xref: /linux-6.15/include/linux/bpf.h (revision 55435ea7)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54 
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma;
59 extern bool bpf_global_ma_set;
60 
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 					struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 				   const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 	const struct seq_operations *seq_ops;
69 	bpf_iter_init_seq_priv_t init_seq_private;
70 	bpf_iter_fini_seq_priv_t fini_seq_private;
71 	u32 seq_priv_size;
72 };
73 
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 	/* funcs callable from userspace (via syscall) */
77 	int (*map_alloc_check)(union bpf_attr *attr);
78 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 	void (*map_release)(struct bpf_map *map, struct file *map_file);
80 	void (*map_free)(struct bpf_map *map);
81 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 	void (*map_release_uref)(struct bpf_map *map);
83 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 				union bpf_attr __user *uattr);
86 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 					  void *value, u64 flags);
88 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 					   const union bpf_attr *attr,
90 					   union bpf_attr __user *uattr);
91 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 				const union bpf_attr *attr,
93 				union bpf_attr __user *uattr);
94 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 				union bpf_attr __user *uattr);
96 
97 	/* funcs callable from userspace and from eBPF programs */
98 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 	long (*map_delete_elem)(struct bpf_map *map, void *key);
101 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 	long (*map_pop_elem)(struct bpf_map *map, void *value);
103 	long (*map_peek_elem)(struct bpf_map *map, void *value);
104 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105 
106 	/* funcs called by prog_array and perf_event_array map */
107 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 				int fd);
109 	void (*map_fd_put_ptr)(void *ptr);
110 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 				  struct seq_file *m);
114 	int (*map_check_btf)(const struct bpf_map *map,
115 			     const struct btf *btf,
116 			     const struct btf_type *key_type,
117 			     const struct btf_type *value_type);
118 
119 	/* Prog poke tracking helpers. */
120 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 			     struct bpf_prog *new);
124 
125 	/* Direct value access helpers. */
126 	int (*map_direct_value_addr)(const struct bpf_map *map,
127 				     u64 *imm, u32 off);
128 	int (*map_direct_value_meta)(const struct bpf_map *map,
129 				     u64 imm, u32 *off);
130 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 			     struct poll_table_struct *pts);
133 
134 	/* Functions called by bpf_local_storage maps */
135 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 					void *owner, u32 size);
137 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 					   void *owner, u32 size);
139 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140 
141 	/* Misc helpers.*/
142 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143 
144 	/* map_meta_equal must be implemented for maps that can be
145 	 * used as an inner map.  It is a runtime check to ensure
146 	 * an inner map can be inserted to an outer map.
147 	 *
148 	 * Some properties of the inner map has been used during the
149 	 * verification time.  When inserting an inner map at the runtime,
150 	 * map_meta_equal has to ensure the inserting map has the same
151 	 * properties that the verifier has used earlier.
152 	 */
153 	bool (*map_meta_equal)(const struct bpf_map *meta0,
154 			       const struct bpf_map *meta1);
155 
156 
157 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 					      struct bpf_func_state *caller,
159 					      struct bpf_func_state *callee);
160 	long (*map_for_each_callback)(struct bpf_map *map,
161 				     bpf_callback_t callback_fn,
162 				     void *callback_ctx, u64 flags);
163 
164 	u64 (*map_mem_usage)(const struct bpf_map *map);
165 
166 	/* BTF id of struct allocated by map_alloc */
167 	int *map_btf_id;
168 
169 	/* bpf_iter info used to open a seq_file */
170 	const struct bpf_iter_seq_info *iter_seq_info;
171 };
172 
173 enum {
174 	/* Support at most 10 fields in a BTF type */
175 	BTF_FIELDS_MAX	   = 10,
176 };
177 
178 enum btf_field_type {
179 	BPF_SPIN_LOCK  = (1 << 0),
180 	BPF_TIMER      = (1 << 1),
181 	BPF_KPTR_UNREF = (1 << 2),
182 	BPF_KPTR_REF   = (1 << 3),
183 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF,
184 	BPF_LIST_HEAD  = (1 << 4),
185 	BPF_LIST_NODE  = (1 << 5),
186 	BPF_RB_ROOT    = (1 << 6),
187 	BPF_RB_NODE    = (1 << 7),
188 	BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
189 				 BPF_RB_NODE | BPF_RB_ROOT,
190 };
191 
192 typedef void (*btf_dtor_kfunc_t)(void *);
193 
194 struct btf_field_kptr {
195 	struct btf *btf;
196 	struct module *module;
197 	/* dtor used if btf_is_kernel(btf), otherwise the type is
198 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
199 	 */
200 	btf_dtor_kfunc_t dtor;
201 	u32 btf_id;
202 };
203 
204 struct btf_field_graph_root {
205 	struct btf *btf;
206 	u32 value_btf_id;
207 	u32 node_offset;
208 	struct btf_record *value_rec;
209 };
210 
211 struct btf_field {
212 	u32 offset;
213 	enum btf_field_type type;
214 	union {
215 		struct btf_field_kptr kptr;
216 		struct btf_field_graph_root graph_root;
217 	};
218 };
219 
220 struct btf_record {
221 	u32 cnt;
222 	u32 field_mask;
223 	int spin_lock_off;
224 	int timer_off;
225 	struct btf_field fields[];
226 };
227 
228 struct btf_field_offs {
229 	u32 cnt;
230 	u32 field_off[BTF_FIELDS_MAX];
231 	u8 field_sz[BTF_FIELDS_MAX];
232 };
233 
234 struct bpf_map {
235 	/* The first two cachelines with read-mostly members of which some
236 	 * are also accessed in fast-path (e.g. ops, max_entries).
237 	 */
238 	const struct bpf_map_ops *ops ____cacheline_aligned;
239 	struct bpf_map *inner_map_meta;
240 #ifdef CONFIG_SECURITY
241 	void *security;
242 #endif
243 	enum bpf_map_type map_type;
244 	u32 key_size;
245 	u32 value_size;
246 	u32 max_entries;
247 	u64 map_extra; /* any per-map-type extra fields */
248 	u32 map_flags;
249 	u32 id;
250 	struct btf_record *record;
251 	int numa_node;
252 	u32 btf_key_type_id;
253 	u32 btf_value_type_id;
254 	u32 btf_vmlinux_value_type_id;
255 	struct btf *btf;
256 #ifdef CONFIG_MEMCG_KMEM
257 	struct obj_cgroup *objcg;
258 #endif
259 	char name[BPF_OBJ_NAME_LEN];
260 	struct btf_field_offs *field_offs;
261 	/* The 3rd and 4th cacheline with misc members to avoid false sharing
262 	 * particularly with refcounting.
263 	 */
264 	atomic64_t refcnt ____cacheline_aligned;
265 	atomic64_t usercnt;
266 	struct work_struct work;
267 	struct mutex freeze_mutex;
268 	atomic64_t writecnt;
269 	/* 'Ownership' of program-containing map is claimed by the first program
270 	 * that is going to use this map or by the first program which FD is
271 	 * stored in the map to make sure that all callers and callees have the
272 	 * same prog type, JITed flag and xdp_has_frags flag.
273 	 */
274 	struct {
275 		spinlock_t lock;
276 		enum bpf_prog_type type;
277 		bool jited;
278 		bool xdp_has_frags;
279 	} owner;
280 	bool bypass_spec_v1;
281 	bool frozen; /* write-once; write-protected by freeze_mutex */
282 };
283 
284 static inline const char *btf_field_type_name(enum btf_field_type type)
285 {
286 	switch (type) {
287 	case BPF_SPIN_LOCK:
288 		return "bpf_spin_lock";
289 	case BPF_TIMER:
290 		return "bpf_timer";
291 	case BPF_KPTR_UNREF:
292 	case BPF_KPTR_REF:
293 		return "kptr";
294 	case BPF_LIST_HEAD:
295 		return "bpf_list_head";
296 	case BPF_LIST_NODE:
297 		return "bpf_list_node";
298 	case BPF_RB_ROOT:
299 		return "bpf_rb_root";
300 	case BPF_RB_NODE:
301 		return "bpf_rb_node";
302 	default:
303 		WARN_ON_ONCE(1);
304 		return "unknown";
305 	}
306 }
307 
308 static inline u32 btf_field_type_size(enum btf_field_type type)
309 {
310 	switch (type) {
311 	case BPF_SPIN_LOCK:
312 		return sizeof(struct bpf_spin_lock);
313 	case BPF_TIMER:
314 		return sizeof(struct bpf_timer);
315 	case BPF_KPTR_UNREF:
316 	case BPF_KPTR_REF:
317 		return sizeof(u64);
318 	case BPF_LIST_HEAD:
319 		return sizeof(struct bpf_list_head);
320 	case BPF_LIST_NODE:
321 		return sizeof(struct bpf_list_node);
322 	case BPF_RB_ROOT:
323 		return sizeof(struct bpf_rb_root);
324 	case BPF_RB_NODE:
325 		return sizeof(struct bpf_rb_node);
326 	default:
327 		WARN_ON_ONCE(1);
328 		return 0;
329 	}
330 }
331 
332 static inline u32 btf_field_type_align(enum btf_field_type type)
333 {
334 	switch (type) {
335 	case BPF_SPIN_LOCK:
336 		return __alignof__(struct bpf_spin_lock);
337 	case BPF_TIMER:
338 		return __alignof__(struct bpf_timer);
339 	case BPF_KPTR_UNREF:
340 	case BPF_KPTR_REF:
341 		return __alignof__(u64);
342 	case BPF_LIST_HEAD:
343 		return __alignof__(struct bpf_list_head);
344 	case BPF_LIST_NODE:
345 		return __alignof__(struct bpf_list_node);
346 	case BPF_RB_ROOT:
347 		return __alignof__(struct bpf_rb_root);
348 	case BPF_RB_NODE:
349 		return __alignof__(struct bpf_rb_node);
350 	default:
351 		WARN_ON_ONCE(1);
352 		return 0;
353 	}
354 }
355 
356 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
357 {
358 	if (IS_ERR_OR_NULL(rec))
359 		return false;
360 	return rec->field_mask & type;
361 }
362 
363 static inline void bpf_obj_init(const struct btf_field_offs *foffs, void *obj)
364 {
365 	int i;
366 
367 	if (!foffs)
368 		return;
369 	for (i = 0; i < foffs->cnt; i++)
370 		memset(obj + foffs->field_off[i], 0, foffs->field_sz[i]);
371 }
372 
373 /* 'dst' must be a temporary buffer and should not point to memory that is being
374  * used in parallel by a bpf program or bpf syscall, otherwise the access from
375  * the bpf program or bpf syscall may be corrupted by the reinitialization,
376  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
377  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
378  * program or bpf syscall.
379  */
380 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
381 {
382 	bpf_obj_init(map->field_offs, dst);
383 }
384 
385 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
386  * forced to use 'long' read/writes to try to atomically copy long counters.
387  * Best-effort only.  No barriers here, since it _will_ race with concurrent
388  * updates from BPF programs. Called from bpf syscall and mostly used with
389  * size 8 or 16 bytes, so ask compiler to inline it.
390  */
391 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
392 {
393 	const long *lsrc = src;
394 	long *ldst = dst;
395 
396 	size /= sizeof(long);
397 	while (size--)
398 		*ldst++ = *lsrc++;
399 }
400 
401 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
402 static inline void bpf_obj_memcpy(struct btf_field_offs *foffs,
403 				  void *dst, void *src, u32 size,
404 				  bool long_memcpy)
405 {
406 	u32 curr_off = 0;
407 	int i;
408 
409 	if (likely(!foffs)) {
410 		if (long_memcpy)
411 			bpf_long_memcpy(dst, src, round_up(size, 8));
412 		else
413 			memcpy(dst, src, size);
414 		return;
415 	}
416 
417 	for (i = 0; i < foffs->cnt; i++) {
418 		u32 next_off = foffs->field_off[i];
419 		u32 sz = next_off - curr_off;
420 
421 		memcpy(dst + curr_off, src + curr_off, sz);
422 		curr_off += foffs->field_sz[i] + sz;
423 	}
424 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
425 }
426 
427 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
428 {
429 	bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, false);
430 }
431 
432 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
433 {
434 	bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, true);
435 }
436 
437 static inline void bpf_obj_memzero(struct btf_field_offs *foffs, void *dst, u32 size)
438 {
439 	u32 curr_off = 0;
440 	int i;
441 
442 	if (likely(!foffs)) {
443 		memset(dst, 0, size);
444 		return;
445 	}
446 
447 	for (i = 0; i < foffs->cnt; i++) {
448 		u32 next_off = foffs->field_off[i];
449 		u32 sz = next_off - curr_off;
450 
451 		memset(dst + curr_off, 0, sz);
452 		curr_off += foffs->field_sz[i] + sz;
453 	}
454 	memset(dst + curr_off, 0, size - curr_off);
455 }
456 
457 static inline void zero_map_value(struct bpf_map *map, void *dst)
458 {
459 	bpf_obj_memzero(map->field_offs, dst, map->value_size);
460 }
461 
462 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
463 			   bool lock_src);
464 void bpf_timer_cancel_and_free(void *timer);
465 void bpf_list_head_free(const struct btf_field *field, void *list_head,
466 			struct bpf_spin_lock *spin_lock);
467 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
468 		      struct bpf_spin_lock *spin_lock);
469 
470 
471 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
472 
473 struct bpf_offload_dev;
474 struct bpf_offloaded_map;
475 
476 struct bpf_map_dev_ops {
477 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
478 				void *key, void *next_key);
479 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
480 			       void *key, void *value);
481 	int (*map_update_elem)(struct bpf_offloaded_map *map,
482 			       void *key, void *value, u64 flags);
483 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
484 };
485 
486 struct bpf_offloaded_map {
487 	struct bpf_map map;
488 	struct net_device *netdev;
489 	const struct bpf_map_dev_ops *dev_ops;
490 	void *dev_priv;
491 	struct list_head offloads;
492 };
493 
494 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
495 {
496 	return container_of(map, struct bpf_offloaded_map, map);
497 }
498 
499 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
500 {
501 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
502 }
503 
504 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
505 {
506 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
507 		map->ops->map_seq_show_elem;
508 }
509 
510 int map_check_no_btf(const struct bpf_map *map,
511 		     const struct btf *btf,
512 		     const struct btf_type *key_type,
513 		     const struct btf_type *value_type);
514 
515 bool bpf_map_meta_equal(const struct bpf_map *meta0,
516 			const struct bpf_map *meta1);
517 
518 extern const struct bpf_map_ops bpf_map_offload_ops;
519 
520 /* bpf_type_flag contains a set of flags that are applicable to the values of
521  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
522  * or a memory is read-only. We classify types into two categories: base types
523  * and extended types. Extended types are base types combined with a type flag.
524  *
525  * Currently there are no more than 32 base types in arg_type, ret_type and
526  * reg_types.
527  */
528 #define BPF_BASE_TYPE_BITS	8
529 
530 enum bpf_type_flag {
531 	/* PTR may be NULL. */
532 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
533 
534 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
535 	 * compatible with both mutable and immutable memory.
536 	 */
537 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
538 
539 	/* MEM points to BPF ring buffer reservation. */
540 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
541 
542 	/* MEM is in user address space. */
543 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
544 
545 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
546 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
547 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
548 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
549 	 * to the specified cpu.
550 	 */
551 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
552 
553 	/* Indicates that the argument will be released. */
554 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
555 
556 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
557 	 * unreferenced and referenced kptr loaded from map value using a load
558 	 * instruction, so that they can only be dereferenced but not escape the
559 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
560 	 * kfunc or bpf helpers).
561 	 */
562 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
563 
564 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
565 
566 	/* DYNPTR points to memory local to the bpf program. */
567 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
568 
569 	/* DYNPTR points to a kernel-produced ringbuf record. */
570 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
571 
572 	/* Size is known at compile time. */
573 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
574 
575 	/* MEM is of an allocated object of type in program BTF. This is used to
576 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
577 	 */
578 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
579 
580 	/* PTR was passed from the kernel in a trusted context, and may be
581 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
582 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
583 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
584 	 * without invoking bpf_kptr_xchg(). What we really need to know is
585 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
586 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
587 	 * helpers, they do not cover all possible instances of unsafe
588 	 * pointers. For example, a pointer that was obtained from walking a
589 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
590 	 * fact that it may be NULL, invalid, etc. This is due to backwards
591 	 * compatibility requirements, as this was the behavior that was first
592 	 * introduced when kptrs were added. The behavior is now considered
593 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
594 	 *
595 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
596 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
597 	 * For example, pointers passed to tracepoint arguments are considered
598 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
599 	 * callbacks. As alluded to above, pointers that are obtained from
600 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
601 	 * struct task_struct *task is PTR_TRUSTED, then accessing
602 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
603 	 * in a BPF register. Similarly, pointers passed to certain programs
604 	 * types such as kretprobes are not guaranteed to be valid, as they may
605 	 * for example contain an object that was recently freed.
606 	 */
607 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
608 
609 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
610 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
611 
612 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
613 	 * Currently only valid for linked-list and rbtree nodes.
614 	 */
615 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
616 
617 	/* DYNPTR points to sk_buff */
618 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
619 
620 	/* DYNPTR points to xdp_buff */
621 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
622 
623 	__BPF_TYPE_FLAG_MAX,
624 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
625 };
626 
627 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
628 				 | DYNPTR_TYPE_XDP)
629 
630 /* Max number of base types. */
631 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
632 
633 /* Max number of all types. */
634 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
635 
636 /* function argument constraints */
637 enum bpf_arg_type {
638 	ARG_DONTCARE = 0,	/* unused argument in helper function */
639 
640 	/* the following constraints used to prototype
641 	 * bpf_map_lookup/update/delete_elem() functions
642 	 */
643 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
644 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
645 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
646 
647 	/* Used to prototype bpf_memcmp() and other functions that access data
648 	 * on eBPF program stack
649 	 */
650 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
651 
652 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
653 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
654 
655 	ARG_PTR_TO_CTX,		/* pointer to context */
656 	ARG_ANYTHING,		/* any (initialized) argument is ok */
657 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
658 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
659 	ARG_PTR_TO_INT,		/* pointer to int */
660 	ARG_PTR_TO_LONG,	/* pointer to long */
661 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
662 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
663 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
664 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
665 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
666 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
667 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
668 	ARG_PTR_TO_STACK,	/* pointer to stack */
669 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
670 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
671 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
672 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
673 	__BPF_ARG_TYPE_MAX,
674 
675 	/* Extended arg_types. */
676 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
677 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
678 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
679 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
680 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
681 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
682 	/* pointer to memory does not need to be initialized, helper function must fill
683 	 * all bytes or clear them in error case.
684 	 */
685 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
686 	/* Pointer to valid memory of size known at compile time. */
687 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
688 
689 	/* This must be the last entry. Its purpose is to ensure the enum is
690 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
691 	 */
692 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
693 };
694 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
695 
696 /* type of values returned from helper functions */
697 enum bpf_return_type {
698 	RET_INTEGER,			/* function returns integer */
699 	RET_VOID,			/* function doesn't return anything */
700 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
701 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
702 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
703 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
704 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
705 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
706 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
707 	__BPF_RET_TYPE_MAX,
708 
709 	/* Extended ret_types. */
710 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
711 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
712 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
713 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
714 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
715 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
716 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
717 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
718 
719 	/* This must be the last entry. Its purpose is to ensure the enum is
720 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
721 	 */
722 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
723 };
724 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
725 
726 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
727  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
728  * instructions after verifying
729  */
730 struct bpf_func_proto {
731 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
732 	bool gpl_only;
733 	bool pkt_access;
734 	bool might_sleep;
735 	enum bpf_return_type ret_type;
736 	union {
737 		struct {
738 			enum bpf_arg_type arg1_type;
739 			enum bpf_arg_type arg2_type;
740 			enum bpf_arg_type arg3_type;
741 			enum bpf_arg_type arg4_type;
742 			enum bpf_arg_type arg5_type;
743 		};
744 		enum bpf_arg_type arg_type[5];
745 	};
746 	union {
747 		struct {
748 			u32 *arg1_btf_id;
749 			u32 *arg2_btf_id;
750 			u32 *arg3_btf_id;
751 			u32 *arg4_btf_id;
752 			u32 *arg5_btf_id;
753 		};
754 		u32 *arg_btf_id[5];
755 		struct {
756 			size_t arg1_size;
757 			size_t arg2_size;
758 			size_t arg3_size;
759 			size_t arg4_size;
760 			size_t arg5_size;
761 		};
762 		size_t arg_size[5];
763 	};
764 	int *ret_btf_id; /* return value btf_id */
765 	bool (*allowed)(const struct bpf_prog *prog);
766 };
767 
768 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
769  * the first argument to eBPF programs.
770  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
771  */
772 struct bpf_context;
773 
774 enum bpf_access_type {
775 	BPF_READ = 1,
776 	BPF_WRITE = 2
777 };
778 
779 /* types of values stored in eBPF registers */
780 /* Pointer types represent:
781  * pointer
782  * pointer + imm
783  * pointer + (u16) var
784  * pointer + (u16) var + imm
785  * if (range > 0) then [ptr, ptr + range - off) is safe to access
786  * if (id > 0) means that some 'var' was added
787  * if (off > 0) means that 'imm' was added
788  */
789 enum bpf_reg_type {
790 	NOT_INIT = 0,		 /* nothing was written into register */
791 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
792 	PTR_TO_CTX,		 /* reg points to bpf_context */
793 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
794 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
795 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
796 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
797 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
798 	PTR_TO_PACKET,		 /* reg points to skb->data */
799 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
800 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
801 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
802 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
803 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
804 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
805 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
806 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
807 	 * to be null checked by the BPF program. This does not imply the
808 	 * pointer is _not_ null and in practice this can easily be a null
809 	 * pointer when reading pointer chains. The assumption is program
810 	 * context will handle null pointer dereference typically via fault
811 	 * handling. The verifier must keep this in mind and can make no
812 	 * assumptions about null or non-null when doing branch analysis.
813 	 * Further, when passed into helpers the helpers can not, without
814 	 * additional context, assume the value is non-null.
815 	 */
816 	PTR_TO_BTF_ID,
817 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
818 	 * been checked for null. Used primarily to inform the verifier
819 	 * an explicit null check is required for this struct.
820 	 */
821 	PTR_TO_MEM,		 /* reg points to valid memory region */
822 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
823 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
824 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
825 	__BPF_REG_TYPE_MAX,
826 
827 	/* Extended reg_types. */
828 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
829 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
830 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
831 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
832 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
833 
834 	/* This must be the last entry. Its purpose is to ensure the enum is
835 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
836 	 */
837 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
838 };
839 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
840 
841 /* The information passed from prog-specific *_is_valid_access
842  * back to the verifier.
843  */
844 struct bpf_insn_access_aux {
845 	enum bpf_reg_type reg_type;
846 	union {
847 		int ctx_field_size;
848 		struct {
849 			struct btf *btf;
850 			u32 btf_id;
851 		};
852 	};
853 	struct bpf_verifier_log *log; /* for verbose logs */
854 };
855 
856 static inline void
857 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
858 {
859 	aux->ctx_field_size = size;
860 }
861 
862 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
863 {
864 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
865 	       insn->src_reg == BPF_PSEUDO_FUNC;
866 }
867 
868 struct bpf_prog_ops {
869 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
870 			union bpf_attr __user *uattr);
871 };
872 
873 struct bpf_reg_state;
874 struct bpf_verifier_ops {
875 	/* return eBPF function prototype for verification */
876 	const struct bpf_func_proto *
877 	(*get_func_proto)(enum bpf_func_id func_id,
878 			  const struct bpf_prog *prog);
879 
880 	/* return true if 'size' wide access at offset 'off' within bpf_context
881 	 * with 'type' (read or write) is allowed
882 	 */
883 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
884 				const struct bpf_prog *prog,
885 				struct bpf_insn_access_aux *info);
886 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
887 			    const struct bpf_prog *prog);
888 	int (*gen_ld_abs)(const struct bpf_insn *orig,
889 			  struct bpf_insn *insn_buf);
890 	u32 (*convert_ctx_access)(enum bpf_access_type type,
891 				  const struct bpf_insn *src,
892 				  struct bpf_insn *dst,
893 				  struct bpf_prog *prog, u32 *target_size);
894 	int (*btf_struct_access)(struct bpf_verifier_log *log,
895 				 const struct bpf_reg_state *reg,
896 				 int off, int size);
897 };
898 
899 struct bpf_prog_offload_ops {
900 	/* verifier basic callbacks */
901 	int (*insn_hook)(struct bpf_verifier_env *env,
902 			 int insn_idx, int prev_insn_idx);
903 	int (*finalize)(struct bpf_verifier_env *env);
904 	/* verifier optimization callbacks (called after .finalize) */
905 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
906 			    struct bpf_insn *insn);
907 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
908 	/* program management callbacks */
909 	int (*prepare)(struct bpf_prog *prog);
910 	int (*translate)(struct bpf_prog *prog);
911 	void (*destroy)(struct bpf_prog *prog);
912 };
913 
914 struct bpf_prog_offload {
915 	struct bpf_prog		*prog;
916 	struct net_device	*netdev;
917 	struct bpf_offload_dev	*offdev;
918 	void			*dev_priv;
919 	struct list_head	offloads;
920 	bool			dev_state;
921 	bool			opt_failed;
922 	void			*jited_image;
923 	u32			jited_len;
924 };
925 
926 enum bpf_cgroup_storage_type {
927 	BPF_CGROUP_STORAGE_SHARED,
928 	BPF_CGROUP_STORAGE_PERCPU,
929 	__BPF_CGROUP_STORAGE_MAX
930 };
931 
932 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
933 
934 /* The longest tracepoint has 12 args.
935  * See include/trace/bpf_probe.h
936  */
937 #define MAX_BPF_FUNC_ARGS 12
938 
939 /* The maximum number of arguments passed through registers
940  * a single function may have.
941  */
942 #define MAX_BPF_FUNC_REG_ARGS 5
943 
944 /* The argument is a structure. */
945 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
946 
947 /* The argument is signed. */
948 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
949 
950 struct btf_func_model {
951 	u8 ret_size;
952 	u8 ret_flags;
953 	u8 nr_args;
954 	u8 arg_size[MAX_BPF_FUNC_ARGS];
955 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
956 };
957 
958 /* Restore arguments before returning from trampoline to let original function
959  * continue executing. This flag is used for fentry progs when there are no
960  * fexit progs.
961  */
962 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
963 /* Call original function after fentry progs, but before fexit progs.
964  * Makes sense for fentry/fexit, normal calls and indirect calls.
965  */
966 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
967 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
968  * programs only. Should not be used with normal calls and indirect calls.
969  */
970 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
971 /* Store IP address of the caller on the trampoline stack,
972  * so it's available for trampoline's programs.
973  */
974 #define BPF_TRAMP_F_IP_ARG		BIT(3)
975 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
976 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
977 
978 /* Get original function from stack instead of from provided direct address.
979  * Makes sense for trampolines with fexit or fmod_ret programs.
980  */
981 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
982 
983 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
984  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
985  */
986 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
987 
988 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
989  * bytes on x86.
990  */
991 enum {
992 #if defined(__s390x__)
993 	BPF_MAX_TRAMP_LINKS = 27,
994 #else
995 	BPF_MAX_TRAMP_LINKS = 38,
996 #endif
997 };
998 
999 struct bpf_tramp_links {
1000 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1001 	int nr_links;
1002 };
1003 
1004 struct bpf_tramp_run_ctx;
1005 
1006 /* Different use cases for BPF trampoline:
1007  * 1. replace nop at the function entry (kprobe equivalent)
1008  *    flags = BPF_TRAMP_F_RESTORE_REGS
1009  *    fentry = a set of programs to run before returning from trampoline
1010  *
1011  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1012  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1013  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1014  *    fentry = a set of program to run before calling original function
1015  *    fexit = a set of program to run after original function
1016  *
1017  * 3. replace direct call instruction anywhere in the function body
1018  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1019  *    With flags = 0
1020  *      fentry = a set of programs to run before returning from trampoline
1021  *    With flags = BPF_TRAMP_F_CALL_ORIG
1022  *      orig_call = original callback addr or direct function addr
1023  *      fentry = a set of program to run before calling original function
1024  *      fexit = a set of program to run after original function
1025  */
1026 struct bpf_tramp_image;
1027 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1028 				const struct btf_func_model *m, u32 flags,
1029 				struct bpf_tramp_links *tlinks,
1030 				void *orig_call);
1031 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1032 					     struct bpf_tramp_run_ctx *run_ctx);
1033 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1034 					     struct bpf_tramp_run_ctx *run_ctx);
1035 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1036 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1037 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1038 				      struct bpf_tramp_run_ctx *run_ctx);
1039 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1040 				      struct bpf_tramp_run_ctx *run_ctx);
1041 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1042 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1043 
1044 struct bpf_ksym {
1045 	unsigned long		 start;
1046 	unsigned long		 end;
1047 	char			 name[KSYM_NAME_LEN];
1048 	struct list_head	 lnode;
1049 	struct latch_tree_node	 tnode;
1050 	bool			 prog;
1051 };
1052 
1053 enum bpf_tramp_prog_type {
1054 	BPF_TRAMP_FENTRY,
1055 	BPF_TRAMP_FEXIT,
1056 	BPF_TRAMP_MODIFY_RETURN,
1057 	BPF_TRAMP_MAX,
1058 	BPF_TRAMP_REPLACE, /* more than MAX */
1059 };
1060 
1061 struct bpf_tramp_image {
1062 	void *image;
1063 	struct bpf_ksym ksym;
1064 	struct percpu_ref pcref;
1065 	void *ip_after_call;
1066 	void *ip_epilogue;
1067 	union {
1068 		struct rcu_head rcu;
1069 		struct work_struct work;
1070 	};
1071 };
1072 
1073 struct bpf_trampoline {
1074 	/* hlist for trampoline_table */
1075 	struct hlist_node hlist;
1076 	struct ftrace_ops *fops;
1077 	/* serializes access to fields of this trampoline */
1078 	struct mutex mutex;
1079 	refcount_t refcnt;
1080 	u32 flags;
1081 	u64 key;
1082 	struct {
1083 		struct btf_func_model model;
1084 		void *addr;
1085 		bool ftrace_managed;
1086 	} func;
1087 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1088 	 * program by replacing one of its functions. func.addr is the address
1089 	 * of the function it replaced.
1090 	 */
1091 	struct bpf_prog *extension_prog;
1092 	/* list of BPF programs using this trampoline */
1093 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1094 	/* Number of attached programs. A counter per kind. */
1095 	int progs_cnt[BPF_TRAMP_MAX];
1096 	/* Executable image of trampoline */
1097 	struct bpf_tramp_image *cur_image;
1098 	u64 selector;
1099 	struct module *mod;
1100 };
1101 
1102 struct bpf_attach_target_info {
1103 	struct btf_func_model fmodel;
1104 	long tgt_addr;
1105 	struct module *tgt_mod;
1106 	const char *tgt_name;
1107 	const struct btf_type *tgt_type;
1108 };
1109 
1110 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1111 
1112 struct bpf_dispatcher_prog {
1113 	struct bpf_prog *prog;
1114 	refcount_t users;
1115 };
1116 
1117 struct bpf_dispatcher {
1118 	/* dispatcher mutex */
1119 	struct mutex mutex;
1120 	void *func;
1121 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1122 	int num_progs;
1123 	void *image;
1124 	void *rw_image;
1125 	u32 image_off;
1126 	struct bpf_ksym ksym;
1127 #ifdef CONFIG_HAVE_STATIC_CALL
1128 	struct static_call_key *sc_key;
1129 	void *sc_tramp;
1130 #endif
1131 };
1132 
1133 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1134 	const void *ctx,
1135 	const struct bpf_insn *insnsi,
1136 	bpf_func_t bpf_func)
1137 {
1138 	return bpf_func(ctx, insnsi);
1139 }
1140 
1141 /* the implementation of the opaque uapi struct bpf_dynptr */
1142 struct bpf_dynptr_kern {
1143 	void *data;
1144 	/* Size represents the number of usable bytes of dynptr data.
1145 	 * If for example the offset is at 4 for a local dynptr whose data is
1146 	 * of type u64, the number of usable bytes is 4.
1147 	 *
1148 	 * The upper 8 bits are reserved. It is as follows:
1149 	 * Bits 0 - 23 = size
1150 	 * Bits 24 - 30 = dynptr type
1151 	 * Bit 31 = whether dynptr is read-only
1152 	 */
1153 	u32 size;
1154 	u32 offset;
1155 } __aligned(8);
1156 
1157 enum bpf_dynptr_type {
1158 	BPF_DYNPTR_TYPE_INVALID,
1159 	/* Points to memory that is local to the bpf program */
1160 	BPF_DYNPTR_TYPE_LOCAL,
1161 	/* Underlying data is a ringbuf record */
1162 	BPF_DYNPTR_TYPE_RINGBUF,
1163 	/* Underlying data is a sk_buff */
1164 	BPF_DYNPTR_TYPE_SKB,
1165 	/* Underlying data is a xdp_buff */
1166 	BPF_DYNPTR_TYPE_XDP,
1167 };
1168 
1169 int bpf_dynptr_check_size(u32 size);
1170 u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr);
1171 
1172 #ifdef CONFIG_BPF_JIT
1173 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1174 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1175 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1176 					  struct bpf_attach_target_info *tgt_info);
1177 void bpf_trampoline_put(struct bpf_trampoline *tr);
1178 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1179 
1180 /*
1181  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1182  * indirection with a direct call to the bpf program. If the architecture does
1183  * not have STATIC_CALL, avoid a double-indirection.
1184  */
1185 #ifdef CONFIG_HAVE_STATIC_CALL
1186 
1187 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1188 	.sc_key = &STATIC_CALL_KEY(_name),			\
1189 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1190 
1191 #define __BPF_DISPATCHER_SC(name)				\
1192 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1193 
1194 #define __BPF_DISPATCHER_CALL(name)				\
1195 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1196 
1197 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1198 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1199 
1200 #else
1201 #define __BPF_DISPATCHER_SC_INIT(name)
1202 #define __BPF_DISPATCHER_SC(name)
1203 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1204 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1205 #endif
1206 
1207 #define BPF_DISPATCHER_INIT(_name) {				\
1208 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1209 	.func = &_name##_func,					\
1210 	.progs = {},						\
1211 	.num_progs = 0,						\
1212 	.image = NULL,						\
1213 	.image_off = 0,						\
1214 	.ksym = {						\
1215 		.name  = #_name,				\
1216 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1217 	},							\
1218 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1219 }
1220 
1221 #define DEFINE_BPF_DISPATCHER(name)					\
1222 	__BPF_DISPATCHER_SC(name);					\
1223 	noinline __nocfi unsigned int bpf_dispatcher_##name##_func(	\
1224 		const void *ctx,					\
1225 		const struct bpf_insn *insnsi,				\
1226 		bpf_func_t bpf_func)					\
1227 	{								\
1228 		return __BPF_DISPATCHER_CALL(name);			\
1229 	}								\
1230 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1231 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1232 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1233 
1234 #define DECLARE_BPF_DISPATCHER(name)					\
1235 	unsigned int bpf_dispatcher_##name##_func(			\
1236 		const void *ctx,					\
1237 		const struct bpf_insn *insnsi,				\
1238 		bpf_func_t bpf_func);					\
1239 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1240 
1241 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1242 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1243 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1244 				struct bpf_prog *to);
1245 /* Called only from JIT-enabled code, so there's no need for stubs. */
1246 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1247 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1248 void bpf_ksym_add(struct bpf_ksym *ksym);
1249 void bpf_ksym_del(struct bpf_ksym *ksym);
1250 int bpf_jit_charge_modmem(u32 size);
1251 void bpf_jit_uncharge_modmem(u32 size);
1252 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1253 #else
1254 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1255 					   struct bpf_trampoline *tr)
1256 {
1257 	return -ENOTSUPP;
1258 }
1259 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1260 					     struct bpf_trampoline *tr)
1261 {
1262 	return -ENOTSUPP;
1263 }
1264 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1265 							struct bpf_attach_target_info *tgt_info)
1266 {
1267 	return ERR_PTR(-EOPNOTSUPP);
1268 }
1269 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1270 #define DEFINE_BPF_DISPATCHER(name)
1271 #define DECLARE_BPF_DISPATCHER(name)
1272 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1273 #define BPF_DISPATCHER_PTR(name) NULL
1274 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1275 					      struct bpf_prog *from,
1276 					      struct bpf_prog *to) {}
1277 static inline bool is_bpf_image_address(unsigned long address)
1278 {
1279 	return false;
1280 }
1281 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1282 {
1283 	return false;
1284 }
1285 #endif
1286 
1287 struct bpf_func_info_aux {
1288 	u16 linkage;
1289 	bool unreliable;
1290 };
1291 
1292 enum bpf_jit_poke_reason {
1293 	BPF_POKE_REASON_TAIL_CALL,
1294 };
1295 
1296 /* Descriptor of pokes pointing /into/ the JITed image. */
1297 struct bpf_jit_poke_descriptor {
1298 	void *tailcall_target;
1299 	void *tailcall_bypass;
1300 	void *bypass_addr;
1301 	void *aux;
1302 	union {
1303 		struct {
1304 			struct bpf_map *map;
1305 			u32 key;
1306 		} tail_call;
1307 	};
1308 	bool tailcall_target_stable;
1309 	u8 adj_off;
1310 	u16 reason;
1311 	u32 insn_idx;
1312 };
1313 
1314 /* reg_type info for ctx arguments */
1315 struct bpf_ctx_arg_aux {
1316 	u32 offset;
1317 	enum bpf_reg_type reg_type;
1318 	u32 btf_id;
1319 };
1320 
1321 struct btf_mod_pair {
1322 	struct btf *btf;
1323 	struct module *module;
1324 };
1325 
1326 struct bpf_kfunc_desc_tab;
1327 
1328 struct bpf_prog_aux {
1329 	atomic64_t refcnt;
1330 	u32 used_map_cnt;
1331 	u32 used_btf_cnt;
1332 	u32 max_ctx_offset;
1333 	u32 max_pkt_offset;
1334 	u32 max_tp_access;
1335 	u32 stack_depth;
1336 	u32 id;
1337 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1338 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1339 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1340 	u32 ctx_arg_info_size;
1341 	u32 max_rdonly_access;
1342 	u32 max_rdwr_access;
1343 	struct btf *attach_btf;
1344 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1345 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1346 	struct bpf_prog *dst_prog;
1347 	struct bpf_trampoline *dst_trampoline;
1348 	enum bpf_prog_type saved_dst_prog_type;
1349 	enum bpf_attach_type saved_dst_attach_type;
1350 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1351 	bool dev_bound; /* Program is bound to the netdev. */
1352 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1353 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1354 	bool func_proto_unreliable;
1355 	bool sleepable;
1356 	bool tail_call_reachable;
1357 	bool xdp_has_frags;
1358 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1359 	const struct btf_type *attach_func_proto;
1360 	/* function name for valid attach_btf_id */
1361 	const char *attach_func_name;
1362 	struct bpf_prog **func;
1363 	void *jit_data; /* JIT specific data. arch dependent */
1364 	struct bpf_jit_poke_descriptor *poke_tab;
1365 	struct bpf_kfunc_desc_tab *kfunc_tab;
1366 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1367 	u32 size_poke_tab;
1368 	struct bpf_ksym ksym;
1369 	const struct bpf_prog_ops *ops;
1370 	struct bpf_map **used_maps;
1371 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1372 	struct btf_mod_pair *used_btfs;
1373 	struct bpf_prog *prog;
1374 	struct user_struct *user;
1375 	u64 load_time; /* ns since boottime */
1376 	u32 verified_insns;
1377 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1378 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1379 	char name[BPF_OBJ_NAME_LEN];
1380 #ifdef CONFIG_SECURITY
1381 	void *security;
1382 #endif
1383 	struct bpf_prog_offload *offload;
1384 	struct btf *btf;
1385 	struct bpf_func_info *func_info;
1386 	struct bpf_func_info_aux *func_info_aux;
1387 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1388 	 * has the xlated insn offset.
1389 	 * Both the main and sub prog share the same linfo.
1390 	 * The subprog can access its first linfo by
1391 	 * using the linfo_idx.
1392 	 */
1393 	struct bpf_line_info *linfo;
1394 	/* jited_linfo is the jited addr of the linfo.  It has a
1395 	 * one to one mapping to linfo:
1396 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1397 	 * Both the main and sub prog share the same jited_linfo.
1398 	 * The subprog can access its first jited_linfo by
1399 	 * using the linfo_idx.
1400 	 */
1401 	void **jited_linfo;
1402 	u32 func_info_cnt;
1403 	u32 nr_linfo;
1404 	/* subprog can use linfo_idx to access its first linfo and
1405 	 * jited_linfo.
1406 	 * main prog always has linfo_idx == 0
1407 	 */
1408 	u32 linfo_idx;
1409 	struct module *mod;
1410 	u32 num_exentries;
1411 	struct exception_table_entry *extable;
1412 	union {
1413 		struct work_struct work;
1414 		struct rcu_head	rcu;
1415 	};
1416 };
1417 
1418 struct bpf_prog {
1419 	u16			pages;		/* Number of allocated pages */
1420 	u16			jited:1,	/* Is our filter JIT'ed? */
1421 				jit_requested:1,/* archs need to JIT the prog */
1422 				gpl_compatible:1, /* Is filter GPL compatible? */
1423 				cb_access:1,	/* Is control block accessed? */
1424 				dst_needed:1,	/* Do we need dst entry? */
1425 				blinding_requested:1, /* needs constant blinding */
1426 				blinded:1,	/* Was blinded */
1427 				is_func:1,	/* program is a bpf function */
1428 				kprobe_override:1, /* Do we override a kprobe? */
1429 				has_callchain_buf:1, /* callchain buffer allocated? */
1430 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1431 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1432 				call_get_func_ip:1, /* Do we call get_func_ip() */
1433 				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1434 	enum bpf_prog_type	type;		/* Type of BPF program */
1435 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1436 	u32			len;		/* Number of filter blocks */
1437 	u32			jited_len;	/* Size of jited insns in bytes */
1438 	u8			tag[BPF_TAG_SIZE];
1439 	struct bpf_prog_stats __percpu *stats;
1440 	int __percpu		*active;
1441 	unsigned int		(*bpf_func)(const void *ctx,
1442 					    const struct bpf_insn *insn);
1443 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1444 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1445 	/* Instructions for interpreter */
1446 	union {
1447 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1448 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1449 	};
1450 };
1451 
1452 struct bpf_array_aux {
1453 	/* Programs with direct jumps into programs part of this array. */
1454 	struct list_head poke_progs;
1455 	struct bpf_map *map;
1456 	struct mutex poke_mutex;
1457 	struct work_struct work;
1458 };
1459 
1460 struct bpf_link {
1461 	atomic64_t refcnt;
1462 	u32 id;
1463 	enum bpf_link_type type;
1464 	const struct bpf_link_ops *ops;
1465 	struct bpf_prog *prog;
1466 	struct work_struct work;
1467 };
1468 
1469 struct bpf_link_ops {
1470 	void (*release)(struct bpf_link *link);
1471 	void (*dealloc)(struct bpf_link *link);
1472 	int (*detach)(struct bpf_link *link);
1473 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1474 			   struct bpf_prog *old_prog);
1475 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1476 	int (*fill_link_info)(const struct bpf_link *link,
1477 			      struct bpf_link_info *info);
1478 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1479 			  struct bpf_map *old_map);
1480 };
1481 
1482 struct bpf_tramp_link {
1483 	struct bpf_link link;
1484 	struct hlist_node tramp_hlist;
1485 	u64 cookie;
1486 };
1487 
1488 struct bpf_shim_tramp_link {
1489 	struct bpf_tramp_link link;
1490 	struct bpf_trampoline *trampoline;
1491 };
1492 
1493 struct bpf_tracing_link {
1494 	struct bpf_tramp_link link;
1495 	enum bpf_attach_type attach_type;
1496 	struct bpf_trampoline *trampoline;
1497 	struct bpf_prog *tgt_prog;
1498 };
1499 
1500 struct bpf_link_primer {
1501 	struct bpf_link *link;
1502 	struct file *file;
1503 	int fd;
1504 	u32 id;
1505 };
1506 
1507 struct bpf_struct_ops_value;
1508 struct btf_member;
1509 
1510 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1511 struct bpf_struct_ops {
1512 	const struct bpf_verifier_ops *verifier_ops;
1513 	int (*init)(struct btf *btf);
1514 	int (*check_member)(const struct btf_type *t,
1515 			    const struct btf_member *member,
1516 			    const struct bpf_prog *prog);
1517 	int (*init_member)(const struct btf_type *t,
1518 			   const struct btf_member *member,
1519 			   void *kdata, const void *udata);
1520 	int (*reg)(void *kdata);
1521 	void (*unreg)(void *kdata);
1522 	int (*update)(void *kdata, void *old_kdata);
1523 	int (*validate)(void *kdata);
1524 	const struct btf_type *type;
1525 	const struct btf_type *value_type;
1526 	const char *name;
1527 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1528 	u32 type_id;
1529 	u32 value_id;
1530 };
1531 
1532 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1533 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1534 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1535 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1536 bool bpf_struct_ops_get(const void *kdata);
1537 void bpf_struct_ops_put(const void *kdata);
1538 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1539 				       void *value);
1540 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1541 				      struct bpf_tramp_link *link,
1542 				      const struct btf_func_model *model,
1543 				      void *image, void *image_end);
1544 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1545 {
1546 	if (owner == BPF_MODULE_OWNER)
1547 		return bpf_struct_ops_get(data);
1548 	else
1549 		return try_module_get(owner);
1550 }
1551 static inline void bpf_module_put(const void *data, struct module *owner)
1552 {
1553 	if (owner == BPF_MODULE_OWNER)
1554 		bpf_struct_ops_put(data);
1555 	else
1556 		module_put(owner);
1557 }
1558 int bpf_struct_ops_link_create(union bpf_attr *attr);
1559 
1560 #ifdef CONFIG_NET
1561 /* Define it here to avoid the use of forward declaration */
1562 struct bpf_dummy_ops_state {
1563 	int val;
1564 };
1565 
1566 struct bpf_dummy_ops {
1567 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1568 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1569 		      char a3, unsigned long a4);
1570 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1571 };
1572 
1573 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1574 			    union bpf_attr __user *uattr);
1575 #endif
1576 #else
1577 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1578 {
1579 	return NULL;
1580 }
1581 static inline void bpf_struct_ops_init(struct btf *btf,
1582 				       struct bpf_verifier_log *log)
1583 {
1584 }
1585 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1586 {
1587 	return try_module_get(owner);
1588 }
1589 static inline void bpf_module_put(const void *data, struct module *owner)
1590 {
1591 	module_put(owner);
1592 }
1593 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1594 						     void *key,
1595 						     void *value)
1596 {
1597 	return -EINVAL;
1598 }
1599 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1600 {
1601 	return -EOPNOTSUPP;
1602 }
1603 
1604 #endif
1605 
1606 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1607 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1608 				    int cgroup_atype);
1609 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1610 #else
1611 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1612 						  int cgroup_atype)
1613 {
1614 	return -EOPNOTSUPP;
1615 }
1616 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1617 {
1618 }
1619 #endif
1620 
1621 struct bpf_array {
1622 	struct bpf_map map;
1623 	u32 elem_size;
1624 	u32 index_mask;
1625 	struct bpf_array_aux *aux;
1626 	union {
1627 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1628 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1629 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1630 	};
1631 };
1632 
1633 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1634 #define MAX_TAIL_CALL_CNT 33
1635 
1636 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1637  * It's enum to expose it (and thus make it discoverable) through BTF.
1638  */
1639 enum {
1640 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1641 };
1642 
1643 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1644 				 BPF_F_RDONLY_PROG |	\
1645 				 BPF_F_WRONLY |		\
1646 				 BPF_F_WRONLY_PROG)
1647 
1648 #define BPF_MAP_CAN_READ	BIT(0)
1649 #define BPF_MAP_CAN_WRITE	BIT(1)
1650 
1651 /* Maximum number of user-producer ring buffer samples that can be drained in
1652  * a call to bpf_user_ringbuf_drain().
1653  */
1654 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1655 
1656 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1657 {
1658 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1659 
1660 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1661 	 * not possible.
1662 	 */
1663 	if (access_flags & BPF_F_RDONLY_PROG)
1664 		return BPF_MAP_CAN_READ;
1665 	else if (access_flags & BPF_F_WRONLY_PROG)
1666 		return BPF_MAP_CAN_WRITE;
1667 	else
1668 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1669 }
1670 
1671 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1672 {
1673 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1674 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1675 }
1676 
1677 struct bpf_event_entry {
1678 	struct perf_event *event;
1679 	struct file *perf_file;
1680 	struct file *map_file;
1681 	struct rcu_head rcu;
1682 };
1683 
1684 static inline bool map_type_contains_progs(struct bpf_map *map)
1685 {
1686 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1687 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1688 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1689 }
1690 
1691 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1692 int bpf_prog_calc_tag(struct bpf_prog *fp);
1693 
1694 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1695 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1696 
1697 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1698 					unsigned long off, unsigned long len);
1699 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1700 					const struct bpf_insn *src,
1701 					struct bpf_insn *dst,
1702 					struct bpf_prog *prog,
1703 					u32 *target_size);
1704 
1705 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1706 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1707 
1708 /* an array of programs to be executed under rcu_lock.
1709  *
1710  * Typical usage:
1711  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1712  *
1713  * the structure returned by bpf_prog_array_alloc() should be populated
1714  * with program pointers and the last pointer must be NULL.
1715  * The user has to keep refcnt on the program and make sure the program
1716  * is removed from the array before bpf_prog_put().
1717  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1718  * since other cpus are walking the array of pointers in parallel.
1719  */
1720 struct bpf_prog_array_item {
1721 	struct bpf_prog *prog;
1722 	union {
1723 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1724 		u64 bpf_cookie;
1725 	};
1726 };
1727 
1728 struct bpf_prog_array {
1729 	struct rcu_head rcu;
1730 	struct bpf_prog_array_item items[];
1731 };
1732 
1733 struct bpf_empty_prog_array {
1734 	struct bpf_prog_array hdr;
1735 	struct bpf_prog *null_prog;
1736 };
1737 
1738 /* to avoid allocating empty bpf_prog_array for cgroups that
1739  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1740  * It will not be modified the caller of bpf_prog_array_alloc()
1741  * (since caller requested prog_cnt == 0)
1742  * that pointer should be 'freed' by bpf_prog_array_free()
1743  */
1744 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1745 
1746 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1747 void bpf_prog_array_free(struct bpf_prog_array *progs);
1748 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1749 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1750 int bpf_prog_array_length(struct bpf_prog_array *progs);
1751 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1752 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1753 				__u32 __user *prog_ids, u32 cnt);
1754 
1755 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1756 				struct bpf_prog *old_prog);
1757 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1758 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1759 			     struct bpf_prog *prog);
1760 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1761 			     u32 *prog_ids, u32 request_cnt,
1762 			     u32 *prog_cnt);
1763 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1764 			struct bpf_prog *exclude_prog,
1765 			struct bpf_prog *include_prog,
1766 			u64 bpf_cookie,
1767 			struct bpf_prog_array **new_array);
1768 
1769 struct bpf_run_ctx {};
1770 
1771 struct bpf_cg_run_ctx {
1772 	struct bpf_run_ctx run_ctx;
1773 	const struct bpf_prog_array_item *prog_item;
1774 	int retval;
1775 };
1776 
1777 struct bpf_trace_run_ctx {
1778 	struct bpf_run_ctx run_ctx;
1779 	u64 bpf_cookie;
1780 };
1781 
1782 struct bpf_tramp_run_ctx {
1783 	struct bpf_run_ctx run_ctx;
1784 	u64 bpf_cookie;
1785 	struct bpf_run_ctx *saved_run_ctx;
1786 };
1787 
1788 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1789 {
1790 	struct bpf_run_ctx *old_ctx = NULL;
1791 
1792 #ifdef CONFIG_BPF_SYSCALL
1793 	old_ctx = current->bpf_ctx;
1794 	current->bpf_ctx = new_ctx;
1795 #endif
1796 	return old_ctx;
1797 }
1798 
1799 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1800 {
1801 #ifdef CONFIG_BPF_SYSCALL
1802 	current->bpf_ctx = old_ctx;
1803 #endif
1804 }
1805 
1806 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1807 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
1808 /* BPF program asks to set CN on the packet. */
1809 #define BPF_RET_SET_CN						(1 << 0)
1810 
1811 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1812 
1813 static __always_inline u32
1814 bpf_prog_run_array(const struct bpf_prog_array *array,
1815 		   const void *ctx, bpf_prog_run_fn run_prog)
1816 {
1817 	const struct bpf_prog_array_item *item;
1818 	const struct bpf_prog *prog;
1819 	struct bpf_run_ctx *old_run_ctx;
1820 	struct bpf_trace_run_ctx run_ctx;
1821 	u32 ret = 1;
1822 
1823 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1824 
1825 	if (unlikely(!array))
1826 		return ret;
1827 
1828 	migrate_disable();
1829 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1830 	item = &array->items[0];
1831 	while ((prog = READ_ONCE(item->prog))) {
1832 		run_ctx.bpf_cookie = item->bpf_cookie;
1833 		ret &= run_prog(prog, ctx);
1834 		item++;
1835 	}
1836 	bpf_reset_run_ctx(old_run_ctx);
1837 	migrate_enable();
1838 	return ret;
1839 }
1840 
1841 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1842  *
1843  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1844  * overall. As a result, we must use the bpf_prog_array_free_sleepable
1845  * in order to use the tasks_trace rcu grace period.
1846  *
1847  * When a non-sleepable program is inside the array, we take the rcu read
1848  * section and disable preemption for that program alone, so it can access
1849  * rcu-protected dynamically sized maps.
1850  */
1851 static __always_inline u32
1852 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu,
1853 			     const void *ctx, bpf_prog_run_fn run_prog)
1854 {
1855 	const struct bpf_prog_array_item *item;
1856 	const struct bpf_prog *prog;
1857 	const struct bpf_prog_array *array;
1858 	struct bpf_run_ctx *old_run_ctx;
1859 	struct bpf_trace_run_ctx run_ctx;
1860 	u32 ret = 1;
1861 
1862 	might_fault();
1863 
1864 	rcu_read_lock_trace();
1865 	migrate_disable();
1866 
1867 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1868 	if (unlikely(!array))
1869 		goto out;
1870 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1871 	item = &array->items[0];
1872 	while ((prog = READ_ONCE(item->prog))) {
1873 		if (!prog->aux->sleepable)
1874 			rcu_read_lock();
1875 
1876 		run_ctx.bpf_cookie = item->bpf_cookie;
1877 		ret &= run_prog(prog, ctx);
1878 		item++;
1879 
1880 		if (!prog->aux->sleepable)
1881 			rcu_read_unlock();
1882 	}
1883 	bpf_reset_run_ctx(old_run_ctx);
1884 out:
1885 	migrate_enable();
1886 	rcu_read_unlock_trace();
1887 	return ret;
1888 }
1889 
1890 #ifdef CONFIG_BPF_SYSCALL
1891 DECLARE_PER_CPU(int, bpf_prog_active);
1892 extern struct mutex bpf_stats_enabled_mutex;
1893 
1894 /*
1895  * Block execution of BPF programs attached to instrumentation (perf,
1896  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
1897  * these events can happen inside a region which holds a map bucket lock
1898  * and can deadlock on it.
1899  */
1900 static inline void bpf_disable_instrumentation(void)
1901 {
1902 	migrate_disable();
1903 	this_cpu_inc(bpf_prog_active);
1904 }
1905 
1906 static inline void bpf_enable_instrumentation(void)
1907 {
1908 	this_cpu_dec(bpf_prog_active);
1909 	migrate_enable();
1910 }
1911 
1912 extern const struct file_operations bpf_map_fops;
1913 extern const struct file_operations bpf_prog_fops;
1914 extern const struct file_operations bpf_iter_fops;
1915 
1916 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
1917 	extern const struct bpf_prog_ops _name ## _prog_ops; \
1918 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
1919 #define BPF_MAP_TYPE(_id, _ops) \
1920 	extern const struct bpf_map_ops _ops;
1921 #define BPF_LINK_TYPE(_id, _name)
1922 #include <linux/bpf_types.h>
1923 #undef BPF_PROG_TYPE
1924 #undef BPF_MAP_TYPE
1925 #undef BPF_LINK_TYPE
1926 
1927 extern const struct bpf_prog_ops bpf_offload_prog_ops;
1928 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
1929 extern const struct bpf_verifier_ops xdp_analyzer_ops;
1930 
1931 struct bpf_prog *bpf_prog_get(u32 ufd);
1932 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
1933 				       bool attach_drv);
1934 void bpf_prog_add(struct bpf_prog *prog, int i);
1935 void bpf_prog_sub(struct bpf_prog *prog, int i);
1936 void bpf_prog_inc(struct bpf_prog *prog);
1937 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
1938 void bpf_prog_put(struct bpf_prog *prog);
1939 
1940 void bpf_prog_free_id(struct bpf_prog *prog);
1941 void bpf_map_free_id(struct bpf_map *map);
1942 
1943 struct btf_field *btf_record_find(const struct btf_record *rec,
1944 				  u32 offset, u32 field_mask);
1945 void btf_record_free(struct btf_record *rec);
1946 void bpf_map_free_record(struct bpf_map *map);
1947 struct btf_record *btf_record_dup(const struct btf_record *rec);
1948 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
1949 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
1950 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
1951 
1952 struct bpf_map *bpf_map_get(u32 ufd);
1953 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
1954 struct bpf_map *__bpf_map_get(struct fd f);
1955 void bpf_map_inc(struct bpf_map *map);
1956 void bpf_map_inc_with_uref(struct bpf_map *map);
1957 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
1958 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
1959 void bpf_map_put_with_uref(struct bpf_map *map);
1960 void bpf_map_put(struct bpf_map *map);
1961 void *bpf_map_area_alloc(u64 size, int numa_node);
1962 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
1963 void bpf_map_area_free(void *base);
1964 bool bpf_map_write_active(const struct bpf_map *map);
1965 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
1966 int  generic_map_lookup_batch(struct bpf_map *map,
1967 			      const union bpf_attr *attr,
1968 			      union bpf_attr __user *uattr);
1969 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
1970 			      const union bpf_attr *attr,
1971 			      union bpf_attr __user *uattr);
1972 int  generic_map_delete_batch(struct bpf_map *map,
1973 			      const union bpf_attr *attr,
1974 			      union bpf_attr __user *uattr);
1975 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
1976 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
1977 
1978 #ifdef CONFIG_MEMCG_KMEM
1979 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1980 			   int node);
1981 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
1982 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
1983 		       gfp_t flags);
1984 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
1985 				    size_t align, gfp_t flags);
1986 #else
1987 static inline void *
1988 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1989 		     int node)
1990 {
1991 	return kmalloc_node(size, flags, node);
1992 }
1993 
1994 static inline void *
1995 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
1996 {
1997 	return kzalloc(size, flags);
1998 }
1999 
2000 static inline void *
2001 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2002 {
2003 	return kvcalloc(n, size, flags);
2004 }
2005 
2006 static inline void __percpu *
2007 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2008 		     gfp_t flags)
2009 {
2010 	return __alloc_percpu_gfp(size, align, flags);
2011 }
2012 #endif
2013 
2014 extern int sysctl_unprivileged_bpf_disabled;
2015 
2016 static inline bool bpf_allow_ptr_leaks(void)
2017 {
2018 	return perfmon_capable();
2019 }
2020 
2021 static inline bool bpf_allow_uninit_stack(void)
2022 {
2023 	return perfmon_capable();
2024 }
2025 
2026 static inline bool bpf_bypass_spec_v1(void)
2027 {
2028 	return perfmon_capable();
2029 }
2030 
2031 static inline bool bpf_bypass_spec_v4(void)
2032 {
2033 	return perfmon_capable();
2034 }
2035 
2036 int bpf_map_new_fd(struct bpf_map *map, int flags);
2037 int bpf_prog_new_fd(struct bpf_prog *prog);
2038 
2039 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2040 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2041 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2042 int bpf_link_settle(struct bpf_link_primer *primer);
2043 void bpf_link_cleanup(struct bpf_link_primer *primer);
2044 void bpf_link_inc(struct bpf_link *link);
2045 void bpf_link_put(struct bpf_link *link);
2046 int bpf_link_new_fd(struct bpf_link *link);
2047 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd);
2048 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2049 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2050 
2051 int bpf_obj_pin_user(u32 ufd, const char __user *pathname);
2052 int bpf_obj_get_user(const char __user *pathname, int flags);
2053 
2054 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2055 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2056 	extern int bpf_iter_ ## target(args);			\
2057 	int __init bpf_iter_ ## target(args) { return 0; }
2058 
2059 /*
2060  * The task type of iterators.
2061  *
2062  * For BPF task iterators, they can be parameterized with various
2063  * parameters to visit only some of tasks.
2064  *
2065  * BPF_TASK_ITER_ALL (default)
2066  *	Iterate over resources of every task.
2067  *
2068  * BPF_TASK_ITER_TID
2069  *	Iterate over resources of a task/tid.
2070  *
2071  * BPF_TASK_ITER_TGID
2072  *	Iterate over resources of every task of a process / task group.
2073  */
2074 enum bpf_iter_task_type {
2075 	BPF_TASK_ITER_ALL = 0,
2076 	BPF_TASK_ITER_TID,
2077 	BPF_TASK_ITER_TGID,
2078 };
2079 
2080 struct bpf_iter_aux_info {
2081 	/* for map_elem iter */
2082 	struct bpf_map *map;
2083 
2084 	/* for cgroup iter */
2085 	struct {
2086 		struct cgroup *start; /* starting cgroup */
2087 		enum bpf_cgroup_iter_order order;
2088 	} cgroup;
2089 	struct {
2090 		enum bpf_iter_task_type	type;
2091 		u32 pid;
2092 	} task;
2093 };
2094 
2095 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2096 					union bpf_iter_link_info *linfo,
2097 					struct bpf_iter_aux_info *aux);
2098 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2099 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2100 					struct seq_file *seq);
2101 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2102 					 struct bpf_link_info *info);
2103 typedef const struct bpf_func_proto *
2104 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2105 			     const struct bpf_prog *prog);
2106 
2107 enum bpf_iter_feature {
2108 	BPF_ITER_RESCHED	= BIT(0),
2109 };
2110 
2111 #define BPF_ITER_CTX_ARG_MAX 2
2112 struct bpf_iter_reg {
2113 	const char *target;
2114 	bpf_iter_attach_target_t attach_target;
2115 	bpf_iter_detach_target_t detach_target;
2116 	bpf_iter_show_fdinfo_t show_fdinfo;
2117 	bpf_iter_fill_link_info_t fill_link_info;
2118 	bpf_iter_get_func_proto_t get_func_proto;
2119 	u32 ctx_arg_info_size;
2120 	u32 feature;
2121 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2122 	const struct bpf_iter_seq_info *seq_info;
2123 };
2124 
2125 struct bpf_iter_meta {
2126 	__bpf_md_ptr(struct seq_file *, seq);
2127 	u64 session_id;
2128 	u64 seq_num;
2129 };
2130 
2131 struct bpf_iter__bpf_map_elem {
2132 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2133 	__bpf_md_ptr(struct bpf_map *, map);
2134 	__bpf_md_ptr(void *, key);
2135 	__bpf_md_ptr(void *, value);
2136 };
2137 
2138 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2139 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2140 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2141 const struct bpf_func_proto *
2142 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2143 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2144 int bpf_iter_new_fd(struct bpf_link *link);
2145 bool bpf_link_is_iter(struct bpf_link *link);
2146 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2147 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2148 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2149 			      struct seq_file *seq);
2150 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2151 				struct bpf_link_info *info);
2152 
2153 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2154 				   struct bpf_func_state *caller,
2155 				   struct bpf_func_state *callee);
2156 
2157 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2158 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2159 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2160 			   u64 flags);
2161 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2162 			    u64 flags);
2163 
2164 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2165 
2166 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2167 				 void *key, void *value, u64 map_flags);
2168 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2169 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2170 				void *key, void *value, u64 map_flags);
2171 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2172 
2173 int bpf_get_file_flag(int flags);
2174 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2175 			     size_t actual_size);
2176 
2177 /* verify correctness of eBPF program */
2178 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2179 
2180 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2181 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2182 #endif
2183 
2184 struct btf *bpf_get_btf_vmlinux(void);
2185 
2186 /* Map specifics */
2187 struct xdp_frame;
2188 struct sk_buff;
2189 struct bpf_dtab_netdev;
2190 struct bpf_cpu_map_entry;
2191 
2192 void __dev_flush(void);
2193 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2194 		    struct net_device *dev_rx);
2195 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2196 		    struct net_device *dev_rx);
2197 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2198 			  struct bpf_map *map, bool exclude_ingress);
2199 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2200 			     struct bpf_prog *xdp_prog);
2201 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2202 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2203 			   bool exclude_ingress);
2204 
2205 void __cpu_map_flush(void);
2206 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2207 		    struct net_device *dev_rx);
2208 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2209 			     struct sk_buff *skb);
2210 
2211 /* Return map's numa specified by userspace */
2212 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2213 {
2214 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2215 		attr->numa_node : NUMA_NO_NODE;
2216 }
2217 
2218 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2219 int array_map_alloc_check(union bpf_attr *attr);
2220 
2221 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2222 			  union bpf_attr __user *uattr);
2223 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2224 			  union bpf_attr __user *uattr);
2225 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2226 			      const union bpf_attr *kattr,
2227 			      union bpf_attr __user *uattr);
2228 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2229 				     const union bpf_attr *kattr,
2230 				     union bpf_attr __user *uattr);
2231 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2232 			     const union bpf_attr *kattr,
2233 			     union bpf_attr __user *uattr);
2234 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2235 				const union bpf_attr *kattr,
2236 				union bpf_attr __user *uattr);
2237 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2238 		    const struct bpf_prog *prog,
2239 		    struct bpf_insn_access_aux *info);
2240 
2241 static inline bool bpf_tracing_ctx_access(int off, int size,
2242 					  enum bpf_access_type type)
2243 {
2244 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2245 		return false;
2246 	if (type != BPF_READ)
2247 		return false;
2248 	if (off % size != 0)
2249 		return false;
2250 	return true;
2251 }
2252 
2253 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2254 					      enum bpf_access_type type,
2255 					      const struct bpf_prog *prog,
2256 					      struct bpf_insn_access_aux *info)
2257 {
2258 	if (!bpf_tracing_ctx_access(off, size, type))
2259 		return false;
2260 	return btf_ctx_access(off, size, type, prog, info);
2261 }
2262 
2263 int btf_struct_access(struct bpf_verifier_log *log,
2264 		      const struct bpf_reg_state *reg,
2265 		      int off, int size, enum bpf_access_type atype,
2266 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2267 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2268 			  const struct btf *btf, u32 id, int off,
2269 			  const struct btf *need_btf, u32 need_type_id,
2270 			  bool strict);
2271 
2272 int btf_distill_func_proto(struct bpf_verifier_log *log,
2273 			   struct btf *btf,
2274 			   const struct btf_type *func_proto,
2275 			   const char *func_name,
2276 			   struct btf_func_model *m);
2277 
2278 struct bpf_reg_state;
2279 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2280 				struct bpf_reg_state *regs);
2281 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2282 			   struct bpf_reg_state *regs);
2283 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2284 			  struct bpf_reg_state *reg);
2285 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2286 			 struct btf *btf, const struct btf_type *t);
2287 
2288 struct bpf_prog *bpf_prog_by_id(u32 id);
2289 struct bpf_link *bpf_link_by_id(u32 id);
2290 
2291 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2292 void bpf_task_storage_free(struct task_struct *task);
2293 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2294 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2295 const struct btf_func_model *
2296 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2297 			 const struct bpf_insn *insn);
2298 struct bpf_core_ctx {
2299 	struct bpf_verifier_log *log;
2300 	const struct btf *btf;
2301 };
2302 
2303 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2304 				const struct bpf_reg_state *reg,
2305 				const char *field_name, u32 btf_id, const char *suffix);
2306 
2307 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2308 			       const struct btf *reg_btf, u32 reg_id,
2309 			       const struct btf *arg_btf, u32 arg_id);
2310 
2311 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2312 		   int relo_idx, void *insn);
2313 
2314 static inline bool unprivileged_ebpf_enabled(void)
2315 {
2316 	return !sysctl_unprivileged_bpf_disabled;
2317 }
2318 
2319 /* Not all bpf prog type has the bpf_ctx.
2320  * For the bpf prog type that has initialized the bpf_ctx,
2321  * this function can be used to decide if a kernel function
2322  * is called by a bpf program.
2323  */
2324 static inline bool has_current_bpf_ctx(void)
2325 {
2326 	return !!current->bpf_ctx;
2327 }
2328 
2329 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2330 
2331 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2332 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2333 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2334 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2335 #else /* !CONFIG_BPF_SYSCALL */
2336 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2337 {
2338 	return ERR_PTR(-EOPNOTSUPP);
2339 }
2340 
2341 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2342 						     enum bpf_prog_type type,
2343 						     bool attach_drv)
2344 {
2345 	return ERR_PTR(-EOPNOTSUPP);
2346 }
2347 
2348 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2349 {
2350 }
2351 
2352 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2353 {
2354 }
2355 
2356 static inline void bpf_prog_put(struct bpf_prog *prog)
2357 {
2358 }
2359 
2360 static inline void bpf_prog_inc(struct bpf_prog *prog)
2361 {
2362 }
2363 
2364 static inline struct bpf_prog *__must_check
2365 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2366 {
2367 	return ERR_PTR(-EOPNOTSUPP);
2368 }
2369 
2370 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2371 				 const struct bpf_link_ops *ops,
2372 				 struct bpf_prog *prog)
2373 {
2374 }
2375 
2376 static inline int bpf_link_prime(struct bpf_link *link,
2377 				 struct bpf_link_primer *primer)
2378 {
2379 	return -EOPNOTSUPP;
2380 }
2381 
2382 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2383 {
2384 	return -EOPNOTSUPP;
2385 }
2386 
2387 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2388 {
2389 }
2390 
2391 static inline void bpf_link_inc(struct bpf_link *link)
2392 {
2393 }
2394 
2395 static inline void bpf_link_put(struct bpf_link *link)
2396 {
2397 }
2398 
2399 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2400 {
2401 	return -EOPNOTSUPP;
2402 }
2403 
2404 static inline void __dev_flush(void)
2405 {
2406 }
2407 
2408 struct xdp_frame;
2409 struct bpf_dtab_netdev;
2410 struct bpf_cpu_map_entry;
2411 
2412 static inline
2413 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2414 		    struct net_device *dev_rx)
2415 {
2416 	return 0;
2417 }
2418 
2419 static inline
2420 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2421 		    struct net_device *dev_rx)
2422 {
2423 	return 0;
2424 }
2425 
2426 static inline
2427 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2428 			  struct bpf_map *map, bool exclude_ingress)
2429 {
2430 	return 0;
2431 }
2432 
2433 struct sk_buff;
2434 
2435 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2436 					   struct sk_buff *skb,
2437 					   struct bpf_prog *xdp_prog)
2438 {
2439 	return 0;
2440 }
2441 
2442 static inline
2443 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2444 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2445 			   bool exclude_ingress)
2446 {
2447 	return 0;
2448 }
2449 
2450 static inline void __cpu_map_flush(void)
2451 {
2452 }
2453 
2454 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2455 				  struct xdp_frame *xdpf,
2456 				  struct net_device *dev_rx)
2457 {
2458 	return 0;
2459 }
2460 
2461 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2462 					   struct sk_buff *skb)
2463 {
2464 	return -EOPNOTSUPP;
2465 }
2466 
2467 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2468 				enum bpf_prog_type type)
2469 {
2470 	return ERR_PTR(-EOPNOTSUPP);
2471 }
2472 
2473 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2474 					const union bpf_attr *kattr,
2475 					union bpf_attr __user *uattr)
2476 {
2477 	return -ENOTSUPP;
2478 }
2479 
2480 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2481 					const union bpf_attr *kattr,
2482 					union bpf_attr __user *uattr)
2483 {
2484 	return -ENOTSUPP;
2485 }
2486 
2487 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2488 					    const union bpf_attr *kattr,
2489 					    union bpf_attr __user *uattr)
2490 {
2491 	return -ENOTSUPP;
2492 }
2493 
2494 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2495 						   const union bpf_attr *kattr,
2496 						   union bpf_attr __user *uattr)
2497 {
2498 	return -ENOTSUPP;
2499 }
2500 
2501 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2502 					      const union bpf_attr *kattr,
2503 					      union bpf_attr __user *uattr)
2504 {
2505 	return -ENOTSUPP;
2506 }
2507 
2508 static inline void bpf_map_put(struct bpf_map *map)
2509 {
2510 }
2511 
2512 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2513 {
2514 	return ERR_PTR(-ENOTSUPP);
2515 }
2516 
2517 static inline int btf_struct_access(struct bpf_verifier_log *log,
2518 				    const struct bpf_reg_state *reg,
2519 				    int off, int size, enum bpf_access_type atype,
2520 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2521 				    const char **field_name)
2522 {
2523 	return -EACCES;
2524 }
2525 
2526 static inline const struct bpf_func_proto *
2527 bpf_base_func_proto(enum bpf_func_id func_id)
2528 {
2529 	return NULL;
2530 }
2531 
2532 static inline void bpf_task_storage_free(struct task_struct *task)
2533 {
2534 }
2535 
2536 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2537 {
2538 	return false;
2539 }
2540 
2541 static inline const struct btf_func_model *
2542 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2543 			 const struct bpf_insn *insn)
2544 {
2545 	return NULL;
2546 }
2547 
2548 static inline bool unprivileged_ebpf_enabled(void)
2549 {
2550 	return false;
2551 }
2552 
2553 static inline bool has_current_bpf_ctx(void)
2554 {
2555 	return false;
2556 }
2557 
2558 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2559 {
2560 }
2561 
2562 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2563 {
2564 }
2565 
2566 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2567 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2568 {
2569 }
2570 
2571 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2572 {
2573 }
2574 
2575 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2576 {
2577 }
2578 #endif /* CONFIG_BPF_SYSCALL */
2579 
2580 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2581 			  struct btf_mod_pair *used_btfs, u32 len);
2582 
2583 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2584 						 enum bpf_prog_type type)
2585 {
2586 	return bpf_prog_get_type_dev(ufd, type, false);
2587 }
2588 
2589 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2590 			  struct bpf_map **used_maps, u32 len);
2591 
2592 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2593 
2594 int bpf_prog_offload_compile(struct bpf_prog *prog);
2595 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2596 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2597 			       struct bpf_prog *prog);
2598 
2599 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2600 
2601 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2602 int bpf_map_offload_update_elem(struct bpf_map *map,
2603 				void *key, void *value, u64 flags);
2604 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2605 int bpf_map_offload_get_next_key(struct bpf_map *map,
2606 				 void *key, void *next_key);
2607 
2608 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2609 
2610 struct bpf_offload_dev *
2611 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2612 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2613 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2614 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2615 				    struct net_device *netdev);
2616 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2617 				       struct net_device *netdev);
2618 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2619 
2620 void unpriv_ebpf_notify(int new_state);
2621 
2622 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2623 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2624 			      struct bpf_prog_aux *prog_aux);
2625 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2626 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2627 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2628 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2629 
2630 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2631 {
2632 	return aux->dev_bound;
2633 }
2634 
2635 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2636 {
2637 	return aux->offload_requested;
2638 }
2639 
2640 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2641 
2642 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2643 {
2644 	return unlikely(map->ops == &bpf_map_offload_ops);
2645 }
2646 
2647 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2648 void bpf_map_offload_map_free(struct bpf_map *map);
2649 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2650 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2651 			      const union bpf_attr *kattr,
2652 			      union bpf_attr __user *uattr);
2653 
2654 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2655 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2656 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2657 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2658 			    union bpf_attr __user *uattr);
2659 
2660 void sock_map_unhash(struct sock *sk);
2661 void sock_map_destroy(struct sock *sk);
2662 void sock_map_close(struct sock *sk, long timeout);
2663 #else
2664 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2665 					    struct bpf_prog_aux *prog_aux)
2666 {
2667 	return -EOPNOTSUPP;
2668 }
2669 
2670 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2671 						u32 func_id)
2672 {
2673 	return NULL;
2674 }
2675 
2676 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2677 					  union bpf_attr *attr)
2678 {
2679 	return -EOPNOTSUPP;
2680 }
2681 
2682 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2683 					     struct bpf_prog *old_prog)
2684 {
2685 	return -EOPNOTSUPP;
2686 }
2687 
2688 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2689 {
2690 }
2691 
2692 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2693 {
2694 	return false;
2695 }
2696 
2697 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2698 {
2699 	return false;
2700 }
2701 
2702 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2703 {
2704 	return false;
2705 }
2706 
2707 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2708 {
2709 	return false;
2710 }
2711 
2712 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2713 {
2714 	return ERR_PTR(-EOPNOTSUPP);
2715 }
2716 
2717 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2718 {
2719 }
2720 
2721 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2722 {
2723 	return 0;
2724 }
2725 
2726 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2727 					    const union bpf_attr *kattr,
2728 					    union bpf_attr __user *uattr)
2729 {
2730 	return -ENOTSUPP;
2731 }
2732 
2733 #ifdef CONFIG_BPF_SYSCALL
2734 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2735 				       struct bpf_prog *prog)
2736 {
2737 	return -EINVAL;
2738 }
2739 
2740 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2741 				       enum bpf_prog_type ptype)
2742 {
2743 	return -EOPNOTSUPP;
2744 }
2745 
2746 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2747 					   u64 flags)
2748 {
2749 	return -EOPNOTSUPP;
2750 }
2751 
2752 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2753 					  union bpf_attr __user *uattr)
2754 {
2755 	return -EINVAL;
2756 }
2757 #endif /* CONFIG_BPF_SYSCALL */
2758 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2759 
2760 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2761 void bpf_sk_reuseport_detach(struct sock *sk);
2762 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2763 				       void *value);
2764 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2765 				       void *value, u64 map_flags);
2766 #else
2767 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2768 {
2769 }
2770 
2771 #ifdef CONFIG_BPF_SYSCALL
2772 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2773 						     void *key, void *value)
2774 {
2775 	return -EOPNOTSUPP;
2776 }
2777 
2778 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2779 						     void *key, void *value,
2780 						     u64 map_flags)
2781 {
2782 	return -EOPNOTSUPP;
2783 }
2784 #endif /* CONFIG_BPF_SYSCALL */
2785 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2786 
2787 /* verifier prototypes for helper functions called from eBPF programs */
2788 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2789 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2790 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2791 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2792 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2793 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2794 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2795 
2796 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2797 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2798 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2799 extern const struct bpf_func_proto bpf_tail_call_proto;
2800 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2801 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2802 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2803 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2804 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2805 extern const struct bpf_func_proto bpf_get_current_comm_proto;
2806 extern const struct bpf_func_proto bpf_get_stackid_proto;
2807 extern const struct bpf_func_proto bpf_get_stack_proto;
2808 extern const struct bpf_func_proto bpf_get_task_stack_proto;
2809 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2810 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
2811 extern const struct bpf_func_proto bpf_sock_map_update_proto;
2812 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
2813 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
2814 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
2815 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
2816 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
2817 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
2818 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
2819 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
2820 extern const struct bpf_func_proto bpf_spin_lock_proto;
2821 extern const struct bpf_func_proto bpf_spin_unlock_proto;
2822 extern const struct bpf_func_proto bpf_get_local_storage_proto;
2823 extern const struct bpf_func_proto bpf_strtol_proto;
2824 extern const struct bpf_func_proto bpf_strtoul_proto;
2825 extern const struct bpf_func_proto bpf_tcp_sock_proto;
2826 extern const struct bpf_func_proto bpf_jiffies64_proto;
2827 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
2828 extern const struct bpf_func_proto bpf_event_output_data_proto;
2829 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
2830 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
2831 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
2832 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
2833 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
2834 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
2835 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
2836 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
2837 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
2838 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
2839 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
2840 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
2841 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
2842 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
2843 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
2844 extern const struct bpf_func_proto bpf_copy_from_user_proto;
2845 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
2846 extern const struct bpf_func_proto bpf_snprintf_proto;
2847 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
2848 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
2849 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
2850 extern const struct bpf_func_proto bpf_sock_from_file_proto;
2851 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
2852 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
2853 extern const struct bpf_func_proto bpf_task_storage_get_proto;
2854 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
2855 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
2856 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
2857 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
2858 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
2859 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
2860 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
2861 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
2862 extern const struct bpf_func_proto bpf_find_vma_proto;
2863 extern const struct bpf_func_proto bpf_loop_proto;
2864 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
2865 extern const struct bpf_func_proto bpf_set_retval_proto;
2866 extern const struct bpf_func_proto bpf_get_retval_proto;
2867 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
2868 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
2869 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
2870 
2871 const struct bpf_func_proto *tracing_prog_func_proto(
2872   enum bpf_func_id func_id, const struct bpf_prog *prog);
2873 
2874 /* Shared helpers among cBPF and eBPF. */
2875 void bpf_user_rnd_init_once(void);
2876 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2877 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2878 
2879 #if defined(CONFIG_NET)
2880 bool bpf_sock_common_is_valid_access(int off, int size,
2881 				     enum bpf_access_type type,
2882 				     struct bpf_insn_access_aux *info);
2883 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2884 			      struct bpf_insn_access_aux *info);
2885 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2886 				const struct bpf_insn *si,
2887 				struct bpf_insn *insn_buf,
2888 				struct bpf_prog *prog,
2889 				u32 *target_size);
2890 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2891 			       struct bpf_dynptr_kern *ptr);
2892 #else
2893 static inline bool bpf_sock_common_is_valid_access(int off, int size,
2894 						   enum bpf_access_type type,
2895 						   struct bpf_insn_access_aux *info)
2896 {
2897 	return false;
2898 }
2899 static inline bool bpf_sock_is_valid_access(int off, int size,
2900 					    enum bpf_access_type type,
2901 					    struct bpf_insn_access_aux *info)
2902 {
2903 	return false;
2904 }
2905 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2906 					      const struct bpf_insn *si,
2907 					      struct bpf_insn *insn_buf,
2908 					      struct bpf_prog *prog,
2909 					      u32 *target_size)
2910 {
2911 	return 0;
2912 }
2913 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2914 					     struct bpf_dynptr_kern *ptr)
2915 {
2916 	return -EOPNOTSUPP;
2917 }
2918 #endif
2919 
2920 #ifdef CONFIG_INET
2921 struct sk_reuseport_kern {
2922 	struct sk_buff *skb;
2923 	struct sock *sk;
2924 	struct sock *selected_sk;
2925 	struct sock *migrating_sk;
2926 	void *data_end;
2927 	u32 hash;
2928 	u32 reuseport_id;
2929 	bool bind_inany;
2930 };
2931 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2932 				  struct bpf_insn_access_aux *info);
2933 
2934 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2935 				    const struct bpf_insn *si,
2936 				    struct bpf_insn *insn_buf,
2937 				    struct bpf_prog *prog,
2938 				    u32 *target_size);
2939 
2940 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2941 				  struct bpf_insn_access_aux *info);
2942 
2943 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2944 				    const struct bpf_insn *si,
2945 				    struct bpf_insn *insn_buf,
2946 				    struct bpf_prog *prog,
2947 				    u32 *target_size);
2948 #else
2949 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
2950 						enum bpf_access_type type,
2951 						struct bpf_insn_access_aux *info)
2952 {
2953 	return false;
2954 }
2955 
2956 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2957 						  const struct bpf_insn *si,
2958 						  struct bpf_insn *insn_buf,
2959 						  struct bpf_prog *prog,
2960 						  u32 *target_size)
2961 {
2962 	return 0;
2963 }
2964 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
2965 						enum bpf_access_type type,
2966 						struct bpf_insn_access_aux *info)
2967 {
2968 	return false;
2969 }
2970 
2971 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2972 						  const struct bpf_insn *si,
2973 						  struct bpf_insn *insn_buf,
2974 						  struct bpf_prog *prog,
2975 						  u32 *target_size)
2976 {
2977 	return 0;
2978 }
2979 #endif /* CONFIG_INET */
2980 
2981 enum bpf_text_poke_type {
2982 	BPF_MOD_CALL,
2983 	BPF_MOD_JUMP,
2984 };
2985 
2986 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2987 		       void *addr1, void *addr2);
2988 
2989 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
2990 int bpf_arch_text_invalidate(void *dst, size_t len);
2991 
2992 struct btf_id_set;
2993 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
2994 
2995 #define MAX_BPRINTF_VARARGS		12
2996 #define MAX_BPRINTF_BUF			1024
2997 
2998 struct bpf_bprintf_data {
2999 	u32 *bin_args;
3000 	char *buf;
3001 	bool get_bin_args;
3002 	bool get_buf;
3003 };
3004 
3005 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3006 			u32 num_args, struct bpf_bprintf_data *data);
3007 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3008 
3009 #ifdef CONFIG_BPF_LSM
3010 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3011 void bpf_cgroup_atype_put(int cgroup_atype);
3012 #else
3013 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3014 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3015 #endif /* CONFIG_BPF_LSM */
3016 
3017 struct key;
3018 
3019 #ifdef CONFIG_KEYS
3020 struct bpf_key {
3021 	struct key *key;
3022 	bool has_ref;
3023 };
3024 #endif /* CONFIG_KEYS */
3025 
3026 static inline bool type_is_alloc(u32 type)
3027 {
3028 	return type & MEM_ALLOC;
3029 }
3030 
3031 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3032 {
3033 	if (memcg_bpf_enabled())
3034 		return flags | __GFP_ACCOUNT;
3035 	return flags;
3036 }
3037 
3038 #endif /* _LINUX_BPF_H */
3039