *prog, 3331 u32 *target_size) 3332 { 3333 return 0; 3334 } 3335 #endif /* CONFIG_INET */ 3336 3337 enum bpf_text_poke_type { 3338 BPF_MOD_CALL, 3339 BPF_MOD_JUMP, 3340 }; 3341 3342 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3343 void *addr1, void *addr2); 3344 3345 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3346 struct bpf_prog *new, struct bpf_prog *old); 3347 3348 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3349 int bpf_arch_text_invalidate(void *dst, size_t len); 3350 3351 struct btf_id_set; 3352 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3353 3354 #define MAX_BPRINTF_VARARGS 12 3355 #define MAX_BPRINTF_BUF 1024 3356 3357 struct bpf_bprintf_data { 3358 u32 *bin_args; 3359 char *buf; 3360 bool get_bin_args; 3361 bool get_buf; 3362 }; 3363 3364 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3365 u32 num_args, struct bpf_bprintf_data *data); 3366 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3367 3368 #ifdef CONFIG_BPF_LSM 3369 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3370 void bpf_cgroup_atype_put(int cgroup_atype); 3371 #else 3372 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3373 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3374 #endif /* CONFIG_BPF_LSM */ 3375 3376 struct key; 3377 3378 #ifdef CONFIG_KEYS 3379 struct bpf_key { 3380 struct key *key; 3381 bool has_ref; 3382 }; 3383 #endif /* CONFIG_KEYS */ 3384 3385 static inline bool type_is_alloc(u32 type) 3386 { 3387 return type & MEM_ALLOC; 3388 } 3389 3390 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3391 { 3392 if (memcg_bpf_enabled()) 3393 return flags | __GFP_ACCOUNT; 3394 return flags; 3395 } 3396 3397 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3398 { 3399 return prog->aux->func_idx != 0; 3400 } 3401 3402 #endif /* _LINUX_BPF_H */ 3403