1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct sock; 41 struct seq_file; 42 struct btf; 43 struct btf_type; 44 struct exception_table_entry; 45 struct seq_operations; 46 struct bpf_iter_aux_info; 47 struct bpf_local_storage; 48 struct bpf_local_storage_map; 49 struct kobject; 50 struct mem_cgroup; 51 struct module; 52 struct bpf_func_state; 53 struct ftrace_ops; 54 struct cgroup; 55 struct bpf_token; 56 struct user_namespace; 57 struct super_block; 58 struct inode; 59 60 extern struct idr btf_idr; 61 extern spinlock_t btf_idr_lock; 62 extern struct kobject *btf_kobj; 63 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 64 extern bool bpf_global_ma_set; 65 66 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 67 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 68 struct bpf_iter_aux_info *aux); 69 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 70 typedef unsigned int (*bpf_func_t)(const void *, 71 const struct bpf_insn *); 72 struct bpf_iter_seq_info { 73 const struct seq_operations *seq_ops; 74 bpf_iter_init_seq_priv_t init_seq_private; 75 bpf_iter_fini_seq_priv_t fini_seq_private; 76 u32 seq_priv_size; 77 }; 78 79 /* map is generic key/value storage optionally accessible by eBPF programs */ 80 struct bpf_map_ops { 81 /* funcs callable from userspace (via syscall) */ 82 int (*map_alloc_check)(union bpf_attr *attr); 83 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 84 void (*map_release)(struct bpf_map *map, struct file *map_file); 85 void (*map_free)(struct bpf_map *map); 86 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 87 void (*map_release_uref)(struct bpf_map *map); 88 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 89 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 90 union bpf_attr __user *uattr); 91 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 92 void *value, u64 flags); 93 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 94 const union bpf_attr *attr, 95 union bpf_attr __user *uattr); 96 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 97 const union bpf_attr *attr, 98 union bpf_attr __user *uattr); 99 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 100 union bpf_attr __user *uattr); 101 102 /* funcs callable from userspace and from eBPF programs */ 103 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 104 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 105 long (*map_delete_elem)(struct bpf_map *map, void *key); 106 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 107 long (*map_pop_elem)(struct bpf_map *map, void *value); 108 long (*map_peek_elem)(struct bpf_map *map, void *value); 109 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 110 111 /* funcs called by prog_array and perf_event_array map */ 112 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 113 int fd); 114 /* If need_defer is true, the implementation should guarantee that 115 * the to-be-put element is still alive before the bpf program, which 116 * may manipulate it, exists. 117 */ 118 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 119 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 120 u32 (*map_fd_sys_lookup_elem)(void *ptr); 121 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 122 struct seq_file *m); 123 int (*map_check_btf)(const struct bpf_map *map, 124 const struct btf *btf, 125 const struct btf_type *key_type, 126 const struct btf_type *value_type); 127 128 /* Prog poke tracking helpers. */ 129 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 130 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 132 struct bpf_prog *new); 133 134 /* Direct value access helpers. */ 135 int (*map_direct_value_addr)(const struct bpf_map *map, 136 u64 *imm, u32 off); 137 int (*map_direct_value_meta)(const struct bpf_map *map, 138 u64 imm, u32 *off); 139 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 140 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 141 struct poll_table_struct *pts); 142 143 /* Functions called by bpf_local_storage maps */ 144 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 145 void *owner, u32 size); 146 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 147 void *owner, u32 size); 148 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 149 150 /* Misc helpers.*/ 151 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 152 153 /* map_meta_equal must be implemented for maps that can be 154 * used as an inner map. It is a runtime check to ensure 155 * an inner map can be inserted to an outer map. 156 * 157 * Some properties of the inner map has been used during the 158 * verification time. When inserting an inner map at the runtime, 159 * map_meta_equal has to ensure the inserting map has the same 160 * properties that the verifier has used earlier. 161 */ 162 bool (*map_meta_equal)(const struct bpf_map *meta0, 163 const struct bpf_map *meta1); 164 165 166 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 167 struct bpf_func_state *caller, 168 struct bpf_func_state *callee); 169 long (*map_for_each_callback)(struct bpf_map *map, 170 bpf_callback_t callback_fn, 171 void *callback_ctx, u64 flags); 172 173 u64 (*map_mem_usage)(const struct bpf_map *map); 174 175 /* BTF id of struct allocated by map_alloc */ 176 int *map_btf_id; 177 178 /* bpf_iter info used to open a seq_file */ 179 const struct bpf_iter_seq_info *iter_seq_info; 180 }; 181 182 enum { 183 /* Support at most 10 fields in a BTF type */ 184 BTF_FIELDS_MAX = 10, 185 }; 186 187 enum btf_field_type { 188 BPF_SPIN_LOCK = (1 << 0), 189 BPF_TIMER = (1 << 1), 190 BPF_KPTR_UNREF = (1 << 2), 191 BPF_KPTR_REF = (1 << 3), 192 BPF_KPTR_PERCPU = (1 << 4), 193 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 194 BPF_LIST_HEAD = (1 << 5), 195 BPF_LIST_NODE = (1 << 6), 196 BPF_RB_ROOT = (1 << 7), 197 BPF_RB_NODE = (1 << 8), 198 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 199 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 200 BPF_REFCOUNT = (1 << 9), 201 }; 202 203 typedef void (*btf_dtor_kfunc_t)(void *); 204 205 struct btf_field_kptr { 206 struct btf *btf; 207 struct module *module; 208 /* dtor used if btf_is_kernel(btf), otherwise the type is 209 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 210 */ 211 btf_dtor_kfunc_t dtor; 212 u32 btf_id; 213 }; 214 215 struct btf_field_graph_root { 216 struct btf *btf; 217 u32 value_btf_id; 218 u32 node_offset; 219 struct btf_record *value_rec; 220 }; 221 222 struct btf_field { 223 u32 offset; 224 u32 size; 225 enum btf_field_type type; 226 union { 227 struct btf_field_kptr kptr; 228 struct btf_field_graph_root graph_root; 229 }; 230 }; 231 232 struct btf_record { 233 u32 cnt; 234 u32 field_mask; 235 int spin_lock_off; 236 int timer_off; 237 int refcount_off; 238 struct btf_field fields[]; 239 }; 240 241 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 242 struct bpf_rb_node_kern { 243 struct rb_node rb_node; 244 void *owner; 245 } __attribute__((aligned(8))); 246 247 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 248 struct bpf_list_node_kern { 249 struct list_head list_head; 250 void *owner; 251 } __attribute__((aligned(8))); 252 253 struct bpf_map { 254 const struct bpf_map_ops *ops; 255 struct bpf_map *inner_map_meta; 256 #ifdef CONFIG_SECURITY 257 void *security; 258 #endif 259 enum bpf_map_type map_type; 260 u32 key_size; 261 u32 value_size; 262 u32 max_entries; 263 u64 map_extra; /* any per-map-type extra fields */ 264 u32 map_flags; 265 u32 id; 266 struct btf_record *record; 267 int numa_node; 268 u32 btf_key_type_id; 269 u32 btf_value_type_id; 270 u32 btf_vmlinux_value_type_id; 271 struct btf *btf; 272 #ifdef CONFIG_MEMCG_KMEM 273 struct obj_cgroup *objcg; 274 #endif 275 char name[BPF_OBJ_NAME_LEN]; 276 struct mutex freeze_mutex; 277 atomic64_t refcnt; 278 atomic64_t usercnt; 279 /* rcu is used before freeing and work is only used during freeing */ 280 union { 281 struct work_struct work; 282 struct rcu_head rcu; 283 }; 284 atomic64_t writecnt; 285 /* 'Ownership' of program-containing map is claimed by the first program 286 * that is going to use this map or by the first program which FD is 287 * stored in the map to make sure that all callers and callees have the 288 * same prog type, JITed flag and xdp_has_frags flag. 289 */ 290 struct { 291 spinlock_t lock; 292 enum bpf_prog_type type; 293 bool jited; 294 bool xdp_has_frags; 295 } owner; 296 bool bypass_spec_v1; 297 bool frozen; /* write-once; write-protected by freeze_mutex */ 298 bool free_after_mult_rcu_gp; 299 bool free_after_rcu_gp; 300 atomic64_t sleepable_refcnt; 301 s64 __percpu *elem_count; 302 }; 303 304 static inline const char *btf_field_type_name(enum btf_field_type type) 305 { 306 switch (type) { 307 case BPF_SPIN_LOCK: 308 return "bpf_spin_lock"; 309 case BPF_TIMER: 310 return "bpf_timer"; 311 case BPF_KPTR_UNREF: 312 case BPF_KPTR_REF: 313 return "kptr"; 314 case BPF_KPTR_PERCPU: 315 return "percpu_kptr"; 316 case BPF_LIST_HEAD: 317 return "bpf_list_head"; 318 case BPF_LIST_NODE: 319 return "bpf_list_node"; 320 case BPF_RB_ROOT: 321 return "bpf_rb_root"; 322 case BPF_RB_NODE: 323 return "bpf_rb_node"; 324 case BPF_REFCOUNT: 325 return "bpf_refcount"; 326 default: 327 WARN_ON_ONCE(1); 328 return "unknown"; 329 } 330 } 331 332 static inline u32 btf_field_type_size(enum btf_field_type type) 333 { 334 switch (type) { 335 case BPF_SPIN_LOCK: 336 return sizeof(struct bpf_spin_lock); 337 case BPF_TIMER: 338 return sizeof(struct bpf_timer); 339 case BPF_KPTR_UNREF: 340 case BPF_KPTR_REF: 341 case BPF_KPTR_PERCPU: 342 return sizeof(u64); 343 case BPF_LIST_HEAD: 344 return sizeof(struct bpf_list_head); 345 case BPF_LIST_NODE: 346 return sizeof(struct bpf_list_node); 347 case BPF_RB_ROOT: 348 return sizeof(struct bpf_rb_root); 349 case BPF_RB_NODE: 350 return sizeof(struct bpf_rb_node); 351 case BPF_REFCOUNT: 352 return sizeof(struct bpf_refcount); 353 default: 354 WARN_ON_ONCE(1); 355 return 0; 356 } 357 } 358 359 static inline u32 btf_field_type_align(enum btf_field_type type) 360 { 361 switch (type) { 362 case BPF_SPIN_LOCK: 363 return __alignof__(struct bpf_spin_lock); 364 case BPF_TIMER: 365 return __alignof__(struct bpf_timer); 366 case BPF_KPTR_UNREF: 367 case BPF_KPTR_REF: 368 case BPF_KPTR_PERCPU: 369 return __alignof__(u64); 370 case BPF_LIST_HEAD: 371 return __alignof__(struct bpf_list_head); 372 case BPF_LIST_NODE: 373 return __alignof__(struct bpf_list_node); 374 case BPF_RB_ROOT: 375 return __alignof__(struct bpf_rb_root); 376 case BPF_RB_NODE: 377 return __alignof__(struct bpf_rb_node); 378 case BPF_REFCOUNT: 379 return __alignof__(struct bpf_refcount); 380 default: 381 WARN_ON_ONCE(1); 382 return 0; 383 } 384 } 385 386 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 387 { 388 memset(addr, 0, field->size); 389 390 switch (field->type) { 391 case BPF_REFCOUNT: 392 refcount_set((refcount_t *)addr, 1); 393 break; 394 case BPF_RB_NODE: 395 RB_CLEAR_NODE((struct rb_node *)addr); 396 break; 397 case BPF_LIST_HEAD: 398 case BPF_LIST_NODE: 399 INIT_LIST_HEAD((struct list_head *)addr); 400 break; 401 case BPF_RB_ROOT: 402 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 403 case BPF_SPIN_LOCK: 404 case BPF_TIMER: 405 case BPF_KPTR_UNREF: 406 case BPF_KPTR_REF: 407 case BPF_KPTR_PERCPU: 408 break; 409 default: 410 WARN_ON_ONCE(1); 411 return; 412 } 413 } 414 415 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 416 { 417 if (IS_ERR_OR_NULL(rec)) 418 return false; 419 return rec->field_mask & type; 420 } 421 422 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 423 { 424 int i; 425 426 if (IS_ERR_OR_NULL(rec)) 427 return; 428 for (i = 0; i < rec->cnt; i++) 429 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 430 } 431 432 /* 'dst' must be a temporary buffer and should not point to memory that is being 433 * used in parallel by a bpf program or bpf syscall, otherwise the access from 434 * the bpf program or bpf syscall may be corrupted by the reinitialization, 435 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 436 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 437 * program or bpf syscall. 438 */ 439 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 440 { 441 bpf_obj_init(map->record, dst); 442 } 443 444 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 445 * forced to use 'long' read/writes to try to atomically copy long counters. 446 * Best-effort only. No barriers here, since it _will_ race with concurrent 447 * updates from BPF programs. Called from bpf syscall and mostly used with 448 * size 8 or 16 bytes, so ask compiler to inline it. 449 */ 450 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 451 { 452 const long *lsrc = src; 453 long *ldst = dst; 454 455 size /= sizeof(long); 456 while (size--) 457 data_race(*ldst++ = *lsrc++); 458 } 459 460 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 461 static inline void bpf_obj_memcpy(struct btf_record *rec, 462 void *dst, void *src, u32 size, 463 bool long_memcpy) 464 { 465 u32 curr_off = 0; 466 int i; 467 468 if (IS_ERR_OR_NULL(rec)) { 469 if (long_memcpy) 470 bpf_long_memcpy(dst, src, round_up(size, 8)); 471 else 472 memcpy(dst, src, size); 473 return; 474 } 475 476 for (i = 0; i < rec->cnt; i++) { 477 u32 next_off = rec->fields[i].offset; 478 u32 sz = next_off - curr_off; 479 480 memcpy(dst + curr_off, src + curr_off, sz); 481 curr_off += rec->fields[i].size + sz; 482 } 483 memcpy(dst + curr_off, src + curr_off, size - curr_off); 484 } 485 486 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 487 { 488 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 489 } 490 491 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 492 { 493 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 494 } 495 496 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 497 { 498 u32 curr_off = 0; 499 int i; 500 501 if (IS_ERR_OR_NULL(rec)) { 502 memset(dst, 0, size); 503 return; 504 } 505 506 for (i = 0; i < rec->cnt; i++) { 507 u32 next_off = rec->fields[i].offset; 508 u32 sz = next_off - curr_off; 509 510 memset(dst + curr_off, 0, sz); 511 curr_off += rec->fields[i].size + sz; 512 } 513 memset(dst + curr_off, 0, size - curr_off); 514 } 515 516 static inline void zero_map_value(struct bpf_map *map, void *dst) 517 { 518 bpf_obj_memzero(map->record, dst, map->value_size); 519 } 520 521 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 522 bool lock_src); 523 void bpf_timer_cancel_and_free(void *timer); 524 void bpf_list_head_free(const struct btf_field *field, void *list_head, 525 struct bpf_spin_lock *spin_lock); 526 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 527 struct bpf_spin_lock *spin_lock); 528 529 530 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 531 532 struct bpf_offload_dev; 533 struct bpf_offloaded_map; 534 535 struct bpf_map_dev_ops { 536 int (*map_get_next_key)(struct bpf_offloaded_map *map, 537 void *key, void *next_key); 538 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 539 void *key, void *value); 540 int (*map_update_elem)(struct bpf_offloaded_map *map, 541 void *key, void *value, u64 flags); 542 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 543 }; 544 545 struct bpf_offloaded_map { 546 struct bpf_map map; 547 struct net_device *netdev; 548 const struct bpf_map_dev_ops *dev_ops; 549 void *dev_priv; 550 struct list_head offloads; 551 }; 552 553 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 554 { 555 return container_of(map, struct bpf_offloaded_map, map); 556 } 557 558 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 559 { 560 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 561 } 562 563 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 564 { 565 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 566 map->ops->map_seq_show_elem; 567 } 568 569 int map_check_no_btf(const struct bpf_map *map, 570 const struct btf *btf, 571 const struct btf_type *key_type, 572 const struct btf_type *value_type); 573 574 bool bpf_map_meta_equal(const struct bpf_map *meta0, 575 const struct bpf_map *meta1); 576 577 extern const struct bpf_map_ops bpf_map_offload_ops; 578 579 /* bpf_type_flag contains a set of flags that are applicable to the values of 580 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 581 * or a memory is read-only. We classify types into two categories: base types 582 * and extended types. Extended types are base types combined with a type flag. 583 * 584 * Currently there are no more than 32 base types in arg_type, ret_type and 585 * reg_types. 586 */ 587 #define BPF_BASE_TYPE_BITS 8 588 589 enum bpf_type_flag { 590 /* PTR may be NULL. */ 591 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 592 593 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 594 * compatible with both mutable and immutable memory. 595 */ 596 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 597 598 /* MEM points to BPF ring buffer reservation. */ 599 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 600 601 /* MEM is in user address space. */ 602 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 603 604 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 605 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 606 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 607 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 608 * to the specified cpu. 609 */ 610 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 611 612 /* Indicates that the argument will be released. */ 613 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 614 615 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 616 * unreferenced and referenced kptr loaded from map value using a load 617 * instruction, so that they can only be dereferenced but not escape the 618 * BPF program into the kernel (i.e. cannot be passed as arguments to 619 * kfunc or bpf helpers). 620 */ 621 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 622 623 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 624 625 /* DYNPTR points to memory local to the bpf program. */ 626 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 627 628 /* DYNPTR points to a kernel-produced ringbuf record. */ 629 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 630 631 /* Size is known at compile time. */ 632 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 633 634 /* MEM is of an allocated object of type in program BTF. This is used to 635 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 636 */ 637 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 638 639 /* PTR was passed from the kernel in a trusted context, and may be 640 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 641 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 642 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 643 * without invoking bpf_kptr_xchg(). What we really need to know is 644 * whether a pointer is safe to pass to a kfunc or BPF helper function. 645 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 646 * helpers, they do not cover all possible instances of unsafe 647 * pointers. For example, a pointer that was obtained from walking a 648 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 649 * fact that it may be NULL, invalid, etc. This is due to backwards 650 * compatibility requirements, as this was the behavior that was first 651 * introduced when kptrs were added. The behavior is now considered 652 * deprecated, and PTR_UNTRUSTED will eventually be removed. 653 * 654 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 655 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 656 * For example, pointers passed to tracepoint arguments are considered 657 * PTR_TRUSTED, as are pointers that are passed to struct_ops 658 * callbacks. As alluded to above, pointers that are obtained from 659 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 660 * struct task_struct *task is PTR_TRUSTED, then accessing 661 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 662 * in a BPF register. Similarly, pointers passed to certain programs 663 * types such as kretprobes are not guaranteed to be valid, as they may 664 * for example contain an object that was recently freed. 665 */ 666 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 667 668 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 669 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 670 671 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 672 * Currently only valid for linked-list and rbtree nodes. If the nodes 673 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 674 */ 675 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 676 677 /* DYNPTR points to sk_buff */ 678 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 679 680 /* DYNPTR points to xdp_buff */ 681 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 682 683 __BPF_TYPE_FLAG_MAX, 684 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 685 }; 686 687 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 688 | DYNPTR_TYPE_XDP) 689 690 /* Max number of base types. */ 691 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 692 693 /* Max number of all types. */ 694 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 695 696 /* function argument constraints */ 697 enum bpf_arg_type { 698 ARG_DONTCARE = 0, /* unused argument in helper function */ 699 700 /* the following constraints used to prototype 701 * bpf_map_lookup/update/delete_elem() functions 702 */ 703 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 704 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 705 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 706 707 /* Used to prototype bpf_memcmp() and other functions that access data 708 * on eBPF program stack 709 */ 710 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 711 712 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 713 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 714 715 ARG_PTR_TO_CTX, /* pointer to context */ 716 ARG_ANYTHING, /* any (initialized) argument is ok */ 717 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 718 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 719 ARG_PTR_TO_INT, /* pointer to int */ 720 ARG_PTR_TO_LONG, /* pointer to long */ 721 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 722 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 723 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 724 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 725 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 726 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 727 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 728 ARG_PTR_TO_STACK, /* pointer to stack */ 729 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 730 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 731 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 732 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 733 __BPF_ARG_TYPE_MAX, 734 735 /* Extended arg_types. */ 736 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 737 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 738 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 739 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 740 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 741 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 742 /* pointer to memory does not need to be initialized, helper function must fill 743 * all bytes or clear them in error case. 744 */ 745 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 746 /* Pointer to valid memory of size known at compile time. */ 747 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 748 749 /* This must be the last entry. Its purpose is to ensure the enum is 750 * wide enough to hold the higher bits reserved for bpf_type_flag. 751 */ 752 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 753 }; 754 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 755 756 /* type of values returned from helper functions */ 757 enum bpf_return_type { 758 RET_INTEGER, /* function returns integer */ 759 RET_VOID, /* function doesn't return anything */ 760 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 761 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 762 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 763 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 764 RET_PTR_TO_MEM, /* returns a pointer to memory */ 765 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 766 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 767 __BPF_RET_TYPE_MAX, 768 769 /* Extended ret_types. */ 770 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 771 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 772 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 773 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 774 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 775 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 776 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 777 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 778 779 /* This must be the last entry. Its purpose is to ensure the enum is 780 * wide enough to hold the higher bits reserved for bpf_type_flag. 781 */ 782 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 783 }; 784 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 785 786 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 787 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 788 * instructions after verifying 789 */ 790 struct bpf_func_proto { 791 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 792 bool gpl_only; 793 bool pkt_access; 794 bool might_sleep; 795 enum bpf_return_type ret_type; 796 union { 797 struct { 798 enum bpf_arg_type arg1_type; 799 enum bpf_arg_type arg2_type; 800 enum bpf_arg_type arg3_type; 801 enum bpf_arg_type arg4_type; 802 enum bpf_arg_type arg5_type; 803 }; 804 enum bpf_arg_type arg_type[5]; 805 }; 806 union { 807 struct { 808 u32 *arg1_btf_id; 809 u32 *arg2_btf_id; 810 u32 *arg3_btf_id; 811 u32 *arg4_btf_id; 812 u32 *arg5_btf_id; 813 }; 814 u32 *arg_btf_id[5]; 815 struct { 816 size_t arg1_size; 817 size_t arg2_size; 818 size_t arg3_size; 819 size_t arg4_size; 820 size_t arg5_size; 821 }; 822 size_t arg_size[5]; 823 }; 824 int *ret_btf_id; /* return value btf_id */ 825 bool (*allowed)(const struct bpf_prog *prog); 826 }; 827 828 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 829 * the first argument to eBPF programs. 830 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 831 */ 832 struct bpf_context; 833 834 enum bpf_access_type { 835 BPF_READ = 1, 836 BPF_WRITE = 2 837 }; 838 839 /* types of values stored in eBPF registers */ 840 /* Pointer types represent: 841 * pointer 842 * pointer + imm 843 * pointer + (u16) var 844 * pointer + (u16) var + imm 845 * if (range > 0) then [ptr, ptr + range - off) is safe to access 846 * if (id > 0) means that some 'var' was added 847 * if (off > 0) means that 'imm' was added 848 */ 849 enum bpf_reg_type { 850 NOT_INIT = 0, /* nothing was written into register */ 851 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 852 PTR_TO_CTX, /* reg points to bpf_context */ 853 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 854 PTR_TO_MAP_VALUE, /* reg points to map element value */ 855 PTR_TO_MAP_KEY, /* reg points to a map element key */ 856 PTR_TO_STACK, /* reg == frame_pointer + offset */ 857 PTR_TO_PACKET_META, /* skb->data - meta_len */ 858 PTR_TO_PACKET, /* reg points to skb->data */ 859 PTR_TO_PACKET_END, /* skb->data + headlen */ 860 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 861 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 862 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 863 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 864 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 865 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 866 /* PTR_TO_BTF_ID points to a kernel struct that does not need 867 * to be null checked by the BPF program. This does not imply the 868 * pointer is _not_ null and in practice this can easily be a null 869 * pointer when reading pointer chains. The assumption is program 870 * context will handle null pointer dereference typically via fault 871 * handling. The verifier must keep this in mind and can make no 872 * assumptions about null or non-null when doing branch analysis. 873 * Further, when passed into helpers the helpers can not, without 874 * additional context, assume the value is non-null. 875 */ 876 PTR_TO_BTF_ID, 877 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 878 * been checked for null. Used primarily to inform the verifier 879 * an explicit null check is required for this struct. 880 */ 881 PTR_TO_MEM, /* reg points to valid memory region */ 882 PTR_TO_BUF, /* reg points to a read/write buffer */ 883 PTR_TO_FUNC, /* reg points to a bpf program function */ 884 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 885 __BPF_REG_TYPE_MAX, 886 887 /* Extended reg_types. */ 888 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 889 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 890 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 891 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 892 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 893 894 /* This must be the last entry. Its purpose is to ensure the enum is 895 * wide enough to hold the higher bits reserved for bpf_type_flag. 896 */ 897 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 898 }; 899 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 900 901 /* The information passed from prog-specific *_is_valid_access 902 * back to the verifier. 903 */ 904 struct bpf_insn_access_aux { 905 enum bpf_reg_type reg_type; 906 union { 907 int ctx_field_size; 908 struct { 909 struct btf *btf; 910 u32 btf_id; 911 }; 912 }; 913 struct bpf_verifier_log *log; /* for verbose logs */ 914 }; 915 916 static inline void 917 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 918 { 919 aux->ctx_field_size = size; 920 } 921 922 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 923 { 924 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 925 } 926 927 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 928 { 929 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 930 } 931 932 struct bpf_prog_ops { 933 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 934 union bpf_attr __user *uattr); 935 }; 936 937 struct bpf_reg_state; 938 struct bpf_verifier_ops { 939 /* return eBPF function prototype for verification */ 940 const struct bpf_func_proto * 941 (*get_func_proto)(enum bpf_func_id func_id, 942 const struct bpf_prog *prog); 943 944 /* return true if 'size' wide access at offset 'off' within bpf_context 945 * with 'type' (read or write) is allowed 946 */ 947 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 948 const struct bpf_prog *prog, 949 struct bpf_insn_access_aux *info); 950 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 951 const struct bpf_prog *prog); 952 int (*gen_ld_abs)(const struct bpf_insn *orig, 953 struct bpf_insn *insn_buf); 954 u32 (*convert_ctx_access)(enum bpf_access_type type, 955 const struct bpf_insn *src, 956 struct bpf_insn *dst, 957 struct bpf_prog *prog, u32 *target_size); 958 int (*btf_struct_access)(struct bpf_verifier_log *log, 959 const struct bpf_reg_state *reg, 960 int off, int size); 961 }; 962 963 struct bpf_prog_offload_ops { 964 /* verifier basic callbacks */ 965 int (*insn_hook)(struct bpf_verifier_env *env, 966 int insn_idx, int prev_insn_idx); 967 int (*finalize)(struct bpf_verifier_env *env); 968 /* verifier optimization callbacks (called after .finalize) */ 969 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 970 struct bpf_insn *insn); 971 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 972 /* program management callbacks */ 973 int (*prepare)(struct bpf_prog *prog); 974 int (*translate)(struct bpf_prog *prog); 975 void (*destroy)(struct bpf_prog *prog); 976 }; 977 978 struct bpf_prog_offload { 979 struct bpf_prog *prog; 980 struct net_device *netdev; 981 struct bpf_offload_dev *offdev; 982 void *dev_priv; 983 struct list_head offloads; 984 bool dev_state; 985 bool opt_failed; 986 void *jited_image; 987 u32 jited_len; 988 }; 989 990 enum bpf_cgroup_storage_type { 991 BPF_CGROUP_STORAGE_SHARED, 992 BPF_CGROUP_STORAGE_PERCPU, 993 __BPF_CGROUP_STORAGE_MAX 994 }; 995 996 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 997 998 /* The longest tracepoint has 12 args. 999 * See include/trace/bpf_probe.h 1000 */ 1001 #define MAX_BPF_FUNC_ARGS 12 1002 1003 /* The maximum number of arguments passed through registers 1004 * a single function may have. 1005 */ 1006 #define MAX_BPF_FUNC_REG_ARGS 5 1007 1008 /* The argument is a structure. */ 1009 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1010 1011 /* The argument is signed. */ 1012 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1013 1014 struct btf_func_model { 1015 u8 ret_size; 1016 u8 ret_flags; 1017 u8 nr_args; 1018 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1019 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1020 }; 1021 1022 /* Restore arguments before returning from trampoline to let original function 1023 * continue executing. This flag is used for fentry progs when there are no 1024 * fexit progs. 1025 */ 1026 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1027 /* Call original function after fentry progs, but before fexit progs. 1028 * Makes sense for fentry/fexit, normal calls and indirect calls. 1029 */ 1030 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1031 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1032 * programs only. Should not be used with normal calls and indirect calls. 1033 */ 1034 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1035 /* Store IP address of the caller on the trampoline stack, 1036 * so it's available for trampoline's programs. 1037 */ 1038 #define BPF_TRAMP_F_IP_ARG BIT(3) 1039 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1040 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1041 1042 /* Get original function from stack instead of from provided direct address. 1043 * Makes sense for trampolines with fexit or fmod_ret programs. 1044 */ 1045 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1046 1047 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1048 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1049 */ 1050 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1051 1052 /* Indicate that current trampoline is in a tail call context. Then, it has to 1053 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1054 */ 1055 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1056 1057 /* 1058 * Indicate the trampoline should be suitable to receive indirect calls; 1059 * without this indirectly calling the generated code can result in #UD/#CP, 1060 * depending on the CFI options. 1061 * 1062 * Used by bpf_struct_ops. 1063 * 1064 * Incompatible with FENTRY usage, overloads @func_addr argument. 1065 */ 1066 #define BPF_TRAMP_F_INDIRECT BIT(8) 1067 1068 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1069 * bytes on x86. 1070 */ 1071 enum { 1072 #if defined(__s390x__) 1073 BPF_MAX_TRAMP_LINKS = 27, 1074 #else 1075 BPF_MAX_TRAMP_LINKS = 38, 1076 #endif 1077 }; 1078 1079 struct bpf_tramp_links { 1080 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1081 int nr_links; 1082 }; 1083 1084 struct bpf_tramp_run_ctx; 1085 1086 /* Different use cases for BPF trampoline: 1087 * 1. replace nop at the function entry (kprobe equivalent) 1088 * flags = BPF_TRAMP_F_RESTORE_REGS 1089 * fentry = a set of programs to run before returning from trampoline 1090 * 1091 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1092 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1093 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1094 * fentry = a set of program to run before calling original function 1095 * fexit = a set of program to run after original function 1096 * 1097 * 3. replace direct call instruction anywhere in the function body 1098 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1099 * With flags = 0 1100 * fentry = a set of programs to run before returning from trampoline 1101 * With flags = BPF_TRAMP_F_CALL_ORIG 1102 * orig_call = original callback addr or direct function addr 1103 * fentry = a set of program to run before calling original function 1104 * fexit = a set of program to run after original function 1105 */ 1106 struct bpf_tramp_image; 1107 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1108 const struct btf_func_model *m, u32 flags, 1109 struct bpf_tramp_links *tlinks, 1110 void *func_addr); 1111 void *arch_alloc_bpf_trampoline(unsigned int size); 1112 void arch_free_bpf_trampoline(void *image, unsigned int size); 1113 void arch_protect_bpf_trampoline(void *image, unsigned int size); 1114 void arch_unprotect_bpf_trampoline(void *image, unsigned int size); 1115 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1116 struct bpf_tramp_links *tlinks, void *func_addr); 1117 1118 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1119 struct bpf_tramp_run_ctx *run_ctx); 1120 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1121 struct bpf_tramp_run_ctx *run_ctx); 1122 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1123 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1124 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1125 struct bpf_tramp_run_ctx *run_ctx); 1126 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1127 struct bpf_tramp_run_ctx *run_ctx); 1128 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1129 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1130 1131 struct bpf_ksym { 1132 unsigned long start; 1133 unsigned long end; 1134 char name[KSYM_NAME_LEN]; 1135 struct list_head lnode; 1136 struct latch_tree_node tnode; 1137 bool prog; 1138 }; 1139 1140 enum bpf_tramp_prog_type { 1141 BPF_TRAMP_FENTRY, 1142 BPF_TRAMP_FEXIT, 1143 BPF_TRAMP_MODIFY_RETURN, 1144 BPF_TRAMP_MAX, 1145 BPF_TRAMP_REPLACE, /* more than MAX */ 1146 }; 1147 1148 struct bpf_tramp_image { 1149 void *image; 1150 int size; 1151 struct bpf_ksym ksym; 1152 struct percpu_ref pcref; 1153 void *ip_after_call; 1154 void *ip_epilogue; 1155 union { 1156 struct rcu_head rcu; 1157 struct work_struct work; 1158 }; 1159 }; 1160 1161 struct bpf_trampoline { 1162 /* hlist for trampoline_table */ 1163 struct hlist_node hlist; 1164 struct ftrace_ops *fops; 1165 /* serializes access to fields of this trampoline */ 1166 struct mutex mutex; 1167 refcount_t refcnt; 1168 u32 flags; 1169 u64 key; 1170 struct { 1171 struct btf_func_model model; 1172 void *addr; 1173 bool ftrace_managed; 1174 } func; 1175 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1176 * program by replacing one of its functions. func.addr is the address 1177 * of the function it replaced. 1178 */ 1179 struct bpf_prog *extension_prog; 1180 /* list of BPF programs using this trampoline */ 1181 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1182 /* Number of attached programs. A counter per kind. */ 1183 int progs_cnt[BPF_TRAMP_MAX]; 1184 /* Executable image of trampoline */ 1185 struct bpf_tramp_image *cur_image; 1186 }; 1187 1188 struct bpf_attach_target_info { 1189 struct btf_func_model fmodel; 1190 long tgt_addr; 1191 struct module *tgt_mod; 1192 const char *tgt_name; 1193 const struct btf_type *tgt_type; 1194 }; 1195 1196 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1197 1198 struct bpf_dispatcher_prog { 1199 struct bpf_prog *prog; 1200 refcount_t users; 1201 }; 1202 1203 struct bpf_dispatcher { 1204 /* dispatcher mutex */ 1205 struct mutex mutex; 1206 void *func; 1207 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1208 int num_progs; 1209 void *image; 1210 void *rw_image; 1211 u32 image_off; 1212 struct bpf_ksym ksym; 1213 #ifdef CONFIG_HAVE_STATIC_CALL 1214 struct static_call_key *sc_key; 1215 void *sc_tramp; 1216 #endif 1217 }; 1218 1219 #ifndef __bpfcall 1220 #define __bpfcall __nocfi 1221 #endif 1222 1223 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1224 const void *ctx, 1225 const struct bpf_insn *insnsi, 1226 bpf_func_t bpf_func) 1227 { 1228 return bpf_func(ctx, insnsi); 1229 } 1230 1231 /* the implementation of the opaque uapi struct bpf_dynptr */ 1232 struct bpf_dynptr_kern { 1233 void *data; 1234 /* Size represents the number of usable bytes of dynptr data. 1235 * If for example the offset is at 4 for a local dynptr whose data is 1236 * of type u64, the number of usable bytes is 4. 1237 * 1238 * The upper 8 bits are reserved. It is as follows: 1239 * Bits 0 - 23 = size 1240 * Bits 24 - 30 = dynptr type 1241 * Bit 31 = whether dynptr is read-only 1242 */ 1243 u32 size; 1244 u32 offset; 1245 } __aligned(8); 1246 1247 enum bpf_dynptr_type { 1248 BPF_DYNPTR_TYPE_INVALID, 1249 /* Points to memory that is local to the bpf program */ 1250 BPF_DYNPTR_TYPE_LOCAL, 1251 /* Underlying data is a ringbuf record */ 1252 BPF_DYNPTR_TYPE_RINGBUF, 1253 /* Underlying data is a sk_buff */ 1254 BPF_DYNPTR_TYPE_SKB, 1255 /* Underlying data is a xdp_buff */ 1256 BPF_DYNPTR_TYPE_XDP, 1257 }; 1258 1259 int bpf_dynptr_check_size(u32 size); 1260 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1261 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1262 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1263 1264 #ifdef CONFIG_BPF_JIT 1265 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1266 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1267 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1268 struct bpf_attach_target_info *tgt_info); 1269 void bpf_trampoline_put(struct bpf_trampoline *tr); 1270 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1271 1272 /* 1273 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1274 * indirection with a direct call to the bpf program. If the architecture does 1275 * not have STATIC_CALL, avoid a double-indirection. 1276 */ 1277 #ifdef CONFIG_HAVE_STATIC_CALL 1278 1279 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1280 .sc_key = &STATIC_CALL_KEY(_name), \ 1281 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1282 1283 #define __BPF_DISPATCHER_SC(name) \ 1284 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1285 1286 #define __BPF_DISPATCHER_CALL(name) \ 1287 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1288 1289 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1290 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1291 1292 #else 1293 #define __BPF_DISPATCHER_SC_INIT(name) 1294 #define __BPF_DISPATCHER_SC(name) 1295 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1296 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1297 #endif 1298 1299 #define BPF_DISPATCHER_INIT(_name) { \ 1300 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1301 .func = &_name##_func, \ 1302 .progs = {}, \ 1303 .num_progs = 0, \ 1304 .image = NULL, \ 1305 .image_off = 0, \ 1306 .ksym = { \ 1307 .name = #_name, \ 1308 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1309 }, \ 1310 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1311 } 1312 1313 #define DEFINE_BPF_DISPATCHER(name) \ 1314 __BPF_DISPATCHER_SC(name); \ 1315 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1316 const void *ctx, \ 1317 const struct bpf_insn *insnsi, \ 1318 bpf_func_t bpf_func) \ 1319 { \ 1320 return __BPF_DISPATCHER_CALL(name); \ 1321 } \ 1322 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1323 struct bpf_dispatcher bpf_dispatcher_##name = \ 1324 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1325 1326 #define DECLARE_BPF_DISPATCHER(name) \ 1327 unsigned int bpf_dispatcher_##name##_func( \ 1328 const void *ctx, \ 1329 const struct bpf_insn *insnsi, \ 1330 bpf_func_t bpf_func); \ 1331 extern struct bpf_dispatcher bpf_dispatcher_##name; 1332 1333 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1334 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1335 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1336 struct bpf_prog *to); 1337 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1338 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym); 1339 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1340 void bpf_ksym_add(struct bpf_ksym *ksym); 1341 void bpf_ksym_del(struct bpf_ksym *ksym); 1342 int bpf_jit_charge_modmem(u32 size); 1343 void bpf_jit_uncharge_modmem(u32 size); 1344 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1345 #else 1346 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1347 struct bpf_trampoline *tr) 1348 { 1349 return -ENOTSUPP; 1350 } 1351 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1352 struct bpf_trampoline *tr) 1353 { 1354 return -ENOTSUPP; 1355 } 1356 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1357 struct bpf_attach_target_info *tgt_info) 1358 { 1359 return NULL; 1360 } 1361 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1362 #define DEFINE_BPF_DISPATCHER(name) 1363 #define DECLARE_BPF_DISPATCHER(name) 1364 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1365 #define BPF_DISPATCHER_PTR(name) NULL 1366 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1367 struct bpf_prog *from, 1368 struct bpf_prog *to) {} 1369 static inline bool is_bpf_image_address(unsigned long address) 1370 { 1371 return false; 1372 } 1373 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1374 { 1375 return false; 1376 } 1377 #endif 1378 1379 struct bpf_func_info_aux { 1380 u16 linkage; 1381 bool unreliable; 1382 bool called : 1; 1383 bool verified : 1; 1384 }; 1385 1386 enum bpf_jit_poke_reason { 1387 BPF_POKE_REASON_TAIL_CALL, 1388 }; 1389 1390 /* Descriptor of pokes pointing /into/ the JITed image. */ 1391 struct bpf_jit_poke_descriptor { 1392 void *tailcall_target; 1393 void *tailcall_bypass; 1394 void *bypass_addr; 1395 void *aux; 1396 union { 1397 struct { 1398 struct bpf_map *map; 1399 u32 key; 1400 } tail_call; 1401 }; 1402 bool tailcall_target_stable; 1403 u8 adj_off; 1404 u16 reason; 1405 u32 insn_idx; 1406 }; 1407 1408 /* reg_type info for ctx arguments */ 1409 struct bpf_ctx_arg_aux { 1410 u32 offset; 1411 enum bpf_reg_type reg_type; 1412 struct btf *btf; 1413 u32 btf_id; 1414 }; 1415 1416 struct btf_mod_pair { 1417 struct btf *btf; 1418 struct module *module; 1419 }; 1420 1421 struct bpf_kfunc_desc_tab; 1422 1423 struct bpf_prog_aux { 1424 atomic64_t refcnt; 1425 u32 used_map_cnt; 1426 u32 used_btf_cnt; 1427 u32 max_ctx_offset; 1428 u32 max_pkt_offset; 1429 u32 max_tp_access; 1430 u32 stack_depth; 1431 u32 id; 1432 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1433 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1434 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1435 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1436 u32 ctx_arg_info_size; 1437 u32 max_rdonly_access; 1438 u32 max_rdwr_access; 1439 struct btf *attach_btf; 1440 const struct bpf_ctx_arg_aux *ctx_arg_info; 1441 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1442 struct bpf_prog *dst_prog; 1443 struct bpf_trampoline *dst_trampoline; 1444 enum bpf_prog_type saved_dst_prog_type; 1445 enum bpf_attach_type saved_dst_attach_type; 1446 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1447 bool dev_bound; /* Program is bound to the netdev. */ 1448 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1449 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1450 bool attach_tracing_prog; /* true if tracing another tracing program */ 1451 bool func_proto_unreliable; 1452 bool sleepable; 1453 bool tail_call_reachable; 1454 bool xdp_has_frags; 1455 bool exception_cb; 1456 bool exception_boundary; 1457 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1458 const struct btf_type *attach_func_proto; 1459 /* function name for valid attach_btf_id */ 1460 const char *attach_func_name; 1461 struct bpf_prog **func; 1462 void *jit_data; /* JIT specific data. arch dependent */ 1463 struct bpf_jit_poke_descriptor *poke_tab; 1464 struct bpf_kfunc_desc_tab *kfunc_tab; 1465 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1466 u32 size_poke_tab; 1467 #ifdef CONFIG_FINEIBT 1468 struct bpf_ksym ksym_prefix; 1469 #endif 1470 struct bpf_ksym ksym; 1471 const struct bpf_prog_ops *ops; 1472 struct bpf_map **used_maps; 1473 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1474 struct btf_mod_pair *used_btfs; 1475 struct bpf_prog *prog; 1476 struct user_struct *user; 1477 u64 load_time; /* ns since boottime */ 1478 u32 verified_insns; 1479 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1480 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1481 char name[BPF_OBJ_NAME_LEN]; 1482 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1483 #ifdef CONFIG_SECURITY 1484 void *security; 1485 #endif 1486 struct bpf_token *token; 1487 struct bpf_prog_offload *offload; 1488 struct btf *btf; 1489 struct bpf_func_info *func_info; 1490 struct bpf_func_info_aux *func_info_aux; 1491 /* bpf_line_info loaded from userspace. linfo->insn_off 1492 * has the xlated insn offset. 1493 * Both the main and sub prog share the same linfo. 1494 * The subprog can access its first linfo by 1495 * using the linfo_idx. 1496 */ 1497 struct bpf_line_info *linfo; 1498 /* jited_linfo is the jited addr of the linfo. It has a 1499 * one to one mapping to linfo: 1500 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1501 * Both the main and sub prog share the same jited_linfo. 1502 * The subprog can access its first jited_linfo by 1503 * using the linfo_idx. 1504 */ 1505 void **jited_linfo; 1506 u32 func_info_cnt; 1507 u32 nr_linfo; 1508 /* subprog can use linfo_idx to access its first linfo and 1509 * jited_linfo. 1510 * main prog always has linfo_idx == 0 1511 */ 1512 u32 linfo_idx; 1513 struct module *mod; 1514 u32 num_exentries; 1515 struct exception_table_entry *extable; 1516 union { 1517 struct work_struct work; 1518 struct rcu_head rcu; 1519 }; 1520 }; 1521 1522 struct bpf_prog { 1523 u16 pages; /* Number of allocated pages */ 1524 u16 jited:1, /* Is our filter JIT'ed? */ 1525 jit_requested:1,/* archs need to JIT the prog */ 1526 gpl_compatible:1, /* Is filter GPL compatible? */ 1527 cb_access:1, /* Is control block accessed? */ 1528 dst_needed:1, /* Do we need dst entry? */ 1529 blinding_requested:1, /* needs constant blinding */ 1530 blinded:1, /* Was blinded */ 1531 is_func:1, /* program is a bpf function */ 1532 kprobe_override:1, /* Do we override a kprobe? */ 1533 has_callchain_buf:1, /* callchain buffer allocated? */ 1534 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1535 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1536 call_get_func_ip:1, /* Do we call get_func_ip() */ 1537 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1538 enum bpf_prog_type type; /* Type of BPF program */ 1539 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1540 u32 len; /* Number of filter blocks */ 1541 u32 jited_len; /* Size of jited insns in bytes */ 1542 u8 tag[BPF_TAG_SIZE]; 1543 struct bpf_prog_stats __percpu *stats; 1544 int __percpu *active; 1545 unsigned int (*bpf_func)(const void *ctx, 1546 const struct bpf_insn *insn); 1547 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1548 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1549 /* Instructions for interpreter */ 1550 union { 1551 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1552 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1553 }; 1554 }; 1555 1556 struct bpf_array_aux { 1557 /* Programs with direct jumps into programs part of this array. */ 1558 struct list_head poke_progs; 1559 struct bpf_map *map; 1560 struct mutex poke_mutex; 1561 struct work_struct work; 1562 }; 1563 1564 struct bpf_link { 1565 atomic64_t refcnt; 1566 u32 id; 1567 enum bpf_link_type type; 1568 const struct bpf_link_ops *ops; 1569 struct bpf_prog *prog; 1570 struct work_struct work; 1571 }; 1572 1573 struct bpf_link_ops { 1574 void (*release)(struct bpf_link *link); 1575 void (*dealloc)(struct bpf_link *link); 1576 int (*detach)(struct bpf_link *link); 1577 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1578 struct bpf_prog *old_prog); 1579 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1580 int (*fill_link_info)(const struct bpf_link *link, 1581 struct bpf_link_info *info); 1582 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1583 struct bpf_map *old_map); 1584 }; 1585 1586 struct bpf_tramp_link { 1587 struct bpf_link link; 1588 struct hlist_node tramp_hlist; 1589 u64 cookie; 1590 }; 1591 1592 struct bpf_shim_tramp_link { 1593 struct bpf_tramp_link link; 1594 struct bpf_trampoline *trampoline; 1595 }; 1596 1597 struct bpf_tracing_link { 1598 struct bpf_tramp_link link; 1599 enum bpf_attach_type attach_type; 1600 struct bpf_trampoline *trampoline; 1601 struct bpf_prog *tgt_prog; 1602 }; 1603 1604 struct bpf_link_primer { 1605 struct bpf_link *link; 1606 struct file *file; 1607 int fd; 1608 u32 id; 1609 }; 1610 1611 struct bpf_mount_opts { 1612 kuid_t uid; 1613 kgid_t gid; 1614 umode_t mode; 1615 1616 /* BPF token-related delegation options */ 1617 u64 delegate_cmds; 1618 u64 delegate_maps; 1619 u64 delegate_progs; 1620 u64 delegate_attachs; 1621 }; 1622 1623 struct bpf_token { 1624 struct work_struct work; 1625 atomic64_t refcnt; 1626 struct user_namespace *userns; 1627 u64 allowed_cmds; 1628 u64 allowed_maps; 1629 u64 allowed_progs; 1630 u64 allowed_attachs; 1631 #ifdef CONFIG_SECURITY 1632 void *security; 1633 #endif 1634 }; 1635 1636 struct bpf_struct_ops_value; 1637 struct btf_member; 1638 1639 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1640 /** 1641 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1642 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1643 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1644 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1645 * when determining whether the struct_ops progs in the 1646 * struct_ops map are valid. 1647 * @init: A callback that is invoked a single time, and before any other 1648 * callback, to initialize the structure. A nonzero return value means 1649 * the subsystem could not be initialized. 1650 * @check_member: When defined, a callback invoked by the verifier to allow 1651 * the subsystem to determine if an entry in the struct_ops map 1652 * is valid. A nonzero return value means that the map is 1653 * invalid and should be rejected by the verifier. 1654 * @init_member: A callback that is invoked for each member of the struct_ops 1655 * map to allow the subsystem to initialize the member. A nonzero 1656 * value means the member could not be initialized. This callback 1657 * is exclusive with the @type, @type_id, @value_type, and 1658 * @value_id fields. 1659 * @reg: A callback that is invoked when the struct_ops map has been 1660 * initialized and is being attached to. Zero means the struct_ops map 1661 * has been successfully registered and is live. A nonzero return value 1662 * means the struct_ops map could not be registered. 1663 * @unreg: A callback that is invoked when the struct_ops map should be 1664 * unregistered. 1665 * @update: A callback that is invoked when the live struct_ops map is being 1666 * updated to contain new values. This callback is only invoked when 1667 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1668 * it is assumed that the struct_ops map cannot be updated. 1669 * @validate: A callback that is invoked after all of the members have been 1670 * initialized. This callback should perform static checks on the 1671 * map, meaning that it should either fail or succeed 1672 * deterministically. A struct_ops map that has been validated may 1673 * not necessarily succeed in being registered if the call to @reg 1674 * fails. For example, a valid struct_ops map may be loaded, but 1675 * then fail to be registered due to there being another active 1676 * struct_ops map on the system in the subsystem already. For this 1677 * reason, if this callback is not defined, the check is skipped as 1678 * the struct_ops map will have final verification performed in 1679 * @reg. 1680 * @type: BTF type. 1681 * @value_type: Value type. 1682 * @name: The name of the struct bpf_struct_ops object. 1683 * @func_models: Func models 1684 * @type_id: BTF type id. 1685 * @value_id: BTF value id. 1686 */ 1687 struct bpf_struct_ops { 1688 const struct bpf_verifier_ops *verifier_ops; 1689 int (*init)(struct btf *btf); 1690 int (*check_member)(const struct btf_type *t, 1691 const struct btf_member *member, 1692 const struct bpf_prog *prog); 1693 int (*init_member)(const struct btf_type *t, 1694 const struct btf_member *member, 1695 void *kdata, const void *udata); 1696 int (*reg)(void *kdata); 1697 void (*unreg)(void *kdata); 1698 int (*update)(void *kdata, void *old_kdata); 1699 int (*validate)(void *kdata); 1700 void *cfi_stubs; 1701 struct module *owner; 1702 const char *name; 1703 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1704 }; 1705 1706 /* Every member of a struct_ops type has an instance even a member is not 1707 * an operator (function pointer). The "info" field will be assigned to 1708 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1709 * argument information required by the verifier to verify the program. 1710 * 1711 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1712 * corresponding entry for an given argument. 1713 */ 1714 struct bpf_struct_ops_arg_info { 1715 struct bpf_ctx_arg_aux *info; 1716 u32 cnt; 1717 }; 1718 1719 struct bpf_struct_ops_desc { 1720 struct bpf_struct_ops *st_ops; 1721 1722 const struct btf_type *type; 1723 const struct btf_type *value_type; 1724 u32 type_id; 1725 u32 value_id; 1726 1727 /* Collection of argument information for each member */ 1728 struct bpf_struct_ops_arg_info *arg_info; 1729 }; 1730 1731 enum bpf_struct_ops_state { 1732 BPF_STRUCT_OPS_STATE_INIT, 1733 BPF_STRUCT_OPS_STATE_INUSE, 1734 BPF_STRUCT_OPS_STATE_TOBEFREE, 1735 BPF_STRUCT_OPS_STATE_READY, 1736 }; 1737 1738 struct bpf_struct_ops_common_value { 1739 refcount_t refcnt; 1740 enum bpf_struct_ops_state state; 1741 }; 1742 1743 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1744 /* This macro helps developer to register a struct_ops type and generate 1745 * type information correctly. Developers should use this macro to register 1746 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1747 */ 1748 #define register_bpf_struct_ops(st_ops, type) \ 1749 ({ \ 1750 struct bpf_struct_ops_##type { \ 1751 struct bpf_struct_ops_common_value common; \ 1752 struct type data ____cacheline_aligned_in_smp; \ 1753 }; \ 1754 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1755 __register_bpf_struct_ops(st_ops); \ 1756 }) 1757 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1758 bool bpf_struct_ops_get(const void *kdata); 1759 void bpf_struct_ops_put(const void *kdata); 1760 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1761 void *value); 1762 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1763 struct bpf_tramp_link *link, 1764 const struct btf_func_model *model, 1765 void *stub_func, 1766 void *image, void *image_end); 1767 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1768 { 1769 if (owner == BPF_MODULE_OWNER) 1770 return bpf_struct_ops_get(data); 1771 else 1772 return try_module_get(owner); 1773 } 1774 static inline void bpf_module_put(const void *data, struct module *owner) 1775 { 1776 if (owner == BPF_MODULE_OWNER) 1777 bpf_struct_ops_put(data); 1778 else 1779 module_put(owner); 1780 } 1781 int bpf_struct_ops_link_create(union bpf_attr *attr); 1782 1783 #ifdef CONFIG_NET 1784 /* Define it here to avoid the use of forward declaration */ 1785 struct bpf_dummy_ops_state { 1786 int val; 1787 }; 1788 1789 struct bpf_dummy_ops { 1790 int (*test_1)(struct bpf_dummy_ops_state *cb); 1791 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1792 char a3, unsigned long a4); 1793 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1794 }; 1795 1796 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1797 union bpf_attr __user *uattr); 1798 #endif 1799 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1800 struct btf *btf, 1801 struct bpf_verifier_log *log); 1802 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1803 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1804 #else 1805 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1806 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1807 { 1808 return try_module_get(owner); 1809 } 1810 static inline void bpf_module_put(const void *data, struct module *owner) 1811 { 1812 module_put(owner); 1813 } 1814 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1815 void *key, 1816 void *value) 1817 { 1818 return -EINVAL; 1819 } 1820 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1821 { 1822 return -EOPNOTSUPP; 1823 } 1824 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1825 { 1826 } 1827 1828 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1829 { 1830 } 1831 1832 #endif 1833 1834 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1835 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1836 int cgroup_atype); 1837 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1838 #else 1839 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1840 int cgroup_atype) 1841 { 1842 return -EOPNOTSUPP; 1843 } 1844 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1845 { 1846 } 1847 #endif 1848 1849 struct bpf_array { 1850 struct bpf_map map; 1851 u32 elem_size; 1852 u32 index_mask; 1853 struct bpf_array_aux *aux; 1854 union { 1855 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1856 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1857 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1858 }; 1859 }; 1860 1861 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1862 #define MAX_TAIL_CALL_CNT 33 1863 1864 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1865 * It's enum to expose it (and thus make it discoverable) through BTF. 1866 */ 1867 enum { 1868 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1869 }; 1870 1871 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1872 BPF_F_RDONLY_PROG | \ 1873 BPF_F_WRONLY | \ 1874 BPF_F_WRONLY_PROG) 1875 1876 #define BPF_MAP_CAN_READ BIT(0) 1877 #define BPF_MAP_CAN_WRITE BIT(1) 1878 1879 /* Maximum number of user-producer ring buffer samples that can be drained in 1880 * a call to bpf_user_ringbuf_drain(). 1881 */ 1882 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1883 1884 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1885 { 1886 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1887 1888 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1889 * not possible. 1890 */ 1891 if (access_flags & BPF_F_RDONLY_PROG) 1892 return BPF_MAP_CAN_READ; 1893 else if (access_flags & BPF_F_WRONLY_PROG) 1894 return BPF_MAP_CAN_WRITE; 1895 else 1896 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1897 } 1898 1899 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1900 { 1901 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1902 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1903 } 1904 1905 struct bpf_event_entry { 1906 struct perf_event *event; 1907 struct file *perf_file; 1908 struct file *map_file; 1909 struct rcu_head rcu; 1910 }; 1911 1912 static inline bool map_type_contains_progs(struct bpf_map *map) 1913 { 1914 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1915 map->map_type == BPF_MAP_TYPE_DEVMAP || 1916 map->map_type == BPF_MAP_TYPE_CPUMAP; 1917 } 1918 1919 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1920 int bpf_prog_calc_tag(struct bpf_prog *fp); 1921 1922 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1923 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1924 1925 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1926 unsigned long off, unsigned long len); 1927 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1928 const struct bpf_insn *src, 1929 struct bpf_insn *dst, 1930 struct bpf_prog *prog, 1931 u32 *target_size); 1932 1933 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1934 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1935 1936 /* an array of programs to be executed under rcu_lock. 1937 * 1938 * Typical usage: 1939 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1940 * 1941 * the structure returned by bpf_prog_array_alloc() should be populated 1942 * with program pointers and the last pointer must be NULL. 1943 * The user has to keep refcnt on the program and make sure the program 1944 * is removed from the array before bpf_prog_put(). 1945 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1946 * since other cpus are walking the array of pointers in parallel. 1947 */ 1948 struct bpf_prog_array_item { 1949 struct bpf_prog *prog; 1950 union { 1951 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1952 u64 bpf_cookie; 1953 }; 1954 }; 1955 1956 struct bpf_prog_array { 1957 struct rcu_head rcu; 1958 struct bpf_prog_array_item items[]; 1959 }; 1960 1961 struct bpf_empty_prog_array { 1962 struct bpf_prog_array hdr; 1963 struct bpf_prog *null_prog; 1964 }; 1965 1966 /* to avoid allocating empty bpf_prog_array for cgroups that 1967 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1968 * It will not be modified the caller of bpf_prog_array_alloc() 1969 * (since caller requested prog_cnt == 0) 1970 * that pointer should be 'freed' by bpf_prog_array_free() 1971 */ 1972 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1973 1974 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1975 void bpf_prog_array_free(struct bpf_prog_array *progs); 1976 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1977 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1978 int bpf_prog_array_length(struct bpf_prog_array *progs); 1979 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1980 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1981 __u32 __user *prog_ids, u32 cnt); 1982 1983 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1984 struct bpf_prog *old_prog); 1985 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1986 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1987 struct bpf_prog *prog); 1988 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1989 u32 *prog_ids, u32 request_cnt, 1990 u32 *prog_cnt); 1991 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1992 struct bpf_prog *exclude_prog, 1993 struct bpf_prog *include_prog, 1994 u64 bpf_cookie, 1995 struct bpf_prog_array **new_array); 1996 1997 struct bpf_run_ctx {}; 1998 1999 struct bpf_cg_run_ctx { 2000 struct bpf_run_ctx run_ctx; 2001 const struct bpf_prog_array_item *prog_item; 2002 int retval; 2003 }; 2004 2005 struct bpf_trace_run_ctx { 2006 struct bpf_run_ctx run_ctx; 2007 u64 bpf_cookie; 2008 bool is_uprobe; 2009 }; 2010 2011 struct bpf_tramp_run_ctx { 2012 struct bpf_run_ctx run_ctx; 2013 u64 bpf_cookie; 2014 struct bpf_run_ctx *saved_run_ctx; 2015 }; 2016 2017 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2018 { 2019 struct bpf_run_ctx *old_ctx = NULL; 2020 2021 #ifdef CONFIG_BPF_SYSCALL 2022 old_ctx = current->bpf_ctx; 2023 current->bpf_ctx = new_ctx; 2024 #endif 2025 return old_ctx; 2026 } 2027 2028 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2029 { 2030 #ifdef CONFIG_BPF_SYSCALL 2031 current->bpf_ctx = old_ctx; 2032 #endif 2033 } 2034 2035 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2036 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2037 /* BPF program asks to set CN on the packet. */ 2038 #define BPF_RET_SET_CN (1 << 0) 2039 2040 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2041 2042 static __always_inline u32 2043 bpf_prog_run_array(const struct bpf_prog_array *array, 2044 const void *ctx, bpf_prog_run_fn run_prog) 2045 { 2046 const struct bpf_prog_array_item *item; 2047 const struct bpf_prog *prog; 2048 struct bpf_run_ctx *old_run_ctx; 2049 struct bpf_trace_run_ctx run_ctx; 2050 u32 ret = 1; 2051 2052 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2053 2054 if (unlikely(!array)) 2055 return ret; 2056 2057 run_ctx.is_uprobe = false; 2058 2059 migrate_disable(); 2060 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2061 item = &array->items[0]; 2062 while ((prog = READ_ONCE(item->prog))) { 2063 run_ctx.bpf_cookie = item->bpf_cookie; 2064 ret &= run_prog(prog, ctx); 2065 item++; 2066 } 2067 bpf_reset_run_ctx(old_run_ctx); 2068 migrate_enable(); 2069 return ret; 2070 } 2071 2072 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2073 * 2074 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2075 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2076 * in order to use the tasks_trace rcu grace period. 2077 * 2078 * When a non-sleepable program is inside the array, we take the rcu read 2079 * section and disable preemption for that program alone, so it can access 2080 * rcu-protected dynamically sized maps. 2081 */ 2082 static __always_inline u32 2083 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2084 const void *ctx, bpf_prog_run_fn run_prog) 2085 { 2086 const struct bpf_prog_array_item *item; 2087 const struct bpf_prog *prog; 2088 const struct bpf_prog_array *array; 2089 struct bpf_run_ctx *old_run_ctx; 2090 struct bpf_trace_run_ctx run_ctx; 2091 u32 ret = 1; 2092 2093 might_fault(); 2094 2095 rcu_read_lock_trace(); 2096 migrate_disable(); 2097 2098 run_ctx.is_uprobe = true; 2099 2100 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2101 if (unlikely(!array)) 2102 goto out; 2103 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2104 item = &array->items[0]; 2105 while ((prog = READ_ONCE(item->prog))) { 2106 if (!prog->aux->sleepable) 2107 rcu_read_lock(); 2108 2109 run_ctx.bpf_cookie = item->bpf_cookie; 2110 ret &= run_prog(prog, ctx); 2111 item++; 2112 2113 if (!prog->aux->sleepable) 2114 rcu_read_unlock(); 2115 } 2116 bpf_reset_run_ctx(old_run_ctx); 2117 out: 2118 migrate_enable(); 2119 rcu_read_unlock_trace(); 2120 return ret; 2121 } 2122 2123 #ifdef CONFIG_BPF_SYSCALL 2124 DECLARE_PER_CPU(int, bpf_prog_active); 2125 extern struct mutex bpf_stats_enabled_mutex; 2126 2127 /* 2128 * Block execution of BPF programs attached to instrumentation (perf, 2129 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2130 * these events can happen inside a region which holds a map bucket lock 2131 * and can deadlock on it. 2132 */ 2133 static inline void bpf_disable_instrumentation(void) 2134 { 2135 migrate_disable(); 2136 this_cpu_inc(bpf_prog_active); 2137 } 2138 2139 static inline void bpf_enable_instrumentation(void) 2140 { 2141 this_cpu_dec(bpf_prog_active); 2142 migrate_enable(); 2143 } 2144 2145 extern const struct super_operations bpf_super_ops; 2146 extern const struct file_operations bpf_map_fops; 2147 extern const struct file_operations bpf_prog_fops; 2148 extern const struct file_operations bpf_iter_fops; 2149 2150 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2151 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2152 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2153 #define BPF_MAP_TYPE(_id, _ops) \ 2154 extern const struct bpf_map_ops _ops; 2155 #define BPF_LINK_TYPE(_id, _name) 2156 #include <linux/bpf_types.h> 2157 #undef BPF_PROG_TYPE 2158 #undef BPF_MAP_TYPE 2159 #undef BPF_LINK_TYPE 2160 2161 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2162 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2163 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2164 2165 struct bpf_prog *bpf_prog_get(u32 ufd); 2166 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2167 bool attach_drv); 2168 void bpf_prog_add(struct bpf_prog *prog, int i); 2169 void bpf_prog_sub(struct bpf_prog *prog, int i); 2170 void bpf_prog_inc(struct bpf_prog *prog); 2171 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2172 void bpf_prog_put(struct bpf_prog *prog); 2173 2174 void bpf_prog_free_id(struct bpf_prog *prog); 2175 void bpf_map_free_id(struct bpf_map *map); 2176 2177 struct btf_field *btf_record_find(const struct btf_record *rec, 2178 u32 offset, u32 field_mask); 2179 void btf_record_free(struct btf_record *rec); 2180 void bpf_map_free_record(struct bpf_map *map); 2181 struct btf_record *btf_record_dup(const struct btf_record *rec); 2182 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2183 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2184 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2185 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2186 2187 struct bpf_map *bpf_map_get(u32 ufd); 2188 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2189 struct bpf_map *__bpf_map_get(struct fd f); 2190 void bpf_map_inc(struct bpf_map *map); 2191 void bpf_map_inc_with_uref(struct bpf_map *map); 2192 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2193 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2194 void bpf_map_put_with_uref(struct bpf_map *map); 2195 void bpf_map_put(struct bpf_map *map); 2196 void *bpf_map_area_alloc(u64 size, int numa_node); 2197 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2198 void bpf_map_area_free(void *base); 2199 bool bpf_map_write_active(const struct bpf_map *map); 2200 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2201 int generic_map_lookup_batch(struct bpf_map *map, 2202 const union bpf_attr *attr, 2203 union bpf_attr __user *uattr); 2204 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2205 const union bpf_attr *attr, 2206 union bpf_attr __user *uattr); 2207 int generic_map_delete_batch(struct bpf_map *map, 2208 const union bpf_attr *attr, 2209 union bpf_attr __user *uattr); 2210 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2211 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2212 2213 #ifdef CONFIG_MEMCG_KMEM 2214 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2215 int node); 2216 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2217 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2218 gfp_t flags); 2219 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2220 size_t align, gfp_t flags); 2221 #else 2222 static inline void * 2223 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2224 int node) 2225 { 2226 return kmalloc_node(size, flags, node); 2227 } 2228 2229 static inline void * 2230 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 2231 { 2232 return kzalloc(size, flags); 2233 } 2234 2235 static inline void * 2236 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 2237 { 2238 return kvcalloc(n, size, flags); 2239 } 2240 2241 static inline void __percpu * 2242 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 2243 gfp_t flags) 2244 { 2245 return __alloc_percpu_gfp(size, align, flags); 2246 } 2247 #endif 2248 2249 static inline int 2250 bpf_map_init_elem_count(struct bpf_map *map) 2251 { 2252 size_t size = sizeof(*map->elem_count), align = size; 2253 gfp_t flags = GFP_USER | __GFP_NOWARN; 2254 2255 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2256 if (!map->elem_count) 2257 return -ENOMEM; 2258 2259 return 0; 2260 } 2261 2262 static inline void 2263 bpf_map_free_elem_count(struct bpf_map *map) 2264 { 2265 free_percpu(map->elem_count); 2266 } 2267 2268 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2269 { 2270 this_cpu_inc(*map->elem_count); 2271 } 2272 2273 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2274 { 2275 this_cpu_dec(*map->elem_count); 2276 } 2277 2278 extern int sysctl_unprivileged_bpf_disabled; 2279 2280 bool bpf_token_capable(const struct bpf_token *token, int cap); 2281 2282 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2283 { 2284 return bpf_token_capable(token, CAP_PERFMON); 2285 } 2286 2287 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2288 { 2289 return bpf_token_capable(token, CAP_PERFMON); 2290 } 2291 2292 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2293 { 2294 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2295 } 2296 2297 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2298 { 2299 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2300 } 2301 2302 int bpf_map_new_fd(struct bpf_map *map, int flags); 2303 int bpf_prog_new_fd(struct bpf_prog *prog); 2304 2305 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2306 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2307 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2308 int bpf_link_settle(struct bpf_link_primer *primer); 2309 void bpf_link_cleanup(struct bpf_link_primer *primer); 2310 void bpf_link_inc(struct bpf_link *link); 2311 void bpf_link_put(struct bpf_link *link); 2312 int bpf_link_new_fd(struct bpf_link *link); 2313 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2314 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2315 2316 void bpf_token_inc(struct bpf_token *token); 2317 void bpf_token_put(struct bpf_token *token); 2318 int bpf_token_create(union bpf_attr *attr); 2319 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2320 2321 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2322 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2323 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2324 enum bpf_prog_type prog_type, 2325 enum bpf_attach_type attach_type); 2326 2327 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2328 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2329 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2330 umode_t mode); 2331 2332 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2333 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2334 extern int bpf_iter_ ## target(args); \ 2335 int __init bpf_iter_ ## target(args) { return 0; } 2336 2337 /* 2338 * The task type of iterators. 2339 * 2340 * For BPF task iterators, they can be parameterized with various 2341 * parameters to visit only some of tasks. 2342 * 2343 * BPF_TASK_ITER_ALL (default) 2344 * Iterate over resources of every task. 2345 * 2346 * BPF_TASK_ITER_TID 2347 * Iterate over resources of a task/tid. 2348 * 2349 * BPF_TASK_ITER_TGID 2350 * Iterate over resources of every task of a process / task group. 2351 */ 2352 enum bpf_iter_task_type { 2353 BPF_TASK_ITER_ALL = 0, 2354 BPF_TASK_ITER_TID, 2355 BPF_TASK_ITER_TGID, 2356 }; 2357 2358 struct bpf_iter_aux_info { 2359 /* for map_elem iter */ 2360 struct bpf_map *map; 2361 2362 /* for cgroup iter */ 2363 struct { 2364 struct cgroup *start; /* starting cgroup */ 2365 enum bpf_cgroup_iter_order order; 2366 } cgroup; 2367 struct { 2368 enum bpf_iter_task_type type; 2369 u32 pid; 2370 } task; 2371 }; 2372 2373 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2374 union bpf_iter_link_info *linfo, 2375 struct bpf_iter_aux_info *aux); 2376 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2377 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2378 struct seq_file *seq); 2379 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2380 struct bpf_link_info *info); 2381 typedef const struct bpf_func_proto * 2382 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2383 const struct bpf_prog *prog); 2384 2385 enum bpf_iter_feature { 2386 BPF_ITER_RESCHED = BIT(0), 2387 }; 2388 2389 #define BPF_ITER_CTX_ARG_MAX 2 2390 struct bpf_iter_reg { 2391 const char *target; 2392 bpf_iter_attach_target_t attach_target; 2393 bpf_iter_detach_target_t detach_target; 2394 bpf_iter_show_fdinfo_t show_fdinfo; 2395 bpf_iter_fill_link_info_t fill_link_info; 2396 bpf_iter_get_func_proto_t get_func_proto; 2397 u32 ctx_arg_info_size; 2398 u32 feature; 2399 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2400 const struct bpf_iter_seq_info *seq_info; 2401 }; 2402 2403 struct bpf_iter_meta { 2404 __bpf_md_ptr(struct seq_file *, seq); 2405 u64 session_id; 2406 u64 seq_num; 2407 }; 2408 2409 struct bpf_iter__bpf_map_elem { 2410 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2411 __bpf_md_ptr(struct bpf_map *, map); 2412 __bpf_md_ptr(void *, key); 2413 __bpf_md_ptr(void *, value); 2414 }; 2415 2416 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2417 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2418 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2419 const struct bpf_func_proto * 2420 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2421 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2422 int bpf_iter_new_fd(struct bpf_link *link); 2423 bool bpf_link_is_iter(struct bpf_link *link); 2424 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2425 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2426 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2427 struct seq_file *seq); 2428 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2429 struct bpf_link_info *info); 2430 2431 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2432 struct bpf_func_state *caller, 2433 struct bpf_func_state *callee); 2434 2435 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2436 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2437 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2438 u64 flags); 2439 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2440 u64 flags); 2441 2442 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2443 2444 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2445 void *key, void *value, u64 map_flags); 2446 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2447 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2448 void *key, void *value, u64 map_flags); 2449 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2450 2451 int bpf_get_file_flag(int flags); 2452 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2453 size_t actual_size); 2454 2455 /* verify correctness of eBPF program */ 2456 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2457 2458 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2459 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2460 #endif 2461 2462 struct btf *bpf_get_btf_vmlinux(void); 2463 2464 /* Map specifics */ 2465 struct xdp_frame; 2466 struct sk_buff; 2467 struct bpf_dtab_netdev; 2468 struct bpf_cpu_map_entry; 2469 2470 void __dev_flush(void); 2471 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2472 struct net_device *dev_rx); 2473 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2474 struct net_device *dev_rx); 2475 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2476 struct bpf_map *map, bool exclude_ingress); 2477 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2478 struct bpf_prog *xdp_prog); 2479 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2480 struct bpf_prog *xdp_prog, struct bpf_map *map, 2481 bool exclude_ingress); 2482 2483 void __cpu_map_flush(void); 2484 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2485 struct net_device *dev_rx); 2486 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2487 struct sk_buff *skb); 2488 2489 /* Return map's numa specified by userspace */ 2490 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2491 { 2492 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2493 attr->numa_node : NUMA_NO_NODE; 2494 } 2495 2496 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2497 int array_map_alloc_check(union bpf_attr *attr); 2498 2499 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2500 union bpf_attr __user *uattr); 2501 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2502 union bpf_attr __user *uattr); 2503 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2504 const union bpf_attr *kattr, 2505 union bpf_attr __user *uattr); 2506 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2507 const union bpf_attr *kattr, 2508 union bpf_attr __user *uattr); 2509 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2510 const union bpf_attr *kattr, 2511 union bpf_attr __user *uattr); 2512 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2513 const union bpf_attr *kattr, 2514 union bpf_attr __user *uattr); 2515 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2516 const union bpf_attr *kattr, 2517 union bpf_attr __user *uattr); 2518 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2519 const struct bpf_prog *prog, 2520 struct bpf_insn_access_aux *info); 2521 2522 static inline bool bpf_tracing_ctx_access(int off, int size, 2523 enum bpf_access_type type) 2524 { 2525 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2526 return false; 2527 if (type != BPF_READ) 2528 return false; 2529 if (off % size != 0) 2530 return false; 2531 return true; 2532 } 2533 2534 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2535 enum bpf_access_type type, 2536 const struct bpf_prog *prog, 2537 struct bpf_insn_access_aux *info) 2538 { 2539 if (!bpf_tracing_ctx_access(off, size, type)) 2540 return false; 2541 return btf_ctx_access(off, size, type, prog, info); 2542 } 2543 2544 int btf_struct_access(struct bpf_verifier_log *log, 2545 const struct bpf_reg_state *reg, 2546 int off, int size, enum bpf_access_type atype, 2547 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2548 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2549 const struct btf *btf, u32 id, int off, 2550 const struct btf *need_btf, u32 need_type_id, 2551 bool strict); 2552 2553 int btf_distill_func_proto(struct bpf_verifier_log *log, 2554 struct btf *btf, 2555 const struct btf_type *func_proto, 2556 const char *func_name, 2557 struct btf_func_model *m); 2558 2559 struct bpf_reg_state; 2560 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2561 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2562 struct btf *btf, const struct btf_type *t); 2563 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2564 int comp_idx, const char *tag_key); 2565 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2566 int comp_idx, const char *tag_key, int last_id); 2567 2568 struct bpf_prog *bpf_prog_by_id(u32 id); 2569 struct bpf_link *bpf_link_by_id(u32 id); 2570 2571 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2572 const struct bpf_prog *prog); 2573 void bpf_task_storage_free(struct task_struct *task); 2574 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2575 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2576 const struct btf_func_model * 2577 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2578 const struct bpf_insn *insn); 2579 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2580 u16 btf_fd_idx, u8 **func_addr); 2581 2582 struct bpf_core_ctx { 2583 struct bpf_verifier_log *log; 2584 const struct btf *btf; 2585 }; 2586 2587 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2588 const struct bpf_reg_state *reg, 2589 const char *field_name, u32 btf_id, const char *suffix); 2590 2591 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2592 const struct btf *reg_btf, u32 reg_id, 2593 const struct btf *arg_btf, u32 arg_id); 2594 2595 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2596 int relo_idx, void *insn); 2597 2598 static inline bool unprivileged_ebpf_enabled(void) 2599 { 2600 return !sysctl_unprivileged_bpf_disabled; 2601 } 2602 2603 /* Not all bpf prog type has the bpf_ctx. 2604 * For the bpf prog type that has initialized the bpf_ctx, 2605 * this function can be used to decide if a kernel function 2606 * is called by a bpf program. 2607 */ 2608 static inline bool has_current_bpf_ctx(void) 2609 { 2610 return !!current->bpf_ctx; 2611 } 2612 2613 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2614 2615 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2616 enum bpf_dynptr_type type, u32 offset, u32 size); 2617 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2618 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2619 2620 bool dev_check_flush(void); 2621 bool cpu_map_check_flush(void); 2622 #else /* !CONFIG_BPF_SYSCALL */ 2623 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2624 { 2625 return ERR_PTR(-EOPNOTSUPP); 2626 } 2627 2628 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2629 enum bpf_prog_type type, 2630 bool attach_drv) 2631 { 2632 return ERR_PTR(-EOPNOTSUPP); 2633 } 2634 2635 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2636 { 2637 } 2638 2639 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2640 { 2641 } 2642 2643 static inline void bpf_prog_put(struct bpf_prog *prog) 2644 { 2645 } 2646 2647 static inline void bpf_prog_inc(struct bpf_prog *prog) 2648 { 2649 } 2650 2651 static inline struct bpf_prog *__must_check 2652 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2653 { 2654 return ERR_PTR(-EOPNOTSUPP); 2655 } 2656 2657 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2658 const struct bpf_link_ops *ops, 2659 struct bpf_prog *prog) 2660 { 2661 } 2662 2663 static inline int bpf_link_prime(struct bpf_link *link, 2664 struct bpf_link_primer *primer) 2665 { 2666 return -EOPNOTSUPP; 2667 } 2668 2669 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2670 { 2671 return -EOPNOTSUPP; 2672 } 2673 2674 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2675 { 2676 } 2677 2678 static inline void bpf_link_inc(struct bpf_link *link) 2679 { 2680 } 2681 2682 static inline void bpf_link_put(struct bpf_link *link) 2683 { 2684 } 2685 2686 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2687 { 2688 return -EOPNOTSUPP; 2689 } 2690 2691 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2692 { 2693 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2694 } 2695 2696 static inline void bpf_token_inc(struct bpf_token *token) 2697 { 2698 } 2699 2700 static inline void bpf_token_put(struct bpf_token *token) 2701 { 2702 } 2703 2704 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2705 { 2706 return ERR_PTR(-EOPNOTSUPP); 2707 } 2708 2709 static inline void __dev_flush(void) 2710 { 2711 } 2712 2713 struct xdp_frame; 2714 struct bpf_dtab_netdev; 2715 struct bpf_cpu_map_entry; 2716 2717 static inline 2718 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2719 struct net_device *dev_rx) 2720 { 2721 return 0; 2722 } 2723 2724 static inline 2725 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2726 struct net_device *dev_rx) 2727 { 2728 return 0; 2729 } 2730 2731 static inline 2732 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2733 struct bpf_map *map, bool exclude_ingress) 2734 { 2735 return 0; 2736 } 2737 2738 struct sk_buff; 2739 2740 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2741 struct sk_buff *skb, 2742 struct bpf_prog *xdp_prog) 2743 { 2744 return 0; 2745 } 2746 2747 static inline 2748 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2749 struct bpf_prog *xdp_prog, struct bpf_map *map, 2750 bool exclude_ingress) 2751 { 2752 return 0; 2753 } 2754 2755 static inline void __cpu_map_flush(void) 2756 { 2757 } 2758 2759 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2760 struct xdp_frame *xdpf, 2761 struct net_device *dev_rx) 2762 { 2763 return 0; 2764 } 2765 2766 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2767 struct sk_buff *skb) 2768 { 2769 return -EOPNOTSUPP; 2770 } 2771 2772 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2773 enum bpf_prog_type type) 2774 { 2775 return ERR_PTR(-EOPNOTSUPP); 2776 } 2777 2778 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2779 const union bpf_attr *kattr, 2780 union bpf_attr __user *uattr) 2781 { 2782 return -ENOTSUPP; 2783 } 2784 2785 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2786 const union bpf_attr *kattr, 2787 union bpf_attr __user *uattr) 2788 { 2789 return -ENOTSUPP; 2790 } 2791 2792 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2793 const union bpf_attr *kattr, 2794 union bpf_attr __user *uattr) 2795 { 2796 return -ENOTSUPP; 2797 } 2798 2799 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2800 const union bpf_attr *kattr, 2801 union bpf_attr __user *uattr) 2802 { 2803 return -ENOTSUPP; 2804 } 2805 2806 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2807 const union bpf_attr *kattr, 2808 union bpf_attr __user *uattr) 2809 { 2810 return -ENOTSUPP; 2811 } 2812 2813 static inline void bpf_map_put(struct bpf_map *map) 2814 { 2815 } 2816 2817 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2818 { 2819 return ERR_PTR(-ENOTSUPP); 2820 } 2821 2822 static inline int btf_struct_access(struct bpf_verifier_log *log, 2823 const struct bpf_reg_state *reg, 2824 int off, int size, enum bpf_access_type atype, 2825 u32 *next_btf_id, enum bpf_type_flag *flag, 2826 const char **field_name) 2827 { 2828 return -EACCES; 2829 } 2830 2831 static inline const struct bpf_func_proto * 2832 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2833 { 2834 return NULL; 2835 } 2836 2837 static inline void bpf_task_storage_free(struct task_struct *task) 2838 { 2839 } 2840 2841 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2842 { 2843 return false; 2844 } 2845 2846 static inline const struct btf_func_model * 2847 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2848 const struct bpf_insn *insn) 2849 { 2850 return NULL; 2851 } 2852 2853 static inline int 2854 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2855 u16 btf_fd_idx, u8 **func_addr) 2856 { 2857 return -ENOTSUPP; 2858 } 2859 2860 static inline bool unprivileged_ebpf_enabled(void) 2861 { 2862 return false; 2863 } 2864 2865 static inline bool has_current_bpf_ctx(void) 2866 { 2867 return false; 2868 } 2869 2870 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2871 { 2872 } 2873 2874 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2875 { 2876 } 2877 2878 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2879 enum bpf_dynptr_type type, u32 offset, u32 size) 2880 { 2881 } 2882 2883 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2884 { 2885 } 2886 2887 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2888 { 2889 } 2890 #endif /* CONFIG_BPF_SYSCALL */ 2891 2892 static __always_inline int 2893 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 2894 { 2895 int ret = -EFAULT; 2896 2897 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 2898 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 2899 if (unlikely(ret < 0)) 2900 memset(dst, 0, size); 2901 return ret; 2902 } 2903 2904 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2905 struct btf_mod_pair *used_btfs, u32 len); 2906 2907 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2908 enum bpf_prog_type type) 2909 { 2910 return bpf_prog_get_type_dev(ufd, type, false); 2911 } 2912 2913 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2914 struct bpf_map **used_maps, u32 len); 2915 2916 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2917 2918 int bpf_prog_offload_compile(struct bpf_prog *prog); 2919 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2920 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2921 struct bpf_prog *prog); 2922 2923 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2924 2925 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2926 int bpf_map_offload_update_elem(struct bpf_map *map, 2927 void *key, void *value, u64 flags); 2928 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2929 int bpf_map_offload_get_next_key(struct bpf_map *map, 2930 void *key, void *next_key); 2931 2932 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2933 2934 struct bpf_offload_dev * 2935 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2936 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2937 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2938 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2939 struct net_device *netdev); 2940 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2941 struct net_device *netdev); 2942 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2943 2944 void unpriv_ebpf_notify(int new_state); 2945 2946 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2947 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2948 struct bpf_prog_aux *prog_aux); 2949 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2950 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2951 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2952 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2953 2954 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2955 { 2956 return aux->dev_bound; 2957 } 2958 2959 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2960 { 2961 return aux->offload_requested; 2962 } 2963 2964 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2965 2966 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2967 { 2968 return unlikely(map->ops == &bpf_map_offload_ops); 2969 } 2970 2971 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2972 void bpf_map_offload_map_free(struct bpf_map *map); 2973 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2974 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2975 const union bpf_attr *kattr, 2976 union bpf_attr __user *uattr); 2977 2978 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2979 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2980 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2981 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2982 union bpf_attr __user *uattr); 2983 2984 void sock_map_unhash(struct sock *sk); 2985 void sock_map_destroy(struct sock *sk); 2986 void sock_map_close(struct sock *sk, long timeout); 2987 #else 2988 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2989 struct bpf_prog_aux *prog_aux) 2990 { 2991 return -EOPNOTSUPP; 2992 } 2993 2994 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 2995 u32 func_id) 2996 { 2997 return NULL; 2998 } 2999 3000 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3001 union bpf_attr *attr) 3002 { 3003 return -EOPNOTSUPP; 3004 } 3005 3006 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3007 struct bpf_prog *old_prog) 3008 { 3009 return -EOPNOTSUPP; 3010 } 3011 3012 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3013 { 3014 } 3015 3016 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3017 { 3018 return false; 3019 } 3020 3021 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3022 { 3023 return false; 3024 } 3025 3026 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3027 { 3028 return false; 3029 } 3030 3031 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3032 { 3033 return false; 3034 } 3035 3036 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3037 { 3038 return ERR_PTR(-EOPNOTSUPP); 3039 } 3040 3041 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3042 { 3043 } 3044 3045 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3046 { 3047 return 0; 3048 } 3049 3050 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3051 const union bpf_attr *kattr, 3052 union bpf_attr __user *uattr) 3053 { 3054 return -ENOTSUPP; 3055 } 3056 3057 #ifdef CONFIG_BPF_SYSCALL 3058 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3059 struct bpf_prog *prog) 3060 { 3061 return -EINVAL; 3062 } 3063 3064 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3065 enum bpf_prog_type ptype) 3066 { 3067 return -EOPNOTSUPP; 3068 } 3069 3070 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3071 u64 flags) 3072 { 3073 return -EOPNOTSUPP; 3074 } 3075 3076 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3077 union bpf_attr __user *uattr) 3078 { 3079 return -EINVAL; 3080 } 3081 #endif /* CONFIG_BPF_SYSCALL */ 3082 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3083 3084 static __always_inline void 3085 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3086 { 3087 const struct bpf_prog_array_item *item; 3088 struct bpf_prog *prog; 3089 3090 if (unlikely(!array)) 3091 return; 3092 3093 item = &array->items[0]; 3094 while ((prog = READ_ONCE(item->prog))) { 3095 bpf_prog_inc_misses_counter(prog); 3096 item++; 3097 } 3098 } 3099 3100 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3101 void bpf_sk_reuseport_detach(struct sock *sk); 3102 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3103 void *value); 3104 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3105 void *value, u64 map_flags); 3106 #else 3107 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3108 { 3109 } 3110 3111 #ifdef CONFIG_BPF_SYSCALL 3112 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3113 void *key, void *value) 3114 { 3115 return -EOPNOTSUPP; 3116 } 3117 3118 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3119 void *key, void *value, 3120 u64 map_flags) 3121 { 3122 return -EOPNOTSUPP; 3123 } 3124 #endif /* CONFIG_BPF_SYSCALL */ 3125 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3126 3127 /* verifier prototypes for helper functions called from eBPF programs */ 3128 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3129 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3130 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3131 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3132 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3133 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3134 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3135 3136 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3137 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3138 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3139 extern const struct bpf_func_proto bpf_tail_call_proto; 3140 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3141 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3142 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3143 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3144 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3145 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3146 extern const struct bpf_func_proto bpf_get_stackid_proto; 3147 extern const struct bpf_func_proto bpf_get_stack_proto; 3148 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3149 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3150 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3151 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3152 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3153 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3154 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3155 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3156 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3157 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3158 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3159 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3160 extern const struct bpf_func_proto bpf_spin_lock_proto; 3161 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3162 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3163 extern const struct bpf_func_proto bpf_strtol_proto; 3164 extern const struct bpf_func_proto bpf_strtoul_proto; 3165 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3166 extern const struct bpf_func_proto bpf_jiffies64_proto; 3167 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3168 extern const struct bpf_func_proto bpf_event_output_data_proto; 3169 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3170 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3171 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3172 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3173 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3174 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3175 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3176 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3177 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3178 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3179 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3180 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3181 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3182 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3183 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3184 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3185 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3186 extern const struct bpf_func_proto bpf_snprintf_proto; 3187 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3188 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3189 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3190 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3191 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3192 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3193 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3194 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3195 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3196 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3197 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3198 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3199 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3200 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3201 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3202 extern const struct bpf_func_proto bpf_find_vma_proto; 3203 extern const struct bpf_func_proto bpf_loop_proto; 3204 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3205 extern const struct bpf_func_proto bpf_set_retval_proto; 3206 extern const struct bpf_func_proto bpf_get_retval_proto; 3207 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3208 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3209 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3210 3211 const struct bpf_func_proto *tracing_prog_func_proto( 3212 enum bpf_func_id func_id, const struct bpf_prog *prog); 3213 3214 /* Shared helpers among cBPF and eBPF. */ 3215 void bpf_user_rnd_init_once(void); 3216 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3217 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3218 3219 #if defined(CONFIG_NET) 3220 bool bpf_sock_common_is_valid_access(int off, int size, 3221 enum bpf_access_type type, 3222 struct bpf_insn_access_aux *info); 3223 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3224 struct bpf_insn_access_aux *info); 3225 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3226 const struct bpf_insn *si, 3227 struct bpf_insn *insn_buf, 3228 struct bpf_prog *prog, 3229 u32 *target_size); 3230 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3231 struct bpf_dynptr_kern *ptr); 3232 #else 3233 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3234 enum bpf_access_type type, 3235 struct bpf_insn_access_aux *info) 3236 { 3237 return false; 3238 } 3239 static inline bool bpf_sock_is_valid_access(int off, int size, 3240 enum bpf_access_type type, 3241 struct bpf_insn_access_aux *info) 3242 { 3243 return false; 3244 } 3245 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3246 const struct bpf_insn *si, 3247 struct bpf_insn *insn_buf, 3248 struct bpf_prog *prog, 3249 u32 *target_size) 3250 { 3251 return 0; 3252 } 3253 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 3254 struct bpf_dynptr_kern *ptr) 3255 { 3256 return -EOPNOTSUPP; 3257 } 3258 #endif 3259 3260 #ifdef CONFIG_INET 3261 struct sk_reuseport_kern { 3262 struct sk_buff *skb; 3263 struct sock *sk; 3264 struct sock *selected_sk; 3265 struct sock *migrating_sk; 3266 void *data_end; 3267 u32 hash; 3268 u32 reuseport_id; 3269 bool bind_inany; 3270 }; 3271 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3272 struct bpf_insn_access_aux *info); 3273 3274 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3275 const struct bpf_insn *si, 3276 struct bpf_insn *insn_buf, 3277 struct bpf_prog *prog, 3278 u32 *target_size); 3279 3280 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3281 struct bpf_insn_access_aux *info); 3282 3283 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3284 const struct bpf_insn *si, 3285 struct bpf_insn *insn_buf, 3286 struct bpf_prog *prog, 3287 u32 *target_size); 3288 #else 3289 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3290 enum bpf_access_type type, 3291 struct bpf_insn_access_aux *info) 3292 { 3293 return false; 3294 } 3295 3296 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3297 const struct bpf_insn *si, 3298 struct bpf_insn *insn_buf, 3299 struct bpf_prog *prog, 3300 u32 *target_size) 3301 { 3302 return 0; 3303 } 3304 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3305 enum bpf_access_type type, 3306 struct bpf_insn_access_aux *info) 3307 { 3308 return false; 3309 } 3310 3311 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3312 const struct bpf_insn *si, 3313 struct bpf_insn *insn_buf, 3314 struct bpf_prog *prog, 3315 u32 *target_size) 3316 { 3317 return 0; 3318 } 3319 #endif /* CONFIG_INET */ 3320 3321 enum bpf_text_poke_type { 3322 BPF_MOD_CALL, 3323 BPF_MOD_JUMP, 3324 }; 3325 3326 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3327 void *addr1, void *addr2); 3328 3329 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3330 struct bpf_prog *new, struct bpf_prog *old); 3331 3332 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3333 int bpf_arch_text_invalidate(void *dst, size_t len); 3334 3335 struct btf_id_set; 3336 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3337 3338 #define MAX_BPRINTF_VARARGS 12 3339 #define MAX_BPRINTF_BUF 1024 3340 3341 struct bpf_bprintf_data { 3342 u32 *bin_args; 3343 char *buf; 3344 bool get_bin_args; 3345 bool get_buf; 3346 }; 3347 3348 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3349 u32 num_args, struct bpf_bprintf_data *data); 3350 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3351 3352 #ifdef CONFIG_BPF_LSM 3353 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3354 void bpf_cgroup_atype_put(int cgroup_atype); 3355 #else 3356 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3357 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3358 #endif /* CONFIG_BPF_LSM */ 3359 3360 struct key; 3361 3362 #ifdef CONFIG_KEYS 3363 struct bpf_key { 3364 struct key *key; 3365 bool has_ref; 3366 }; 3367 #endif /* CONFIG_KEYS */ 3368 3369 static inline bool type_is_alloc(u32 type) 3370 { 3371 return type & MEM_ALLOC; 3372 } 3373 3374 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3375 { 3376 if (memcg_bpf_enabled()) 3377 return flags | __GFP_ACCOUNT; 3378 return flags; 3379 } 3380 3381 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3382 { 3383 return prog->aux->func_idx != 0; 3384 } 3385 3386 #endif /* _LINUX_BPF_H */ 3387