1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 32 struct bpf_verifier_env; 33 struct bpf_verifier_log; 34 struct perf_event; 35 struct bpf_prog; 36 struct bpf_prog_aux; 37 struct bpf_map; 38 struct sock; 39 struct seq_file; 40 struct btf; 41 struct btf_type; 42 struct exception_table_entry; 43 struct seq_operations; 44 struct bpf_iter_aux_info; 45 struct bpf_local_storage; 46 struct bpf_local_storage_map; 47 struct kobject; 48 struct mem_cgroup; 49 struct module; 50 struct bpf_func_state; 51 struct ftrace_ops; 52 struct cgroup; 53 54 extern struct idr btf_idr; 55 extern spinlock_t btf_idr_lock; 56 extern struct kobject *btf_kobj; 57 extern struct bpf_mem_alloc bpf_global_ma; 58 extern bool bpf_global_ma_set; 59 60 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 61 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 62 struct bpf_iter_aux_info *aux); 63 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 64 typedef unsigned int (*bpf_func_t)(const void *, 65 const struct bpf_insn *); 66 struct bpf_iter_seq_info { 67 const struct seq_operations *seq_ops; 68 bpf_iter_init_seq_priv_t init_seq_private; 69 bpf_iter_fini_seq_priv_t fini_seq_private; 70 u32 seq_priv_size; 71 }; 72 73 /* map is generic key/value storage optionally accessible by eBPF programs */ 74 struct bpf_map_ops { 75 /* funcs callable from userspace (via syscall) */ 76 int (*map_alloc_check)(union bpf_attr *attr); 77 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 78 void (*map_release)(struct bpf_map *map, struct file *map_file); 79 void (*map_free)(struct bpf_map *map); 80 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 81 void (*map_release_uref)(struct bpf_map *map); 82 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 83 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 84 union bpf_attr __user *uattr); 85 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 86 void *value, u64 flags); 87 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 88 const union bpf_attr *attr, 89 union bpf_attr __user *uattr); 90 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 91 const union bpf_attr *attr, 92 union bpf_attr __user *uattr); 93 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 94 union bpf_attr __user *uattr); 95 96 /* funcs callable from userspace and from eBPF programs */ 97 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 98 int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 99 int (*map_delete_elem)(struct bpf_map *map, void *key); 100 int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 101 int (*map_pop_elem)(struct bpf_map *map, void *value); 102 int (*map_peek_elem)(struct bpf_map *map, void *value); 103 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 104 105 /* funcs called by prog_array and perf_event_array map */ 106 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 107 int fd); 108 void (*map_fd_put_ptr)(void *ptr); 109 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 110 u32 (*map_fd_sys_lookup_elem)(void *ptr); 111 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 112 struct seq_file *m); 113 int (*map_check_btf)(const struct bpf_map *map, 114 const struct btf *btf, 115 const struct btf_type *key_type, 116 const struct btf_type *value_type); 117 118 /* Prog poke tracking helpers. */ 119 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 120 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 121 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 122 struct bpf_prog *new); 123 124 /* Direct value access helpers. */ 125 int (*map_direct_value_addr)(const struct bpf_map *map, 126 u64 *imm, u32 off); 127 int (*map_direct_value_meta)(const struct bpf_map *map, 128 u64 imm, u32 *off); 129 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 130 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 131 struct poll_table_struct *pts); 132 133 /* Functions called by bpf_local_storage maps */ 134 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 135 void *owner, u32 size); 136 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 137 void *owner, u32 size); 138 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 139 140 /* Misc helpers.*/ 141 int (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 142 143 /* map_meta_equal must be implemented for maps that can be 144 * used as an inner map. It is a runtime check to ensure 145 * an inner map can be inserted to an outer map. 146 * 147 * Some properties of the inner map has been used during the 148 * verification time. When inserting an inner map at the runtime, 149 * map_meta_equal has to ensure the inserting map has the same 150 * properties that the verifier has used earlier. 151 */ 152 bool (*map_meta_equal)(const struct bpf_map *meta0, 153 const struct bpf_map *meta1); 154 155 156 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 157 struct bpf_func_state *caller, 158 struct bpf_func_state *callee); 159 int (*map_for_each_callback)(struct bpf_map *map, 160 bpf_callback_t callback_fn, 161 void *callback_ctx, u64 flags); 162 163 /* BTF id of struct allocated by map_alloc */ 164 int *map_btf_id; 165 166 /* bpf_iter info used to open a seq_file */ 167 const struct bpf_iter_seq_info *iter_seq_info; 168 }; 169 170 enum { 171 /* Support at most 10 fields in a BTF type */ 172 BTF_FIELDS_MAX = 10, 173 }; 174 175 enum btf_field_type { 176 BPF_SPIN_LOCK = (1 << 0), 177 BPF_TIMER = (1 << 1), 178 BPF_KPTR_UNREF = (1 << 2), 179 BPF_KPTR_REF = (1 << 3), 180 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF, 181 BPF_LIST_HEAD = (1 << 4), 182 BPF_LIST_NODE = (1 << 5), 183 }; 184 185 struct btf_field_kptr { 186 struct btf *btf; 187 struct module *module; 188 btf_dtor_kfunc_t dtor; 189 u32 btf_id; 190 }; 191 192 struct btf_field_graph_root { 193 struct btf *btf; 194 u32 value_btf_id; 195 u32 node_offset; 196 struct btf_record *value_rec; 197 }; 198 199 struct btf_field { 200 u32 offset; 201 enum btf_field_type type; 202 union { 203 struct btf_field_kptr kptr; 204 struct btf_field_graph_root graph_root; 205 }; 206 }; 207 208 struct btf_record { 209 u32 cnt; 210 u32 field_mask; 211 int spin_lock_off; 212 int timer_off; 213 struct btf_field fields[]; 214 }; 215 216 struct btf_field_offs { 217 u32 cnt; 218 u32 field_off[BTF_FIELDS_MAX]; 219 u8 field_sz[BTF_FIELDS_MAX]; 220 }; 221 222 struct bpf_map { 223 /* The first two cachelines with read-mostly members of which some 224 * are also accessed in fast-path (e.g. ops, max_entries). 225 */ 226 const struct bpf_map_ops *ops ____cacheline_aligned; 227 struct bpf_map *inner_map_meta; 228 #ifdef CONFIG_SECURITY 229 void *security; 230 #endif 231 enum bpf_map_type map_type; 232 u32 key_size; 233 u32 value_size; 234 u32 max_entries; 235 u64 map_extra; /* any per-map-type extra fields */ 236 u32 map_flags; 237 u32 id; 238 struct btf_record *record; 239 int numa_node; 240 u32 btf_key_type_id; 241 u32 btf_value_type_id; 242 u32 btf_vmlinux_value_type_id; 243 struct btf *btf; 244 #ifdef CONFIG_MEMCG_KMEM 245 struct obj_cgroup *objcg; 246 #endif 247 char name[BPF_OBJ_NAME_LEN]; 248 struct btf_field_offs *field_offs; 249 /* The 3rd and 4th cacheline with misc members to avoid false sharing 250 * particularly with refcounting. 251 */ 252 atomic64_t refcnt ____cacheline_aligned; 253 atomic64_t usercnt; 254 struct work_struct work; 255 struct mutex freeze_mutex; 256 atomic64_t writecnt; 257 /* 'Ownership' of program-containing map is claimed by the first program 258 * that is going to use this map or by the first program which FD is 259 * stored in the map to make sure that all callers and callees have the 260 * same prog type, JITed flag and xdp_has_frags flag. 261 */ 262 struct { 263 spinlock_t lock; 264 enum bpf_prog_type type; 265 bool jited; 266 bool xdp_has_frags; 267 } owner; 268 bool bypass_spec_v1; 269 bool frozen; /* write-once; write-protected by freeze_mutex */ 270 }; 271 272 static inline const char *btf_field_type_name(enum btf_field_type type) 273 { 274 switch (type) { 275 case BPF_SPIN_LOCK: 276 return "bpf_spin_lock"; 277 case BPF_TIMER: 278 return "bpf_timer"; 279 case BPF_KPTR_UNREF: 280 case BPF_KPTR_REF: 281 return "kptr"; 282 case BPF_LIST_HEAD: 283 return "bpf_list_head"; 284 case BPF_LIST_NODE: 285 return "bpf_list_node"; 286 default: 287 WARN_ON_ONCE(1); 288 return "unknown"; 289 } 290 } 291 292 static inline u32 btf_field_type_size(enum btf_field_type type) 293 { 294 switch (type) { 295 case BPF_SPIN_LOCK: 296 return sizeof(struct bpf_spin_lock); 297 case BPF_TIMER: 298 return sizeof(struct bpf_timer); 299 case BPF_KPTR_UNREF: 300 case BPF_KPTR_REF: 301 return sizeof(u64); 302 case BPF_LIST_HEAD: 303 return sizeof(struct bpf_list_head); 304 case BPF_LIST_NODE: 305 return sizeof(struct bpf_list_node); 306 default: 307 WARN_ON_ONCE(1); 308 return 0; 309 } 310 } 311 312 static inline u32 btf_field_type_align(enum btf_field_type type) 313 { 314 switch (type) { 315 case BPF_SPIN_LOCK: 316 return __alignof__(struct bpf_spin_lock); 317 case BPF_TIMER: 318 return __alignof__(struct bpf_timer); 319 case BPF_KPTR_UNREF: 320 case BPF_KPTR_REF: 321 return __alignof__(u64); 322 case BPF_LIST_HEAD: 323 return __alignof__(struct bpf_list_head); 324 case BPF_LIST_NODE: 325 return __alignof__(struct bpf_list_node); 326 default: 327 WARN_ON_ONCE(1); 328 return 0; 329 } 330 } 331 332 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 333 { 334 if (IS_ERR_OR_NULL(rec)) 335 return false; 336 return rec->field_mask & type; 337 } 338 339 static inline void bpf_obj_init(const struct btf_field_offs *foffs, void *obj) 340 { 341 int i; 342 343 if (!foffs) 344 return; 345 for (i = 0; i < foffs->cnt; i++) 346 memset(obj + foffs->field_off[i], 0, foffs->field_sz[i]); 347 } 348 349 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 350 { 351 bpf_obj_init(map->field_offs, dst); 352 } 353 354 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 355 * forced to use 'long' read/writes to try to atomically copy long counters. 356 * Best-effort only. No barriers here, since it _will_ race with concurrent 357 * updates from BPF programs. Called from bpf syscall and mostly used with 358 * size 8 or 16 bytes, so ask compiler to inline it. 359 */ 360 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 361 { 362 const long *lsrc = src; 363 long *ldst = dst; 364 365 size /= sizeof(long); 366 while (size--) 367 *ldst++ = *lsrc++; 368 } 369 370 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 371 static inline void bpf_obj_memcpy(struct btf_field_offs *foffs, 372 void *dst, void *src, u32 size, 373 bool long_memcpy) 374 { 375 u32 curr_off = 0; 376 int i; 377 378 if (likely(!foffs)) { 379 if (long_memcpy) 380 bpf_long_memcpy(dst, src, round_up(size, 8)); 381 else 382 memcpy(dst, src, size); 383 return; 384 } 385 386 for (i = 0; i < foffs->cnt; i++) { 387 u32 next_off = foffs->field_off[i]; 388 u32 sz = next_off - curr_off; 389 390 memcpy(dst + curr_off, src + curr_off, sz); 391 curr_off += foffs->field_sz[i] + sz; 392 } 393 memcpy(dst + curr_off, src + curr_off, size - curr_off); 394 } 395 396 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 397 { 398 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, false); 399 } 400 401 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 402 { 403 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, true); 404 } 405 406 static inline void bpf_obj_memzero(struct btf_field_offs *foffs, void *dst, u32 size) 407 { 408 u32 curr_off = 0; 409 int i; 410 411 if (likely(!foffs)) { 412 memset(dst, 0, size); 413 return; 414 } 415 416 for (i = 0; i < foffs->cnt; i++) { 417 u32 next_off = foffs->field_off[i]; 418 u32 sz = next_off - curr_off; 419 420 memset(dst + curr_off, 0, sz); 421 curr_off += foffs->field_sz[i] + sz; 422 } 423 memset(dst + curr_off, 0, size - curr_off); 424 } 425 426 static inline void zero_map_value(struct bpf_map *map, void *dst) 427 { 428 bpf_obj_memzero(map->field_offs, dst, map->value_size); 429 } 430 431 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 432 bool lock_src); 433 void bpf_timer_cancel_and_free(void *timer); 434 void bpf_list_head_free(const struct btf_field *field, void *list_head, 435 struct bpf_spin_lock *spin_lock); 436 437 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 438 439 struct bpf_offload_dev; 440 struct bpf_offloaded_map; 441 442 struct bpf_map_dev_ops { 443 int (*map_get_next_key)(struct bpf_offloaded_map *map, 444 void *key, void *next_key); 445 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 446 void *key, void *value); 447 int (*map_update_elem)(struct bpf_offloaded_map *map, 448 void *key, void *value, u64 flags); 449 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 450 }; 451 452 struct bpf_offloaded_map { 453 struct bpf_map map; 454 struct net_device *netdev; 455 const struct bpf_map_dev_ops *dev_ops; 456 void *dev_priv; 457 struct list_head offloads; 458 }; 459 460 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 461 { 462 return container_of(map, struct bpf_offloaded_map, map); 463 } 464 465 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 466 { 467 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 468 } 469 470 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 471 { 472 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 473 map->ops->map_seq_show_elem; 474 } 475 476 int map_check_no_btf(const struct bpf_map *map, 477 const struct btf *btf, 478 const struct btf_type *key_type, 479 const struct btf_type *value_type); 480 481 bool bpf_map_meta_equal(const struct bpf_map *meta0, 482 const struct bpf_map *meta1); 483 484 extern const struct bpf_map_ops bpf_map_offload_ops; 485 486 /* bpf_type_flag contains a set of flags that are applicable to the values of 487 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 488 * or a memory is read-only. We classify types into two categories: base types 489 * and extended types. Extended types are base types combined with a type flag. 490 * 491 * Currently there are no more than 32 base types in arg_type, ret_type and 492 * reg_types. 493 */ 494 #define BPF_BASE_TYPE_BITS 8 495 496 enum bpf_type_flag { 497 /* PTR may be NULL. */ 498 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 499 500 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 501 * compatible with both mutable and immutable memory. 502 */ 503 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 504 505 /* MEM points to BPF ring buffer reservation. */ 506 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 507 508 /* MEM is in user address space. */ 509 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 510 511 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 512 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 513 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 514 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 515 * to the specified cpu. 516 */ 517 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 518 519 /* Indicates that the argument will be released. */ 520 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 521 522 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 523 * unreferenced and referenced kptr loaded from map value using a load 524 * instruction, so that they can only be dereferenced but not escape the 525 * BPF program into the kernel (i.e. cannot be passed as arguments to 526 * kfunc or bpf helpers). 527 */ 528 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 529 530 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 531 532 /* DYNPTR points to memory local to the bpf program. */ 533 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 534 535 /* DYNPTR points to a kernel-produced ringbuf record. */ 536 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 537 538 /* Size is known at compile time. */ 539 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 540 541 /* MEM is of an allocated object of type in program BTF. This is used to 542 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 543 */ 544 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 545 546 /* PTR was passed from the kernel in a trusted context, and may be 547 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 548 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 549 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 550 * without invoking bpf_kptr_xchg(). What we really need to know is 551 * whether a pointer is safe to pass to a kfunc or BPF helper function. 552 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 553 * helpers, they do not cover all possible instances of unsafe 554 * pointers. For example, a pointer that was obtained from walking a 555 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 556 * fact that it may be NULL, invalid, etc. This is due to backwards 557 * compatibility requirements, as this was the behavior that was first 558 * introduced when kptrs were added. The behavior is now considered 559 * deprecated, and PTR_UNTRUSTED will eventually be removed. 560 * 561 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 562 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 563 * For example, pointers passed to tracepoint arguments are considered 564 * PTR_TRUSTED, as are pointers that are passed to struct_ops 565 * callbacks. As alluded to above, pointers that are obtained from 566 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 567 * struct task_struct *task is PTR_TRUSTED, then accessing 568 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 569 * in a BPF register. Similarly, pointers passed to certain programs 570 * types such as kretprobes are not guaranteed to be valid, as they may 571 * for example contain an object that was recently freed. 572 */ 573 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 574 575 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 576 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 577 578 __BPF_TYPE_FLAG_MAX, 579 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 580 }; 581 582 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF) 583 584 /* Max number of base types. */ 585 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 586 587 /* Max number of all types. */ 588 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 589 590 /* function argument constraints */ 591 enum bpf_arg_type { 592 ARG_DONTCARE = 0, /* unused argument in helper function */ 593 594 /* the following constraints used to prototype 595 * bpf_map_lookup/update/delete_elem() functions 596 */ 597 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 598 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 599 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 600 601 /* Used to prototype bpf_memcmp() and other functions that access data 602 * on eBPF program stack 603 */ 604 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 605 606 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 607 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 608 609 ARG_PTR_TO_CTX, /* pointer to context */ 610 ARG_ANYTHING, /* any (initialized) argument is ok */ 611 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 612 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 613 ARG_PTR_TO_INT, /* pointer to int */ 614 ARG_PTR_TO_LONG, /* pointer to long */ 615 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 616 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 617 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 618 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 619 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 620 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 621 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 622 ARG_PTR_TO_STACK, /* pointer to stack */ 623 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 624 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 625 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 626 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 627 __BPF_ARG_TYPE_MAX, 628 629 /* Extended arg_types. */ 630 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 631 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 632 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 633 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 634 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 635 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 636 /* pointer to memory does not need to be initialized, helper function must fill 637 * all bytes or clear them in error case. 638 */ 639 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 640 /* Pointer to valid memory of size known at compile time. */ 641 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 642 643 /* This must be the last entry. Its purpose is to ensure the enum is 644 * wide enough to hold the higher bits reserved for bpf_type_flag. 645 */ 646 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 647 }; 648 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 649 650 /* type of values returned from helper functions */ 651 enum bpf_return_type { 652 RET_INTEGER, /* function returns integer */ 653 RET_VOID, /* function doesn't return anything */ 654 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 655 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 656 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 657 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 658 RET_PTR_TO_MEM, /* returns a pointer to memory */ 659 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 660 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 661 __BPF_RET_TYPE_MAX, 662 663 /* Extended ret_types. */ 664 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 665 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 666 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 667 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 668 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 669 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 670 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 671 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 672 673 /* This must be the last entry. Its purpose is to ensure the enum is 674 * wide enough to hold the higher bits reserved for bpf_type_flag. 675 */ 676 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 677 }; 678 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 679 680 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 681 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 682 * instructions after verifying 683 */ 684 struct bpf_func_proto { 685 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 686 bool gpl_only; 687 bool pkt_access; 688 bool might_sleep; 689 enum bpf_return_type ret_type; 690 union { 691 struct { 692 enum bpf_arg_type arg1_type; 693 enum bpf_arg_type arg2_type; 694 enum bpf_arg_type arg3_type; 695 enum bpf_arg_type arg4_type; 696 enum bpf_arg_type arg5_type; 697 }; 698 enum bpf_arg_type arg_type[5]; 699 }; 700 union { 701 struct { 702 u32 *arg1_btf_id; 703 u32 *arg2_btf_id; 704 u32 *arg3_btf_id; 705 u32 *arg4_btf_id; 706 u32 *arg5_btf_id; 707 }; 708 u32 *arg_btf_id[5]; 709 struct { 710 size_t arg1_size; 711 size_t arg2_size; 712 size_t arg3_size; 713 size_t arg4_size; 714 size_t arg5_size; 715 }; 716 size_t arg_size[5]; 717 }; 718 int *ret_btf_id; /* return value btf_id */ 719 bool (*allowed)(const struct bpf_prog *prog); 720 }; 721 722 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 723 * the first argument to eBPF programs. 724 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 725 */ 726 struct bpf_context; 727 728 enum bpf_access_type { 729 BPF_READ = 1, 730 BPF_WRITE = 2 731 }; 732 733 /* types of values stored in eBPF registers */ 734 /* Pointer types represent: 735 * pointer 736 * pointer + imm 737 * pointer + (u16) var 738 * pointer + (u16) var + imm 739 * if (range > 0) then [ptr, ptr + range - off) is safe to access 740 * if (id > 0) means that some 'var' was added 741 * if (off > 0) means that 'imm' was added 742 */ 743 enum bpf_reg_type { 744 NOT_INIT = 0, /* nothing was written into register */ 745 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 746 PTR_TO_CTX, /* reg points to bpf_context */ 747 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 748 PTR_TO_MAP_VALUE, /* reg points to map element value */ 749 PTR_TO_MAP_KEY, /* reg points to a map element key */ 750 PTR_TO_STACK, /* reg == frame_pointer + offset */ 751 PTR_TO_PACKET_META, /* skb->data - meta_len */ 752 PTR_TO_PACKET, /* reg points to skb->data */ 753 PTR_TO_PACKET_END, /* skb->data + headlen */ 754 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 755 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 756 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 757 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 758 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 759 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 760 /* PTR_TO_BTF_ID points to a kernel struct that does not need 761 * to be null checked by the BPF program. This does not imply the 762 * pointer is _not_ null and in practice this can easily be a null 763 * pointer when reading pointer chains. The assumption is program 764 * context will handle null pointer dereference typically via fault 765 * handling. The verifier must keep this in mind and can make no 766 * assumptions about null or non-null when doing branch analysis. 767 * Further, when passed into helpers the helpers can not, without 768 * additional context, assume the value is non-null. 769 */ 770 PTR_TO_BTF_ID, 771 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 772 * been checked for null. Used primarily to inform the verifier 773 * an explicit null check is required for this struct. 774 */ 775 PTR_TO_MEM, /* reg points to valid memory region */ 776 PTR_TO_BUF, /* reg points to a read/write buffer */ 777 PTR_TO_FUNC, /* reg points to a bpf program function */ 778 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 779 __BPF_REG_TYPE_MAX, 780 781 /* Extended reg_types. */ 782 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 783 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 784 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 785 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 786 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 787 788 /* This must be the last entry. Its purpose is to ensure the enum is 789 * wide enough to hold the higher bits reserved for bpf_type_flag. 790 */ 791 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 792 }; 793 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 794 795 /* The information passed from prog-specific *_is_valid_access 796 * back to the verifier. 797 */ 798 struct bpf_insn_access_aux { 799 enum bpf_reg_type reg_type; 800 union { 801 int ctx_field_size; 802 struct { 803 struct btf *btf; 804 u32 btf_id; 805 }; 806 }; 807 struct bpf_verifier_log *log; /* for verbose logs */ 808 }; 809 810 static inline void 811 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 812 { 813 aux->ctx_field_size = size; 814 } 815 816 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 817 { 818 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 819 insn->src_reg == BPF_PSEUDO_FUNC; 820 } 821 822 struct bpf_prog_ops { 823 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 824 union bpf_attr __user *uattr); 825 }; 826 827 struct bpf_reg_state; 828 struct bpf_verifier_ops { 829 /* return eBPF function prototype for verification */ 830 const struct bpf_func_proto * 831 (*get_func_proto)(enum bpf_func_id func_id, 832 const struct bpf_prog *prog); 833 834 /* return true if 'size' wide access at offset 'off' within bpf_context 835 * with 'type' (read or write) is allowed 836 */ 837 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 838 const struct bpf_prog *prog, 839 struct bpf_insn_access_aux *info); 840 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 841 const struct bpf_prog *prog); 842 int (*gen_ld_abs)(const struct bpf_insn *orig, 843 struct bpf_insn *insn_buf); 844 u32 (*convert_ctx_access)(enum bpf_access_type type, 845 const struct bpf_insn *src, 846 struct bpf_insn *dst, 847 struct bpf_prog *prog, u32 *target_size); 848 int (*btf_struct_access)(struct bpf_verifier_log *log, 849 const struct bpf_reg_state *reg, 850 int off, int size, enum bpf_access_type atype, 851 u32 *next_btf_id, enum bpf_type_flag *flag); 852 }; 853 854 struct bpf_prog_offload_ops { 855 /* verifier basic callbacks */ 856 int (*insn_hook)(struct bpf_verifier_env *env, 857 int insn_idx, int prev_insn_idx); 858 int (*finalize)(struct bpf_verifier_env *env); 859 /* verifier optimization callbacks (called after .finalize) */ 860 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 861 struct bpf_insn *insn); 862 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 863 /* program management callbacks */ 864 int (*prepare)(struct bpf_prog *prog); 865 int (*translate)(struct bpf_prog *prog); 866 void (*destroy)(struct bpf_prog *prog); 867 }; 868 869 struct bpf_prog_offload { 870 struct bpf_prog *prog; 871 struct net_device *netdev; 872 struct bpf_offload_dev *offdev; 873 void *dev_priv; 874 struct list_head offloads; 875 bool dev_state; 876 bool opt_failed; 877 void *jited_image; 878 u32 jited_len; 879 }; 880 881 enum bpf_cgroup_storage_type { 882 BPF_CGROUP_STORAGE_SHARED, 883 BPF_CGROUP_STORAGE_PERCPU, 884 __BPF_CGROUP_STORAGE_MAX 885 }; 886 887 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 888 889 /* The longest tracepoint has 12 args. 890 * See include/trace/bpf_probe.h 891 */ 892 #define MAX_BPF_FUNC_ARGS 12 893 894 /* The maximum number of arguments passed through registers 895 * a single function may have. 896 */ 897 #define MAX_BPF_FUNC_REG_ARGS 5 898 899 /* The argument is a structure. */ 900 #define BTF_FMODEL_STRUCT_ARG BIT(0) 901 902 struct btf_func_model { 903 u8 ret_size; 904 u8 nr_args; 905 u8 arg_size[MAX_BPF_FUNC_ARGS]; 906 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 907 }; 908 909 /* Restore arguments before returning from trampoline to let original function 910 * continue executing. This flag is used for fentry progs when there are no 911 * fexit progs. 912 */ 913 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 914 /* Call original function after fentry progs, but before fexit progs. 915 * Makes sense for fentry/fexit, normal calls and indirect calls. 916 */ 917 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 918 /* Skip current frame and return to parent. Makes sense for fentry/fexit 919 * programs only. Should not be used with normal calls and indirect calls. 920 */ 921 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 922 /* Store IP address of the caller on the trampoline stack, 923 * so it's available for trampoline's programs. 924 */ 925 #define BPF_TRAMP_F_IP_ARG BIT(3) 926 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 927 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 928 929 /* Get original function from stack instead of from provided direct address. 930 * Makes sense for trampolines with fexit or fmod_ret programs. 931 */ 932 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 933 934 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 935 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 936 */ 937 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 938 939 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 940 * bytes on x86. 941 */ 942 #define BPF_MAX_TRAMP_LINKS 38 943 944 struct bpf_tramp_links { 945 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 946 int nr_links; 947 }; 948 949 struct bpf_tramp_run_ctx; 950 951 /* Different use cases for BPF trampoline: 952 * 1. replace nop at the function entry (kprobe equivalent) 953 * flags = BPF_TRAMP_F_RESTORE_REGS 954 * fentry = a set of programs to run before returning from trampoline 955 * 956 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 957 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 958 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 959 * fentry = a set of program to run before calling original function 960 * fexit = a set of program to run after original function 961 * 962 * 3. replace direct call instruction anywhere in the function body 963 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 964 * With flags = 0 965 * fentry = a set of programs to run before returning from trampoline 966 * With flags = BPF_TRAMP_F_CALL_ORIG 967 * orig_call = original callback addr or direct function addr 968 * fentry = a set of program to run before calling original function 969 * fexit = a set of program to run after original function 970 */ 971 struct bpf_tramp_image; 972 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 973 const struct btf_func_model *m, u32 flags, 974 struct bpf_tramp_links *tlinks, 975 void *orig_call); 976 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 977 struct bpf_tramp_run_ctx *run_ctx); 978 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 979 struct bpf_tramp_run_ctx *run_ctx); 980 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 981 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 982 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 983 struct bpf_tramp_run_ctx *run_ctx); 984 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 985 struct bpf_tramp_run_ctx *run_ctx); 986 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 987 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 988 989 struct bpf_ksym { 990 unsigned long start; 991 unsigned long end; 992 char name[KSYM_NAME_LEN]; 993 struct list_head lnode; 994 struct latch_tree_node tnode; 995 bool prog; 996 }; 997 998 enum bpf_tramp_prog_type { 999 BPF_TRAMP_FENTRY, 1000 BPF_TRAMP_FEXIT, 1001 BPF_TRAMP_MODIFY_RETURN, 1002 BPF_TRAMP_MAX, 1003 BPF_TRAMP_REPLACE, /* more than MAX */ 1004 }; 1005 1006 struct bpf_tramp_image { 1007 void *image; 1008 struct bpf_ksym ksym; 1009 struct percpu_ref pcref; 1010 void *ip_after_call; 1011 void *ip_epilogue; 1012 union { 1013 struct rcu_head rcu; 1014 struct work_struct work; 1015 }; 1016 }; 1017 1018 struct bpf_trampoline { 1019 /* hlist for trampoline_table */ 1020 struct hlist_node hlist; 1021 struct ftrace_ops *fops; 1022 /* serializes access to fields of this trampoline */ 1023 struct mutex mutex; 1024 refcount_t refcnt; 1025 u32 flags; 1026 u64 key; 1027 struct { 1028 struct btf_func_model model; 1029 void *addr; 1030 bool ftrace_managed; 1031 } func; 1032 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1033 * program by replacing one of its functions. func.addr is the address 1034 * of the function it replaced. 1035 */ 1036 struct bpf_prog *extension_prog; 1037 /* list of BPF programs using this trampoline */ 1038 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1039 /* Number of attached programs. A counter per kind. */ 1040 int progs_cnt[BPF_TRAMP_MAX]; 1041 /* Executable image of trampoline */ 1042 struct bpf_tramp_image *cur_image; 1043 u64 selector; 1044 struct module *mod; 1045 }; 1046 1047 struct bpf_attach_target_info { 1048 struct btf_func_model fmodel; 1049 long tgt_addr; 1050 const char *tgt_name; 1051 const struct btf_type *tgt_type; 1052 }; 1053 1054 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1055 1056 struct bpf_dispatcher_prog { 1057 struct bpf_prog *prog; 1058 refcount_t users; 1059 }; 1060 1061 struct bpf_dispatcher { 1062 /* dispatcher mutex */ 1063 struct mutex mutex; 1064 void *func; 1065 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1066 int num_progs; 1067 void *image; 1068 void *rw_image; 1069 u32 image_off; 1070 struct bpf_ksym ksym; 1071 #ifdef CONFIG_HAVE_STATIC_CALL 1072 struct static_call_key *sc_key; 1073 void *sc_tramp; 1074 #endif 1075 }; 1076 1077 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( 1078 const void *ctx, 1079 const struct bpf_insn *insnsi, 1080 bpf_func_t bpf_func) 1081 { 1082 return bpf_func(ctx, insnsi); 1083 } 1084 1085 #ifdef CONFIG_BPF_JIT 1086 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1087 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1088 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1089 struct bpf_attach_target_info *tgt_info); 1090 void bpf_trampoline_put(struct bpf_trampoline *tr); 1091 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1092 1093 /* 1094 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1095 * indirection with a direct call to the bpf program. If the architecture does 1096 * not have STATIC_CALL, avoid a double-indirection. 1097 */ 1098 #ifdef CONFIG_HAVE_STATIC_CALL 1099 1100 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1101 .sc_key = &STATIC_CALL_KEY(_name), \ 1102 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1103 1104 #define __BPF_DISPATCHER_SC(name) \ 1105 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1106 1107 #define __BPF_DISPATCHER_CALL(name) \ 1108 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1109 1110 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1111 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1112 1113 #else 1114 #define __BPF_DISPATCHER_SC_INIT(name) 1115 #define __BPF_DISPATCHER_SC(name) 1116 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1117 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1118 #endif 1119 1120 #define BPF_DISPATCHER_INIT(_name) { \ 1121 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1122 .func = &_name##_func, \ 1123 .progs = {}, \ 1124 .num_progs = 0, \ 1125 .image = NULL, \ 1126 .image_off = 0, \ 1127 .ksym = { \ 1128 .name = #_name, \ 1129 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1130 }, \ 1131 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1132 } 1133 1134 #define DEFINE_BPF_DISPATCHER(name) \ 1135 __BPF_DISPATCHER_SC(name); \ 1136 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ 1137 const void *ctx, \ 1138 const struct bpf_insn *insnsi, \ 1139 bpf_func_t bpf_func) \ 1140 { \ 1141 return __BPF_DISPATCHER_CALL(name); \ 1142 } \ 1143 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1144 struct bpf_dispatcher bpf_dispatcher_##name = \ 1145 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1146 1147 #define DECLARE_BPF_DISPATCHER(name) \ 1148 unsigned int bpf_dispatcher_##name##_func( \ 1149 const void *ctx, \ 1150 const struct bpf_insn *insnsi, \ 1151 bpf_func_t bpf_func); \ 1152 extern struct bpf_dispatcher bpf_dispatcher_##name; 1153 1154 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1155 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1156 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1157 struct bpf_prog *to); 1158 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1159 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); 1160 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1161 void bpf_ksym_add(struct bpf_ksym *ksym); 1162 void bpf_ksym_del(struct bpf_ksym *ksym); 1163 int bpf_jit_charge_modmem(u32 size); 1164 void bpf_jit_uncharge_modmem(u32 size); 1165 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1166 #else 1167 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1168 struct bpf_trampoline *tr) 1169 { 1170 return -ENOTSUPP; 1171 } 1172 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1173 struct bpf_trampoline *tr) 1174 { 1175 return -ENOTSUPP; 1176 } 1177 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1178 struct bpf_attach_target_info *tgt_info) 1179 { 1180 return ERR_PTR(-EOPNOTSUPP); 1181 } 1182 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1183 #define DEFINE_BPF_DISPATCHER(name) 1184 #define DECLARE_BPF_DISPATCHER(name) 1185 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1186 #define BPF_DISPATCHER_PTR(name) NULL 1187 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1188 struct bpf_prog *from, 1189 struct bpf_prog *to) {} 1190 static inline bool is_bpf_image_address(unsigned long address) 1191 { 1192 return false; 1193 } 1194 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1195 { 1196 return false; 1197 } 1198 #endif 1199 1200 struct bpf_func_info_aux { 1201 u16 linkage; 1202 bool unreliable; 1203 }; 1204 1205 enum bpf_jit_poke_reason { 1206 BPF_POKE_REASON_TAIL_CALL, 1207 }; 1208 1209 /* Descriptor of pokes pointing /into/ the JITed image. */ 1210 struct bpf_jit_poke_descriptor { 1211 void *tailcall_target; 1212 void *tailcall_bypass; 1213 void *bypass_addr; 1214 void *aux; 1215 union { 1216 struct { 1217 struct bpf_map *map; 1218 u32 key; 1219 } tail_call; 1220 }; 1221 bool tailcall_target_stable; 1222 u8 adj_off; 1223 u16 reason; 1224 u32 insn_idx; 1225 }; 1226 1227 /* reg_type info for ctx arguments */ 1228 struct bpf_ctx_arg_aux { 1229 u32 offset; 1230 enum bpf_reg_type reg_type; 1231 u32 btf_id; 1232 }; 1233 1234 struct btf_mod_pair { 1235 struct btf *btf; 1236 struct module *module; 1237 }; 1238 1239 struct bpf_kfunc_desc_tab; 1240 1241 struct bpf_prog_aux { 1242 atomic64_t refcnt; 1243 u32 used_map_cnt; 1244 u32 used_btf_cnt; 1245 u32 max_ctx_offset; 1246 u32 max_pkt_offset; 1247 u32 max_tp_access; 1248 u32 stack_depth; 1249 u32 id; 1250 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1251 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1252 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1253 u32 ctx_arg_info_size; 1254 u32 max_rdonly_access; 1255 u32 max_rdwr_access; 1256 struct btf *attach_btf; 1257 const struct bpf_ctx_arg_aux *ctx_arg_info; 1258 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1259 struct bpf_prog *dst_prog; 1260 struct bpf_trampoline *dst_trampoline; 1261 enum bpf_prog_type saved_dst_prog_type; 1262 enum bpf_attach_type saved_dst_attach_type; 1263 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1264 bool dev_bound; /* Program is bound to the netdev. */ 1265 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1266 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1267 bool func_proto_unreliable; 1268 bool sleepable; 1269 bool tail_call_reachable; 1270 bool xdp_has_frags; 1271 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1272 const struct btf_type *attach_func_proto; 1273 /* function name for valid attach_btf_id */ 1274 const char *attach_func_name; 1275 struct bpf_prog **func; 1276 void *jit_data; /* JIT specific data. arch dependent */ 1277 struct bpf_jit_poke_descriptor *poke_tab; 1278 struct bpf_kfunc_desc_tab *kfunc_tab; 1279 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1280 u32 size_poke_tab; 1281 struct bpf_ksym ksym; 1282 const struct bpf_prog_ops *ops; 1283 struct bpf_map **used_maps; 1284 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1285 struct btf_mod_pair *used_btfs; 1286 struct bpf_prog *prog; 1287 struct user_struct *user; 1288 u64 load_time; /* ns since boottime */ 1289 u32 verified_insns; 1290 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1291 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1292 char name[BPF_OBJ_NAME_LEN]; 1293 #ifdef CONFIG_SECURITY 1294 void *security; 1295 #endif 1296 struct bpf_prog_offload *offload; 1297 struct btf *btf; 1298 struct bpf_func_info *func_info; 1299 struct bpf_func_info_aux *func_info_aux; 1300 /* bpf_line_info loaded from userspace. linfo->insn_off 1301 * has the xlated insn offset. 1302 * Both the main and sub prog share the same linfo. 1303 * The subprog can access its first linfo by 1304 * using the linfo_idx. 1305 */ 1306 struct bpf_line_info *linfo; 1307 /* jited_linfo is the jited addr of the linfo. It has a 1308 * one to one mapping to linfo: 1309 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1310 * Both the main and sub prog share the same jited_linfo. 1311 * The subprog can access its first jited_linfo by 1312 * using the linfo_idx. 1313 */ 1314 void **jited_linfo; 1315 u32 func_info_cnt; 1316 u32 nr_linfo; 1317 /* subprog can use linfo_idx to access its first linfo and 1318 * jited_linfo. 1319 * main prog always has linfo_idx == 0 1320 */ 1321 u32 linfo_idx; 1322 u32 num_exentries; 1323 struct exception_table_entry *extable; 1324 union { 1325 struct work_struct work; 1326 struct rcu_head rcu; 1327 }; 1328 }; 1329 1330 struct bpf_prog { 1331 u16 pages; /* Number of allocated pages */ 1332 u16 jited:1, /* Is our filter JIT'ed? */ 1333 jit_requested:1,/* archs need to JIT the prog */ 1334 gpl_compatible:1, /* Is filter GPL compatible? */ 1335 cb_access:1, /* Is control block accessed? */ 1336 dst_needed:1, /* Do we need dst entry? */ 1337 blinding_requested:1, /* needs constant blinding */ 1338 blinded:1, /* Was blinded */ 1339 is_func:1, /* program is a bpf function */ 1340 kprobe_override:1, /* Do we override a kprobe? */ 1341 has_callchain_buf:1, /* callchain buffer allocated? */ 1342 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1343 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1344 call_get_func_ip:1, /* Do we call get_func_ip() */ 1345 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1346 enum bpf_prog_type type; /* Type of BPF program */ 1347 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1348 u32 len; /* Number of filter blocks */ 1349 u32 jited_len; /* Size of jited insns in bytes */ 1350 u8 tag[BPF_TAG_SIZE]; 1351 struct bpf_prog_stats __percpu *stats; 1352 int __percpu *active; 1353 unsigned int (*bpf_func)(const void *ctx, 1354 const struct bpf_insn *insn); 1355 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1356 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1357 /* Instructions for interpreter */ 1358 union { 1359 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1360 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1361 }; 1362 }; 1363 1364 struct bpf_array_aux { 1365 /* Programs with direct jumps into programs part of this array. */ 1366 struct list_head poke_progs; 1367 struct bpf_map *map; 1368 struct mutex poke_mutex; 1369 struct work_struct work; 1370 }; 1371 1372 struct bpf_link { 1373 atomic64_t refcnt; 1374 u32 id; 1375 enum bpf_link_type type; 1376 const struct bpf_link_ops *ops; 1377 struct bpf_prog *prog; 1378 struct work_struct work; 1379 }; 1380 1381 struct bpf_link_ops { 1382 void (*release)(struct bpf_link *link); 1383 void (*dealloc)(struct bpf_link *link); 1384 int (*detach)(struct bpf_link *link); 1385 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1386 struct bpf_prog *old_prog); 1387 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1388 int (*fill_link_info)(const struct bpf_link *link, 1389 struct bpf_link_info *info); 1390 }; 1391 1392 struct bpf_tramp_link { 1393 struct bpf_link link; 1394 struct hlist_node tramp_hlist; 1395 u64 cookie; 1396 }; 1397 1398 struct bpf_shim_tramp_link { 1399 struct bpf_tramp_link link; 1400 struct bpf_trampoline *trampoline; 1401 }; 1402 1403 struct bpf_tracing_link { 1404 struct bpf_tramp_link link; 1405 enum bpf_attach_type attach_type; 1406 struct bpf_trampoline *trampoline; 1407 struct bpf_prog *tgt_prog; 1408 }; 1409 1410 struct bpf_link_primer { 1411 struct bpf_link *link; 1412 struct file *file; 1413 int fd; 1414 u32 id; 1415 }; 1416 1417 struct bpf_struct_ops_value; 1418 struct btf_member; 1419 1420 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1421 struct bpf_struct_ops { 1422 const struct bpf_verifier_ops *verifier_ops; 1423 int (*init)(struct btf *btf); 1424 int (*check_member)(const struct btf_type *t, 1425 const struct btf_member *member, 1426 const struct bpf_prog *prog); 1427 int (*init_member)(const struct btf_type *t, 1428 const struct btf_member *member, 1429 void *kdata, const void *udata); 1430 int (*reg)(void *kdata); 1431 void (*unreg)(void *kdata); 1432 const struct btf_type *type; 1433 const struct btf_type *value_type; 1434 const char *name; 1435 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1436 u32 type_id; 1437 u32 value_id; 1438 }; 1439 1440 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1441 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1442 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); 1443 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); 1444 bool bpf_struct_ops_get(const void *kdata); 1445 void bpf_struct_ops_put(const void *kdata); 1446 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1447 void *value); 1448 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1449 struct bpf_tramp_link *link, 1450 const struct btf_func_model *model, 1451 void *image, void *image_end); 1452 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1453 { 1454 if (owner == BPF_MODULE_OWNER) 1455 return bpf_struct_ops_get(data); 1456 else 1457 return try_module_get(owner); 1458 } 1459 static inline void bpf_module_put(const void *data, struct module *owner) 1460 { 1461 if (owner == BPF_MODULE_OWNER) 1462 bpf_struct_ops_put(data); 1463 else 1464 module_put(owner); 1465 } 1466 1467 #ifdef CONFIG_NET 1468 /* Define it here to avoid the use of forward declaration */ 1469 struct bpf_dummy_ops_state { 1470 int val; 1471 }; 1472 1473 struct bpf_dummy_ops { 1474 int (*test_1)(struct bpf_dummy_ops_state *cb); 1475 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1476 char a3, unsigned long a4); 1477 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1478 }; 1479 1480 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1481 union bpf_attr __user *uattr); 1482 #endif 1483 #else 1484 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) 1485 { 1486 return NULL; 1487 } 1488 static inline void bpf_struct_ops_init(struct btf *btf, 1489 struct bpf_verifier_log *log) 1490 { 1491 } 1492 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1493 { 1494 return try_module_get(owner); 1495 } 1496 static inline void bpf_module_put(const void *data, struct module *owner) 1497 { 1498 module_put(owner); 1499 } 1500 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1501 void *key, 1502 void *value) 1503 { 1504 return -EINVAL; 1505 } 1506 #endif 1507 1508 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1509 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1510 int cgroup_atype); 1511 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1512 #else 1513 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1514 int cgroup_atype) 1515 { 1516 return -EOPNOTSUPP; 1517 } 1518 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1519 { 1520 } 1521 #endif 1522 1523 struct bpf_array { 1524 struct bpf_map map; 1525 u32 elem_size; 1526 u32 index_mask; 1527 struct bpf_array_aux *aux; 1528 union { 1529 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1530 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1531 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1532 }; 1533 }; 1534 1535 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1536 #define MAX_TAIL_CALL_CNT 33 1537 1538 /* Maximum number of loops for bpf_loop */ 1539 #define BPF_MAX_LOOPS BIT(23) 1540 1541 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1542 BPF_F_RDONLY_PROG | \ 1543 BPF_F_WRONLY | \ 1544 BPF_F_WRONLY_PROG) 1545 1546 #define BPF_MAP_CAN_READ BIT(0) 1547 #define BPF_MAP_CAN_WRITE BIT(1) 1548 1549 /* Maximum number of user-producer ring buffer samples that can be drained in 1550 * a call to bpf_user_ringbuf_drain(). 1551 */ 1552 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1553 1554 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1555 { 1556 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1557 1558 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1559 * not possible. 1560 */ 1561 if (access_flags & BPF_F_RDONLY_PROG) 1562 return BPF_MAP_CAN_READ; 1563 else if (access_flags & BPF_F_WRONLY_PROG) 1564 return BPF_MAP_CAN_WRITE; 1565 else 1566 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1567 } 1568 1569 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1570 { 1571 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1572 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1573 } 1574 1575 struct bpf_event_entry { 1576 struct perf_event *event; 1577 struct file *perf_file; 1578 struct file *map_file; 1579 struct rcu_head rcu; 1580 }; 1581 1582 static inline bool map_type_contains_progs(struct bpf_map *map) 1583 { 1584 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1585 map->map_type == BPF_MAP_TYPE_DEVMAP || 1586 map->map_type == BPF_MAP_TYPE_CPUMAP; 1587 } 1588 1589 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1590 int bpf_prog_calc_tag(struct bpf_prog *fp); 1591 1592 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1593 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1594 1595 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1596 unsigned long off, unsigned long len); 1597 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1598 const struct bpf_insn *src, 1599 struct bpf_insn *dst, 1600 struct bpf_prog *prog, 1601 u32 *target_size); 1602 1603 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1604 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1605 1606 /* an array of programs to be executed under rcu_lock. 1607 * 1608 * Typical usage: 1609 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1610 * 1611 * the structure returned by bpf_prog_array_alloc() should be populated 1612 * with program pointers and the last pointer must be NULL. 1613 * The user has to keep refcnt on the program and make sure the program 1614 * is removed from the array before bpf_prog_put(). 1615 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1616 * since other cpus are walking the array of pointers in parallel. 1617 */ 1618 struct bpf_prog_array_item { 1619 struct bpf_prog *prog; 1620 union { 1621 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1622 u64 bpf_cookie; 1623 }; 1624 }; 1625 1626 struct bpf_prog_array { 1627 struct rcu_head rcu; 1628 struct bpf_prog_array_item items[]; 1629 }; 1630 1631 struct bpf_empty_prog_array { 1632 struct bpf_prog_array hdr; 1633 struct bpf_prog *null_prog; 1634 }; 1635 1636 /* to avoid allocating empty bpf_prog_array for cgroups that 1637 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1638 * It will not be modified the caller of bpf_prog_array_alloc() 1639 * (since caller requested prog_cnt == 0) 1640 * that pointer should be 'freed' by bpf_prog_array_free() 1641 */ 1642 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1643 1644 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1645 void bpf_prog_array_free(struct bpf_prog_array *progs); 1646 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1647 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1648 int bpf_prog_array_length(struct bpf_prog_array *progs); 1649 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1650 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1651 __u32 __user *prog_ids, u32 cnt); 1652 1653 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1654 struct bpf_prog *old_prog); 1655 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1656 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1657 struct bpf_prog *prog); 1658 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1659 u32 *prog_ids, u32 request_cnt, 1660 u32 *prog_cnt); 1661 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1662 struct bpf_prog *exclude_prog, 1663 struct bpf_prog *include_prog, 1664 u64 bpf_cookie, 1665 struct bpf_prog_array **new_array); 1666 1667 struct bpf_run_ctx {}; 1668 1669 struct bpf_cg_run_ctx { 1670 struct bpf_run_ctx run_ctx; 1671 const struct bpf_prog_array_item *prog_item; 1672 int retval; 1673 }; 1674 1675 struct bpf_trace_run_ctx { 1676 struct bpf_run_ctx run_ctx; 1677 u64 bpf_cookie; 1678 }; 1679 1680 struct bpf_tramp_run_ctx { 1681 struct bpf_run_ctx run_ctx; 1682 u64 bpf_cookie; 1683 struct bpf_run_ctx *saved_run_ctx; 1684 }; 1685 1686 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 1687 { 1688 struct bpf_run_ctx *old_ctx = NULL; 1689 1690 #ifdef CONFIG_BPF_SYSCALL 1691 old_ctx = current->bpf_ctx; 1692 current->bpf_ctx = new_ctx; 1693 #endif 1694 return old_ctx; 1695 } 1696 1697 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 1698 { 1699 #ifdef CONFIG_BPF_SYSCALL 1700 current->bpf_ctx = old_ctx; 1701 #endif 1702 } 1703 1704 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 1705 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 1706 /* BPF program asks to set CN on the packet. */ 1707 #define BPF_RET_SET_CN (1 << 0) 1708 1709 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 1710 1711 static __always_inline u32 1712 bpf_prog_run_array(const struct bpf_prog_array *array, 1713 const void *ctx, bpf_prog_run_fn run_prog) 1714 { 1715 const struct bpf_prog_array_item *item; 1716 const struct bpf_prog *prog; 1717 struct bpf_run_ctx *old_run_ctx; 1718 struct bpf_trace_run_ctx run_ctx; 1719 u32 ret = 1; 1720 1721 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 1722 1723 if (unlikely(!array)) 1724 return ret; 1725 1726 migrate_disable(); 1727 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1728 item = &array->items[0]; 1729 while ((prog = READ_ONCE(item->prog))) { 1730 run_ctx.bpf_cookie = item->bpf_cookie; 1731 ret &= run_prog(prog, ctx); 1732 item++; 1733 } 1734 bpf_reset_run_ctx(old_run_ctx); 1735 migrate_enable(); 1736 return ret; 1737 } 1738 1739 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 1740 * 1741 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 1742 * overall. As a result, we must use the bpf_prog_array_free_sleepable 1743 * in order to use the tasks_trace rcu grace period. 1744 * 1745 * When a non-sleepable program is inside the array, we take the rcu read 1746 * section and disable preemption for that program alone, so it can access 1747 * rcu-protected dynamically sized maps. 1748 */ 1749 static __always_inline u32 1750 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu, 1751 const void *ctx, bpf_prog_run_fn run_prog) 1752 { 1753 const struct bpf_prog_array_item *item; 1754 const struct bpf_prog *prog; 1755 const struct bpf_prog_array *array; 1756 struct bpf_run_ctx *old_run_ctx; 1757 struct bpf_trace_run_ctx run_ctx; 1758 u32 ret = 1; 1759 1760 might_fault(); 1761 1762 rcu_read_lock_trace(); 1763 migrate_disable(); 1764 1765 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 1766 if (unlikely(!array)) 1767 goto out; 1768 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1769 item = &array->items[0]; 1770 while ((prog = READ_ONCE(item->prog))) { 1771 if (!prog->aux->sleepable) 1772 rcu_read_lock(); 1773 1774 run_ctx.bpf_cookie = item->bpf_cookie; 1775 ret &= run_prog(prog, ctx); 1776 item++; 1777 1778 if (!prog->aux->sleepable) 1779 rcu_read_unlock(); 1780 } 1781 bpf_reset_run_ctx(old_run_ctx); 1782 out: 1783 migrate_enable(); 1784 rcu_read_unlock_trace(); 1785 return ret; 1786 } 1787 1788 #ifdef CONFIG_BPF_SYSCALL 1789 DECLARE_PER_CPU(int, bpf_prog_active); 1790 extern struct mutex bpf_stats_enabled_mutex; 1791 1792 /* 1793 * Block execution of BPF programs attached to instrumentation (perf, 1794 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 1795 * these events can happen inside a region which holds a map bucket lock 1796 * and can deadlock on it. 1797 */ 1798 static inline void bpf_disable_instrumentation(void) 1799 { 1800 migrate_disable(); 1801 this_cpu_inc(bpf_prog_active); 1802 } 1803 1804 static inline void bpf_enable_instrumentation(void) 1805 { 1806 this_cpu_dec(bpf_prog_active); 1807 migrate_enable(); 1808 } 1809 1810 extern const struct file_operations bpf_map_fops; 1811 extern const struct file_operations bpf_prog_fops; 1812 extern const struct file_operations bpf_iter_fops; 1813 1814 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 1815 extern const struct bpf_prog_ops _name ## _prog_ops; \ 1816 extern const struct bpf_verifier_ops _name ## _verifier_ops; 1817 #define BPF_MAP_TYPE(_id, _ops) \ 1818 extern const struct bpf_map_ops _ops; 1819 #define BPF_LINK_TYPE(_id, _name) 1820 #include <linux/bpf_types.h> 1821 #undef BPF_PROG_TYPE 1822 #undef BPF_MAP_TYPE 1823 #undef BPF_LINK_TYPE 1824 1825 extern const struct bpf_prog_ops bpf_offload_prog_ops; 1826 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 1827 extern const struct bpf_verifier_ops xdp_analyzer_ops; 1828 1829 struct bpf_prog *bpf_prog_get(u32 ufd); 1830 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 1831 bool attach_drv); 1832 void bpf_prog_add(struct bpf_prog *prog, int i); 1833 void bpf_prog_sub(struct bpf_prog *prog, int i); 1834 void bpf_prog_inc(struct bpf_prog *prog); 1835 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 1836 void bpf_prog_put(struct bpf_prog *prog); 1837 1838 void bpf_prog_free_id(struct bpf_prog *prog); 1839 void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock); 1840 1841 struct btf_field *btf_record_find(const struct btf_record *rec, 1842 u32 offset, enum btf_field_type type); 1843 void btf_record_free(struct btf_record *rec); 1844 void bpf_map_free_record(struct bpf_map *map); 1845 struct btf_record *btf_record_dup(const struct btf_record *rec); 1846 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 1847 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 1848 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 1849 1850 struct bpf_map *bpf_map_get(u32 ufd); 1851 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 1852 struct bpf_map *__bpf_map_get(struct fd f); 1853 void bpf_map_inc(struct bpf_map *map); 1854 void bpf_map_inc_with_uref(struct bpf_map *map); 1855 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 1856 void bpf_map_put_with_uref(struct bpf_map *map); 1857 void bpf_map_put(struct bpf_map *map); 1858 void *bpf_map_area_alloc(u64 size, int numa_node); 1859 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 1860 void bpf_map_area_free(void *base); 1861 bool bpf_map_write_active(const struct bpf_map *map); 1862 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 1863 int generic_map_lookup_batch(struct bpf_map *map, 1864 const union bpf_attr *attr, 1865 union bpf_attr __user *uattr); 1866 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 1867 const union bpf_attr *attr, 1868 union bpf_attr __user *uattr); 1869 int generic_map_delete_batch(struct bpf_map *map, 1870 const union bpf_attr *attr, 1871 union bpf_attr __user *uattr); 1872 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 1873 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 1874 1875 #ifdef CONFIG_MEMCG_KMEM 1876 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1877 int node); 1878 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 1879 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 1880 size_t align, gfp_t flags); 1881 #else 1882 static inline void * 1883 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1884 int node) 1885 { 1886 return kmalloc_node(size, flags, node); 1887 } 1888 1889 static inline void * 1890 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 1891 { 1892 return kzalloc(size, flags); 1893 } 1894 1895 static inline void __percpu * 1896 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 1897 gfp_t flags) 1898 { 1899 return __alloc_percpu_gfp(size, align, flags); 1900 } 1901 #endif 1902 1903 extern int sysctl_unprivileged_bpf_disabled; 1904 1905 static inline bool bpf_allow_ptr_leaks(void) 1906 { 1907 return perfmon_capable(); 1908 } 1909 1910 static inline bool bpf_allow_uninit_stack(void) 1911 { 1912 return perfmon_capable(); 1913 } 1914 1915 static inline bool bpf_bypass_spec_v1(void) 1916 { 1917 return perfmon_capable(); 1918 } 1919 1920 static inline bool bpf_bypass_spec_v4(void) 1921 { 1922 return perfmon_capable(); 1923 } 1924 1925 int bpf_map_new_fd(struct bpf_map *map, int flags); 1926 int bpf_prog_new_fd(struct bpf_prog *prog); 1927 1928 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 1929 const struct bpf_link_ops *ops, struct bpf_prog *prog); 1930 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 1931 int bpf_link_settle(struct bpf_link_primer *primer); 1932 void bpf_link_cleanup(struct bpf_link_primer *primer); 1933 void bpf_link_inc(struct bpf_link *link); 1934 void bpf_link_put(struct bpf_link *link); 1935 int bpf_link_new_fd(struct bpf_link *link); 1936 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); 1937 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 1938 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 1939 1940 int bpf_obj_pin_user(u32 ufd, const char __user *pathname); 1941 int bpf_obj_get_user(const char __user *pathname, int flags); 1942 1943 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 1944 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 1945 extern int bpf_iter_ ## target(args); \ 1946 int __init bpf_iter_ ## target(args) { return 0; } 1947 1948 /* 1949 * The task type of iterators. 1950 * 1951 * For BPF task iterators, they can be parameterized with various 1952 * parameters to visit only some of tasks. 1953 * 1954 * BPF_TASK_ITER_ALL (default) 1955 * Iterate over resources of every task. 1956 * 1957 * BPF_TASK_ITER_TID 1958 * Iterate over resources of a task/tid. 1959 * 1960 * BPF_TASK_ITER_TGID 1961 * Iterate over resources of every task of a process / task group. 1962 */ 1963 enum bpf_iter_task_type { 1964 BPF_TASK_ITER_ALL = 0, 1965 BPF_TASK_ITER_TID, 1966 BPF_TASK_ITER_TGID, 1967 }; 1968 1969 struct bpf_iter_aux_info { 1970 /* for map_elem iter */ 1971 struct bpf_map *map; 1972 1973 /* for cgroup iter */ 1974 struct { 1975 struct cgroup *start; /* starting cgroup */ 1976 enum bpf_cgroup_iter_order order; 1977 } cgroup; 1978 struct { 1979 enum bpf_iter_task_type type; 1980 u32 pid; 1981 } task; 1982 }; 1983 1984 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 1985 union bpf_iter_link_info *linfo, 1986 struct bpf_iter_aux_info *aux); 1987 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 1988 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 1989 struct seq_file *seq); 1990 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 1991 struct bpf_link_info *info); 1992 typedef const struct bpf_func_proto * 1993 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 1994 const struct bpf_prog *prog); 1995 1996 enum bpf_iter_feature { 1997 BPF_ITER_RESCHED = BIT(0), 1998 }; 1999 2000 #define BPF_ITER_CTX_ARG_MAX 2 2001 struct bpf_iter_reg { 2002 const char *target; 2003 bpf_iter_attach_target_t attach_target; 2004 bpf_iter_detach_target_t detach_target; 2005 bpf_iter_show_fdinfo_t show_fdinfo; 2006 bpf_iter_fill_link_info_t fill_link_info; 2007 bpf_iter_get_func_proto_t get_func_proto; 2008 u32 ctx_arg_info_size; 2009 u32 feature; 2010 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2011 const struct bpf_iter_seq_info *seq_info; 2012 }; 2013 2014 struct bpf_iter_meta { 2015 __bpf_md_ptr(struct seq_file *, seq); 2016 u64 session_id; 2017 u64 seq_num; 2018 }; 2019 2020 struct bpf_iter__bpf_map_elem { 2021 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2022 __bpf_md_ptr(struct bpf_map *, map); 2023 __bpf_md_ptr(void *, key); 2024 __bpf_md_ptr(void *, value); 2025 }; 2026 2027 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2028 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2029 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2030 const struct bpf_func_proto * 2031 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2032 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2033 int bpf_iter_new_fd(struct bpf_link *link); 2034 bool bpf_link_is_iter(struct bpf_link *link); 2035 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2036 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2037 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2038 struct seq_file *seq); 2039 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2040 struct bpf_link_info *info); 2041 2042 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2043 struct bpf_func_state *caller, 2044 struct bpf_func_state *callee); 2045 2046 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2047 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2048 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2049 u64 flags); 2050 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2051 u64 flags); 2052 2053 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2054 2055 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2056 void *key, void *value, u64 map_flags); 2057 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2058 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2059 void *key, void *value, u64 map_flags); 2060 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2061 2062 int bpf_get_file_flag(int flags); 2063 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2064 size_t actual_size); 2065 2066 /* verify correctness of eBPF program */ 2067 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr); 2068 2069 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2070 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2071 #endif 2072 2073 struct btf *bpf_get_btf_vmlinux(void); 2074 2075 /* Map specifics */ 2076 struct xdp_frame; 2077 struct sk_buff; 2078 struct bpf_dtab_netdev; 2079 struct bpf_cpu_map_entry; 2080 2081 void __dev_flush(void); 2082 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2083 struct net_device *dev_rx); 2084 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2085 struct net_device *dev_rx); 2086 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2087 struct bpf_map *map, bool exclude_ingress); 2088 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2089 struct bpf_prog *xdp_prog); 2090 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2091 struct bpf_prog *xdp_prog, struct bpf_map *map, 2092 bool exclude_ingress); 2093 2094 void __cpu_map_flush(void); 2095 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2096 struct net_device *dev_rx); 2097 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2098 struct sk_buff *skb); 2099 2100 /* Return map's numa specified by userspace */ 2101 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2102 { 2103 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2104 attr->numa_node : NUMA_NO_NODE; 2105 } 2106 2107 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2108 int array_map_alloc_check(union bpf_attr *attr); 2109 2110 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2111 union bpf_attr __user *uattr); 2112 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2113 union bpf_attr __user *uattr); 2114 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2115 const union bpf_attr *kattr, 2116 union bpf_attr __user *uattr); 2117 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2118 const union bpf_attr *kattr, 2119 union bpf_attr __user *uattr); 2120 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2121 const union bpf_attr *kattr, 2122 union bpf_attr __user *uattr); 2123 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2124 const union bpf_attr *kattr, 2125 union bpf_attr __user *uattr); 2126 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2127 const struct bpf_prog *prog, 2128 struct bpf_insn_access_aux *info); 2129 2130 static inline bool bpf_tracing_ctx_access(int off, int size, 2131 enum bpf_access_type type) 2132 { 2133 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2134 return false; 2135 if (type != BPF_READ) 2136 return false; 2137 if (off % size != 0) 2138 return false; 2139 return true; 2140 } 2141 2142 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2143 enum bpf_access_type type, 2144 const struct bpf_prog *prog, 2145 struct bpf_insn_access_aux *info) 2146 { 2147 if (!bpf_tracing_ctx_access(off, size, type)) 2148 return false; 2149 return btf_ctx_access(off, size, type, prog, info); 2150 } 2151 2152 int btf_struct_access(struct bpf_verifier_log *log, 2153 const struct bpf_reg_state *reg, 2154 int off, int size, enum bpf_access_type atype, 2155 u32 *next_btf_id, enum bpf_type_flag *flag); 2156 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2157 const struct btf *btf, u32 id, int off, 2158 const struct btf *need_btf, u32 need_type_id, 2159 bool strict); 2160 2161 int btf_distill_func_proto(struct bpf_verifier_log *log, 2162 struct btf *btf, 2163 const struct btf_type *func_proto, 2164 const char *func_name, 2165 struct btf_func_model *m); 2166 2167 struct bpf_reg_state; 2168 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 2169 struct bpf_reg_state *regs); 2170 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 2171 struct bpf_reg_state *regs); 2172 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 2173 struct bpf_reg_state *reg); 2174 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2175 struct btf *btf, const struct btf_type *t); 2176 2177 struct bpf_prog *bpf_prog_by_id(u32 id); 2178 struct bpf_link *bpf_link_by_id(u32 id); 2179 2180 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); 2181 void bpf_task_storage_free(struct task_struct *task); 2182 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2183 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2184 const struct btf_func_model * 2185 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2186 const struct bpf_insn *insn); 2187 struct bpf_core_ctx { 2188 struct bpf_verifier_log *log; 2189 const struct btf *btf; 2190 }; 2191 2192 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2193 const struct bpf_reg_state *reg, 2194 int off); 2195 2196 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2197 const struct btf *reg_btf, u32 reg_id, 2198 const struct btf *arg_btf, u32 arg_id); 2199 2200 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2201 int relo_idx, void *insn); 2202 2203 static inline bool unprivileged_ebpf_enabled(void) 2204 { 2205 return !sysctl_unprivileged_bpf_disabled; 2206 } 2207 2208 /* Not all bpf prog type has the bpf_ctx. 2209 * For the bpf prog type that has initialized the bpf_ctx, 2210 * this function can be used to decide if a kernel function 2211 * is called by a bpf program. 2212 */ 2213 static inline bool has_current_bpf_ctx(void) 2214 { 2215 return !!current->bpf_ctx; 2216 } 2217 2218 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2219 #else /* !CONFIG_BPF_SYSCALL */ 2220 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2221 { 2222 return ERR_PTR(-EOPNOTSUPP); 2223 } 2224 2225 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2226 enum bpf_prog_type type, 2227 bool attach_drv) 2228 { 2229 return ERR_PTR(-EOPNOTSUPP); 2230 } 2231 2232 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2233 { 2234 } 2235 2236 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2237 { 2238 } 2239 2240 static inline void bpf_prog_put(struct bpf_prog *prog) 2241 { 2242 } 2243 2244 static inline void bpf_prog_inc(struct bpf_prog *prog) 2245 { 2246 } 2247 2248 static inline struct bpf_prog *__must_check 2249 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2250 { 2251 return ERR_PTR(-EOPNOTSUPP); 2252 } 2253 2254 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2255 const struct bpf_link_ops *ops, 2256 struct bpf_prog *prog) 2257 { 2258 } 2259 2260 static inline int bpf_link_prime(struct bpf_link *link, 2261 struct bpf_link_primer *primer) 2262 { 2263 return -EOPNOTSUPP; 2264 } 2265 2266 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2267 { 2268 return -EOPNOTSUPP; 2269 } 2270 2271 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2272 { 2273 } 2274 2275 static inline void bpf_link_inc(struct bpf_link *link) 2276 { 2277 } 2278 2279 static inline void bpf_link_put(struct bpf_link *link) 2280 { 2281 } 2282 2283 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2284 { 2285 return -EOPNOTSUPP; 2286 } 2287 2288 static inline void __dev_flush(void) 2289 { 2290 } 2291 2292 struct xdp_frame; 2293 struct bpf_dtab_netdev; 2294 struct bpf_cpu_map_entry; 2295 2296 static inline 2297 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2298 struct net_device *dev_rx) 2299 { 2300 return 0; 2301 } 2302 2303 static inline 2304 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2305 struct net_device *dev_rx) 2306 { 2307 return 0; 2308 } 2309 2310 static inline 2311 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2312 struct bpf_map *map, bool exclude_ingress) 2313 { 2314 return 0; 2315 } 2316 2317 struct sk_buff; 2318 2319 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2320 struct sk_buff *skb, 2321 struct bpf_prog *xdp_prog) 2322 { 2323 return 0; 2324 } 2325 2326 static inline 2327 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2328 struct bpf_prog *xdp_prog, struct bpf_map *map, 2329 bool exclude_ingress) 2330 { 2331 return 0; 2332 } 2333 2334 static inline void __cpu_map_flush(void) 2335 { 2336 } 2337 2338 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2339 struct xdp_frame *xdpf, 2340 struct net_device *dev_rx) 2341 { 2342 return 0; 2343 } 2344 2345 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2346 struct sk_buff *skb) 2347 { 2348 return -EOPNOTSUPP; 2349 } 2350 2351 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2352 enum bpf_prog_type type) 2353 { 2354 return ERR_PTR(-EOPNOTSUPP); 2355 } 2356 2357 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2358 const union bpf_attr *kattr, 2359 union bpf_attr __user *uattr) 2360 { 2361 return -ENOTSUPP; 2362 } 2363 2364 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2365 const union bpf_attr *kattr, 2366 union bpf_attr __user *uattr) 2367 { 2368 return -ENOTSUPP; 2369 } 2370 2371 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2372 const union bpf_attr *kattr, 2373 union bpf_attr __user *uattr) 2374 { 2375 return -ENOTSUPP; 2376 } 2377 2378 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2379 const union bpf_attr *kattr, 2380 union bpf_attr __user *uattr) 2381 { 2382 return -ENOTSUPP; 2383 } 2384 2385 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2386 const union bpf_attr *kattr, 2387 union bpf_attr __user *uattr) 2388 { 2389 return -ENOTSUPP; 2390 } 2391 2392 static inline void bpf_map_put(struct bpf_map *map) 2393 { 2394 } 2395 2396 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2397 { 2398 return ERR_PTR(-ENOTSUPP); 2399 } 2400 2401 static inline int btf_struct_access(struct bpf_verifier_log *log, 2402 const struct bpf_reg_state *reg, 2403 int off, int size, enum bpf_access_type atype, 2404 u32 *next_btf_id, enum bpf_type_flag *flag) 2405 { 2406 return -EACCES; 2407 } 2408 2409 static inline const struct bpf_func_proto * 2410 bpf_base_func_proto(enum bpf_func_id func_id) 2411 { 2412 return NULL; 2413 } 2414 2415 static inline void bpf_task_storage_free(struct task_struct *task) 2416 { 2417 } 2418 2419 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2420 { 2421 return false; 2422 } 2423 2424 static inline const struct btf_func_model * 2425 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2426 const struct bpf_insn *insn) 2427 { 2428 return NULL; 2429 } 2430 2431 static inline bool unprivileged_ebpf_enabled(void) 2432 { 2433 return false; 2434 } 2435 2436 static inline bool has_current_bpf_ctx(void) 2437 { 2438 return false; 2439 } 2440 2441 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2442 { 2443 } 2444 2445 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2446 { 2447 } 2448 #endif /* CONFIG_BPF_SYSCALL */ 2449 2450 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2451 struct btf_mod_pair *used_btfs, u32 len); 2452 2453 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2454 enum bpf_prog_type type) 2455 { 2456 return bpf_prog_get_type_dev(ufd, type, false); 2457 } 2458 2459 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2460 struct bpf_map **used_maps, u32 len); 2461 2462 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2463 2464 int bpf_prog_offload_compile(struct bpf_prog *prog); 2465 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2466 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2467 struct bpf_prog *prog); 2468 2469 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2470 2471 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2472 int bpf_map_offload_update_elem(struct bpf_map *map, 2473 void *key, void *value, u64 flags); 2474 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2475 int bpf_map_offload_get_next_key(struct bpf_map *map, 2476 void *key, void *next_key); 2477 2478 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2479 2480 struct bpf_offload_dev * 2481 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2482 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2483 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2484 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2485 struct net_device *netdev); 2486 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2487 struct net_device *netdev); 2488 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2489 2490 void unpriv_ebpf_notify(int new_state); 2491 2492 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2493 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2494 struct bpf_prog_aux *prog_aux); 2495 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2496 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2497 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2498 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2499 2500 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2501 { 2502 return aux->dev_bound; 2503 } 2504 2505 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2506 { 2507 return aux->offload_requested; 2508 } 2509 2510 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2511 2512 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2513 { 2514 return unlikely(map->ops == &bpf_map_offload_ops); 2515 } 2516 2517 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2518 void bpf_map_offload_map_free(struct bpf_map *map); 2519 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2520 const union bpf_attr *kattr, 2521 union bpf_attr __user *uattr); 2522 2523 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2524 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2525 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2526 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2527 union bpf_attr __user *uattr); 2528 2529 void sock_map_unhash(struct sock *sk); 2530 void sock_map_destroy(struct sock *sk); 2531 void sock_map_close(struct sock *sk, long timeout); 2532 #else 2533 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2534 struct bpf_prog_aux *prog_aux) 2535 { 2536 return -EOPNOTSUPP; 2537 } 2538 2539 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 2540 u32 func_id) 2541 { 2542 return NULL; 2543 } 2544 2545 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 2546 union bpf_attr *attr) 2547 { 2548 return -EOPNOTSUPP; 2549 } 2550 2551 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 2552 struct bpf_prog *old_prog) 2553 { 2554 return -EOPNOTSUPP; 2555 } 2556 2557 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 2558 { 2559 } 2560 2561 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2562 { 2563 return false; 2564 } 2565 2566 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 2567 { 2568 return false; 2569 } 2570 2571 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 2572 { 2573 return false; 2574 } 2575 2576 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2577 { 2578 return false; 2579 } 2580 2581 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 2582 { 2583 return ERR_PTR(-EOPNOTSUPP); 2584 } 2585 2586 static inline void bpf_map_offload_map_free(struct bpf_map *map) 2587 { 2588 } 2589 2590 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2591 const union bpf_attr *kattr, 2592 union bpf_attr __user *uattr) 2593 { 2594 return -ENOTSUPP; 2595 } 2596 2597 #ifdef CONFIG_BPF_SYSCALL 2598 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 2599 struct bpf_prog *prog) 2600 { 2601 return -EINVAL; 2602 } 2603 2604 static inline int sock_map_prog_detach(const union bpf_attr *attr, 2605 enum bpf_prog_type ptype) 2606 { 2607 return -EOPNOTSUPP; 2608 } 2609 2610 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 2611 u64 flags) 2612 { 2613 return -EOPNOTSUPP; 2614 } 2615 2616 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 2617 union bpf_attr __user *uattr) 2618 { 2619 return -EINVAL; 2620 } 2621 #endif /* CONFIG_BPF_SYSCALL */ 2622 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 2623 2624 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 2625 void bpf_sk_reuseport_detach(struct sock *sk); 2626 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 2627 void *value); 2628 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 2629 void *value, u64 map_flags); 2630 #else 2631 static inline void bpf_sk_reuseport_detach(struct sock *sk) 2632 { 2633 } 2634 2635 #ifdef CONFIG_BPF_SYSCALL 2636 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 2637 void *key, void *value) 2638 { 2639 return -EOPNOTSUPP; 2640 } 2641 2642 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 2643 void *key, void *value, 2644 u64 map_flags) 2645 { 2646 return -EOPNOTSUPP; 2647 } 2648 #endif /* CONFIG_BPF_SYSCALL */ 2649 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 2650 2651 /* verifier prototypes for helper functions called from eBPF programs */ 2652 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 2653 extern const struct bpf_func_proto bpf_map_update_elem_proto; 2654 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 2655 extern const struct bpf_func_proto bpf_map_push_elem_proto; 2656 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 2657 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 2658 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 2659 2660 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 2661 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 2662 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 2663 extern const struct bpf_func_proto bpf_tail_call_proto; 2664 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 2665 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 2666 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 2667 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 2668 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 2669 extern const struct bpf_func_proto bpf_get_current_comm_proto; 2670 extern const struct bpf_func_proto bpf_get_stackid_proto; 2671 extern const struct bpf_func_proto bpf_get_stack_proto; 2672 extern const struct bpf_func_proto bpf_get_task_stack_proto; 2673 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 2674 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 2675 extern const struct bpf_func_proto bpf_sock_map_update_proto; 2676 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 2677 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 2678 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 2679 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 2680 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 2681 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 2682 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 2683 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 2684 extern const struct bpf_func_proto bpf_spin_lock_proto; 2685 extern const struct bpf_func_proto bpf_spin_unlock_proto; 2686 extern const struct bpf_func_proto bpf_get_local_storage_proto; 2687 extern const struct bpf_func_proto bpf_strtol_proto; 2688 extern const struct bpf_func_proto bpf_strtoul_proto; 2689 extern const struct bpf_func_proto bpf_tcp_sock_proto; 2690 extern const struct bpf_func_proto bpf_jiffies64_proto; 2691 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 2692 extern const struct bpf_func_proto bpf_event_output_data_proto; 2693 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 2694 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 2695 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 2696 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 2697 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 2698 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 2699 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 2700 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 2701 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 2702 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 2703 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 2704 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 2705 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 2706 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 2707 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 2708 extern const struct bpf_func_proto bpf_copy_from_user_proto; 2709 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 2710 extern const struct bpf_func_proto bpf_snprintf_proto; 2711 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 2712 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 2713 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 2714 extern const struct bpf_func_proto bpf_sock_from_file_proto; 2715 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 2716 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 2717 extern const struct bpf_func_proto bpf_task_storage_get_proto; 2718 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 2719 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 2720 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 2721 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 2722 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 2723 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 2724 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 2725 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 2726 extern const struct bpf_func_proto bpf_find_vma_proto; 2727 extern const struct bpf_func_proto bpf_loop_proto; 2728 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 2729 extern const struct bpf_func_proto bpf_set_retval_proto; 2730 extern const struct bpf_func_proto bpf_get_retval_proto; 2731 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 2732 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 2733 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 2734 2735 const struct bpf_func_proto *tracing_prog_func_proto( 2736 enum bpf_func_id func_id, const struct bpf_prog *prog); 2737 2738 /* Shared helpers among cBPF and eBPF. */ 2739 void bpf_user_rnd_init_once(void); 2740 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2741 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2742 2743 #if defined(CONFIG_NET) 2744 bool bpf_sock_common_is_valid_access(int off, int size, 2745 enum bpf_access_type type, 2746 struct bpf_insn_access_aux *info); 2747 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2748 struct bpf_insn_access_aux *info); 2749 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2750 const struct bpf_insn *si, 2751 struct bpf_insn *insn_buf, 2752 struct bpf_prog *prog, 2753 u32 *target_size); 2754 #else 2755 static inline bool bpf_sock_common_is_valid_access(int off, int size, 2756 enum bpf_access_type type, 2757 struct bpf_insn_access_aux *info) 2758 { 2759 return false; 2760 } 2761 static inline bool bpf_sock_is_valid_access(int off, int size, 2762 enum bpf_access_type type, 2763 struct bpf_insn_access_aux *info) 2764 { 2765 return false; 2766 } 2767 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2768 const struct bpf_insn *si, 2769 struct bpf_insn *insn_buf, 2770 struct bpf_prog *prog, 2771 u32 *target_size) 2772 { 2773 return 0; 2774 } 2775 #endif 2776 2777 #ifdef CONFIG_INET 2778 struct sk_reuseport_kern { 2779 struct sk_buff *skb; 2780 struct sock *sk; 2781 struct sock *selected_sk; 2782 struct sock *migrating_sk; 2783 void *data_end; 2784 u32 hash; 2785 u32 reuseport_id; 2786 bool bind_inany; 2787 }; 2788 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2789 struct bpf_insn_access_aux *info); 2790 2791 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2792 const struct bpf_insn *si, 2793 struct bpf_insn *insn_buf, 2794 struct bpf_prog *prog, 2795 u32 *target_size); 2796 2797 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2798 struct bpf_insn_access_aux *info); 2799 2800 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2801 const struct bpf_insn *si, 2802 struct bpf_insn *insn_buf, 2803 struct bpf_prog *prog, 2804 u32 *target_size); 2805 #else 2806 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 2807 enum bpf_access_type type, 2808 struct bpf_insn_access_aux *info) 2809 { 2810 return false; 2811 } 2812 2813 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2814 const struct bpf_insn *si, 2815 struct bpf_insn *insn_buf, 2816 struct bpf_prog *prog, 2817 u32 *target_size) 2818 { 2819 return 0; 2820 } 2821 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 2822 enum bpf_access_type type, 2823 struct bpf_insn_access_aux *info) 2824 { 2825 return false; 2826 } 2827 2828 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2829 const struct bpf_insn *si, 2830 struct bpf_insn *insn_buf, 2831 struct bpf_prog *prog, 2832 u32 *target_size) 2833 { 2834 return 0; 2835 } 2836 #endif /* CONFIG_INET */ 2837 2838 enum bpf_text_poke_type { 2839 BPF_MOD_CALL, 2840 BPF_MOD_JUMP, 2841 }; 2842 2843 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2844 void *addr1, void *addr2); 2845 2846 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 2847 int bpf_arch_text_invalidate(void *dst, size_t len); 2848 2849 struct btf_id_set; 2850 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 2851 2852 #define MAX_BPRINTF_VARARGS 12 2853 #define MAX_BPRINTF_BUF 1024 2854 2855 struct bpf_bprintf_data { 2856 u32 *bin_args; 2857 char *buf; 2858 bool get_bin_args; 2859 bool get_buf; 2860 }; 2861 2862 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 2863 u32 num_args, struct bpf_bprintf_data *data); 2864 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 2865 2866 /* the implementation of the opaque uapi struct bpf_dynptr */ 2867 struct bpf_dynptr_kern { 2868 void *data; 2869 /* Size represents the number of usable bytes of dynptr data. 2870 * If for example the offset is at 4 for a local dynptr whose data is 2871 * of type u64, the number of usable bytes is 4. 2872 * 2873 * The upper 8 bits are reserved. It is as follows: 2874 * Bits 0 - 23 = size 2875 * Bits 24 - 30 = dynptr type 2876 * Bit 31 = whether dynptr is read-only 2877 */ 2878 u32 size; 2879 u32 offset; 2880 } __aligned(8); 2881 2882 enum bpf_dynptr_type { 2883 BPF_DYNPTR_TYPE_INVALID, 2884 /* Points to memory that is local to the bpf program */ 2885 BPF_DYNPTR_TYPE_LOCAL, 2886 /* Underlying data is a kernel-produced ringbuf record */ 2887 BPF_DYNPTR_TYPE_RINGBUF, 2888 }; 2889 2890 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2891 enum bpf_dynptr_type type, u32 offset, u32 size); 2892 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2893 int bpf_dynptr_check_size(u32 size); 2894 u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr); 2895 2896 #ifdef CONFIG_BPF_LSM 2897 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 2898 void bpf_cgroup_atype_put(int cgroup_atype); 2899 #else 2900 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 2901 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 2902 #endif /* CONFIG_BPF_LSM */ 2903 2904 struct key; 2905 2906 #ifdef CONFIG_KEYS 2907 struct bpf_key { 2908 struct key *key; 2909 bool has_ref; 2910 }; 2911 #endif /* CONFIG_KEYS */ 2912 2913 static inline bool type_is_alloc(u32 type) 2914 { 2915 return type & MEM_ALLOC; 2916 } 2917 2918 #endif /* _LINUX_BPF_H */ 2919