xref: /linux-6.15/include/linux/bpf.h (revision 515ee52b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54 
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma;
59 extern bool bpf_global_ma_set;
60 
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 					struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 				   const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 	const struct seq_operations *seq_ops;
69 	bpf_iter_init_seq_priv_t init_seq_private;
70 	bpf_iter_fini_seq_priv_t fini_seq_private;
71 	u32 seq_priv_size;
72 };
73 
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 	/* funcs callable from userspace (via syscall) */
77 	int (*map_alloc_check)(union bpf_attr *attr);
78 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 	void (*map_release)(struct bpf_map *map, struct file *map_file);
80 	void (*map_free)(struct bpf_map *map);
81 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 	void (*map_release_uref)(struct bpf_map *map);
83 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 				union bpf_attr __user *uattr);
86 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 					  void *value, u64 flags);
88 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 					   const union bpf_attr *attr,
90 					   union bpf_attr __user *uattr);
91 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 				const union bpf_attr *attr,
93 				union bpf_attr __user *uattr);
94 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 				union bpf_attr __user *uattr);
96 
97 	/* funcs callable from userspace and from eBPF programs */
98 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 	long (*map_delete_elem)(struct bpf_map *map, void *key);
101 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 	long (*map_pop_elem)(struct bpf_map *map, void *value);
103 	long (*map_peek_elem)(struct bpf_map *map, void *value);
104 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105 
106 	/* funcs called by prog_array and perf_event_array map */
107 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 				int fd);
109 	void (*map_fd_put_ptr)(void *ptr);
110 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 				  struct seq_file *m);
114 	int (*map_check_btf)(const struct bpf_map *map,
115 			     const struct btf *btf,
116 			     const struct btf_type *key_type,
117 			     const struct btf_type *value_type);
118 
119 	/* Prog poke tracking helpers. */
120 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 			     struct bpf_prog *new);
124 
125 	/* Direct value access helpers. */
126 	int (*map_direct_value_addr)(const struct bpf_map *map,
127 				     u64 *imm, u32 off);
128 	int (*map_direct_value_meta)(const struct bpf_map *map,
129 				     u64 imm, u32 *off);
130 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 			     struct poll_table_struct *pts);
133 
134 	/* Functions called by bpf_local_storage maps */
135 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 					void *owner, u32 size);
137 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 					   void *owner, u32 size);
139 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140 
141 	/* Misc helpers.*/
142 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143 
144 	/* map_meta_equal must be implemented for maps that can be
145 	 * used as an inner map.  It is a runtime check to ensure
146 	 * an inner map can be inserted to an outer map.
147 	 *
148 	 * Some properties of the inner map has been used during the
149 	 * verification time.  When inserting an inner map at the runtime,
150 	 * map_meta_equal has to ensure the inserting map has the same
151 	 * properties that the verifier has used earlier.
152 	 */
153 	bool (*map_meta_equal)(const struct bpf_map *meta0,
154 			       const struct bpf_map *meta1);
155 
156 
157 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 					      struct bpf_func_state *caller,
159 					      struct bpf_func_state *callee);
160 	long (*map_for_each_callback)(struct bpf_map *map,
161 				     bpf_callback_t callback_fn,
162 				     void *callback_ctx, u64 flags);
163 
164 	u64 (*map_mem_usage)(const struct bpf_map *map);
165 
166 	/* BTF id of struct allocated by map_alloc */
167 	int *map_btf_id;
168 
169 	/* bpf_iter info used to open a seq_file */
170 	const struct bpf_iter_seq_info *iter_seq_info;
171 };
172 
173 enum {
174 	/* Support at most 10 fields in a BTF type */
175 	BTF_FIELDS_MAX	   = 10,
176 };
177 
178 enum btf_field_type {
179 	BPF_SPIN_LOCK  = (1 << 0),
180 	BPF_TIMER      = (1 << 1),
181 	BPF_KPTR_UNREF = (1 << 2),
182 	BPF_KPTR_REF   = (1 << 3),
183 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF,
184 	BPF_LIST_HEAD  = (1 << 4),
185 	BPF_LIST_NODE  = (1 << 5),
186 	BPF_RB_ROOT    = (1 << 6),
187 	BPF_RB_NODE    = (1 << 7),
188 	BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
189 				 BPF_RB_NODE | BPF_RB_ROOT,
190 	BPF_REFCOUNT   = (1 << 8),
191 };
192 
193 typedef void (*btf_dtor_kfunc_t)(void *);
194 
195 struct btf_field_kptr {
196 	struct btf *btf;
197 	struct module *module;
198 	/* dtor used if btf_is_kernel(btf), otherwise the type is
199 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
200 	 */
201 	btf_dtor_kfunc_t dtor;
202 	u32 btf_id;
203 };
204 
205 struct btf_field_graph_root {
206 	struct btf *btf;
207 	u32 value_btf_id;
208 	u32 node_offset;
209 	struct btf_record *value_rec;
210 };
211 
212 struct btf_field {
213 	u32 offset;
214 	u32 size;
215 	enum btf_field_type type;
216 	union {
217 		struct btf_field_kptr kptr;
218 		struct btf_field_graph_root graph_root;
219 	};
220 };
221 
222 struct btf_record {
223 	u32 cnt;
224 	u32 field_mask;
225 	int spin_lock_off;
226 	int timer_off;
227 	int refcount_off;
228 	struct btf_field fields[];
229 };
230 
231 struct bpf_map {
232 	/* The first two cachelines with read-mostly members of which some
233 	 * are also accessed in fast-path (e.g. ops, max_entries).
234 	 */
235 	const struct bpf_map_ops *ops ____cacheline_aligned;
236 	struct bpf_map *inner_map_meta;
237 #ifdef CONFIG_SECURITY
238 	void *security;
239 #endif
240 	enum bpf_map_type map_type;
241 	u32 key_size;
242 	u32 value_size;
243 	u32 max_entries;
244 	u64 map_extra; /* any per-map-type extra fields */
245 	u32 map_flags;
246 	u32 id;
247 	struct btf_record *record;
248 	int numa_node;
249 	u32 btf_key_type_id;
250 	u32 btf_value_type_id;
251 	u32 btf_vmlinux_value_type_id;
252 	struct btf *btf;
253 #ifdef CONFIG_MEMCG_KMEM
254 	struct obj_cgroup *objcg;
255 #endif
256 	char name[BPF_OBJ_NAME_LEN];
257 	/* The 3rd and 4th cacheline with misc members to avoid false sharing
258 	 * particularly with refcounting.
259 	 */
260 	atomic64_t refcnt ____cacheline_aligned;
261 	atomic64_t usercnt;
262 	struct work_struct work;
263 	struct mutex freeze_mutex;
264 	atomic64_t writecnt;
265 	/* 'Ownership' of program-containing map is claimed by the first program
266 	 * that is going to use this map or by the first program which FD is
267 	 * stored in the map to make sure that all callers and callees have the
268 	 * same prog type, JITed flag and xdp_has_frags flag.
269 	 */
270 	struct {
271 		spinlock_t lock;
272 		enum bpf_prog_type type;
273 		bool jited;
274 		bool xdp_has_frags;
275 	} owner;
276 	bool bypass_spec_v1;
277 	bool frozen; /* write-once; write-protected by freeze_mutex */
278 	s64 __percpu *elem_count;
279 };
280 
281 static inline const char *btf_field_type_name(enum btf_field_type type)
282 {
283 	switch (type) {
284 	case BPF_SPIN_LOCK:
285 		return "bpf_spin_lock";
286 	case BPF_TIMER:
287 		return "bpf_timer";
288 	case BPF_KPTR_UNREF:
289 	case BPF_KPTR_REF:
290 		return "kptr";
291 	case BPF_LIST_HEAD:
292 		return "bpf_list_head";
293 	case BPF_LIST_NODE:
294 		return "bpf_list_node";
295 	case BPF_RB_ROOT:
296 		return "bpf_rb_root";
297 	case BPF_RB_NODE:
298 		return "bpf_rb_node";
299 	case BPF_REFCOUNT:
300 		return "bpf_refcount";
301 	default:
302 		WARN_ON_ONCE(1);
303 		return "unknown";
304 	}
305 }
306 
307 static inline u32 btf_field_type_size(enum btf_field_type type)
308 {
309 	switch (type) {
310 	case BPF_SPIN_LOCK:
311 		return sizeof(struct bpf_spin_lock);
312 	case BPF_TIMER:
313 		return sizeof(struct bpf_timer);
314 	case BPF_KPTR_UNREF:
315 	case BPF_KPTR_REF:
316 		return sizeof(u64);
317 	case BPF_LIST_HEAD:
318 		return sizeof(struct bpf_list_head);
319 	case BPF_LIST_NODE:
320 		return sizeof(struct bpf_list_node);
321 	case BPF_RB_ROOT:
322 		return sizeof(struct bpf_rb_root);
323 	case BPF_RB_NODE:
324 		return sizeof(struct bpf_rb_node);
325 	case BPF_REFCOUNT:
326 		return sizeof(struct bpf_refcount);
327 	default:
328 		WARN_ON_ONCE(1);
329 		return 0;
330 	}
331 }
332 
333 static inline u32 btf_field_type_align(enum btf_field_type type)
334 {
335 	switch (type) {
336 	case BPF_SPIN_LOCK:
337 		return __alignof__(struct bpf_spin_lock);
338 	case BPF_TIMER:
339 		return __alignof__(struct bpf_timer);
340 	case BPF_KPTR_UNREF:
341 	case BPF_KPTR_REF:
342 		return __alignof__(u64);
343 	case BPF_LIST_HEAD:
344 		return __alignof__(struct bpf_list_head);
345 	case BPF_LIST_NODE:
346 		return __alignof__(struct bpf_list_node);
347 	case BPF_RB_ROOT:
348 		return __alignof__(struct bpf_rb_root);
349 	case BPF_RB_NODE:
350 		return __alignof__(struct bpf_rb_node);
351 	case BPF_REFCOUNT:
352 		return __alignof__(struct bpf_refcount);
353 	default:
354 		WARN_ON_ONCE(1);
355 		return 0;
356 	}
357 }
358 
359 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
360 {
361 	memset(addr, 0, field->size);
362 
363 	switch (field->type) {
364 	case BPF_REFCOUNT:
365 		refcount_set((refcount_t *)addr, 1);
366 		break;
367 	case BPF_RB_NODE:
368 		RB_CLEAR_NODE((struct rb_node *)addr);
369 		break;
370 	case BPF_LIST_HEAD:
371 	case BPF_LIST_NODE:
372 		INIT_LIST_HEAD((struct list_head *)addr);
373 		break;
374 	case BPF_RB_ROOT:
375 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
376 	case BPF_SPIN_LOCK:
377 	case BPF_TIMER:
378 	case BPF_KPTR_UNREF:
379 	case BPF_KPTR_REF:
380 		break;
381 	default:
382 		WARN_ON_ONCE(1);
383 		return;
384 	}
385 }
386 
387 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
388 {
389 	if (IS_ERR_OR_NULL(rec))
390 		return false;
391 	return rec->field_mask & type;
392 }
393 
394 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
395 {
396 	int i;
397 
398 	if (IS_ERR_OR_NULL(rec))
399 		return;
400 	for (i = 0; i < rec->cnt; i++)
401 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
402 }
403 
404 /* 'dst' must be a temporary buffer and should not point to memory that is being
405  * used in parallel by a bpf program or bpf syscall, otherwise the access from
406  * the bpf program or bpf syscall may be corrupted by the reinitialization,
407  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
408  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
409  * program or bpf syscall.
410  */
411 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
412 {
413 	bpf_obj_init(map->record, dst);
414 }
415 
416 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
417  * forced to use 'long' read/writes to try to atomically copy long counters.
418  * Best-effort only.  No barriers here, since it _will_ race with concurrent
419  * updates from BPF programs. Called from bpf syscall and mostly used with
420  * size 8 or 16 bytes, so ask compiler to inline it.
421  */
422 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
423 {
424 	const long *lsrc = src;
425 	long *ldst = dst;
426 
427 	size /= sizeof(long);
428 	while (size--)
429 		*ldst++ = *lsrc++;
430 }
431 
432 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
433 static inline void bpf_obj_memcpy(struct btf_record *rec,
434 				  void *dst, void *src, u32 size,
435 				  bool long_memcpy)
436 {
437 	u32 curr_off = 0;
438 	int i;
439 
440 	if (IS_ERR_OR_NULL(rec)) {
441 		if (long_memcpy)
442 			bpf_long_memcpy(dst, src, round_up(size, 8));
443 		else
444 			memcpy(dst, src, size);
445 		return;
446 	}
447 
448 	for (i = 0; i < rec->cnt; i++) {
449 		u32 next_off = rec->fields[i].offset;
450 		u32 sz = next_off - curr_off;
451 
452 		memcpy(dst + curr_off, src + curr_off, sz);
453 		curr_off += rec->fields[i].size + sz;
454 	}
455 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
456 }
457 
458 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
459 {
460 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
461 }
462 
463 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
464 {
465 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
466 }
467 
468 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
469 {
470 	u32 curr_off = 0;
471 	int i;
472 
473 	if (IS_ERR_OR_NULL(rec)) {
474 		memset(dst, 0, size);
475 		return;
476 	}
477 
478 	for (i = 0; i < rec->cnt; i++) {
479 		u32 next_off = rec->fields[i].offset;
480 		u32 sz = next_off - curr_off;
481 
482 		memset(dst + curr_off, 0, sz);
483 		curr_off += rec->fields[i].size + sz;
484 	}
485 	memset(dst + curr_off, 0, size - curr_off);
486 }
487 
488 static inline void zero_map_value(struct bpf_map *map, void *dst)
489 {
490 	bpf_obj_memzero(map->record, dst, map->value_size);
491 }
492 
493 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
494 			   bool lock_src);
495 void bpf_timer_cancel_and_free(void *timer);
496 void bpf_list_head_free(const struct btf_field *field, void *list_head,
497 			struct bpf_spin_lock *spin_lock);
498 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
499 		      struct bpf_spin_lock *spin_lock);
500 
501 
502 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
503 
504 struct bpf_offload_dev;
505 struct bpf_offloaded_map;
506 
507 struct bpf_map_dev_ops {
508 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
509 				void *key, void *next_key);
510 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
511 			       void *key, void *value);
512 	int (*map_update_elem)(struct bpf_offloaded_map *map,
513 			       void *key, void *value, u64 flags);
514 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
515 };
516 
517 struct bpf_offloaded_map {
518 	struct bpf_map map;
519 	struct net_device *netdev;
520 	const struct bpf_map_dev_ops *dev_ops;
521 	void *dev_priv;
522 	struct list_head offloads;
523 };
524 
525 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
526 {
527 	return container_of(map, struct bpf_offloaded_map, map);
528 }
529 
530 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
531 {
532 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
533 }
534 
535 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
536 {
537 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
538 		map->ops->map_seq_show_elem;
539 }
540 
541 int map_check_no_btf(const struct bpf_map *map,
542 		     const struct btf *btf,
543 		     const struct btf_type *key_type,
544 		     const struct btf_type *value_type);
545 
546 bool bpf_map_meta_equal(const struct bpf_map *meta0,
547 			const struct bpf_map *meta1);
548 
549 extern const struct bpf_map_ops bpf_map_offload_ops;
550 
551 /* bpf_type_flag contains a set of flags that are applicable to the values of
552  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
553  * or a memory is read-only. We classify types into two categories: base types
554  * and extended types. Extended types are base types combined with a type flag.
555  *
556  * Currently there are no more than 32 base types in arg_type, ret_type and
557  * reg_types.
558  */
559 #define BPF_BASE_TYPE_BITS	8
560 
561 enum bpf_type_flag {
562 	/* PTR may be NULL. */
563 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
564 
565 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
566 	 * compatible with both mutable and immutable memory.
567 	 */
568 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
569 
570 	/* MEM points to BPF ring buffer reservation. */
571 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
572 
573 	/* MEM is in user address space. */
574 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
575 
576 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
577 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
578 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
579 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
580 	 * to the specified cpu.
581 	 */
582 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
583 
584 	/* Indicates that the argument will be released. */
585 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
586 
587 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
588 	 * unreferenced and referenced kptr loaded from map value using a load
589 	 * instruction, so that they can only be dereferenced but not escape the
590 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
591 	 * kfunc or bpf helpers).
592 	 */
593 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
594 
595 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
596 
597 	/* DYNPTR points to memory local to the bpf program. */
598 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
599 
600 	/* DYNPTR points to a kernel-produced ringbuf record. */
601 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
602 
603 	/* Size is known at compile time. */
604 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
605 
606 	/* MEM is of an allocated object of type in program BTF. This is used to
607 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
608 	 */
609 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
610 
611 	/* PTR was passed from the kernel in a trusted context, and may be
612 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
613 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
614 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
615 	 * without invoking bpf_kptr_xchg(). What we really need to know is
616 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
617 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
618 	 * helpers, they do not cover all possible instances of unsafe
619 	 * pointers. For example, a pointer that was obtained from walking a
620 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
621 	 * fact that it may be NULL, invalid, etc. This is due to backwards
622 	 * compatibility requirements, as this was the behavior that was first
623 	 * introduced when kptrs were added. The behavior is now considered
624 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
625 	 *
626 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
627 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
628 	 * For example, pointers passed to tracepoint arguments are considered
629 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
630 	 * callbacks. As alluded to above, pointers that are obtained from
631 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
632 	 * struct task_struct *task is PTR_TRUSTED, then accessing
633 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
634 	 * in a BPF register. Similarly, pointers passed to certain programs
635 	 * types such as kretprobes are not guaranteed to be valid, as they may
636 	 * for example contain an object that was recently freed.
637 	 */
638 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
639 
640 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
641 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
642 
643 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
644 	 * Currently only valid for linked-list and rbtree nodes.
645 	 */
646 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
647 
648 	/* DYNPTR points to sk_buff */
649 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
650 
651 	/* DYNPTR points to xdp_buff */
652 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
653 
654 	__BPF_TYPE_FLAG_MAX,
655 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
656 };
657 
658 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
659 				 | DYNPTR_TYPE_XDP)
660 
661 /* Max number of base types. */
662 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
663 
664 /* Max number of all types. */
665 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
666 
667 /* function argument constraints */
668 enum bpf_arg_type {
669 	ARG_DONTCARE = 0,	/* unused argument in helper function */
670 
671 	/* the following constraints used to prototype
672 	 * bpf_map_lookup/update/delete_elem() functions
673 	 */
674 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
675 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
676 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
677 
678 	/* Used to prototype bpf_memcmp() and other functions that access data
679 	 * on eBPF program stack
680 	 */
681 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
682 
683 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
684 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
685 
686 	ARG_PTR_TO_CTX,		/* pointer to context */
687 	ARG_ANYTHING,		/* any (initialized) argument is ok */
688 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
689 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
690 	ARG_PTR_TO_INT,		/* pointer to int */
691 	ARG_PTR_TO_LONG,	/* pointer to long */
692 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
693 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
694 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
695 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
696 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
697 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
698 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
699 	ARG_PTR_TO_STACK,	/* pointer to stack */
700 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
701 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
702 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
703 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
704 	__BPF_ARG_TYPE_MAX,
705 
706 	/* Extended arg_types. */
707 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
708 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
709 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
710 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
711 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
712 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
713 	/* pointer to memory does not need to be initialized, helper function must fill
714 	 * all bytes or clear them in error case.
715 	 */
716 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
717 	/* Pointer to valid memory of size known at compile time. */
718 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
719 
720 	/* This must be the last entry. Its purpose is to ensure the enum is
721 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
722 	 */
723 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
724 };
725 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
726 
727 /* type of values returned from helper functions */
728 enum bpf_return_type {
729 	RET_INTEGER,			/* function returns integer */
730 	RET_VOID,			/* function doesn't return anything */
731 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
732 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
733 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
734 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
735 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
736 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
737 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
738 	__BPF_RET_TYPE_MAX,
739 
740 	/* Extended ret_types. */
741 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
742 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
743 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
744 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
745 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
746 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
747 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
748 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
749 
750 	/* This must be the last entry. Its purpose is to ensure the enum is
751 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
752 	 */
753 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
754 };
755 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
756 
757 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
758  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
759  * instructions after verifying
760  */
761 struct bpf_func_proto {
762 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
763 	bool gpl_only;
764 	bool pkt_access;
765 	bool might_sleep;
766 	enum bpf_return_type ret_type;
767 	union {
768 		struct {
769 			enum bpf_arg_type arg1_type;
770 			enum bpf_arg_type arg2_type;
771 			enum bpf_arg_type arg3_type;
772 			enum bpf_arg_type arg4_type;
773 			enum bpf_arg_type arg5_type;
774 		};
775 		enum bpf_arg_type arg_type[5];
776 	};
777 	union {
778 		struct {
779 			u32 *arg1_btf_id;
780 			u32 *arg2_btf_id;
781 			u32 *arg3_btf_id;
782 			u32 *arg4_btf_id;
783 			u32 *arg5_btf_id;
784 		};
785 		u32 *arg_btf_id[5];
786 		struct {
787 			size_t arg1_size;
788 			size_t arg2_size;
789 			size_t arg3_size;
790 			size_t arg4_size;
791 			size_t arg5_size;
792 		};
793 		size_t arg_size[5];
794 	};
795 	int *ret_btf_id; /* return value btf_id */
796 	bool (*allowed)(const struct bpf_prog *prog);
797 };
798 
799 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
800  * the first argument to eBPF programs.
801  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
802  */
803 struct bpf_context;
804 
805 enum bpf_access_type {
806 	BPF_READ = 1,
807 	BPF_WRITE = 2
808 };
809 
810 /* types of values stored in eBPF registers */
811 /* Pointer types represent:
812  * pointer
813  * pointer + imm
814  * pointer + (u16) var
815  * pointer + (u16) var + imm
816  * if (range > 0) then [ptr, ptr + range - off) is safe to access
817  * if (id > 0) means that some 'var' was added
818  * if (off > 0) means that 'imm' was added
819  */
820 enum bpf_reg_type {
821 	NOT_INIT = 0,		 /* nothing was written into register */
822 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
823 	PTR_TO_CTX,		 /* reg points to bpf_context */
824 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
825 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
826 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
827 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
828 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
829 	PTR_TO_PACKET,		 /* reg points to skb->data */
830 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
831 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
832 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
833 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
834 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
835 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
836 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
837 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
838 	 * to be null checked by the BPF program. This does not imply the
839 	 * pointer is _not_ null and in practice this can easily be a null
840 	 * pointer when reading pointer chains. The assumption is program
841 	 * context will handle null pointer dereference typically via fault
842 	 * handling. The verifier must keep this in mind and can make no
843 	 * assumptions about null or non-null when doing branch analysis.
844 	 * Further, when passed into helpers the helpers can not, without
845 	 * additional context, assume the value is non-null.
846 	 */
847 	PTR_TO_BTF_ID,
848 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
849 	 * been checked for null. Used primarily to inform the verifier
850 	 * an explicit null check is required for this struct.
851 	 */
852 	PTR_TO_MEM,		 /* reg points to valid memory region */
853 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
854 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
855 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
856 	__BPF_REG_TYPE_MAX,
857 
858 	/* Extended reg_types. */
859 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
860 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
861 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
862 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
863 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
864 
865 	/* This must be the last entry. Its purpose is to ensure the enum is
866 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
867 	 */
868 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
869 };
870 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
871 
872 /* The information passed from prog-specific *_is_valid_access
873  * back to the verifier.
874  */
875 struct bpf_insn_access_aux {
876 	enum bpf_reg_type reg_type;
877 	union {
878 		int ctx_field_size;
879 		struct {
880 			struct btf *btf;
881 			u32 btf_id;
882 		};
883 	};
884 	struct bpf_verifier_log *log; /* for verbose logs */
885 };
886 
887 static inline void
888 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
889 {
890 	aux->ctx_field_size = size;
891 }
892 
893 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
894 {
895 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
896 	       insn->src_reg == BPF_PSEUDO_FUNC;
897 }
898 
899 struct bpf_prog_ops {
900 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
901 			union bpf_attr __user *uattr);
902 };
903 
904 struct bpf_reg_state;
905 struct bpf_verifier_ops {
906 	/* return eBPF function prototype for verification */
907 	const struct bpf_func_proto *
908 	(*get_func_proto)(enum bpf_func_id func_id,
909 			  const struct bpf_prog *prog);
910 
911 	/* return true if 'size' wide access at offset 'off' within bpf_context
912 	 * with 'type' (read or write) is allowed
913 	 */
914 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
915 				const struct bpf_prog *prog,
916 				struct bpf_insn_access_aux *info);
917 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
918 			    const struct bpf_prog *prog);
919 	int (*gen_ld_abs)(const struct bpf_insn *orig,
920 			  struct bpf_insn *insn_buf);
921 	u32 (*convert_ctx_access)(enum bpf_access_type type,
922 				  const struct bpf_insn *src,
923 				  struct bpf_insn *dst,
924 				  struct bpf_prog *prog, u32 *target_size);
925 	int (*btf_struct_access)(struct bpf_verifier_log *log,
926 				 const struct bpf_reg_state *reg,
927 				 int off, int size);
928 };
929 
930 struct bpf_prog_offload_ops {
931 	/* verifier basic callbacks */
932 	int (*insn_hook)(struct bpf_verifier_env *env,
933 			 int insn_idx, int prev_insn_idx);
934 	int (*finalize)(struct bpf_verifier_env *env);
935 	/* verifier optimization callbacks (called after .finalize) */
936 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
937 			    struct bpf_insn *insn);
938 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
939 	/* program management callbacks */
940 	int (*prepare)(struct bpf_prog *prog);
941 	int (*translate)(struct bpf_prog *prog);
942 	void (*destroy)(struct bpf_prog *prog);
943 };
944 
945 struct bpf_prog_offload {
946 	struct bpf_prog		*prog;
947 	struct net_device	*netdev;
948 	struct bpf_offload_dev	*offdev;
949 	void			*dev_priv;
950 	struct list_head	offloads;
951 	bool			dev_state;
952 	bool			opt_failed;
953 	void			*jited_image;
954 	u32			jited_len;
955 };
956 
957 enum bpf_cgroup_storage_type {
958 	BPF_CGROUP_STORAGE_SHARED,
959 	BPF_CGROUP_STORAGE_PERCPU,
960 	__BPF_CGROUP_STORAGE_MAX
961 };
962 
963 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
964 
965 /* The longest tracepoint has 12 args.
966  * See include/trace/bpf_probe.h
967  */
968 #define MAX_BPF_FUNC_ARGS 12
969 
970 /* The maximum number of arguments passed through registers
971  * a single function may have.
972  */
973 #define MAX_BPF_FUNC_REG_ARGS 5
974 
975 /* The argument is a structure. */
976 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
977 
978 /* The argument is signed. */
979 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
980 
981 struct btf_func_model {
982 	u8 ret_size;
983 	u8 ret_flags;
984 	u8 nr_args;
985 	u8 arg_size[MAX_BPF_FUNC_ARGS];
986 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
987 };
988 
989 /* Restore arguments before returning from trampoline to let original function
990  * continue executing. This flag is used for fentry progs when there are no
991  * fexit progs.
992  */
993 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
994 /* Call original function after fentry progs, but before fexit progs.
995  * Makes sense for fentry/fexit, normal calls and indirect calls.
996  */
997 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
998 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
999  * programs only. Should not be used with normal calls and indirect calls.
1000  */
1001 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1002 /* Store IP address of the caller on the trampoline stack,
1003  * so it's available for trampoline's programs.
1004  */
1005 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1006 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1007 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1008 
1009 /* Get original function from stack instead of from provided direct address.
1010  * Makes sense for trampolines with fexit or fmod_ret programs.
1011  */
1012 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1013 
1014 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1015  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1016  */
1017 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1018 
1019 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1020  * bytes on x86.
1021  */
1022 enum {
1023 #if defined(__s390x__)
1024 	BPF_MAX_TRAMP_LINKS = 27,
1025 #else
1026 	BPF_MAX_TRAMP_LINKS = 38,
1027 #endif
1028 };
1029 
1030 struct bpf_tramp_links {
1031 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1032 	int nr_links;
1033 };
1034 
1035 struct bpf_tramp_run_ctx;
1036 
1037 /* Different use cases for BPF trampoline:
1038  * 1. replace nop at the function entry (kprobe equivalent)
1039  *    flags = BPF_TRAMP_F_RESTORE_REGS
1040  *    fentry = a set of programs to run before returning from trampoline
1041  *
1042  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1043  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1044  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1045  *    fentry = a set of program to run before calling original function
1046  *    fexit = a set of program to run after original function
1047  *
1048  * 3. replace direct call instruction anywhere in the function body
1049  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1050  *    With flags = 0
1051  *      fentry = a set of programs to run before returning from trampoline
1052  *    With flags = BPF_TRAMP_F_CALL_ORIG
1053  *      orig_call = original callback addr or direct function addr
1054  *      fentry = a set of program to run before calling original function
1055  *      fexit = a set of program to run after original function
1056  */
1057 struct bpf_tramp_image;
1058 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1059 				const struct btf_func_model *m, u32 flags,
1060 				struct bpf_tramp_links *tlinks,
1061 				void *orig_call);
1062 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1063 					     struct bpf_tramp_run_ctx *run_ctx);
1064 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1065 					     struct bpf_tramp_run_ctx *run_ctx);
1066 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1067 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1068 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1069 				      struct bpf_tramp_run_ctx *run_ctx);
1070 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1071 				      struct bpf_tramp_run_ctx *run_ctx);
1072 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1073 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1074 
1075 struct bpf_ksym {
1076 	unsigned long		 start;
1077 	unsigned long		 end;
1078 	char			 name[KSYM_NAME_LEN];
1079 	struct list_head	 lnode;
1080 	struct latch_tree_node	 tnode;
1081 	bool			 prog;
1082 };
1083 
1084 enum bpf_tramp_prog_type {
1085 	BPF_TRAMP_FENTRY,
1086 	BPF_TRAMP_FEXIT,
1087 	BPF_TRAMP_MODIFY_RETURN,
1088 	BPF_TRAMP_MAX,
1089 	BPF_TRAMP_REPLACE, /* more than MAX */
1090 };
1091 
1092 struct bpf_tramp_image {
1093 	void *image;
1094 	struct bpf_ksym ksym;
1095 	struct percpu_ref pcref;
1096 	void *ip_after_call;
1097 	void *ip_epilogue;
1098 	union {
1099 		struct rcu_head rcu;
1100 		struct work_struct work;
1101 	};
1102 };
1103 
1104 struct bpf_trampoline {
1105 	/* hlist for trampoline_table */
1106 	struct hlist_node hlist;
1107 	struct ftrace_ops *fops;
1108 	/* serializes access to fields of this trampoline */
1109 	struct mutex mutex;
1110 	refcount_t refcnt;
1111 	u32 flags;
1112 	u64 key;
1113 	struct {
1114 		struct btf_func_model model;
1115 		void *addr;
1116 		bool ftrace_managed;
1117 	} func;
1118 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1119 	 * program by replacing one of its functions. func.addr is the address
1120 	 * of the function it replaced.
1121 	 */
1122 	struct bpf_prog *extension_prog;
1123 	/* list of BPF programs using this trampoline */
1124 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1125 	/* Number of attached programs. A counter per kind. */
1126 	int progs_cnt[BPF_TRAMP_MAX];
1127 	/* Executable image of trampoline */
1128 	struct bpf_tramp_image *cur_image;
1129 	struct module *mod;
1130 };
1131 
1132 struct bpf_attach_target_info {
1133 	struct btf_func_model fmodel;
1134 	long tgt_addr;
1135 	struct module *tgt_mod;
1136 	const char *tgt_name;
1137 	const struct btf_type *tgt_type;
1138 };
1139 
1140 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1141 
1142 struct bpf_dispatcher_prog {
1143 	struct bpf_prog *prog;
1144 	refcount_t users;
1145 };
1146 
1147 struct bpf_dispatcher {
1148 	/* dispatcher mutex */
1149 	struct mutex mutex;
1150 	void *func;
1151 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1152 	int num_progs;
1153 	void *image;
1154 	void *rw_image;
1155 	u32 image_off;
1156 	struct bpf_ksym ksym;
1157 #ifdef CONFIG_HAVE_STATIC_CALL
1158 	struct static_call_key *sc_key;
1159 	void *sc_tramp;
1160 #endif
1161 };
1162 
1163 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1164 	const void *ctx,
1165 	const struct bpf_insn *insnsi,
1166 	bpf_func_t bpf_func)
1167 {
1168 	return bpf_func(ctx, insnsi);
1169 }
1170 
1171 /* the implementation of the opaque uapi struct bpf_dynptr */
1172 struct bpf_dynptr_kern {
1173 	void *data;
1174 	/* Size represents the number of usable bytes of dynptr data.
1175 	 * If for example the offset is at 4 for a local dynptr whose data is
1176 	 * of type u64, the number of usable bytes is 4.
1177 	 *
1178 	 * The upper 8 bits are reserved. It is as follows:
1179 	 * Bits 0 - 23 = size
1180 	 * Bits 24 - 30 = dynptr type
1181 	 * Bit 31 = whether dynptr is read-only
1182 	 */
1183 	u32 size;
1184 	u32 offset;
1185 } __aligned(8);
1186 
1187 enum bpf_dynptr_type {
1188 	BPF_DYNPTR_TYPE_INVALID,
1189 	/* Points to memory that is local to the bpf program */
1190 	BPF_DYNPTR_TYPE_LOCAL,
1191 	/* Underlying data is a ringbuf record */
1192 	BPF_DYNPTR_TYPE_RINGBUF,
1193 	/* Underlying data is a sk_buff */
1194 	BPF_DYNPTR_TYPE_SKB,
1195 	/* Underlying data is a xdp_buff */
1196 	BPF_DYNPTR_TYPE_XDP,
1197 };
1198 
1199 int bpf_dynptr_check_size(u32 size);
1200 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1201 
1202 #ifdef CONFIG_BPF_JIT
1203 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1204 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1205 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1206 					  struct bpf_attach_target_info *tgt_info);
1207 void bpf_trampoline_put(struct bpf_trampoline *tr);
1208 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1209 
1210 /*
1211  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1212  * indirection with a direct call to the bpf program. If the architecture does
1213  * not have STATIC_CALL, avoid a double-indirection.
1214  */
1215 #ifdef CONFIG_HAVE_STATIC_CALL
1216 
1217 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1218 	.sc_key = &STATIC_CALL_KEY(_name),			\
1219 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1220 
1221 #define __BPF_DISPATCHER_SC(name)				\
1222 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1223 
1224 #define __BPF_DISPATCHER_CALL(name)				\
1225 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1226 
1227 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1228 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1229 
1230 #else
1231 #define __BPF_DISPATCHER_SC_INIT(name)
1232 #define __BPF_DISPATCHER_SC(name)
1233 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1234 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1235 #endif
1236 
1237 #define BPF_DISPATCHER_INIT(_name) {				\
1238 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1239 	.func = &_name##_func,					\
1240 	.progs = {},						\
1241 	.num_progs = 0,						\
1242 	.image = NULL,						\
1243 	.image_off = 0,						\
1244 	.ksym = {						\
1245 		.name  = #_name,				\
1246 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1247 	},							\
1248 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1249 }
1250 
1251 #define DEFINE_BPF_DISPATCHER(name)					\
1252 	__BPF_DISPATCHER_SC(name);					\
1253 	noinline __nocfi unsigned int bpf_dispatcher_##name##_func(	\
1254 		const void *ctx,					\
1255 		const struct bpf_insn *insnsi,				\
1256 		bpf_func_t bpf_func)					\
1257 	{								\
1258 		return __BPF_DISPATCHER_CALL(name);			\
1259 	}								\
1260 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1261 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1262 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1263 
1264 #define DECLARE_BPF_DISPATCHER(name)					\
1265 	unsigned int bpf_dispatcher_##name##_func(			\
1266 		const void *ctx,					\
1267 		const struct bpf_insn *insnsi,				\
1268 		bpf_func_t bpf_func);					\
1269 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1270 
1271 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1272 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1273 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1274 				struct bpf_prog *to);
1275 /* Called only from JIT-enabled code, so there's no need for stubs. */
1276 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1277 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1278 void bpf_ksym_add(struct bpf_ksym *ksym);
1279 void bpf_ksym_del(struct bpf_ksym *ksym);
1280 int bpf_jit_charge_modmem(u32 size);
1281 void bpf_jit_uncharge_modmem(u32 size);
1282 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1283 #else
1284 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1285 					   struct bpf_trampoline *tr)
1286 {
1287 	return -ENOTSUPP;
1288 }
1289 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1290 					     struct bpf_trampoline *tr)
1291 {
1292 	return -ENOTSUPP;
1293 }
1294 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1295 							struct bpf_attach_target_info *tgt_info)
1296 {
1297 	return ERR_PTR(-EOPNOTSUPP);
1298 }
1299 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1300 #define DEFINE_BPF_DISPATCHER(name)
1301 #define DECLARE_BPF_DISPATCHER(name)
1302 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1303 #define BPF_DISPATCHER_PTR(name) NULL
1304 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1305 					      struct bpf_prog *from,
1306 					      struct bpf_prog *to) {}
1307 static inline bool is_bpf_image_address(unsigned long address)
1308 {
1309 	return false;
1310 }
1311 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1312 {
1313 	return false;
1314 }
1315 #endif
1316 
1317 struct bpf_func_info_aux {
1318 	u16 linkage;
1319 	bool unreliable;
1320 };
1321 
1322 enum bpf_jit_poke_reason {
1323 	BPF_POKE_REASON_TAIL_CALL,
1324 };
1325 
1326 /* Descriptor of pokes pointing /into/ the JITed image. */
1327 struct bpf_jit_poke_descriptor {
1328 	void *tailcall_target;
1329 	void *tailcall_bypass;
1330 	void *bypass_addr;
1331 	void *aux;
1332 	union {
1333 		struct {
1334 			struct bpf_map *map;
1335 			u32 key;
1336 		} tail_call;
1337 	};
1338 	bool tailcall_target_stable;
1339 	u8 adj_off;
1340 	u16 reason;
1341 	u32 insn_idx;
1342 };
1343 
1344 /* reg_type info for ctx arguments */
1345 struct bpf_ctx_arg_aux {
1346 	u32 offset;
1347 	enum bpf_reg_type reg_type;
1348 	u32 btf_id;
1349 };
1350 
1351 struct btf_mod_pair {
1352 	struct btf *btf;
1353 	struct module *module;
1354 };
1355 
1356 struct bpf_kfunc_desc_tab;
1357 
1358 struct bpf_prog_aux {
1359 	atomic64_t refcnt;
1360 	u32 used_map_cnt;
1361 	u32 used_btf_cnt;
1362 	u32 max_ctx_offset;
1363 	u32 max_pkt_offset;
1364 	u32 max_tp_access;
1365 	u32 stack_depth;
1366 	u32 id;
1367 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1368 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1369 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1370 	u32 ctx_arg_info_size;
1371 	u32 max_rdonly_access;
1372 	u32 max_rdwr_access;
1373 	struct btf *attach_btf;
1374 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1375 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1376 	struct bpf_prog *dst_prog;
1377 	struct bpf_trampoline *dst_trampoline;
1378 	enum bpf_prog_type saved_dst_prog_type;
1379 	enum bpf_attach_type saved_dst_attach_type;
1380 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1381 	bool dev_bound; /* Program is bound to the netdev. */
1382 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1383 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1384 	bool func_proto_unreliable;
1385 	bool sleepable;
1386 	bool tail_call_reachable;
1387 	bool xdp_has_frags;
1388 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1389 	const struct btf_type *attach_func_proto;
1390 	/* function name for valid attach_btf_id */
1391 	const char *attach_func_name;
1392 	struct bpf_prog **func;
1393 	void *jit_data; /* JIT specific data. arch dependent */
1394 	struct bpf_jit_poke_descriptor *poke_tab;
1395 	struct bpf_kfunc_desc_tab *kfunc_tab;
1396 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1397 	u32 size_poke_tab;
1398 	struct bpf_ksym ksym;
1399 	const struct bpf_prog_ops *ops;
1400 	struct bpf_map **used_maps;
1401 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1402 	struct btf_mod_pair *used_btfs;
1403 	struct bpf_prog *prog;
1404 	struct user_struct *user;
1405 	u64 load_time; /* ns since boottime */
1406 	u32 verified_insns;
1407 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1408 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1409 	char name[BPF_OBJ_NAME_LEN];
1410 #ifdef CONFIG_SECURITY
1411 	void *security;
1412 #endif
1413 	struct bpf_prog_offload *offload;
1414 	struct btf *btf;
1415 	struct bpf_func_info *func_info;
1416 	struct bpf_func_info_aux *func_info_aux;
1417 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1418 	 * has the xlated insn offset.
1419 	 * Both the main and sub prog share the same linfo.
1420 	 * The subprog can access its first linfo by
1421 	 * using the linfo_idx.
1422 	 */
1423 	struct bpf_line_info *linfo;
1424 	/* jited_linfo is the jited addr of the linfo.  It has a
1425 	 * one to one mapping to linfo:
1426 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1427 	 * Both the main and sub prog share the same jited_linfo.
1428 	 * The subprog can access its first jited_linfo by
1429 	 * using the linfo_idx.
1430 	 */
1431 	void **jited_linfo;
1432 	u32 func_info_cnt;
1433 	u32 nr_linfo;
1434 	/* subprog can use linfo_idx to access its first linfo and
1435 	 * jited_linfo.
1436 	 * main prog always has linfo_idx == 0
1437 	 */
1438 	u32 linfo_idx;
1439 	struct module *mod;
1440 	u32 num_exentries;
1441 	struct exception_table_entry *extable;
1442 	union {
1443 		struct work_struct work;
1444 		struct rcu_head	rcu;
1445 	};
1446 };
1447 
1448 struct bpf_prog {
1449 	u16			pages;		/* Number of allocated pages */
1450 	u16			jited:1,	/* Is our filter JIT'ed? */
1451 				jit_requested:1,/* archs need to JIT the prog */
1452 				gpl_compatible:1, /* Is filter GPL compatible? */
1453 				cb_access:1,	/* Is control block accessed? */
1454 				dst_needed:1,	/* Do we need dst entry? */
1455 				blinding_requested:1, /* needs constant blinding */
1456 				blinded:1,	/* Was blinded */
1457 				is_func:1,	/* program is a bpf function */
1458 				kprobe_override:1, /* Do we override a kprobe? */
1459 				has_callchain_buf:1, /* callchain buffer allocated? */
1460 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1461 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1462 				call_get_func_ip:1, /* Do we call get_func_ip() */
1463 				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1464 	enum bpf_prog_type	type;		/* Type of BPF program */
1465 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1466 	u32			len;		/* Number of filter blocks */
1467 	u32			jited_len;	/* Size of jited insns in bytes */
1468 	u8			tag[BPF_TAG_SIZE];
1469 	struct bpf_prog_stats __percpu *stats;
1470 	int __percpu		*active;
1471 	unsigned int		(*bpf_func)(const void *ctx,
1472 					    const struct bpf_insn *insn);
1473 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1474 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1475 	/* Instructions for interpreter */
1476 	union {
1477 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1478 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1479 	};
1480 };
1481 
1482 struct bpf_array_aux {
1483 	/* Programs with direct jumps into programs part of this array. */
1484 	struct list_head poke_progs;
1485 	struct bpf_map *map;
1486 	struct mutex poke_mutex;
1487 	struct work_struct work;
1488 };
1489 
1490 struct bpf_link {
1491 	atomic64_t refcnt;
1492 	u32 id;
1493 	enum bpf_link_type type;
1494 	const struct bpf_link_ops *ops;
1495 	struct bpf_prog *prog;
1496 	struct work_struct work;
1497 };
1498 
1499 struct bpf_link_ops {
1500 	void (*release)(struct bpf_link *link);
1501 	void (*dealloc)(struct bpf_link *link);
1502 	int (*detach)(struct bpf_link *link);
1503 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1504 			   struct bpf_prog *old_prog);
1505 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1506 	int (*fill_link_info)(const struct bpf_link *link,
1507 			      struct bpf_link_info *info);
1508 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1509 			  struct bpf_map *old_map);
1510 };
1511 
1512 struct bpf_tramp_link {
1513 	struct bpf_link link;
1514 	struct hlist_node tramp_hlist;
1515 	u64 cookie;
1516 };
1517 
1518 struct bpf_shim_tramp_link {
1519 	struct bpf_tramp_link link;
1520 	struct bpf_trampoline *trampoline;
1521 };
1522 
1523 struct bpf_tracing_link {
1524 	struct bpf_tramp_link link;
1525 	enum bpf_attach_type attach_type;
1526 	struct bpf_trampoline *trampoline;
1527 	struct bpf_prog *tgt_prog;
1528 };
1529 
1530 struct bpf_link_primer {
1531 	struct bpf_link *link;
1532 	struct file *file;
1533 	int fd;
1534 	u32 id;
1535 };
1536 
1537 struct bpf_struct_ops_value;
1538 struct btf_member;
1539 
1540 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1541 struct bpf_struct_ops {
1542 	const struct bpf_verifier_ops *verifier_ops;
1543 	int (*init)(struct btf *btf);
1544 	int (*check_member)(const struct btf_type *t,
1545 			    const struct btf_member *member,
1546 			    const struct bpf_prog *prog);
1547 	int (*init_member)(const struct btf_type *t,
1548 			   const struct btf_member *member,
1549 			   void *kdata, const void *udata);
1550 	int (*reg)(void *kdata);
1551 	void (*unreg)(void *kdata);
1552 	int (*update)(void *kdata, void *old_kdata);
1553 	int (*validate)(void *kdata);
1554 	const struct btf_type *type;
1555 	const struct btf_type *value_type;
1556 	const char *name;
1557 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1558 	u32 type_id;
1559 	u32 value_id;
1560 };
1561 
1562 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1563 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1564 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1565 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1566 bool bpf_struct_ops_get(const void *kdata);
1567 void bpf_struct_ops_put(const void *kdata);
1568 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1569 				       void *value);
1570 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1571 				      struct bpf_tramp_link *link,
1572 				      const struct btf_func_model *model,
1573 				      void *image, void *image_end);
1574 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1575 {
1576 	if (owner == BPF_MODULE_OWNER)
1577 		return bpf_struct_ops_get(data);
1578 	else
1579 		return try_module_get(owner);
1580 }
1581 static inline void bpf_module_put(const void *data, struct module *owner)
1582 {
1583 	if (owner == BPF_MODULE_OWNER)
1584 		bpf_struct_ops_put(data);
1585 	else
1586 		module_put(owner);
1587 }
1588 int bpf_struct_ops_link_create(union bpf_attr *attr);
1589 
1590 #ifdef CONFIG_NET
1591 /* Define it here to avoid the use of forward declaration */
1592 struct bpf_dummy_ops_state {
1593 	int val;
1594 };
1595 
1596 struct bpf_dummy_ops {
1597 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1598 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1599 		      char a3, unsigned long a4);
1600 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1601 };
1602 
1603 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1604 			    union bpf_attr __user *uattr);
1605 #endif
1606 #else
1607 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1608 {
1609 	return NULL;
1610 }
1611 static inline void bpf_struct_ops_init(struct btf *btf,
1612 				       struct bpf_verifier_log *log)
1613 {
1614 }
1615 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1616 {
1617 	return try_module_get(owner);
1618 }
1619 static inline void bpf_module_put(const void *data, struct module *owner)
1620 {
1621 	module_put(owner);
1622 }
1623 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1624 						     void *key,
1625 						     void *value)
1626 {
1627 	return -EINVAL;
1628 }
1629 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1630 {
1631 	return -EOPNOTSUPP;
1632 }
1633 
1634 #endif
1635 
1636 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1637 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1638 				    int cgroup_atype);
1639 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1640 #else
1641 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1642 						  int cgroup_atype)
1643 {
1644 	return -EOPNOTSUPP;
1645 }
1646 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1647 {
1648 }
1649 #endif
1650 
1651 struct bpf_array {
1652 	struct bpf_map map;
1653 	u32 elem_size;
1654 	u32 index_mask;
1655 	struct bpf_array_aux *aux;
1656 	union {
1657 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1658 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1659 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1660 	};
1661 };
1662 
1663 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1664 #define MAX_TAIL_CALL_CNT 33
1665 
1666 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1667  * It's enum to expose it (and thus make it discoverable) through BTF.
1668  */
1669 enum {
1670 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1671 };
1672 
1673 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1674 				 BPF_F_RDONLY_PROG |	\
1675 				 BPF_F_WRONLY |		\
1676 				 BPF_F_WRONLY_PROG)
1677 
1678 #define BPF_MAP_CAN_READ	BIT(0)
1679 #define BPF_MAP_CAN_WRITE	BIT(1)
1680 
1681 /* Maximum number of user-producer ring buffer samples that can be drained in
1682  * a call to bpf_user_ringbuf_drain().
1683  */
1684 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1685 
1686 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1687 {
1688 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1689 
1690 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1691 	 * not possible.
1692 	 */
1693 	if (access_flags & BPF_F_RDONLY_PROG)
1694 		return BPF_MAP_CAN_READ;
1695 	else if (access_flags & BPF_F_WRONLY_PROG)
1696 		return BPF_MAP_CAN_WRITE;
1697 	else
1698 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1699 }
1700 
1701 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1702 {
1703 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1704 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1705 }
1706 
1707 struct bpf_event_entry {
1708 	struct perf_event *event;
1709 	struct file *perf_file;
1710 	struct file *map_file;
1711 	struct rcu_head rcu;
1712 };
1713 
1714 static inline bool map_type_contains_progs(struct bpf_map *map)
1715 {
1716 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1717 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1718 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1719 }
1720 
1721 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1722 int bpf_prog_calc_tag(struct bpf_prog *fp);
1723 
1724 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1725 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1726 
1727 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1728 					unsigned long off, unsigned long len);
1729 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1730 					const struct bpf_insn *src,
1731 					struct bpf_insn *dst,
1732 					struct bpf_prog *prog,
1733 					u32 *target_size);
1734 
1735 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1736 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1737 
1738 /* an array of programs to be executed under rcu_lock.
1739  *
1740  * Typical usage:
1741  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1742  *
1743  * the structure returned by bpf_prog_array_alloc() should be populated
1744  * with program pointers and the last pointer must be NULL.
1745  * The user has to keep refcnt on the program and make sure the program
1746  * is removed from the array before bpf_prog_put().
1747  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1748  * since other cpus are walking the array of pointers in parallel.
1749  */
1750 struct bpf_prog_array_item {
1751 	struct bpf_prog *prog;
1752 	union {
1753 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1754 		u64 bpf_cookie;
1755 	};
1756 };
1757 
1758 struct bpf_prog_array {
1759 	struct rcu_head rcu;
1760 	struct bpf_prog_array_item items[];
1761 };
1762 
1763 struct bpf_empty_prog_array {
1764 	struct bpf_prog_array hdr;
1765 	struct bpf_prog *null_prog;
1766 };
1767 
1768 /* to avoid allocating empty bpf_prog_array for cgroups that
1769  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1770  * It will not be modified the caller of bpf_prog_array_alloc()
1771  * (since caller requested prog_cnt == 0)
1772  * that pointer should be 'freed' by bpf_prog_array_free()
1773  */
1774 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1775 
1776 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1777 void bpf_prog_array_free(struct bpf_prog_array *progs);
1778 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1779 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1780 int bpf_prog_array_length(struct bpf_prog_array *progs);
1781 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1782 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1783 				__u32 __user *prog_ids, u32 cnt);
1784 
1785 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1786 				struct bpf_prog *old_prog);
1787 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1788 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1789 			     struct bpf_prog *prog);
1790 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1791 			     u32 *prog_ids, u32 request_cnt,
1792 			     u32 *prog_cnt);
1793 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1794 			struct bpf_prog *exclude_prog,
1795 			struct bpf_prog *include_prog,
1796 			u64 bpf_cookie,
1797 			struct bpf_prog_array **new_array);
1798 
1799 struct bpf_run_ctx {};
1800 
1801 struct bpf_cg_run_ctx {
1802 	struct bpf_run_ctx run_ctx;
1803 	const struct bpf_prog_array_item *prog_item;
1804 	int retval;
1805 };
1806 
1807 struct bpf_trace_run_ctx {
1808 	struct bpf_run_ctx run_ctx;
1809 	u64 bpf_cookie;
1810 };
1811 
1812 struct bpf_tramp_run_ctx {
1813 	struct bpf_run_ctx run_ctx;
1814 	u64 bpf_cookie;
1815 	struct bpf_run_ctx *saved_run_ctx;
1816 };
1817 
1818 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1819 {
1820 	struct bpf_run_ctx *old_ctx = NULL;
1821 
1822 #ifdef CONFIG_BPF_SYSCALL
1823 	old_ctx = current->bpf_ctx;
1824 	current->bpf_ctx = new_ctx;
1825 #endif
1826 	return old_ctx;
1827 }
1828 
1829 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1830 {
1831 #ifdef CONFIG_BPF_SYSCALL
1832 	current->bpf_ctx = old_ctx;
1833 #endif
1834 }
1835 
1836 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1837 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
1838 /* BPF program asks to set CN on the packet. */
1839 #define BPF_RET_SET_CN						(1 << 0)
1840 
1841 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1842 
1843 static __always_inline u32
1844 bpf_prog_run_array(const struct bpf_prog_array *array,
1845 		   const void *ctx, bpf_prog_run_fn run_prog)
1846 {
1847 	const struct bpf_prog_array_item *item;
1848 	const struct bpf_prog *prog;
1849 	struct bpf_run_ctx *old_run_ctx;
1850 	struct bpf_trace_run_ctx run_ctx;
1851 	u32 ret = 1;
1852 
1853 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1854 
1855 	if (unlikely(!array))
1856 		return ret;
1857 
1858 	migrate_disable();
1859 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1860 	item = &array->items[0];
1861 	while ((prog = READ_ONCE(item->prog))) {
1862 		run_ctx.bpf_cookie = item->bpf_cookie;
1863 		ret &= run_prog(prog, ctx);
1864 		item++;
1865 	}
1866 	bpf_reset_run_ctx(old_run_ctx);
1867 	migrate_enable();
1868 	return ret;
1869 }
1870 
1871 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1872  *
1873  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1874  * overall. As a result, we must use the bpf_prog_array_free_sleepable
1875  * in order to use the tasks_trace rcu grace period.
1876  *
1877  * When a non-sleepable program is inside the array, we take the rcu read
1878  * section and disable preemption for that program alone, so it can access
1879  * rcu-protected dynamically sized maps.
1880  */
1881 static __always_inline u32
1882 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu,
1883 			     const void *ctx, bpf_prog_run_fn run_prog)
1884 {
1885 	const struct bpf_prog_array_item *item;
1886 	const struct bpf_prog *prog;
1887 	const struct bpf_prog_array *array;
1888 	struct bpf_run_ctx *old_run_ctx;
1889 	struct bpf_trace_run_ctx run_ctx;
1890 	u32 ret = 1;
1891 
1892 	might_fault();
1893 
1894 	rcu_read_lock_trace();
1895 	migrate_disable();
1896 
1897 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1898 	if (unlikely(!array))
1899 		goto out;
1900 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1901 	item = &array->items[0];
1902 	while ((prog = READ_ONCE(item->prog))) {
1903 		if (!prog->aux->sleepable)
1904 			rcu_read_lock();
1905 
1906 		run_ctx.bpf_cookie = item->bpf_cookie;
1907 		ret &= run_prog(prog, ctx);
1908 		item++;
1909 
1910 		if (!prog->aux->sleepable)
1911 			rcu_read_unlock();
1912 	}
1913 	bpf_reset_run_ctx(old_run_ctx);
1914 out:
1915 	migrate_enable();
1916 	rcu_read_unlock_trace();
1917 	return ret;
1918 }
1919 
1920 #ifdef CONFIG_BPF_SYSCALL
1921 DECLARE_PER_CPU(int, bpf_prog_active);
1922 extern struct mutex bpf_stats_enabled_mutex;
1923 
1924 /*
1925  * Block execution of BPF programs attached to instrumentation (perf,
1926  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
1927  * these events can happen inside a region which holds a map bucket lock
1928  * and can deadlock on it.
1929  */
1930 static inline void bpf_disable_instrumentation(void)
1931 {
1932 	migrate_disable();
1933 	this_cpu_inc(bpf_prog_active);
1934 }
1935 
1936 static inline void bpf_enable_instrumentation(void)
1937 {
1938 	this_cpu_dec(bpf_prog_active);
1939 	migrate_enable();
1940 }
1941 
1942 extern const struct file_operations bpf_map_fops;
1943 extern const struct file_operations bpf_prog_fops;
1944 extern const struct file_operations bpf_iter_fops;
1945 
1946 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
1947 	extern const struct bpf_prog_ops _name ## _prog_ops; \
1948 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
1949 #define BPF_MAP_TYPE(_id, _ops) \
1950 	extern const struct bpf_map_ops _ops;
1951 #define BPF_LINK_TYPE(_id, _name)
1952 #include <linux/bpf_types.h>
1953 #undef BPF_PROG_TYPE
1954 #undef BPF_MAP_TYPE
1955 #undef BPF_LINK_TYPE
1956 
1957 extern const struct bpf_prog_ops bpf_offload_prog_ops;
1958 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
1959 extern const struct bpf_verifier_ops xdp_analyzer_ops;
1960 
1961 struct bpf_prog *bpf_prog_get(u32 ufd);
1962 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
1963 				       bool attach_drv);
1964 void bpf_prog_add(struct bpf_prog *prog, int i);
1965 void bpf_prog_sub(struct bpf_prog *prog, int i);
1966 void bpf_prog_inc(struct bpf_prog *prog);
1967 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
1968 void bpf_prog_put(struct bpf_prog *prog);
1969 
1970 void bpf_prog_free_id(struct bpf_prog *prog);
1971 void bpf_map_free_id(struct bpf_map *map);
1972 
1973 struct btf_field *btf_record_find(const struct btf_record *rec,
1974 				  u32 offset, u32 field_mask);
1975 void btf_record_free(struct btf_record *rec);
1976 void bpf_map_free_record(struct bpf_map *map);
1977 struct btf_record *btf_record_dup(const struct btf_record *rec);
1978 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
1979 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
1980 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
1981 
1982 struct bpf_map *bpf_map_get(u32 ufd);
1983 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
1984 struct bpf_map *__bpf_map_get(struct fd f);
1985 void bpf_map_inc(struct bpf_map *map);
1986 void bpf_map_inc_with_uref(struct bpf_map *map);
1987 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
1988 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
1989 void bpf_map_put_with_uref(struct bpf_map *map);
1990 void bpf_map_put(struct bpf_map *map);
1991 void *bpf_map_area_alloc(u64 size, int numa_node);
1992 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
1993 void bpf_map_area_free(void *base);
1994 bool bpf_map_write_active(const struct bpf_map *map);
1995 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
1996 int  generic_map_lookup_batch(struct bpf_map *map,
1997 			      const union bpf_attr *attr,
1998 			      union bpf_attr __user *uattr);
1999 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2000 			      const union bpf_attr *attr,
2001 			      union bpf_attr __user *uattr);
2002 int  generic_map_delete_batch(struct bpf_map *map,
2003 			      const union bpf_attr *attr,
2004 			      union bpf_attr __user *uattr);
2005 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2006 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2007 
2008 #ifdef CONFIG_MEMCG_KMEM
2009 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2010 			   int node);
2011 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2012 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2013 		       gfp_t flags);
2014 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2015 				    size_t align, gfp_t flags);
2016 #else
2017 static inline void *
2018 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2019 		     int node)
2020 {
2021 	return kmalloc_node(size, flags, node);
2022 }
2023 
2024 static inline void *
2025 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2026 {
2027 	return kzalloc(size, flags);
2028 }
2029 
2030 static inline void *
2031 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2032 {
2033 	return kvcalloc(n, size, flags);
2034 }
2035 
2036 static inline void __percpu *
2037 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2038 		     gfp_t flags)
2039 {
2040 	return __alloc_percpu_gfp(size, align, flags);
2041 }
2042 #endif
2043 
2044 static inline int
2045 bpf_map_init_elem_count(struct bpf_map *map)
2046 {
2047 	size_t size = sizeof(*map->elem_count), align = size;
2048 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2049 
2050 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2051 	if (!map->elem_count)
2052 		return -ENOMEM;
2053 
2054 	return 0;
2055 }
2056 
2057 static inline void
2058 bpf_map_free_elem_count(struct bpf_map *map)
2059 {
2060 	free_percpu(map->elem_count);
2061 }
2062 
2063 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2064 {
2065 	this_cpu_inc(*map->elem_count);
2066 }
2067 
2068 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2069 {
2070 	this_cpu_dec(*map->elem_count);
2071 }
2072 
2073 extern int sysctl_unprivileged_bpf_disabled;
2074 
2075 static inline bool bpf_allow_ptr_leaks(void)
2076 {
2077 	return perfmon_capable();
2078 }
2079 
2080 static inline bool bpf_allow_uninit_stack(void)
2081 {
2082 	return perfmon_capable();
2083 }
2084 
2085 static inline bool bpf_bypass_spec_v1(void)
2086 {
2087 	return perfmon_capable();
2088 }
2089 
2090 static inline bool bpf_bypass_spec_v4(void)
2091 {
2092 	return perfmon_capable();
2093 }
2094 
2095 int bpf_map_new_fd(struct bpf_map *map, int flags);
2096 int bpf_prog_new_fd(struct bpf_prog *prog);
2097 
2098 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2099 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2100 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2101 int bpf_link_settle(struct bpf_link_primer *primer);
2102 void bpf_link_cleanup(struct bpf_link_primer *primer);
2103 void bpf_link_inc(struct bpf_link *link);
2104 void bpf_link_put(struct bpf_link *link);
2105 int bpf_link_new_fd(struct bpf_link *link);
2106 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd);
2107 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2108 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2109 
2110 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2111 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2112 
2113 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2114 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2115 	extern int bpf_iter_ ## target(args);			\
2116 	int __init bpf_iter_ ## target(args) { return 0; }
2117 
2118 /*
2119  * The task type of iterators.
2120  *
2121  * For BPF task iterators, they can be parameterized with various
2122  * parameters to visit only some of tasks.
2123  *
2124  * BPF_TASK_ITER_ALL (default)
2125  *	Iterate over resources of every task.
2126  *
2127  * BPF_TASK_ITER_TID
2128  *	Iterate over resources of a task/tid.
2129  *
2130  * BPF_TASK_ITER_TGID
2131  *	Iterate over resources of every task of a process / task group.
2132  */
2133 enum bpf_iter_task_type {
2134 	BPF_TASK_ITER_ALL = 0,
2135 	BPF_TASK_ITER_TID,
2136 	BPF_TASK_ITER_TGID,
2137 };
2138 
2139 struct bpf_iter_aux_info {
2140 	/* for map_elem iter */
2141 	struct bpf_map *map;
2142 
2143 	/* for cgroup iter */
2144 	struct {
2145 		struct cgroup *start; /* starting cgroup */
2146 		enum bpf_cgroup_iter_order order;
2147 	} cgroup;
2148 	struct {
2149 		enum bpf_iter_task_type	type;
2150 		u32 pid;
2151 	} task;
2152 };
2153 
2154 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2155 					union bpf_iter_link_info *linfo,
2156 					struct bpf_iter_aux_info *aux);
2157 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2158 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2159 					struct seq_file *seq);
2160 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2161 					 struct bpf_link_info *info);
2162 typedef const struct bpf_func_proto *
2163 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2164 			     const struct bpf_prog *prog);
2165 
2166 enum bpf_iter_feature {
2167 	BPF_ITER_RESCHED	= BIT(0),
2168 };
2169 
2170 #define BPF_ITER_CTX_ARG_MAX 2
2171 struct bpf_iter_reg {
2172 	const char *target;
2173 	bpf_iter_attach_target_t attach_target;
2174 	bpf_iter_detach_target_t detach_target;
2175 	bpf_iter_show_fdinfo_t show_fdinfo;
2176 	bpf_iter_fill_link_info_t fill_link_info;
2177 	bpf_iter_get_func_proto_t get_func_proto;
2178 	u32 ctx_arg_info_size;
2179 	u32 feature;
2180 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2181 	const struct bpf_iter_seq_info *seq_info;
2182 };
2183 
2184 struct bpf_iter_meta {
2185 	__bpf_md_ptr(struct seq_file *, seq);
2186 	u64 session_id;
2187 	u64 seq_num;
2188 };
2189 
2190 struct bpf_iter__bpf_map_elem {
2191 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2192 	__bpf_md_ptr(struct bpf_map *, map);
2193 	__bpf_md_ptr(void *, key);
2194 	__bpf_md_ptr(void *, value);
2195 };
2196 
2197 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2198 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2199 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2200 const struct bpf_func_proto *
2201 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2202 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2203 int bpf_iter_new_fd(struct bpf_link *link);
2204 bool bpf_link_is_iter(struct bpf_link *link);
2205 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2206 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2207 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2208 			      struct seq_file *seq);
2209 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2210 				struct bpf_link_info *info);
2211 
2212 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2213 				   struct bpf_func_state *caller,
2214 				   struct bpf_func_state *callee);
2215 
2216 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2217 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2218 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2219 			   u64 flags);
2220 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2221 			    u64 flags);
2222 
2223 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2224 
2225 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2226 				 void *key, void *value, u64 map_flags);
2227 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2228 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2229 				void *key, void *value, u64 map_flags);
2230 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2231 
2232 int bpf_get_file_flag(int flags);
2233 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2234 			     size_t actual_size);
2235 
2236 /* verify correctness of eBPF program */
2237 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2238 
2239 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2240 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2241 #endif
2242 
2243 struct btf *bpf_get_btf_vmlinux(void);
2244 
2245 /* Map specifics */
2246 struct xdp_frame;
2247 struct sk_buff;
2248 struct bpf_dtab_netdev;
2249 struct bpf_cpu_map_entry;
2250 
2251 void __dev_flush(void);
2252 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2253 		    struct net_device *dev_rx);
2254 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2255 		    struct net_device *dev_rx);
2256 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2257 			  struct bpf_map *map, bool exclude_ingress);
2258 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2259 			     struct bpf_prog *xdp_prog);
2260 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2261 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2262 			   bool exclude_ingress);
2263 
2264 void __cpu_map_flush(void);
2265 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2266 		    struct net_device *dev_rx);
2267 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2268 			     struct sk_buff *skb);
2269 
2270 /* Return map's numa specified by userspace */
2271 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2272 {
2273 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2274 		attr->numa_node : NUMA_NO_NODE;
2275 }
2276 
2277 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2278 int array_map_alloc_check(union bpf_attr *attr);
2279 
2280 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2281 			  union bpf_attr __user *uattr);
2282 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2283 			  union bpf_attr __user *uattr);
2284 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2285 			      const union bpf_attr *kattr,
2286 			      union bpf_attr __user *uattr);
2287 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2288 				     const union bpf_attr *kattr,
2289 				     union bpf_attr __user *uattr);
2290 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2291 			     const union bpf_attr *kattr,
2292 			     union bpf_attr __user *uattr);
2293 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2294 				const union bpf_attr *kattr,
2295 				union bpf_attr __user *uattr);
2296 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2297 			 const union bpf_attr *kattr,
2298 			 union bpf_attr __user *uattr);
2299 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2300 		    const struct bpf_prog *prog,
2301 		    struct bpf_insn_access_aux *info);
2302 
2303 static inline bool bpf_tracing_ctx_access(int off, int size,
2304 					  enum bpf_access_type type)
2305 {
2306 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2307 		return false;
2308 	if (type != BPF_READ)
2309 		return false;
2310 	if (off % size != 0)
2311 		return false;
2312 	return true;
2313 }
2314 
2315 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2316 					      enum bpf_access_type type,
2317 					      const struct bpf_prog *prog,
2318 					      struct bpf_insn_access_aux *info)
2319 {
2320 	if (!bpf_tracing_ctx_access(off, size, type))
2321 		return false;
2322 	return btf_ctx_access(off, size, type, prog, info);
2323 }
2324 
2325 int btf_struct_access(struct bpf_verifier_log *log,
2326 		      const struct bpf_reg_state *reg,
2327 		      int off, int size, enum bpf_access_type atype,
2328 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2329 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2330 			  const struct btf *btf, u32 id, int off,
2331 			  const struct btf *need_btf, u32 need_type_id,
2332 			  bool strict);
2333 
2334 int btf_distill_func_proto(struct bpf_verifier_log *log,
2335 			   struct btf *btf,
2336 			   const struct btf_type *func_proto,
2337 			   const char *func_name,
2338 			   struct btf_func_model *m);
2339 
2340 struct bpf_reg_state;
2341 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2342 				struct bpf_reg_state *regs);
2343 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2344 			   struct bpf_reg_state *regs);
2345 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2346 			  struct bpf_reg_state *reg);
2347 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2348 			 struct btf *btf, const struct btf_type *t);
2349 
2350 struct bpf_prog *bpf_prog_by_id(u32 id);
2351 struct bpf_link *bpf_link_by_id(u32 id);
2352 
2353 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2354 void bpf_task_storage_free(struct task_struct *task);
2355 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2356 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2357 const struct btf_func_model *
2358 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2359 			 const struct bpf_insn *insn);
2360 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2361 		       u16 btf_fd_idx, u8 **func_addr);
2362 
2363 struct bpf_core_ctx {
2364 	struct bpf_verifier_log *log;
2365 	const struct btf *btf;
2366 };
2367 
2368 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2369 				const struct bpf_reg_state *reg,
2370 				const char *field_name, u32 btf_id, const char *suffix);
2371 
2372 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2373 			       const struct btf *reg_btf, u32 reg_id,
2374 			       const struct btf *arg_btf, u32 arg_id);
2375 
2376 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2377 		   int relo_idx, void *insn);
2378 
2379 static inline bool unprivileged_ebpf_enabled(void)
2380 {
2381 	return !sysctl_unprivileged_bpf_disabled;
2382 }
2383 
2384 /* Not all bpf prog type has the bpf_ctx.
2385  * For the bpf prog type that has initialized the bpf_ctx,
2386  * this function can be used to decide if a kernel function
2387  * is called by a bpf program.
2388  */
2389 static inline bool has_current_bpf_ctx(void)
2390 {
2391 	return !!current->bpf_ctx;
2392 }
2393 
2394 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2395 
2396 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2397 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2398 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2399 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2400 #else /* !CONFIG_BPF_SYSCALL */
2401 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2402 {
2403 	return ERR_PTR(-EOPNOTSUPP);
2404 }
2405 
2406 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2407 						     enum bpf_prog_type type,
2408 						     bool attach_drv)
2409 {
2410 	return ERR_PTR(-EOPNOTSUPP);
2411 }
2412 
2413 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2414 {
2415 }
2416 
2417 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2418 {
2419 }
2420 
2421 static inline void bpf_prog_put(struct bpf_prog *prog)
2422 {
2423 }
2424 
2425 static inline void bpf_prog_inc(struct bpf_prog *prog)
2426 {
2427 }
2428 
2429 static inline struct bpf_prog *__must_check
2430 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2431 {
2432 	return ERR_PTR(-EOPNOTSUPP);
2433 }
2434 
2435 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2436 				 const struct bpf_link_ops *ops,
2437 				 struct bpf_prog *prog)
2438 {
2439 }
2440 
2441 static inline int bpf_link_prime(struct bpf_link *link,
2442 				 struct bpf_link_primer *primer)
2443 {
2444 	return -EOPNOTSUPP;
2445 }
2446 
2447 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2448 {
2449 	return -EOPNOTSUPP;
2450 }
2451 
2452 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2453 {
2454 }
2455 
2456 static inline void bpf_link_inc(struct bpf_link *link)
2457 {
2458 }
2459 
2460 static inline void bpf_link_put(struct bpf_link *link)
2461 {
2462 }
2463 
2464 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2465 {
2466 	return -EOPNOTSUPP;
2467 }
2468 
2469 static inline void __dev_flush(void)
2470 {
2471 }
2472 
2473 struct xdp_frame;
2474 struct bpf_dtab_netdev;
2475 struct bpf_cpu_map_entry;
2476 
2477 static inline
2478 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2479 		    struct net_device *dev_rx)
2480 {
2481 	return 0;
2482 }
2483 
2484 static inline
2485 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2486 		    struct net_device *dev_rx)
2487 {
2488 	return 0;
2489 }
2490 
2491 static inline
2492 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2493 			  struct bpf_map *map, bool exclude_ingress)
2494 {
2495 	return 0;
2496 }
2497 
2498 struct sk_buff;
2499 
2500 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2501 					   struct sk_buff *skb,
2502 					   struct bpf_prog *xdp_prog)
2503 {
2504 	return 0;
2505 }
2506 
2507 static inline
2508 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2509 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2510 			   bool exclude_ingress)
2511 {
2512 	return 0;
2513 }
2514 
2515 static inline void __cpu_map_flush(void)
2516 {
2517 }
2518 
2519 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2520 				  struct xdp_frame *xdpf,
2521 				  struct net_device *dev_rx)
2522 {
2523 	return 0;
2524 }
2525 
2526 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2527 					   struct sk_buff *skb)
2528 {
2529 	return -EOPNOTSUPP;
2530 }
2531 
2532 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2533 				enum bpf_prog_type type)
2534 {
2535 	return ERR_PTR(-EOPNOTSUPP);
2536 }
2537 
2538 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2539 					const union bpf_attr *kattr,
2540 					union bpf_attr __user *uattr)
2541 {
2542 	return -ENOTSUPP;
2543 }
2544 
2545 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2546 					const union bpf_attr *kattr,
2547 					union bpf_attr __user *uattr)
2548 {
2549 	return -ENOTSUPP;
2550 }
2551 
2552 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2553 					    const union bpf_attr *kattr,
2554 					    union bpf_attr __user *uattr)
2555 {
2556 	return -ENOTSUPP;
2557 }
2558 
2559 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2560 						   const union bpf_attr *kattr,
2561 						   union bpf_attr __user *uattr)
2562 {
2563 	return -ENOTSUPP;
2564 }
2565 
2566 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2567 					      const union bpf_attr *kattr,
2568 					      union bpf_attr __user *uattr)
2569 {
2570 	return -ENOTSUPP;
2571 }
2572 
2573 static inline void bpf_map_put(struct bpf_map *map)
2574 {
2575 }
2576 
2577 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2578 {
2579 	return ERR_PTR(-ENOTSUPP);
2580 }
2581 
2582 static inline int btf_struct_access(struct bpf_verifier_log *log,
2583 				    const struct bpf_reg_state *reg,
2584 				    int off, int size, enum bpf_access_type atype,
2585 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2586 				    const char **field_name)
2587 {
2588 	return -EACCES;
2589 }
2590 
2591 static inline const struct bpf_func_proto *
2592 bpf_base_func_proto(enum bpf_func_id func_id)
2593 {
2594 	return NULL;
2595 }
2596 
2597 static inline void bpf_task_storage_free(struct task_struct *task)
2598 {
2599 }
2600 
2601 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2602 {
2603 	return false;
2604 }
2605 
2606 static inline const struct btf_func_model *
2607 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2608 			 const struct bpf_insn *insn)
2609 {
2610 	return NULL;
2611 }
2612 
2613 static inline int
2614 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2615 		   u16 btf_fd_idx, u8 **func_addr)
2616 {
2617 	return -ENOTSUPP;
2618 }
2619 
2620 static inline bool unprivileged_ebpf_enabled(void)
2621 {
2622 	return false;
2623 }
2624 
2625 static inline bool has_current_bpf_ctx(void)
2626 {
2627 	return false;
2628 }
2629 
2630 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2631 {
2632 }
2633 
2634 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2635 {
2636 }
2637 
2638 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2639 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2640 {
2641 }
2642 
2643 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2644 {
2645 }
2646 
2647 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2648 {
2649 }
2650 #endif /* CONFIG_BPF_SYSCALL */
2651 
2652 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2653 			  struct btf_mod_pair *used_btfs, u32 len);
2654 
2655 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2656 						 enum bpf_prog_type type)
2657 {
2658 	return bpf_prog_get_type_dev(ufd, type, false);
2659 }
2660 
2661 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2662 			  struct bpf_map **used_maps, u32 len);
2663 
2664 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2665 
2666 int bpf_prog_offload_compile(struct bpf_prog *prog);
2667 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2668 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2669 			       struct bpf_prog *prog);
2670 
2671 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2672 
2673 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2674 int bpf_map_offload_update_elem(struct bpf_map *map,
2675 				void *key, void *value, u64 flags);
2676 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2677 int bpf_map_offload_get_next_key(struct bpf_map *map,
2678 				 void *key, void *next_key);
2679 
2680 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2681 
2682 struct bpf_offload_dev *
2683 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2684 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2685 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2686 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2687 				    struct net_device *netdev);
2688 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2689 				       struct net_device *netdev);
2690 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2691 
2692 void unpriv_ebpf_notify(int new_state);
2693 
2694 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2695 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2696 			      struct bpf_prog_aux *prog_aux);
2697 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2698 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2699 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2700 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2701 
2702 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2703 {
2704 	return aux->dev_bound;
2705 }
2706 
2707 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2708 {
2709 	return aux->offload_requested;
2710 }
2711 
2712 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2713 
2714 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2715 {
2716 	return unlikely(map->ops == &bpf_map_offload_ops);
2717 }
2718 
2719 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2720 void bpf_map_offload_map_free(struct bpf_map *map);
2721 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2722 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2723 			      const union bpf_attr *kattr,
2724 			      union bpf_attr __user *uattr);
2725 
2726 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2727 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2728 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2729 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2730 			    union bpf_attr __user *uattr);
2731 
2732 void sock_map_unhash(struct sock *sk);
2733 void sock_map_destroy(struct sock *sk);
2734 void sock_map_close(struct sock *sk, long timeout);
2735 #else
2736 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2737 					    struct bpf_prog_aux *prog_aux)
2738 {
2739 	return -EOPNOTSUPP;
2740 }
2741 
2742 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2743 						u32 func_id)
2744 {
2745 	return NULL;
2746 }
2747 
2748 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2749 					  union bpf_attr *attr)
2750 {
2751 	return -EOPNOTSUPP;
2752 }
2753 
2754 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2755 					     struct bpf_prog *old_prog)
2756 {
2757 	return -EOPNOTSUPP;
2758 }
2759 
2760 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2761 {
2762 }
2763 
2764 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2765 {
2766 	return false;
2767 }
2768 
2769 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2770 {
2771 	return false;
2772 }
2773 
2774 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2775 {
2776 	return false;
2777 }
2778 
2779 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2780 {
2781 	return false;
2782 }
2783 
2784 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2785 {
2786 	return ERR_PTR(-EOPNOTSUPP);
2787 }
2788 
2789 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2790 {
2791 }
2792 
2793 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2794 {
2795 	return 0;
2796 }
2797 
2798 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2799 					    const union bpf_attr *kattr,
2800 					    union bpf_attr __user *uattr)
2801 {
2802 	return -ENOTSUPP;
2803 }
2804 
2805 #ifdef CONFIG_BPF_SYSCALL
2806 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2807 				       struct bpf_prog *prog)
2808 {
2809 	return -EINVAL;
2810 }
2811 
2812 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2813 				       enum bpf_prog_type ptype)
2814 {
2815 	return -EOPNOTSUPP;
2816 }
2817 
2818 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2819 					   u64 flags)
2820 {
2821 	return -EOPNOTSUPP;
2822 }
2823 
2824 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2825 					  union bpf_attr __user *uattr)
2826 {
2827 	return -EINVAL;
2828 }
2829 #endif /* CONFIG_BPF_SYSCALL */
2830 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2831 
2832 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2833 void bpf_sk_reuseport_detach(struct sock *sk);
2834 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2835 				       void *value);
2836 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2837 				       void *value, u64 map_flags);
2838 #else
2839 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2840 {
2841 }
2842 
2843 #ifdef CONFIG_BPF_SYSCALL
2844 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2845 						     void *key, void *value)
2846 {
2847 	return -EOPNOTSUPP;
2848 }
2849 
2850 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2851 						     void *key, void *value,
2852 						     u64 map_flags)
2853 {
2854 	return -EOPNOTSUPP;
2855 }
2856 #endif /* CONFIG_BPF_SYSCALL */
2857 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2858 
2859 /* verifier prototypes for helper functions called from eBPF programs */
2860 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2861 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2862 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2863 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2864 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2865 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2866 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2867 
2868 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2869 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2870 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2871 extern const struct bpf_func_proto bpf_tail_call_proto;
2872 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2873 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2874 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2875 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2876 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2877 extern const struct bpf_func_proto bpf_get_current_comm_proto;
2878 extern const struct bpf_func_proto bpf_get_stackid_proto;
2879 extern const struct bpf_func_proto bpf_get_stack_proto;
2880 extern const struct bpf_func_proto bpf_get_task_stack_proto;
2881 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2882 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
2883 extern const struct bpf_func_proto bpf_sock_map_update_proto;
2884 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
2885 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
2886 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
2887 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
2888 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
2889 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
2890 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
2891 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
2892 extern const struct bpf_func_proto bpf_spin_lock_proto;
2893 extern const struct bpf_func_proto bpf_spin_unlock_proto;
2894 extern const struct bpf_func_proto bpf_get_local_storage_proto;
2895 extern const struct bpf_func_proto bpf_strtol_proto;
2896 extern const struct bpf_func_proto bpf_strtoul_proto;
2897 extern const struct bpf_func_proto bpf_tcp_sock_proto;
2898 extern const struct bpf_func_proto bpf_jiffies64_proto;
2899 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
2900 extern const struct bpf_func_proto bpf_event_output_data_proto;
2901 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
2902 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
2903 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
2904 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
2905 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
2906 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
2907 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
2908 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
2909 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
2910 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
2911 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
2912 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
2913 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
2914 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
2915 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
2916 extern const struct bpf_func_proto bpf_copy_from_user_proto;
2917 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
2918 extern const struct bpf_func_proto bpf_snprintf_proto;
2919 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
2920 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
2921 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
2922 extern const struct bpf_func_proto bpf_sock_from_file_proto;
2923 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
2924 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
2925 extern const struct bpf_func_proto bpf_task_storage_get_proto;
2926 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
2927 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
2928 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
2929 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
2930 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
2931 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
2932 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
2933 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
2934 extern const struct bpf_func_proto bpf_find_vma_proto;
2935 extern const struct bpf_func_proto bpf_loop_proto;
2936 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
2937 extern const struct bpf_func_proto bpf_set_retval_proto;
2938 extern const struct bpf_func_proto bpf_get_retval_proto;
2939 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
2940 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
2941 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
2942 
2943 const struct bpf_func_proto *tracing_prog_func_proto(
2944   enum bpf_func_id func_id, const struct bpf_prog *prog);
2945 
2946 /* Shared helpers among cBPF and eBPF. */
2947 void bpf_user_rnd_init_once(void);
2948 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2949 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2950 
2951 #if defined(CONFIG_NET)
2952 bool bpf_sock_common_is_valid_access(int off, int size,
2953 				     enum bpf_access_type type,
2954 				     struct bpf_insn_access_aux *info);
2955 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2956 			      struct bpf_insn_access_aux *info);
2957 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2958 				const struct bpf_insn *si,
2959 				struct bpf_insn *insn_buf,
2960 				struct bpf_prog *prog,
2961 				u32 *target_size);
2962 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2963 			       struct bpf_dynptr_kern *ptr);
2964 #else
2965 static inline bool bpf_sock_common_is_valid_access(int off, int size,
2966 						   enum bpf_access_type type,
2967 						   struct bpf_insn_access_aux *info)
2968 {
2969 	return false;
2970 }
2971 static inline bool bpf_sock_is_valid_access(int off, int size,
2972 					    enum bpf_access_type type,
2973 					    struct bpf_insn_access_aux *info)
2974 {
2975 	return false;
2976 }
2977 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2978 					      const struct bpf_insn *si,
2979 					      struct bpf_insn *insn_buf,
2980 					      struct bpf_prog *prog,
2981 					      u32 *target_size)
2982 {
2983 	return 0;
2984 }
2985 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2986 					     struct bpf_dynptr_kern *ptr)
2987 {
2988 	return -EOPNOTSUPP;
2989 }
2990 #endif
2991 
2992 #ifdef CONFIG_INET
2993 struct sk_reuseport_kern {
2994 	struct sk_buff *skb;
2995 	struct sock *sk;
2996 	struct sock *selected_sk;
2997 	struct sock *migrating_sk;
2998 	void *data_end;
2999 	u32 hash;
3000 	u32 reuseport_id;
3001 	bool bind_inany;
3002 };
3003 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3004 				  struct bpf_insn_access_aux *info);
3005 
3006 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3007 				    const struct bpf_insn *si,
3008 				    struct bpf_insn *insn_buf,
3009 				    struct bpf_prog *prog,
3010 				    u32 *target_size);
3011 
3012 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3013 				  struct bpf_insn_access_aux *info);
3014 
3015 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3016 				    const struct bpf_insn *si,
3017 				    struct bpf_insn *insn_buf,
3018 				    struct bpf_prog *prog,
3019 				    u32 *target_size);
3020 #else
3021 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3022 						enum bpf_access_type type,
3023 						struct bpf_insn_access_aux *info)
3024 {
3025 	return false;
3026 }
3027 
3028 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3029 						  const struct bpf_insn *si,
3030 						  struct bpf_insn *insn_buf,
3031 						  struct bpf_prog *prog,
3032 						  u32 *target_size)
3033 {
3034 	return 0;
3035 }
3036 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3037 						enum bpf_access_type type,
3038 						struct bpf_insn_access_aux *info)
3039 {
3040 	return false;
3041 }
3042 
3043 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3044 						  const struct bpf_insn *si,
3045 						  struct bpf_insn *insn_buf,
3046 						  struct bpf_prog *prog,
3047 						  u32 *target_size)
3048 {
3049 	return 0;
3050 }
3051 #endif /* CONFIG_INET */
3052 
3053 enum bpf_text_poke_type {
3054 	BPF_MOD_CALL,
3055 	BPF_MOD_JUMP,
3056 };
3057 
3058 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3059 		       void *addr1, void *addr2);
3060 
3061 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3062 int bpf_arch_text_invalidate(void *dst, size_t len);
3063 
3064 struct btf_id_set;
3065 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3066 
3067 #define MAX_BPRINTF_VARARGS		12
3068 #define MAX_BPRINTF_BUF			1024
3069 
3070 struct bpf_bprintf_data {
3071 	u32 *bin_args;
3072 	char *buf;
3073 	bool get_bin_args;
3074 	bool get_buf;
3075 };
3076 
3077 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3078 			u32 num_args, struct bpf_bprintf_data *data);
3079 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3080 
3081 #ifdef CONFIG_BPF_LSM
3082 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3083 void bpf_cgroup_atype_put(int cgroup_atype);
3084 #else
3085 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3086 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3087 #endif /* CONFIG_BPF_LSM */
3088 
3089 struct key;
3090 
3091 #ifdef CONFIG_KEYS
3092 struct bpf_key {
3093 	struct key *key;
3094 	bool has_ref;
3095 };
3096 #endif /* CONFIG_KEYS */
3097 
3098 static inline bool type_is_alloc(u32 type)
3099 {
3100 	return type & MEM_ALLOC;
3101 }
3102 
3103 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3104 {
3105 	if (memcg_bpf_enabled())
3106 		return flags | __GFP_ACCOUNT;
3107 	return flags;
3108 }
3109 
3110 #endif /* _LINUX_BPF_H */
3111