1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 #include <linux/cfi.h> 33 34 struct bpf_verifier_env; 35 struct bpf_verifier_log; 36 struct perf_event; 37 struct bpf_prog; 38 struct bpf_prog_aux; 39 struct bpf_map; 40 struct bpf_arena; 41 struct sock; 42 struct seq_file; 43 struct btf; 44 struct btf_type; 45 struct exception_table_entry; 46 struct seq_operations; 47 struct bpf_iter_aux_info; 48 struct bpf_local_storage; 49 struct bpf_local_storage_map; 50 struct kobject; 51 struct mem_cgroup; 52 struct module; 53 struct bpf_func_state; 54 struct ftrace_ops; 55 struct cgroup; 56 struct bpf_token; 57 struct user_namespace; 58 struct super_block; 59 struct inode; 60 61 extern struct idr btf_idr; 62 extern spinlock_t btf_idr_lock; 63 extern struct kobject *btf_kobj; 64 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma; 65 extern bool bpf_global_ma_set; 66 67 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 68 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 69 struct bpf_iter_aux_info *aux); 70 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 71 typedef unsigned int (*bpf_func_t)(const void *, 72 const struct bpf_insn *); 73 struct bpf_iter_seq_info { 74 const struct seq_operations *seq_ops; 75 bpf_iter_init_seq_priv_t init_seq_private; 76 bpf_iter_fini_seq_priv_t fini_seq_private; 77 u32 seq_priv_size; 78 }; 79 80 /* map is generic key/value storage optionally accessible by eBPF programs */ 81 struct bpf_map_ops { 82 /* funcs callable from userspace (via syscall) */ 83 int (*map_alloc_check)(union bpf_attr *attr); 84 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 85 void (*map_release)(struct bpf_map *map, struct file *map_file); 86 void (*map_free)(struct bpf_map *map); 87 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 88 void (*map_release_uref)(struct bpf_map *map); 89 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 90 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 91 union bpf_attr __user *uattr); 92 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 93 void *value, u64 flags); 94 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 95 const union bpf_attr *attr, 96 union bpf_attr __user *uattr); 97 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 98 const union bpf_attr *attr, 99 union bpf_attr __user *uattr); 100 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 101 union bpf_attr __user *uattr); 102 103 /* funcs callable from userspace and from eBPF programs */ 104 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 105 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 106 long (*map_delete_elem)(struct bpf_map *map, void *key); 107 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 108 long (*map_pop_elem)(struct bpf_map *map, void *value); 109 long (*map_peek_elem)(struct bpf_map *map, void *value); 110 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 111 112 /* funcs called by prog_array and perf_event_array map */ 113 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 114 int fd); 115 /* If need_defer is true, the implementation should guarantee that 116 * the to-be-put element is still alive before the bpf program, which 117 * may manipulate it, exists. 118 */ 119 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer); 120 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 121 u32 (*map_fd_sys_lookup_elem)(void *ptr); 122 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 123 struct seq_file *m); 124 int (*map_check_btf)(const struct bpf_map *map, 125 const struct btf *btf, 126 const struct btf_type *key_type, 127 const struct btf_type *value_type); 128 129 /* Prog poke tracking helpers. */ 130 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 131 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 132 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 133 struct bpf_prog *new); 134 135 /* Direct value access helpers. */ 136 int (*map_direct_value_addr)(const struct bpf_map *map, 137 u64 *imm, u32 off); 138 int (*map_direct_value_meta)(const struct bpf_map *map, 139 u64 imm, u32 *off); 140 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 141 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 142 struct poll_table_struct *pts); 143 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr, 144 unsigned long len, unsigned long pgoff, 145 unsigned long flags); 146 147 /* Functions called by bpf_local_storage maps */ 148 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 149 void *owner, u32 size); 150 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 151 void *owner, u32 size); 152 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 153 154 /* Misc helpers.*/ 155 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 156 157 /* map_meta_equal must be implemented for maps that can be 158 * used as an inner map. It is a runtime check to ensure 159 * an inner map can be inserted to an outer map. 160 * 161 * Some properties of the inner map has been used during the 162 * verification time. When inserting an inner map at the runtime, 163 * map_meta_equal has to ensure the inserting map has the same 164 * properties that the verifier has used earlier. 165 */ 166 bool (*map_meta_equal)(const struct bpf_map *meta0, 167 const struct bpf_map *meta1); 168 169 170 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 171 struct bpf_func_state *caller, 172 struct bpf_func_state *callee); 173 long (*map_for_each_callback)(struct bpf_map *map, 174 bpf_callback_t callback_fn, 175 void *callback_ctx, u64 flags); 176 177 u64 (*map_mem_usage)(const struct bpf_map *map); 178 179 /* BTF id of struct allocated by map_alloc */ 180 int *map_btf_id; 181 182 /* bpf_iter info used to open a seq_file */ 183 const struct bpf_iter_seq_info *iter_seq_info; 184 }; 185 186 enum { 187 /* Support at most 11 fields in a BTF type */ 188 BTF_FIELDS_MAX = 11, 189 }; 190 191 enum btf_field_type { 192 BPF_SPIN_LOCK = (1 << 0), 193 BPF_TIMER = (1 << 1), 194 BPF_KPTR_UNREF = (1 << 2), 195 BPF_KPTR_REF = (1 << 3), 196 BPF_KPTR_PERCPU = (1 << 4), 197 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU, 198 BPF_LIST_HEAD = (1 << 5), 199 BPF_LIST_NODE = (1 << 6), 200 BPF_RB_ROOT = (1 << 7), 201 BPF_RB_NODE = (1 << 8), 202 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE, 203 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD, 204 BPF_REFCOUNT = (1 << 9), 205 BPF_WORKQUEUE = (1 << 10), 206 BPF_UPTR = (1 << 11), 207 }; 208 209 typedef void (*btf_dtor_kfunc_t)(void *); 210 211 struct btf_field_kptr { 212 struct btf *btf; 213 struct module *module; 214 /* dtor used if btf_is_kernel(btf), otherwise the type is 215 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 216 */ 217 btf_dtor_kfunc_t dtor; 218 u32 btf_id; 219 }; 220 221 struct btf_field_graph_root { 222 struct btf *btf; 223 u32 value_btf_id; 224 u32 node_offset; 225 struct btf_record *value_rec; 226 }; 227 228 struct btf_field { 229 u32 offset; 230 u32 size; 231 enum btf_field_type type; 232 union { 233 struct btf_field_kptr kptr; 234 struct btf_field_graph_root graph_root; 235 }; 236 }; 237 238 struct btf_record { 239 u32 cnt; 240 u32 field_mask; 241 int spin_lock_off; 242 int timer_off; 243 int wq_off; 244 int refcount_off; 245 struct btf_field fields[]; 246 }; 247 248 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 249 struct bpf_rb_node_kern { 250 struct rb_node rb_node; 251 void *owner; 252 } __attribute__((aligned(8))); 253 254 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 255 struct bpf_list_node_kern { 256 struct list_head list_head; 257 void *owner; 258 } __attribute__((aligned(8))); 259 260 struct bpf_map { 261 const struct bpf_map_ops *ops; 262 struct bpf_map *inner_map_meta; 263 #ifdef CONFIG_SECURITY 264 void *security; 265 #endif 266 enum bpf_map_type map_type; 267 u32 key_size; 268 u32 value_size; 269 u32 max_entries; 270 u64 map_extra; /* any per-map-type extra fields */ 271 u32 map_flags; 272 u32 id; 273 struct btf_record *record; 274 int numa_node; 275 u32 btf_key_type_id; 276 u32 btf_value_type_id; 277 u32 btf_vmlinux_value_type_id; 278 struct btf *btf; 279 #ifdef CONFIG_MEMCG 280 struct obj_cgroup *objcg; 281 #endif 282 char name[BPF_OBJ_NAME_LEN]; 283 struct mutex freeze_mutex; 284 atomic64_t refcnt; 285 atomic64_t usercnt; 286 /* rcu is used before freeing and work is only used during freeing */ 287 union { 288 struct work_struct work; 289 struct rcu_head rcu; 290 }; 291 atomic64_t writecnt; 292 /* 'Ownership' of program-containing map is claimed by the first program 293 * that is going to use this map or by the first program which FD is 294 * stored in the map to make sure that all callers and callees have the 295 * same prog type, JITed flag and xdp_has_frags flag. 296 */ 297 struct { 298 const struct btf_type *attach_func_proto; 299 spinlock_t lock; 300 enum bpf_prog_type type; 301 bool jited; 302 bool xdp_has_frags; 303 } owner; 304 bool bypass_spec_v1; 305 bool frozen; /* write-once; write-protected by freeze_mutex */ 306 bool free_after_mult_rcu_gp; 307 bool free_after_rcu_gp; 308 atomic64_t sleepable_refcnt; 309 s64 __percpu *elem_count; 310 }; 311 312 static inline const char *btf_field_type_name(enum btf_field_type type) 313 { 314 switch (type) { 315 case BPF_SPIN_LOCK: 316 return "bpf_spin_lock"; 317 case BPF_TIMER: 318 return "bpf_timer"; 319 case BPF_WORKQUEUE: 320 return "bpf_wq"; 321 case BPF_KPTR_UNREF: 322 case BPF_KPTR_REF: 323 return "kptr"; 324 case BPF_KPTR_PERCPU: 325 return "percpu_kptr"; 326 case BPF_UPTR: 327 return "uptr"; 328 case BPF_LIST_HEAD: 329 return "bpf_list_head"; 330 case BPF_LIST_NODE: 331 return "bpf_list_node"; 332 case BPF_RB_ROOT: 333 return "bpf_rb_root"; 334 case BPF_RB_NODE: 335 return "bpf_rb_node"; 336 case BPF_REFCOUNT: 337 return "bpf_refcount"; 338 default: 339 WARN_ON_ONCE(1); 340 return "unknown"; 341 } 342 } 343 344 static inline u32 btf_field_type_size(enum btf_field_type type) 345 { 346 switch (type) { 347 case BPF_SPIN_LOCK: 348 return sizeof(struct bpf_spin_lock); 349 case BPF_TIMER: 350 return sizeof(struct bpf_timer); 351 case BPF_WORKQUEUE: 352 return sizeof(struct bpf_wq); 353 case BPF_KPTR_UNREF: 354 case BPF_KPTR_REF: 355 case BPF_KPTR_PERCPU: 356 case BPF_UPTR: 357 return sizeof(u64); 358 case BPF_LIST_HEAD: 359 return sizeof(struct bpf_list_head); 360 case BPF_LIST_NODE: 361 return sizeof(struct bpf_list_node); 362 case BPF_RB_ROOT: 363 return sizeof(struct bpf_rb_root); 364 case BPF_RB_NODE: 365 return sizeof(struct bpf_rb_node); 366 case BPF_REFCOUNT: 367 return sizeof(struct bpf_refcount); 368 default: 369 WARN_ON_ONCE(1); 370 return 0; 371 } 372 } 373 374 static inline u32 btf_field_type_align(enum btf_field_type type) 375 { 376 switch (type) { 377 case BPF_SPIN_LOCK: 378 return __alignof__(struct bpf_spin_lock); 379 case BPF_TIMER: 380 return __alignof__(struct bpf_timer); 381 case BPF_WORKQUEUE: 382 return __alignof__(struct bpf_wq); 383 case BPF_KPTR_UNREF: 384 case BPF_KPTR_REF: 385 case BPF_KPTR_PERCPU: 386 case BPF_UPTR: 387 return __alignof__(u64); 388 case BPF_LIST_HEAD: 389 return __alignof__(struct bpf_list_head); 390 case BPF_LIST_NODE: 391 return __alignof__(struct bpf_list_node); 392 case BPF_RB_ROOT: 393 return __alignof__(struct bpf_rb_root); 394 case BPF_RB_NODE: 395 return __alignof__(struct bpf_rb_node); 396 case BPF_REFCOUNT: 397 return __alignof__(struct bpf_refcount); 398 default: 399 WARN_ON_ONCE(1); 400 return 0; 401 } 402 } 403 404 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 405 { 406 memset(addr, 0, field->size); 407 408 switch (field->type) { 409 case BPF_REFCOUNT: 410 refcount_set((refcount_t *)addr, 1); 411 break; 412 case BPF_RB_NODE: 413 RB_CLEAR_NODE((struct rb_node *)addr); 414 break; 415 case BPF_LIST_HEAD: 416 case BPF_LIST_NODE: 417 INIT_LIST_HEAD((struct list_head *)addr); 418 break; 419 case BPF_RB_ROOT: 420 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 421 case BPF_SPIN_LOCK: 422 case BPF_TIMER: 423 case BPF_WORKQUEUE: 424 case BPF_KPTR_UNREF: 425 case BPF_KPTR_REF: 426 case BPF_KPTR_PERCPU: 427 case BPF_UPTR: 428 break; 429 default: 430 WARN_ON_ONCE(1); 431 return; 432 } 433 } 434 435 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 436 { 437 if (IS_ERR_OR_NULL(rec)) 438 return false; 439 return rec->field_mask & type; 440 } 441 442 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 443 { 444 int i; 445 446 if (IS_ERR_OR_NULL(rec)) 447 return; 448 for (i = 0; i < rec->cnt; i++) 449 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 450 } 451 452 /* 'dst' must be a temporary buffer and should not point to memory that is being 453 * used in parallel by a bpf program or bpf syscall, otherwise the access from 454 * the bpf program or bpf syscall may be corrupted by the reinitialization, 455 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 456 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 457 * program or bpf syscall. 458 */ 459 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 460 { 461 bpf_obj_init(map->record, dst); 462 } 463 464 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 465 * forced to use 'long' read/writes to try to atomically copy long counters. 466 * Best-effort only. No barriers here, since it _will_ race with concurrent 467 * updates from BPF programs. Called from bpf syscall and mostly used with 468 * size 8 or 16 bytes, so ask compiler to inline it. 469 */ 470 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 471 { 472 const long *lsrc = src; 473 long *ldst = dst; 474 475 size /= sizeof(long); 476 while (size--) 477 data_race(*ldst++ = *lsrc++); 478 } 479 480 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 481 static inline void bpf_obj_memcpy(struct btf_record *rec, 482 void *dst, void *src, u32 size, 483 bool long_memcpy) 484 { 485 u32 curr_off = 0; 486 int i; 487 488 if (IS_ERR_OR_NULL(rec)) { 489 if (long_memcpy) 490 bpf_long_memcpy(dst, src, round_up(size, 8)); 491 else 492 memcpy(dst, src, size); 493 return; 494 } 495 496 for (i = 0; i < rec->cnt; i++) { 497 u32 next_off = rec->fields[i].offset; 498 u32 sz = next_off - curr_off; 499 500 memcpy(dst + curr_off, src + curr_off, sz); 501 curr_off += rec->fields[i].size + sz; 502 } 503 memcpy(dst + curr_off, src + curr_off, size - curr_off); 504 } 505 506 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 507 { 508 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 509 } 510 511 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 512 { 513 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 514 } 515 516 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src) 517 { 518 unsigned long *src_uptr, *dst_uptr; 519 const struct btf_field *field; 520 int i; 521 522 if (!btf_record_has_field(rec, BPF_UPTR)) 523 return; 524 525 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) { 526 if (field->type != BPF_UPTR) 527 continue; 528 529 src_uptr = src + field->offset; 530 dst_uptr = dst + field->offset; 531 swap(*src_uptr, *dst_uptr); 532 } 533 } 534 535 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 536 { 537 u32 curr_off = 0; 538 int i; 539 540 if (IS_ERR_OR_NULL(rec)) { 541 memset(dst, 0, size); 542 return; 543 } 544 545 for (i = 0; i < rec->cnt; i++) { 546 u32 next_off = rec->fields[i].offset; 547 u32 sz = next_off - curr_off; 548 549 memset(dst + curr_off, 0, sz); 550 curr_off += rec->fields[i].size + sz; 551 } 552 memset(dst + curr_off, 0, size - curr_off); 553 } 554 555 static inline void zero_map_value(struct bpf_map *map, void *dst) 556 { 557 bpf_obj_memzero(map->record, dst, map->value_size); 558 } 559 560 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 561 bool lock_src); 562 void bpf_timer_cancel_and_free(void *timer); 563 void bpf_wq_cancel_and_free(void *timer); 564 void bpf_list_head_free(const struct btf_field *field, void *list_head, 565 struct bpf_spin_lock *spin_lock); 566 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 567 struct bpf_spin_lock *spin_lock); 568 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena); 569 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena); 570 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 571 572 struct bpf_offload_dev; 573 struct bpf_offloaded_map; 574 575 struct bpf_map_dev_ops { 576 int (*map_get_next_key)(struct bpf_offloaded_map *map, 577 void *key, void *next_key); 578 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 579 void *key, void *value); 580 int (*map_update_elem)(struct bpf_offloaded_map *map, 581 void *key, void *value, u64 flags); 582 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 583 }; 584 585 struct bpf_offloaded_map { 586 struct bpf_map map; 587 struct net_device *netdev; 588 const struct bpf_map_dev_ops *dev_ops; 589 void *dev_priv; 590 struct list_head offloads; 591 }; 592 593 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 594 { 595 return container_of(map, struct bpf_offloaded_map, map); 596 } 597 598 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 599 { 600 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 601 } 602 603 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 604 { 605 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 606 map->ops->map_seq_show_elem; 607 } 608 609 int map_check_no_btf(const struct bpf_map *map, 610 const struct btf *btf, 611 const struct btf_type *key_type, 612 const struct btf_type *value_type); 613 614 bool bpf_map_meta_equal(const struct bpf_map *meta0, 615 const struct bpf_map *meta1); 616 617 extern const struct bpf_map_ops bpf_map_offload_ops; 618 619 /* bpf_type_flag contains a set of flags that are applicable to the values of 620 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 621 * or a memory is read-only. We classify types into two categories: base types 622 * and extended types. Extended types are base types combined with a type flag. 623 * 624 * Currently there are no more than 32 base types in arg_type, ret_type and 625 * reg_types. 626 */ 627 #define BPF_BASE_TYPE_BITS 8 628 629 enum bpf_type_flag { 630 /* PTR may be NULL. */ 631 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 632 633 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 634 * compatible with both mutable and immutable memory. 635 */ 636 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 637 638 /* MEM points to BPF ring buffer reservation. */ 639 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 640 641 /* MEM is in user address space. */ 642 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 643 644 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 645 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 646 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 647 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 648 * to the specified cpu. 649 */ 650 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 651 652 /* Indicates that the argument will be released. */ 653 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 654 655 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 656 * unreferenced and referenced kptr loaded from map value using a load 657 * instruction, so that they can only be dereferenced but not escape the 658 * BPF program into the kernel (i.e. cannot be passed as arguments to 659 * kfunc or bpf helpers). 660 */ 661 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 662 663 /* MEM can be uninitialized. */ 664 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 665 666 /* DYNPTR points to memory local to the bpf program. */ 667 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 668 669 /* DYNPTR points to a kernel-produced ringbuf record. */ 670 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 671 672 /* Size is known at compile time. */ 673 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 674 675 /* MEM is of an allocated object of type in program BTF. This is used to 676 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 677 */ 678 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 679 680 /* PTR was passed from the kernel in a trusted context, and may be 681 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 682 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 683 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 684 * without invoking bpf_kptr_xchg(). What we really need to know is 685 * whether a pointer is safe to pass to a kfunc or BPF helper function. 686 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 687 * helpers, they do not cover all possible instances of unsafe 688 * pointers. For example, a pointer that was obtained from walking a 689 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 690 * fact that it may be NULL, invalid, etc. This is due to backwards 691 * compatibility requirements, as this was the behavior that was first 692 * introduced when kptrs were added. The behavior is now considered 693 * deprecated, and PTR_UNTRUSTED will eventually be removed. 694 * 695 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 696 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 697 * For example, pointers passed to tracepoint arguments are considered 698 * PTR_TRUSTED, as are pointers that are passed to struct_ops 699 * callbacks. As alluded to above, pointers that are obtained from 700 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 701 * struct task_struct *task is PTR_TRUSTED, then accessing 702 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 703 * in a BPF register. Similarly, pointers passed to certain programs 704 * types such as kretprobes are not guaranteed to be valid, as they may 705 * for example contain an object that was recently freed. 706 */ 707 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 708 709 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 710 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 711 712 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 713 * Currently only valid for linked-list and rbtree nodes. If the nodes 714 * have a bpf_refcount_field, they must be tagged MEM_RCU as well. 715 */ 716 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 717 718 /* DYNPTR points to sk_buff */ 719 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 720 721 /* DYNPTR points to xdp_buff */ 722 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 723 724 /* Memory must be aligned on some architectures, used in combination with 725 * MEM_FIXED_SIZE. 726 */ 727 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS), 728 729 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence 730 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the 731 * MEM_UNINIT means that memory needs to be initialized since it is also 732 * read. 733 */ 734 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS), 735 736 __BPF_TYPE_FLAG_MAX, 737 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 738 }; 739 740 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 741 | DYNPTR_TYPE_XDP) 742 743 /* Max number of base types. */ 744 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 745 746 /* Max number of all types. */ 747 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 748 749 /* function argument constraints */ 750 enum bpf_arg_type { 751 ARG_DONTCARE = 0, /* unused argument in helper function */ 752 753 /* the following constraints used to prototype 754 * bpf_map_lookup/update/delete_elem() functions 755 */ 756 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 757 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 758 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 759 760 /* Used to prototype bpf_memcmp() and other functions that access data 761 * on eBPF program stack 762 */ 763 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 764 ARG_PTR_TO_ARENA, 765 766 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 767 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 768 769 ARG_PTR_TO_CTX, /* pointer to context */ 770 ARG_ANYTHING, /* any (initialized) argument is ok */ 771 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 772 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 773 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 774 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 775 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 776 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 777 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 778 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 779 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 780 ARG_PTR_TO_STACK, /* pointer to stack */ 781 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 782 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 783 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */ 784 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 785 __BPF_ARG_TYPE_MAX, 786 787 /* Extended arg_types. */ 788 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 789 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 790 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 791 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 792 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 793 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 794 /* Pointer to memory does not need to be initialized, since helper function 795 * fills all bytes or clears them in error case. 796 */ 797 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM, 798 /* Pointer to valid memory of size known at compile time. */ 799 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 800 801 /* This must be the last entry. Its purpose is to ensure the enum is 802 * wide enough to hold the higher bits reserved for bpf_type_flag. 803 */ 804 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 805 }; 806 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 807 808 /* type of values returned from helper functions */ 809 enum bpf_return_type { 810 RET_INTEGER, /* function returns integer */ 811 RET_VOID, /* function doesn't return anything */ 812 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 813 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 814 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 815 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 816 RET_PTR_TO_MEM, /* returns a pointer to memory */ 817 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 818 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 819 __BPF_RET_TYPE_MAX, 820 821 /* Extended ret_types. */ 822 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 823 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 824 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 825 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 826 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 827 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 828 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 829 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 830 831 /* This must be the last entry. Its purpose is to ensure the enum is 832 * wide enough to hold the higher bits reserved for bpf_type_flag. 833 */ 834 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 835 }; 836 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 837 838 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 839 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 840 * instructions after verifying 841 */ 842 struct bpf_func_proto { 843 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 844 bool gpl_only; 845 bool pkt_access; 846 bool might_sleep; 847 /* set to true if helper follows contract for llvm 848 * attribute bpf_fastcall: 849 * - void functions do not scratch r0 850 * - functions taking N arguments scratch only registers r1-rN 851 */ 852 bool allow_fastcall; 853 enum bpf_return_type ret_type; 854 union { 855 struct { 856 enum bpf_arg_type arg1_type; 857 enum bpf_arg_type arg2_type; 858 enum bpf_arg_type arg3_type; 859 enum bpf_arg_type arg4_type; 860 enum bpf_arg_type arg5_type; 861 }; 862 enum bpf_arg_type arg_type[5]; 863 }; 864 union { 865 struct { 866 u32 *arg1_btf_id; 867 u32 *arg2_btf_id; 868 u32 *arg3_btf_id; 869 u32 *arg4_btf_id; 870 u32 *arg5_btf_id; 871 }; 872 u32 *arg_btf_id[5]; 873 struct { 874 size_t arg1_size; 875 size_t arg2_size; 876 size_t arg3_size; 877 size_t arg4_size; 878 size_t arg5_size; 879 }; 880 size_t arg_size[5]; 881 }; 882 int *ret_btf_id; /* return value btf_id */ 883 bool (*allowed)(const struct bpf_prog *prog); 884 }; 885 886 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 887 * the first argument to eBPF programs. 888 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 889 */ 890 struct bpf_context; 891 892 enum bpf_access_type { 893 BPF_READ = 1, 894 BPF_WRITE = 2 895 }; 896 897 /* types of values stored in eBPF registers */ 898 /* Pointer types represent: 899 * pointer 900 * pointer + imm 901 * pointer + (u16) var 902 * pointer + (u16) var + imm 903 * if (range > 0) then [ptr, ptr + range - off) is safe to access 904 * if (id > 0) means that some 'var' was added 905 * if (off > 0) means that 'imm' was added 906 */ 907 enum bpf_reg_type { 908 NOT_INIT = 0, /* nothing was written into register */ 909 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 910 PTR_TO_CTX, /* reg points to bpf_context */ 911 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 912 PTR_TO_MAP_VALUE, /* reg points to map element value */ 913 PTR_TO_MAP_KEY, /* reg points to a map element key */ 914 PTR_TO_STACK, /* reg == frame_pointer + offset */ 915 PTR_TO_PACKET_META, /* skb->data - meta_len */ 916 PTR_TO_PACKET, /* reg points to skb->data */ 917 PTR_TO_PACKET_END, /* skb->data + headlen */ 918 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 919 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 920 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 921 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 922 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 923 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 924 /* PTR_TO_BTF_ID points to a kernel struct that does not need 925 * to be null checked by the BPF program. This does not imply the 926 * pointer is _not_ null and in practice this can easily be a null 927 * pointer when reading pointer chains. The assumption is program 928 * context will handle null pointer dereference typically via fault 929 * handling. The verifier must keep this in mind and can make no 930 * assumptions about null or non-null when doing branch analysis. 931 * Further, when passed into helpers the helpers can not, without 932 * additional context, assume the value is non-null. 933 */ 934 PTR_TO_BTF_ID, 935 PTR_TO_MEM, /* reg points to valid memory region */ 936 PTR_TO_ARENA, 937 PTR_TO_BUF, /* reg points to a read/write buffer */ 938 PTR_TO_FUNC, /* reg points to a bpf program function */ 939 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 940 __BPF_REG_TYPE_MAX, 941 942 /* Extended reg_types. */ 943 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 944 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 945 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 946 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 947 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 948 * been checked for null. Used primarily to inform the verifier 949 * an explicit null check is required for this struct. 950 */ 951 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 952 953 /* This must be the last entry. Its purpose is to ensure the enum is 954 * wide enough to hold the higher bits reserved for bpf_type_flag. 955 */ 956 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 957 }; 958 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 959 960 /* The information passed from prog-specific *_is_valid_access 961 * back to the verifier. 962 */ 963 struct bpf_insn_access_aux { 964 enum bpf_reg_type reg_type; 965 bool is_ldsx; 966 union { 967 int ctx_field_size; 968 struct { 969 struct btf *btf; 970 u32 btf_id; 971 }; 972 }; 973 struct bpf_verifier_log *log; /* for verbose logs */ 974 bool is_retval; /* is accessing function return value ? */ 975 }; 976 977 static inline void 978 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 979 { 980 aux->ctx_field_size = size; 981 } 982 983 static bool bpf_is_ldimm64(const struct bpf_insn *insn) 984 { 985 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 986 } 987 988 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 989 { 990 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 991 } 992 993 struct bpf_prog_ops { 994 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 995 union bpf_attr __user *uattr); 996 }; 997 998 struct bpf_reg_state; 999 struct bpf_verifier_ops { 1000 /* return eBPF function prototype for verification */ 1001 const struct bpf_func_proto * 1002 (*get_func_proto)(enum bpf_func_id func_id, 1003 const struct bpf_prog *prog); 1004 1005 /* return true if 'size' wide access at offset 'off' within bpf_context 1006 * with 'type' (read or write) is allowed 1007 */ 1008 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 1009 const struct bpf_prog *prog, 1010 struct bpf_insn_access_aux *info); 1011 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 1012 const struct bpf_prog *prog); 1013 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog, 1014 s16 ctx_stack_off); 1015 int (*gen_ld_abs)(const struct bpf_insn *orig, 1016 struct bpf_insn *insn_buf); 1017 u32 (*convert_ctx_access)(enum bpf_access_type type, 1018 const struct bpf_insn *src, 1019 struct bpf_insn *dst, 1020 struct bpf_prog *prog, u32 *target_size); 1021 int (*btf_struct_access)(struct bpf_verifier_log *log, 1022 const struct bpf_reg_state *reg, 1023 int off, int size); 1024 }; 1025 1026 struct bpf_prog_offload_ops { 1027 /* verifier basic callbacks */ 1028 int (*insn_hook)(struct bpf_verifier_env *env, 1029 int insn_idx, int prev_insn_idx); 1030 int (*finalize)(struct bpf_verifier_env *env); 1031 /* verifier optimization callbacks (called after .finalize) */ 1032 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 1033 struct bpf_insn *insn); 1034 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 1035 /* program management callbacks */ 1036 int (*prepare)(struct bpf_prog *prog); 1037 int (*translate)(struct bpf_prog *prog); 1038 void (*destroy)(struct bpf_prog *prog); 1039 }; 1040 1041 struct bpf_prog_offload { 1042 struct bpf_prog *prog; 1043 struct net_device *netdev; 1044 struct bpf_offload_dev *offdev; 1045 void *dev_priv; 1046 struct list_head offloads; 1047 bool dev_state; 1048 bool opt_failed; 1049 void *jited_image; 1050 u32 jited_len; 1051 }; 1052 1053 enum bpf_cgroup_storage_type { 1054 BPF_CGROUP_STORAGE_SHARED, 1055 BPF_CGROUP_STORAGE_PERCPU, 1056 __BPF_CGROUP_STORAGE_MAX 1057 }; 1058 1059 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 1060 1061 /* The longest tracepoint has 12 args. 1062 * See include/trace/bpf_probe.h 1063 */ 1064 #define MAX_BPF_FUNC_ARGS 12 1065 1066 /* The maximum number of arguments passed through registers 1067 * a single function may have. 1068 */ 1069 #define MAX_BPF_FUNC_REG_ARGS 5 1070 1071 /* The argument is a structure. */ 1072 #define BTF_FMODEL_STRUCT_ARG BIT(0) 1073 1074 /* The argument is signed. */ 1075 #define BTF_FMODEL_SIGNED_ARG BIT(1) 1076 1077 struct btf_func_model { 1078 u8 ret_size; 1079 u8 ret_flags; 1080 u8 nr_args; 1081 u8 arg_size[MAX_BPF_FUNC_ARGS]; 1082 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 1083 }; 1084 1085 /* Restore arguments before returning from trampoline to let original function 1086 * continue executing. This flag is used for fentry progs when there are no 1087 * fexit progs. 1088 */ 1089 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1090 /* Call original function after fentry progs, but before fexit progs. 1091 * Makes sense for fentry/fexit, normal calls and indirect calls. 1092 */ 1093 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1094 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1095 * programs only. Should not be used with normal calls and indirect calls. 1096 */ 1097 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1098 /* Store IP address of the caller on the trampoline stack, 1099 * so it's available for trampoline's programs. 1100 */ 1101 #define BPF_TRAMP_F_IP_ARG BIT(3) 1102 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1103 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1104 1105 /* Get original function from stack instead of from provided direct address. 1106 * Makes sense for trampolines with fexit or fmod_ret programs. 1107 */ 1108 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1109 1110 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1111 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1112 */ 1113 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1114 1115 /* Indicate that current trampoline is in a tail call context. Then, it has to 1116 * cache and restore tail_call_cnt to avoid infinite tail call loop. 1117 */ 1118 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7) 1119 1120 /* 1121 * Indicate the trampoline should be suitable to receive indirect calls; 1122 * without this indirectly calling the generated code can result in #UD/#CP, 1123 * depending on the CFI options. 1124 * 1125 * Used by bpf_struct_ops. 1126 * 1127 * Incompatible with FENTRY usage, overloads @func_addr argument. 1128 */ 1129 #define BPF_TRAMP_F_INDIRECT BIT(8) 1130 1131 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1132 * bytes on x86. 1133 */ 1134 enum { 1135 #if defined(__s390x__) 1136 BPF_MAX_TRAMP_LINKS = 27, 1137 #else 1138 BPF_MAX_TRAMP_LINKS = 38, 1139 #endif 1140 }; 1141 1142 struct bpf_tramp_links { 1143 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1144 int nr_links; 1145 }; 1146 1147 struct bpf_tramp_run_ctx; 1148 1149 /* Different use cases for BPF trampoline: 1150 * 1. replace nop at the function entry (kprobe equivalent) 1151 * flags = BPF_TRAMP_F_RESTORE_REGS 1152 * fentry = a set of programs to run before returning from trampoline 1153 * 1154 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1155 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1156 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1157 * fentry = a set of program to run before calling original function 1158 * fexit = a set of program to run after original function 1159 * 1160 * 3. replace direct call instruction anywhere in the function body 1161 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1162 * With flags = 0 1163 * fentry = a set of programs to run before returning from trampoline 1164 * With flags = BPF_TRAMP_F_CALL_ORIG 1165 * orig_call = original callback addr or direct function addr 1166 * fentry = a set of program to run before calling original function 1167 * fexit = a set of program to run after original function 1168 */ 1169 struct bpf_tramp_image; 1170 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, 1171 const struct btf_func_model *m, u32 flags, 1172 struct bpf_tramp_links *tlinks, 1173 void *func_addr); 1174 void *arch_alloc_bpf_trampoline(unsigned int size); 1175 void arch_free_bpf_trampoline(void *image, unsigned int size); 1176 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size); 1177 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 1178 struct bpf_tramp_links *tlinks, void *func_addr); 1179 1180 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1181 struct bpf_tramp_run_ctx *run_ctx); 1182 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1183 struct bpf_tramp_run_ctx *run_ctx); 1184 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1185 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1186 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1187 struct bpf_tramp_run_ctx *run_ctx); 1188 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1189 struct bpf_tramp_run_ctx *run_ctx); 1190 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1191 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1192 1193 struct bpf_ksym { 1194 unsigned long start; 1195 unsigned long end; 1196 char name[KSYM_NAME_LEN]; 1197 struct list_head lnode; 1198 struct latch_tree_node tnode; 1199 bool prog; 1200 }; 1201 1202 enum bpf_tramp_prog_type { 1203 BPF_TRAMP_FENTRY, 1204 BPF_TRAMP_FEXIT, 1205 BPF_TRAMP_MODIFY_RETURN, 1206 BPF_TRAMP_MAX, 1207 BPF_TRAMP_REPLACE, /* more than MAX */ 1208 }; 1209 1210 struct bpf_tramp_image { 1211 void *image; 1212 int size; 1213 struct bpf_ksym ksym; 1214 struct percpu_ref pcref; 1215 void *ip_after_call; 1216 void *ip_epilogue; 1217 union { 1218 struct rcu_head rcu; 1219 struct work_struct work; 1220 }; 1221 }; 1222 1223 struct bpf_trampoline { 1224 /* hlist for trampoline_table */ 1225 struct hlist_node hlist; 1226 struct ftrace_ops *fops; 1227 /* serializes access to fields of this trampoline */ 1228 struct mutex mutex; 1229 refcount_t refcnt; 1230 u32 flags; 1231 u64 key; 1232 struct { 1233 struct btf_func_model model; 1234 void *addr; 1235 bool ftrace_managed; 1236 } func; 1237 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1238 * program by replacing one of its functions. func.addr is the address 1239 * of the function it replaced. 1240 */ 1241 struct bpf_prog *extension_prog; 1242 /* list of BPF programs using this trampoline */ 1243 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1244 /* Number of attached programs. A counter per kind. */ 1245 int progs_cnt[BPF_TRAMP_MAX]; 1246 /* Executable image of trampoline */ 1247 struct bpf_tramp_image *cur_image; 1248 }; 1249 1250 struct bpf_attach_target_info { 1251 struct btf_func_model fmodel; 1252 long tgt_addr; 1253 struct module *tgt_mod; 1254 const char *tgt_name; 1255 const struct btf_type *tgt_type; 1256 }; 1257 1258 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1259 1260 struct bpf_dispatcher_prog { 1261 struct bpf_prog *prog; 1262 refcount_t users; 1263 }; 1264 1265 struct bpf_dispatcher { 1266 /* dispatcher mutex */ 1267 struct mutex mutex; 1268 void *func; 1269 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1270 int num_progs; 1271 void *image; 1272 void *rw_image; 1273 u32 image_off; 1274 struct bpf_ksym ksym; 1275 #ifdef CONFIG_HAVE_STATIC_CALL 1276 struct static_call_key *sc_key; 1277 void *sc_tramp; 1278 #endif 1279 }; 1280 1281 #ifndef __bpfcall 1282 #define __bpfcall __nocfi 1283 #endif 1284 1285 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func( 1286 const void *ctx, 1287 const struct bpf_insn *insnsi, 1288 bpf_func_t bpf_func) 1289 { 1290 return bpf_func(ctx, insnsi); 1291 } 1292 1293 /* the implementation of the opaque uapi struct bpf_dynptr */ 1294 struct bpf_dynptr_kern { 1295 void *data; 1296 /* Size represents the number of usable bytes of dynptr data. 1297 * If for example the offset is at 4 for a local dynptr whose data is 1298 * of type u64, the number of usable bytes is 4. 1299 * 1300 * The upper 8 bits are reserved. It is as follows: 1301 * Bits 0 - 23 = size 1302 * Bits 24 - 30 = dynptr type 1303 * Bit 31 = whether dynptr is read-only 1304 */ 1305 u32 size; 1306 u32 offset; 1307 } __aligned(8); 1308 1309 enum bpf_dynptr_type { 1310 BPF_DYNPTR_TYPE_INVALID, 1311 /* Points to memory that is local to the bpf program */ 1312 BPF_DYNPTR_TYPE_LOCAL, 1313 /* Underlying data is a ringbuf record */ 1314 BPF_DYNPTR_TYPE_RINGBUF, 1315 /* Underlying data is a sk_buff */ 1316 BPF_DYNPTR_TYPE_SKB, 1317 /* Underlying data is a xdp_buff */ 1318 BPF_DYNPTR_TYPE_XDP, 1319 }; 1320 1321 int bpf_dynptr_check_size(u32 size); 1322 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1323 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len); 1324 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len); 1325 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr); 1326 1327 #ifdef CONFIG_BPF_JIT 1328 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1329 struct bpf_trampoline *tr, 1330 struct bpf_prog *tgt_prog); 1331 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1332 struct bpf_trampoline *tr, 1333 struct bpf_prog *tgt_prog); 1334 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1335 struct bpf_attach_target_info *tgt_info); 1336 void bpf_trampoline_put(struct bpf_trampoline *tr); 1337 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1338 1339 /* 1340 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1341 * indirection with a direct call to the bpf program. If the architecture does 1342 * not have STATIC_CALL, avoid a double-indirection. 1343 */ 1344 #ifdef CONFIG_HAVE_STATIC_CALL 1345 1346 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1347 .sc_key = &STATIC_CALL_KEY(_name), \ 1348 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1349 1350 #define __BPF_DISPATCHER_SC(name) \ 1351 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1352 1353 #define __BPF_DISPATCHER_CALL(name) \ 1354 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1355 1356 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1357 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1358 1359 #else 1360 #define __BPF_DISPATCHER_SC_INIT(name) 1361 #define __BPF_DISPATCHER_SC(name) 1362 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1363 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1364 #endif 1365 1366 #define BPF_DISPATCHER_INIT(_name) { \ 1367 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1368 .func = &_name##_func, \ 1369 .progs = {}, \ 1370 .num_progs = 0, \ 1371 .image = NULL, \ 1372 .image_off = 0, \ 1373 .ksym = { \ 1374 .name = #_name, \ 1375 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1376 }, \ 1377 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1378 } 1379 1380 #define DEFINE_BPF_DISPATCHER(name) \ 1381 __BPF_DISPATCHER_SC(name); \ 1382 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \ 1383 const void *ctx, \ 1384 const struct bpf_insn *insnsi, \ 1385 bpf_func_t bpf_func) \ 1386 { \ 1387 return __BPF_DISPATCHER_CALL(name); \ 1388 } \ 1389 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1390 struct bpf_dispatcher bpf_dispatcher_##name = \ 1391 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1392 1393 #define DECLARE_BPF_DISPATCHER(name) \ 1394 unsigned int bpf_dispatcher_##name##_func( \ 1395 const void *ctx, \ 1396 const struct bpf_insn *insnsi, \ 1397 bpf_func_t bpf_func); \ 1398 extern struct bpf_dispatcher bpf_dispatcher_##name; 1399 1400 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1401 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1402 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1403 struct bpf_prog *to); 1404 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1405 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym); 1406 void bpf_image_ksym_add(struct bpf_ksym *ksym); 1407 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1408 void bpf_ksym_add(struct bpf_ksym *ksym); 1409 void bpf_ksym_del(struct bpf_ksym *ksym); 1410 int bpf_jit_charge_modmem(u32 size); 1411 void bpf_jit_uncharge_modmem(u32 size); 1412 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1413 #else 1414 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1415 struct bpf_trampoline *tr, 1416 struct bpf_prog *tgt_prog) 1417 { 1418 return -ENOTSUPP; 1419 } 1420 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1421 struct bpf_trampoline *tr, 1422 struct bpf_prog *tgt_prog) 1423 { 1424 return -ENOTSUPP; 1425 } 1426 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1427 struct bpf_attach_target_info *tgt_info) 1428 { 1429 return NULL; 1430 } 1431 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1432 #define DEFINE_BPF_DISPATCHER(name) 1433 #define DECLARE_BPF_DISPATCHER(name) 1434 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1435 #define BPF_DISPATCHER_PTR(name) NULL 1436 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1437 struct bpf_prog *from, 1438 struct bpf_prog *to) {} 1439 static inline bool is_bpf_image_address(unsigned long address) 1440 { 1441 return false; 1442 } 1443 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1444 { 1445 return false; 1446 } 1447 #endif 1448 1449 struct bpf_func_info_aux { 1450 u16 linkage; 1451 bool unreliable; 1452 bool called : 1; 1453 bool verified : 1; 1454 }; 1455 1456 enum bpf_jit_poke_reason { 1457 BPF_POKE_REASON_TAIL_CALL, 1458 }; 1459 1460 /* Descriptor of pokes pointing /into/ the JITed image. */ 1461 struct bpf_jit_poke_descriptor { 1462 void *tailcall_target; 1463 void *tailcall_bypass; 1464 void *bypass_addr; 1465 void *aux; 1466 union { 1467 struct { 1468 struct bpf_map *map; 1469 u32 key; 1470 } tail_call; 1471 }; 1472 bool tailcall_target_stable; 1473 u8 adj_off; 1474 u16 reason; 1475 u32 insn_idx; 1476 }; 1477 1478 /* reg_type info for ctx arguments */ 1479 struct bpf_ctx_arg_aux { 1480 u32 offset; 1481 enum bpf_reg_type reg_type; 1482 struct btf *btf; 1483 u32 btf_id; 1484 }; 1485 1486 struct btf_mod_pair { 1487 struct btf *btf; 1488 struct module *module; 1489 }; 1490 1491 struct bpf_kfunc_desc_tab; 1492 1493 struct bpf_prog_aux { 1494 atomic64_t refcnt; 1495 u32 used_map_cnt; 1496 u32 used_btf_cnt; 1497 u32 max_ctx_offset; 1498 u32 max_pkt_offset; 1499 u32 max_tp_access; 1500 u32 stack_depth; 1501 u32 id; 1502 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1503 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */ 1504 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1505 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1506 u32 ctx_arg_info_size; 1507 u32 max_rdonly_access; 1508 u32 max_rdwr_access; 1509 struct btf *attach_btf; 1510 const struct bpf_ctx_arg_aux *ctx_arg_info; 1511 void __percpu *priv_stack_ptr; 1512 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1513 struct bpf_prog *dst_prog; 1514 struct bpf_trampoline *dst_trampoline; 1515 enum bpf_prog_type saved_dst_prog_type; 1516 enum bpf_attach_type saved_dst_attach_type; 1517 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1518 bool dev_bound; /* Program is bound to the netdev. */ 1519 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1520 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1521 bool attach_tracing_prog; /* true if tracing another tracing program */ 1522 bool func_proto_unreliable; 1523 bool tail_call_reachable; 1524 bool xdp_has_frags; 1525 bool exception_cb; 1526 bool exception_boundary; 1527 bool is_extended; /* true if extended by freplace program */ 1528 bool jits_use_priv_stack; 1529 bool priv_stack_requested; 1530 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */ 1531 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */ 1532 struct bpf_arena *arena; 1533 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */ 1534 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1535 const struct btf_type *attach_func_proto; 1536 /* function name for valid attach_btf_id */ 1537 const char *attach_func_name; 1538 struct bpf_prog **func; 1539 void *jit_data; /* JIT specific data. arch dependent */ 1540 struct bpf_jit_poke_descriptor *poke_tab; 1541 struct bpf_kfunc_desc_tab *kfunc_tab; 1542 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1543 u32 size_poke_tab; 1544 #ifdef CONFIG_FINEIBT 1545 struct bpf_ksym ksym_prefix; 1546 #endif 1547 struct bpf_ksym ksym; 1548 const struct bpf_prog_ops *ops; 1549 struct bpf_map **used_maps; 1550 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1551 struct btf_mod_pair *used_btfs; 1552 struct bpf_prog *prog; 1553 struct user_struct *user; 1554 u64 load_time; /* ns since boottime */ 1555 u32 verified_insns; 1556 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1557 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1558 char name[BPF_OBJ_NAME_LEN]; 1559 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64); 1560 #ifdef CONFIG_SECURITY 1561 void *security; 1562 #endif 1563 struct bpf_token *token; 1564 struct bpf_prog_offload *offload; 1565 struct btf *btf; 1566 struct bpf_func_info *func_info; 1567 struct bpf_func_info_aux *func_info_aux; 1568 /* bpf_line_info loaded from userspace. linfo->insn_off 1569 * has the xlated insn offset. 1570 * Both the main and sub prog share the same linfo. 1571 * The subprog can access its first linfo by 1572 * using the linfo_idx. 1573 */ 1574 struct bpf_line_info *linfo; 1575 /* jited_linfo is the jited addr of the linfo. It has a 1576 * one to one mapping to linfo: 1577 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1578 * Both the main and sub prog share the same jited_linfo. 1579 * The subprog can access its first jited_linfo by 1580 * using the linfo_idx. 1581 */ 1582 void **jited_linfo; 1583 u32 func_info_cnt; 1584 u32 nr_linfo; 1585 /* subprog can use linfo_idx to access its first linfo and 1586 * jited_linfo. 1587 * main prog always has linfo_idx == 0 1588 */ 1589 u32 linfo_idx; 1590 struct module *mod; 1591 u32 num_exentries; 1592 struct exception_table_entry *extable; 1593 union { 1594 struct work_struct work; 1595 struct rcu_head rcu; 1596 }; 1597 }; 1598 1599 struct bpf_prog { 1600 u16 pages; /* Number of allocated pages */ 1601 u16 jited:1, /* Is our filter JIT'ed? */ 1602 jit_requested:1,/* archs need to JIT the prog */ 1603 gpl_compatible:1, /* Is filter GPL compatible? */ 1604 cb_access:1, /* Is control block accessed? */ 1605 dst_needed:1, /* Do we need dst entry? */ 1606 blinding_requested:1, /* needs constant blinding */ 1607 blinded:1, /* Was blinded */ 1608 is_func:1, /* program is a bpf function */ 1609 kprobe_override:1, /* Do we override a kprobe? */ 1610 has_callchain_buf:1, /* callchain buffer allocated? */ 1611 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1612 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1613 call_get_func_ip:1, /* Do we call get_func_ip() */ 1614 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */ 1615 sleepable:1; /* BPF program is sleepable */ 1616 enum bpf_prog_type type; /* Type of BPF program */ 1617 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1618 u32 len; /* Number of filter blocks */ 1619 u32 jited_len; /* Size of jited insns in bytes */ 1620 u8 tag[BPF_TAG_SIZE]; 1621 struct bpf_prog_stats __percpu *stats; 1622 int __percpu *active; 1623 unsigned int (*bpf_func)(const void *ctx, 1624 const struct bpf_insn *insn); 1625 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1626 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1627 /* Instructions for interpreter */ 1628 union { 1629 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1630 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1631 }; 1632 }; 1633 1634 struct bpf_array_aux { 1635 /* Programs with direct jumps into programs part of this array. */ 1636 struct list_head poke_progs; 1637 struct bpf_map *map; 1638 struct mutex poke_mutex; 1639 struct work_struct work; 1640 }; 1641 1642 struct bpf_link { 1643 atomic64_t refcnt; 1644 u32 id; 1645 enum bpf_link_type type; 1646 const struct bpf_link_ops *ops; 1647 struct bpf_prog *prog; 1648 /* whether BPF link itself has "sleepable" semantics, which can differ 1649 * from underlying BPF program having a "sleepable" semantics, as BPF 1650 * link's semantics is determined by target attach hook 1651 */ 1652 bool sleepable; 1653 /* rcu is used before freeing, work can be used to schedule that 1654 * RCU-based freeing before that, so they never overlap 1655 */ 1656 union { 1657 struct rcu_head rcu; 1658 struct work_struct work; 1659 }; 1660 }; 1661 1662 struct bpf_link_ops { 1663 void (*release)(struct bpf_link *link); 1664 /* deallocate link resources callback, called without RCU grace period 1665 * waiting 1666 */ 1667 void (*dealloc)(struct bpf_link *link); 1668 /* deallocate link resources callback, called after RCU grace period; 1669 * if either the underlying BPF program is sleepable or BPF link's 1670 * target hook is sleepable, we'll go through tasks trace RCU GP and 1671 * then "classic" RCU GP; this need for chaining tasks trace and 1672 * classic RCU GPs is designated by setting bpf_link->sleepable flag 1673 */ 1674 void (*dealloc_deferred)(struct bpf_link *link); 1675 int (*detach)(struct bpf_link *link); 1676 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1677 struct bpf_prog *old_prog); 1678 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1679 int (*fill_link_info)(const struct bpf_link *link, 1680 struct bpf_link_info *info); 1681 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1682 struct bpf_map *old_map); 1683 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts); 1684 }; 1685 1686 struct bpf_tramp_link { 1687 struct bpf_link link; 1688 struct hlist_node tramp_hlist; 1689 u64 cookie; 1690 }; 1691 1692 struct bpf_shim_tramp_link { 1693 struct bpf_tramp_link link; 1694 struct bpf_trampoline *trampoline; 1695 }; 1696 1697 struct bpf_tracing_link { 1698 struct bpf_tramp_link link; 1699 enum bpf_attach_type attach_type; 1700 struct bpf_trampoline *trampoline; 1701 struct bpf_prog *tgt_prog; 1702 }; 1703 1704 struct bpf_raw_tp_link { 1705 struct bpf_link link; 1706 struct bpf_raw_event_map *btp; 1707 u64 cookie; 1708 }; 1709 1710 struct bpf_link_primer { 1711 struct bpf_link *link; 1712 struct file *file; 1713 int fd; 1714 u32 id; 1715 }; 1716 1717 struct bpf_mount_opts { 1718 kuid_t uid; 1719 kgid_t gid; 1720 umode_t mode; 1721 1722 /* BPF token-related delegation options */ 1723 u64 delegate_cmds; 1724 u64 delegate_maps; 1725 u64 delegate_progs; 1726 u64 delegate_attachs; 1727 }; 1728 1729 struct bpf_token { 1730 struct work_struct work; 1731 atomic64_t refcnt; 1732 struct user_namespace *userns; 1733 u64 allowed_cmds; 1734 u64 allowed_maps; 1735 u64 allowed_progs; 1736 u64 allowed_attachs; 1737 #ifdef CONFIG_SECURITY 1738 void *security; 1739 #endif 1740 }; 1741 1742 struct bpf_struct_ops_value; 1743 struct btf_member; 1744 1745 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1746 /** 1747 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to 1748 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed 1749 * of BPF_PROG_TYPE_STRUCT_OPS progs. 1750 * @verifier_ops: A structure of callbacks that are invoked by the verifier 1751 * when determining whether the struct_ops progs in the 1752 * struct_ops map are valid. 1753 * @init: A callback that is invoked a single time, and before any other 1754 * callback, to initialize the structure. A nonzero return value means 1755 * the subsystem could not be initialized. 1756 * @check_member: When defined, a callback invoked by the verifier to allow 1757 * the subsystem to determine if an entry in the struct_ops map 1758 * is valid. A nonzero return value means that the map is 1759 * invalid and should be rejected by the verifier. 1760 * @init_member: A callback that is invoked for each member of the struct_ops 1761 * map to allow the subsystem to initialize the member. A nonzero 1762 * value means the member could not be initialized. This callback 1763 * is exclusive with the @type, @type_id, @value_type, and 1764 * @value_id fields. 1765 * @reg: A callback that is invoked when the struct_ops map has been 1766 * initialized and is being attached to. Zero means the struct_ops map 1767 * has been successfully registered and is live. A nonzero return value 1768 * means the struct_ops map could not be registered. 1769 * @unreg: A callback that is invoked when the struct_ops map should be 1770 * unregistered. 1771 * @update: A callback that is invoked when the live struct_ops map is being 1772 * updated to contain new values. This callback is only invoked when 1773 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the 1774 * it is assumed that the struct_ops map cannot be updated. 1775 * @validate: A callback that is invoked after all of the members have been 1776 * initialized. This callback should perform static checks on the 1777 * map, meaning that it should either fail or succeed 1778 * deterministically. A struct_ops map that has been validated may 1779 * not necessarily succeed in being registered if the call to @reg 1780 * fails. For example, a valid struct_ops map may be loaded, but 1781 * then fail to be registered due to there being another active 1782 * struct_ops map on the system in the subsystem already. For this 1783 * reason, if this callback is not defined, the check is skipped as 1784 * the struct_ops map will have final verification performed in 1785 * @reg. 1786 * @type: BTF type. 1787 * @value_type: Value type. 1788 * @name: The name of the struct bpf_struct_ops object. 1789 * @func_models: Func models 1790 * @type_id: BTF type id. 1791 * @value_id: BTF value id. 1792 */ 1793 struct bpf_struct_ops { 1794 const struct bpf_verifier_ops *verifier_ops; 1795 int (*init)(struct btf *btf); 1796 int (*check_member)(const struct btf_type *t, 1797 const struct btf_member *member, 1798 const struct bpf_prog *prog); 1799 int (*init_member)(const struct btf_type *t, 1800 const struct btf_member *member, 1801 void *kdata, const void *udata); 1802 int (*reg)(void *kdata, struct bpf_link *link); 1803 void (*unreg)(void *kdata, struct bpf_link *link); 1804 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link); 1805 int (*validate)(void *kdata); 1806 void *cfi_stubs; 1807 struct module *owner; 1808 const char *name; 1809 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1810 }; 1811 1812 /* Every member of a struct_ops type has an instance even a member is not 1813 * an operator (function pointer). The "info" field will be assigned to 1814 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the 1815 * argument information required by the verifier to verify the program. 1816 * 1817 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the 1818 * corresponding entry for an given argument. 1819 */ 1820 struct bpf_struct_ops_arg_info { 1821 struct bpf_ctx_arg_aux *info; 1822 u32 cnt; 1823 }; 1824 1825 struct bpf_struct_ops_desc { 1826 struct bpf_struct_ops *st_ops; 1827 1828 const struct btf_type *type; 1829 const struct btf_type *value_type; 1830 u32 type_id; 1831 u32 value_id; 1832 1833 /* Collection of argument information for each member */ 1834 struct bpf_struct_ops_arg_info *arg_info; 1835 }; 1836 1837 enum bpf_struct_ops_state { 1838 BPF_STRUCT_OPS_STATE_INIT, 1839 BPF_STRUCT_OPS_STATE_INUSE, 1840 BPF_STRUCT_OPS_STATE_TOBEFREE, 1841 BPF_STRUCT_OPS_STATE_READY, 1842 }; 1843 1844 struct bpf_struct_ops_common_value { 1845 refcount_t refcnt; 1846 enum bpf_struct_ops_state state; 1847 }; 1848 1849 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1850 /* This macro helps developer to register a struct_ops type and generate 1851 * type information correctly. Developers should use this macro to register 1852 * a struct_ops type instead of calling __register_bpf_struct_ops() directly. 1853 */ 1854 #define register_bpf_struct_ops(st_ops, type) \ 1855 ({ \ 1856 struct bpf_struct_ops_##type { \ 1857 struct bpf_struct_ops_common_value common; \ 1858 struct type data ____cacheline_aligned_in_smp; \ 1859 }; \ 1860 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \ 1861 __register_bpf_struct_ops(st_ops); \ 1862 }) 1863 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1864 bool bpf_struct_ops_get(const void *kdata); 1865 void bpf_struct_ops_put(const void *kdata); 1866 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff); 1867 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1868 void *value); 1869 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1870 struct bpf_tramp_link *link, 1871 const struct btf_func_model *model, 1872 void *stub_func, 1873 void **image, u32 *image_off, 1874 bool allow_alloc); 1875 void bpf_struct_ops_image_free(void *image); 1876 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1877 { 1878 if (owner == BPF_MODULE_OWNER) 1879 return bpf_struct_ops_get(data); 1880 else 1881 return try_module_get(owner); 1882 } 1883 static inline void bpf_module_put(const void *data, struct module *owner) 1884 { 1885 if (owner == BPF_MODULE_OWNER) 1886 bpf_struct_ops_put(data); 1887 else 1888 module_put(owner); 1889 } 1890 int bpf_struct_ops_link_create(union bpf_attr *attr); 1891 1892 #ifdef CONFIG_NET 1893 /* Define it here to avoid the use of forward declaration */ 1894 struct bpf_dummy_ops_state { 1895 int val; 1896 }; 1897 1898 struct bpf_dummy_ops { 1899 int (*test_1)(struct bpf_dummy_ops_state *cb); 1900 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1901 char a3, unsigned long a4); 1902 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1903 }; 1904 1905 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1906 union bpf_attr __user *uattr); 1907 #endif 1908 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc, 1909 struct btf *btf, 1910 struct bpf_verifier_log *log); 1911 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map); 1912 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc); 1913 #else 1914 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; }) 1915 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1916 { 1917 return try_module_get(owner); 1918 } 1919 static inline void bpf_module_put(const void *data, struct module *owner) 1920 { 1921 module_put(owner); 1922 } 1923 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff) 1924 { 1925 return -ENOTSUPP; 1926 } 1927 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1928 void *key, 1929 void *value) 1930 { 1931 return -EINVAL; 1932 } 1933 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1934 { 1935 return -EOPNOTSUPP; 1936 } 1937 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map) 1938 { 1939 } 1940 1941 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc) 1942 { 1943 } 1944 1945 #endif 1946 1947 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1948 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1949 int cgroup_atype); 1950 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1951 #else 1952 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1953 int cgroup_atype) 1954 { 1955 return -EOPNOTSUPP; 1956 } 1957 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1958 { 1959 } 1960 #endif 1961 1962 struct bpf_array { 1963 struct bpf_map map; 1964 u32 elem_size; 1965 u32 index_mask; 1966 struct bpf_array_aux *aux; 1967 union { 1968 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1969 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1970 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1971 }; 1972 }; 1973 1974 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1975 #define MAX_TAIL_CALL_CNT 33 1976 1977 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1978 * It's enum to expose it (and thus make it discoverable) through BTF. 1979 */ 1980 enum { 1981 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1982 }; 1983 1984 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1985 BPF_F_RDONLY_PROG | \ 1986 BPF_F_WRONLY | \ 1987 BPF_F_WRONLY_PROG) 1988 1989 #define BPF_MAP_CAN_READ BIT(0) 1990 #define BPF_MAP_CAN_WRITE BIT(1) 1991 1992 /* Maximum number of user-producer ring buffer samples that can be drained in 1993 * a call to bpf_user_ringbuf_drain(). 1994 */ 1995 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1996 1997 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1998 { 1999 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2000 2001 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 2002 * not possible. 2003 */ 2004 if (access_flags & BPF_F_RDONLY_PROG) 2005 return BPF_MAP_CAN_READ; 2006 else if (access_flags & BPF_F_WRONLY_PROG) 2007 return BPF_MAP_CAN_WRITE; 2008 else 2009 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 2010 } 2011 2012 static inline bool bpf_map_flags_access_ok(u32 access_flags) 2013 { 2014 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 2015 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 2016 } 2017 2018 struct bpf_event_entry { 2019 struct perf_event *event; 2020 struct file *perf_file; 2021 struct file *map_file; 2022 struct rcu_head rcu; 2023 }; 2024 2025 static inline bool map_type_contains_progs(struct bpf_map *map) 2026 { 2027 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 2028 map->map_type == BPF_MAP_TYPE_DEVMAP || 2029 map->map_type == BPF_MAP_TYPE_CPUMAP; 2030 } 2031 2032 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 2033 int bpf_prog_calc_tag(struct bpf_prog *fp); 2034 2035 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 2036 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 2037 2038 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 2039 unsigned long off, unsigned long len); 2040 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 2041 const struct bpf_insn *src, 2042 struct bpf_insn *dst, 2043 struct bpf_prog *prog, 2044 u32 *target_size); 2045 2046 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 2047 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 2048 2049 /* an array of programs to be executed under rcu_lock. 2050 * 2051 * Typical usage: 2052 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 2053 * 2054 * the structure returned by bpf_prog_array_alloc() should be populated 2055 * with program pointers and the last pointer must be NULL. 2056 * The user has to keep refcnt on the program and make sure the program 2057 * is removed from the array before bpf_prog_put(). 2058 * The 'struct bpf_prog_array *' should only be replaced with xchg() 2059 * since other cpus are walking the array of pointers in parallel. 2060 */ 2061 struct bpf_prog_array_item { 2062 struct bpf_prog *prog; 2063 union { 2064 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 2065 u64 bpf_cookie; 2066 }; 2067 }; 2068 2069 struct bpf_prog_array { 2070 struct rcu_head rcu; 2071 struct bpf_prog_array_item items[]; 2072 }; 2073 2074 struct bpf_empty_prog_array { 2075 struct bpf_prog_array hdr; 2076 struct bpf_prog *null_prog; 2077 }; 2078 2079 /* to avoid allocating empty bpf_prog_array for cgroups that 2080 * don't have bpf program attached use one global 'bpf_empty_prog_array' 2081 * It will not be modified the caller of bpf_prog_array_alloc() 2082 * (since caller requested prog_cnt == 0) 2083 * that pointer should be 'freed' by bpf_prog_array_free() 2084 */ 2085 extern struct bpf_empty_prog_array bpf_empty_prog_array; 2086 2087 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 2088 void bpf_prog_array_free(struct bpf_prog_array *progs); 2089 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 2090 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 2091 int bpf_prog_array_length(struct bpf_prog_array *progs); 2092 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 2093 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 2094 __u32 __user *prog_ids, u32 cnt); 2095 2096 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 2097 struct bpf_prog *old_prog); 2098 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 2099 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 2100 struct bpf_prog *prog); 2101 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 2102 u32 *prog_ids, u32 request_cnt, 2103 u32 *prog_cnt); 2104 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 2105 struct bpf_prog *exclude_prog, 2106 struct bpf_prog *include_prog, 2107 u64 bpf_cookie, 2108 struct bpf_prog_array **new_array); 2109 2110 struct bpf_run_ctx {}; 2111 2112 struct bpf_cg_run_ctx { 2113 struct bpf_run_ctx run_ctx; 2114 const struct bpf_prog_array_item *prog_item; 2115 int retval; 2116 }; 2117 2118 struct bpf_trace_run_ctx { 2119 struct bpf_run_ctx run_ctx; 2120 u64 bpf_cookie; 2121 bool is_uprobe; 2122 }; 2123 2124 struct bpf_tramp_run_ctx { 2125 struct bpf_run_ctx run_ctx; 2126 u64 bpf_cookie; 2127 struct bpf_run_ctx *saved_run_ctx; 2128 }; 2129 2130 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 2131 { 2132 struct bpf_run_ctx *old_ctx = NULL; 2133 2134 #ifdef CONFIG_BPF_SYSCALL 2135 old_ctx = current->bpf_ctx; 2136 current->bpf_ctx = new_ctx; 2137 #endif 2138 return old_ctx; 2139 } 2140 2141 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 2142 { 2143 #ifdef CONFIG_BPF_SYSCALL 2144 current->bpf_ctx = old_ctx; 2145 #endif 2146 } 2147 2148 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 2149 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 2150 /* BPF program asks to set CN on the packet. */ 2151 #define BPF_RET_SET_CN (1 << 0) 2152 2153 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 2154 2155 static __always_inline u32 2156 bpf_prog_run_array(const struct bpf_prog_array *array, 2157 const void *ctx, bpf_prog_run_fn run_prog) 2158 { 2159 const struct bpf_prog_array_item *item; 2160 const struct bpf_prog *prog; 2161 struct bpf_run_ctx *old_run_ctx; 2162 struct bpf_trace_run_ctx run_ctx; 2163 u32 ret = 1; 2164 2165 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 2166 2167 if (unlikely(!array)) 2168 return ret; 2169 2170 run_ctx.is_uprobe = false; 2171 2172 migrate_disable(); 2173 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2174 item = &array->items[0]; 2175 while ((prog = READ_ONCE(item->prog))) { 2176 run_ctx.bpf_cookie = item->bpf_cookie; 2177 ret &= run_prog(prog, ctx); 2178 item++; 2179 } 2180 bpf_reset_run_ctx(old_run_ctx); 2181 migrate_enable(); 2182 return ret; 2183 } 2184 2185 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 2186 * 2187 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 2188 * overall. As a result, we must use the bpf_prog_array_free_sleepable 2189 * in order to use the tasks_trace rcu grace period. 2190 * 2191 * When a non-sleepable program is inside the array, we take the rcu read 2192 * section and disable preemption for that program alone, so it can access 2193 * rcu-protected dynamically sized maps. 2194 */ 2195 static __always_inline u32 2196 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu, 2197 const void *ctx, bpf_prog_run_fn run_prog) 2198 { 2199 const struct bpf_prog_array_item *item; 2200 const struct bpf_prog *prog; 2201 const struct bpf_prog_array *array; 2202 struct bpf_run_ctx *old_run_ctx; 2203 struct bpf_trace_run_ctx run_ctx; 2204 u32 ret = 1; 2205 2206 might_fault(); 2207 2208 rcu_read_lock_trace(); 2209 migrate_disable(); 2210 2211 run_ctx.is_uprobe = true; 2212 2213 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 2214 if (unlikely(!array)) 2215 goto out; 2216 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 2217 item = &array->items[0]; 2218 while ((prog = READ_ONCE(item->prog))) { 2219 if (!prog->sleepable) 2220 rcu_read_lock(); 2221 2222 run_ctx.bpf_cookie = item->bpf_cookie; 2223 ret &= run_prog(prog, ctx); 2224 item++; 2225 2226 if (!prog->sleepable) 2227 rcu_read_unlock(); 2228 } 2229 bpf_reset_run_ctx(old_run_ctx); 2230 out: 2231 migrate_enable(); 2232 rcu_read_unlock_trace(); 2233 return ret; 2234 } 2235 2236 #ifdef CONFIG_BPF_SYSCALL 2237 DECLARE_PER_CPU(int, bpf_prog_active); 2238 extern struct mutex bpf_stats_enabled_mutex; 2239 2240 /* 2241 * Block execution of BPF programs attached to instrumentation (perf, 2242 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 2243 * these events can happen inside a region which holds a map bucket lock 2244 * and can deadlock on it. 2245 */ 2246 static inline void bpf_disable_instrumentation(void) 2247 { 2248 migrate_disable(); 2249 this_cpu_inc(bpf_prog_active); 2250 } 2251 2252 static inline void bpf_enable_instrumentation(void) 2253 { 2254 this_cpu_dec(bpf_prog_active); 2255 migrate_enable(); 2256 } 2257 2258 extern const struct super_operations bpf_super_ops; 2259 extern const struct file_operations bpf_map_fops; 2260 extern const struct file_operations bpf_prog_fops; 2261 extern const struct file_operations bpf_iter_fops; 2262 2263 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 2264 extern const struct bpf_prog_ops _name ## _prog_ops; \ 2265 extern const struct bpf_verifier_ops _name ## _verifier_ops; 2266 #define BPF_MAP_TYPE(_id, _ops) \ 2267 extern const struct bpf_map_ops _ops; 2268 #define BPF_LINK_TYPE(_id, _name) 2269 #include <linux/bpf_types.h> 2270 #undef BPF_PROG_TYPE 2271 #undef BPF_MAP_TYPE 2272 #undef BPF_LINK_TYPE 2273 2274 extern const struct bpf_prog_ops bpf_offload_prog_ops; 2275 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 2276 extern const struct bpf_verifier_ops xdp_analyzer_ops; 2277 2278 struct bpf_prog *bpf_prog_get(u32 ufd); 2279 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 2280 bool attach_drv); 2281 void bpf_prog_add(struct bpf_prog *prog, int i); 2282 void bpf_prog_sub(struct bpf_prog *prog, int i); 2283 void bpf_prog_inc(struct bpf_prog *prog); 2284 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 2285 void bpf_prog_put(struct bpf_prog *prog); 2286 2287 void bpf_prog_free_id(struct bpf_prog *prog); 2288 void bpf_map_free_id(struct bpf_map *map); 2289 2290 struct btf_field *btf_record_find(const struct btf_record *rec, 2291 u32 offset, u32 field_mask); 2292 void btf_record_free(struct btf_record *rec); 2293 void bpf_map_free_record(struct bpf_map *map); 2294 struct btf_record *btf_record_dup(const struct btf_record *rec); 2295 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 2296 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 2297 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj); 2298 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 2299 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu); 2300 2301 struct bpf_map *bpf_map_get(u32 ufd); 2302 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 2303 2304 /* 2305 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file 2306 * descriptor and return a corresponding map or btf object. 2307 * Their names are double underscored to emphasize the fact that they 2308 * do not increase refcnt. To also increase refcnt use corresponding 2309 * bpf_map_get() and btf_get_by_fd() functions. 2310 */ 2311 2312 static inline struct bpf_map *__bpf_map_get(struct fd f) 2313 { 2314 if (fd_empty(f)) 2315 return ERR_PTR(-EBADF); 2316 if (unlikely(fd_file(f)->f_op != &bpf_map_fops)) 2317 return ERR_PTR(-EINVAL); 2318 return fd_file(f)->private_data; 2319 } 2320 2321 static inline struct btf *__btf_get_by_fd(struct fd f) 2322 { 2323 if (fd_empty(f)) 2324 return ERR_PTR(-EBADF); 2325 if (unlikely(fd_file(f)->f_op != &btf_fops)) 2326 return ERR_PTR(-EINVAL); 2327 return fd_file(f)->private_data; 2328 } 2329 2330 void bpf_map_inc(struct bpf_map *map); 2331 void bpf_map_inc_with_uref(struct bpf_map *map); 2332 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2333 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2334 void bpf_map_put_with_uref(struct bpf_map *map); 2335 void bpf_map_put(struct bpf_map *map); 2336 void *bpf_map_area_alloc(u64 size, int numa_node); 2337 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2338 void bpf_map_area_free(void *base); 2339 bool bpf_map_write_active(const struct bpf_map *map); 2340 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2341 int generic_map_lookup_batch(struct bpf_map *map, 2342 const union bpf_attr *attr, 2343 union bpf_attr __user *uattr); 2344 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2345 const union bpf_attr *attr, 2346 union bpf_attr __user *uattr); 2347 int generic_map_delete_batch(struct bpf_map *map, 2348 const union bpf_attr *attr, 2349 union bpf_attr __user *uattr); 2350 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2351 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2352 2353 int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid, 2354 unsigned long nr_pages, struct page **page_array); 2355 #ifdef CONFIG_MEMCG 2356 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2357 int node); 2358 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2359 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2360 gfp_t flags); 2361 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2362 size_t align, gfp_t flags); 2363 #else 2364 /* 2365 * These specialized allocators have to be macros for their allocations to be 2366 * accounted separately (to have separate alloc_tag). 2367 */ 2368 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \ 2369 kmalloc_node(_size, _flags, _node) 2370 #define bpf_map_kzalloc(_map, _size, _flags) \ 2371 kzalloc(_size, _flags) 2372 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \ 2373 kvcalloc(_n, _size, _flags) 2374 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \ 2375 __alloc_percpu_gfp(_size, _align, _flags) 2376 #endif 2377 2378 static inline int 2379 bpf_map_init_elem_count(struct bpf_map *map) 2380 { 2381 size_t size = sizeof(*map->elem_count), align = size; 2382 gfp_t flags = GFP_USER | __GFP_NOWARN; 2383 2384 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2385 if (!map->elem_count) 2386 return -ENOMEM; 2387 2388 return 0; 2389 } 2390 2391 static inline void 2392 bpf_map_free_elem_count(struct bpf_map *map) 2393 { 2394 free_percpu(map->elem_count); 2395 } 2396 2397 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2398 { 2399 this_cpu_inc(*map->elem_count); 2400 } 2401 2402 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2403 { 2404 this_cpu_dec(*map->elem_count); 2405 } 2406 2407 extern int sysctl_unprivileged_bpf_disabled; 2408 2409 bool bpf_token_capable(const struct bpf_token *token, int cap); 2410 2411 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token) 2412 { 2413 return bpf_token_capable(token, CAP_PERFMON); 2414 } 2415 2416 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token) 2417 { 2418 return bpf_token_capable(token, CAP_PERFMON); 2419 } 2420 2421 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token) 2422 { 2423 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2424 } 2425 2426 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token) 2427 { 2428 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON); 2429 } 2430 2431 int bpf_map_new_fd(struct bpf_map *map, int flags); 2432 int bpf_prog_new_fd(struct bpf_prog *prog); 2433 2434 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2435 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2436 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2437 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2438 bool sleepable); 2439 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2440 int bpf_link_settle(struct bpf_link_primer *primer); 2441 void bpf_link_cleanup(struct bpf_link_primer *primer); 2442 void bpf_link_inc(struct bpf_link *link); 2443 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link); 2444 void bpf_link_put(struct bpf_link *link); 2445 int bpf_link_new_fd(struct bpf_link *link); 2446 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2447 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2448 2449 void bpf_token_inc(struct bpf_token *token); 2450 void bpf_token_put(struct bpf_token *token); 2451 int bpf_token_create(union bpf_attr *attr); 2452 struct bpf_token *bpf_token_get_from_fd(u32 ufd); 2453 2454 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd); 2455 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type); 2456 bool bpf_token_allow_prog_type(const struct bpf_token *token, 2457 enum bpf_prog_type prog_type, 2458 enum bpf_attach_type attach_type); 2459 2460 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2461 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2462 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir, 2463 umode_t mode); 2464 2465 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2466 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2467 extern int bpf_iter_ ## target(args); \ 2468 int __init bpf_iter_ ## target(args) { return 0; } 2469 2470 /* 2471 * The task type of iterators. 2472 * 2473 * For BPF task iterators, they can be parameterized with various 2474 * parameters to visit only some of tasks. 2475 * 2476 * BPF_TASK_ITER_ALL (default) 2477 * Iterate over resources of every task. 2478 * 2479 * BPF_TASK_ITER_TID 2480 * Iterate over resources of a task/tid. 2481 * 2482 * BPF_TASK_ITER_TGID 2483 * Iterate over resources of every task of a process / task group. 2484 */ 2485 enum bpf_iter_task_type { 2486 BPF_TASK_ITER_ALL = 0, 2487 BPF_TASK_ITER_TID, 2488 BPF_TASK_ITER_TGID, 2489 }; 2490 2491 struct bpf_iter_aux_info { 2492 /* for map_elem iter */ 2493 struct bpf_map *map; 2494 2495 /* for cgroup iter */ 2496 struct { 2497 struct cgroup *start; /* starting cgroup */ 2498 enum bpf_cgroup_iter_order order; 2499 } cgroup; 2500 struct { 2501 enum bpf_iter_task_type type; 2502 u32 pid; 2503 } task; 2504 }; 2505 2506 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2507 union bpf_iter_link_info *linfo, 2508 struct bpf_iter_aux_info *aux); 2509 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2510 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2511 struct seq_file *seq); 2512 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2513 struct bpf_link_info *info); 2514 typedef const struct bpf_func_proto * 2515 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2516 const struct bpf_prog *prog); 2517 2518 enum bpf_iter_feature { 2519 BPF_ITER_RESCHED = BIT(0), 2520 }; 2521 2522 #define BPF_ITER_CTX_ARG_MAX 2 2523 struct bpf_iter_reg { 2524 const char *target; 2525 bpf_iter_attach_target_t attach_target; 2526 bpf_iter_detach_target_t detach_target; 2527 bpf_iter_show_fdinfo_t show_fdinfo; 2528 bpf_iter_fill_link_info_t fill_link_info; 2529 bpf_iter_get_func_proto_t get_func_proto; 2530 u32 ctx_arg_info_size; 2531 u32 feature; 2532 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2533 const struct bpf_iter_seq_info *seq_info; 2534 }; 2535 2536 struct bpf_iter_meta { 2537 __bpf_md_ptr(struct seq_file *, seq); 2538 u64 session_id; 2539 u64 seq_num; 2540 }; 2541 2542 struct bpf_iter__bpf_map_elem { 2543 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2544 __bpf_md_ptr(struct bpf_map *, map); 2545 __bpf_md_ptr(void *, key); 2546 __bpf_md_ptr(void *, value); 2547 }; 2548 2549 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2550 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2551 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2552 const struct bpf_func_proto * 2553 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2554 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2555 int bpf_iter_new_fd(struct bpf_link *link); 2556 bool bpf_link_is_iter(struct bpf_link *link); 2557 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2558 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2559 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2560 struct seq_file *seq); 2561 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2562 struct bpf_link_info *info); 2563 2564 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2565 struct bpf_func_state *caller, 2566 struct bpf_func_state *callee); 2567 2568 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2569 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2570 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2571 u64 flags); 2572 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2573 u64 flags); 2574 2575 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2576 2577 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2578 void *key, void *value, u64 map_flags); 2579 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2580 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2581 void *key, void *value, u64 map_flags); 2582 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2583 2584 int bpf_get_file_flag(int flags); 2585 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2586 size_t actual_size); 2587 2588 /* verify correctness of eBPF program */ 2589 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2590 2591 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2592 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2593 #endif 2594 2595 struct btf *bpf_get_btf_vmlinux(void); 2596 2597 /* Map specifics */ 2598 struct xdp_frame; 2599 struct sk_buff; 2600 struct bpf_dtab_netdev; 2601 struct bpf_cpu_map_entry; 2602 2603 void __dev_flush(struct list_head *flush_list); 2604 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2605 struct net_device *dev_rx); 2606 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2607 struct net_device *dev_rx); 2608 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2609 struct bpf_map *map, bool exclude_ingress); 2610 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2611 struct bpf_prog *xdp_prog); 2612 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2613 struct bpf_prog *xdp_prog, struct bpf_map *map, 2614 bool exclude_ingress); 2615 2616 void __cpu_map_flush(struct list_head *flush_list); 2617 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2618 struct net_device *dev_rx); 2619 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2620 struct sk_buff *skb); 2621 2622 /* Return map's numa specified by userspace */ 2623 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2624 { 2625 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2626 attr->numa_node : NUMA_NO_NODE; 2627 } 2628 2629 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2630 int array_map_alloc_check(union bpf_attr *attr); 2631 2632 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2633 union bpf_attr __user *uattr); 2634 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2635 union bpf_attr __user *uattr); 2636 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2637 const union bpf_attr *kattr, 2638 union bpf_attr __user *uattr); 2639 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2640 const union bpf_attr *kattr, 2641 union bpf_attr __user *uattr); 2642 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2643 const union bpf_attr *kattr, 2644 union bpf_attr __user *uattr); 2645 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2646 const union bpf_attr *kattr, 2647 union bpf_attr __user *uattr); 2648 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2649 const union bpf_attr *kattr, 2650 union bpf_attr __user *uattr); 2651 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2652 const struct bpf_prog *prog, 2653 struct bpf_insn_access_aux *info); 2654 2655 static inline bool bpf_tracing_ctx_access(int off, int size, 2656 enum bpf_access_type type) 2657 { 2658 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2659 return false; 2660 if (type != BPF_READ) 2661 return false; 2662 if (off % size != 0) 2663 return false; 2664 return true; 2665 } 2666 2667 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2668 enum bpf_access_type type, 2669 const struct bpf_prog *prog, 2670 struct bpf_insn_access_aux *info) 2671 { 2672 if (!bpf_tracing_ctx_access(off, size, type)) 2673 return false; 2674 return btf_ctx_access(off, size, type, prog, info); 2675 } 2676 2677 int btf_struct_access(struct bpf_verifier_log *log, 2678 const struct bpf_reg_state *reg, 2679 int off, int size, enum bpf_access_type atype, 2680 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2681 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2682 const struct btf *btf, u32 id, int off, 2683 const struct btf *need_btf, u32 need_type_id, 2684 bool strict); 2685 2686 int btf_distill_func_proto(struct bpf_verifier_log *log, 2687 struct btf *btf, 2688 const struct btf_type *func_proto, 2689 const char *func_name, 2690 struct btf_func_model *m); 2691 2692 struct bpf_reg_state; 2693 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog); 2694 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2695 struct btf *btf, const struct btf_type *t); 2696 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt, 2697 int comp_idx, const char *tag_key); 2698 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt, 2699 int comp_idx, const char *tag_key, int last_id); 2700 2701 struct bpf_prog *bpf_prog_by_id(u32 id); 2702 struct bpf_link *bpf_link_by_id(u32 id); 2703 2704 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id, 2705 const struct bpf_prog *prog); 2706 void bpf_task_storage_free(struct task_struct *task); 2707 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2708 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2709 const struct btf_func_model * 2710 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2711 const struct bpf_insn *insn); 2712 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2713 u16 btf_fd_idx, u8 **func_addr); 2714 2715 struct bpf_core_ctx { 2716 struct bpf_verifier_log *log; 2717 const struct btf *btf; 2718 }; 2719 2720 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2721 const struct bpf_reg_state *reg, 2722 const char *field_name, u32 btf_id, const char *suffix); 2723 2724 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2725 const struct btf *reg_btf, u32 reg_id, 2726 const struct btf *arg_btf, u32 arg_id); 2727 2728 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2729 int relo_idx, void *insn); 2730 2731 static inline bool unprivileged_ebpf_enabled(void) 2732 { 2733 return !sysctl_unprivileged_bpf_disabled; 2734 } 2735 2736 /* Not all bpf prog type has the bpf_ctx. 2737 * For the bpf prog type that has initialized the bpf_ctx, 2738 * this function can be used to decide if a kernel function 2739 * is called by a bpf program. 2740 */ 2741 static inline bool has_current_bpf_ctx(void) 2742 { 2743 return !!current->bpf_ctx; 2744 } 2745 2746 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2747 2748 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2749 enum bpf_dynptr_type type, u32 offset, u32 size); 2750 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2751 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2752 2753 #else /* !CONFIG_BPF_SYSCALL */ 2754 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2755 { 2756 return ERR_PTR(-EOPNOTSUPP); 2757 } 2758 2759 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2760 enum bpf_prog_type type, 2761 bool attach_drv) 2762 { 2763 return ERR_PTR(-EOPNOTSUPP); 2764 } 2765 2766 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2767 { 2768 } 2769 2770 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2771 { 2772 } 2773 2774 static inline void bpf_prog_put(struct bpf_prog *prog) 2775 { 2776 } 2777 2778 static inline void bpf_prog_inc(struct bpf_prog *prog) 2779 { 2780 } 2781 2782 static inline struct bpf_prog *__must_check 2783 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2784 { 2785 return ERR_PTR(-EOPNOTSUPP); 2786 } 2787 2788 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2789 const struct bpf_link_ops *ops, 2790 struct bpf_prog *prog) 2791 { 2792 } 2793 2794 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type, 2795 const struct bpf_link_ops *ops, struct bpf_prog *prog, 2796 bool sleepable) 2797 { 2798 } 2799 2800 static inline int bpf_link_prime(struct bpf_link *link, 2801 struct bpf_link_primer *primer) 2802 { 2803 return -EOPNOTSUPP; 2804 } 2805 2806 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2807 { 2808 return -EOPNOTSUPP; 2809 } 2810 2811 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2812 { 2813 } 2814 2815 static inline void bpf_link_inc(struct bpf_link *link) 2816 { 2817 } 2818 2819 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link) 2820 { 2821 return NULL; 2822 } 2823 2824 static inline void bpf_link_put(struct bpf_link *link) 2825 { 2826 } 2827 2828 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2829 { 2830 return -EOPNOTSUPP; 2831 } 2832 2833 static inline bool bpf_token_capable(const struct bpf_token *token, int cap) 2834 { 2835 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN)); 2836 } 2837 2838 static inline void bpf_token_inc(struct bpf_token *token) 2839 { 2840 } 2841 2842 static inline void bpf_token_put(struct bpf_token *token) 2843 { 2844 } 2845 2846 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd) 2847 { 2848 return ERR_PTR(-EOPNOTSUPP); 2849 } 2850 2851 static inline void __dev_flush(struct list_head *flush_list) 2852 { 2853 } 2854 2855 struct xdp_frame; 2856 struct bpf_dtab_netdev; 2857 struct bpf_cpu_map_entry; 2858 2859 static inline 2860 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2861 struct net_device *dev_rx) 2862 { 2863 return 0; 2864 } 2865 2866 static inline 2867 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2868 struct net_device *dev_rx) 2869 { 2870 return 0; 2871 } 2872 2873 static inline 2874 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2875 struct bpf_map *map, bool exclude_ingress) 2876 { 2877 return 0; 2878 } 2879 2880 struct sk_buff; 2881 2882 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2883 struct sk_buff *skb, 2884 struct bpf_prog *xdp_prog) 2885 { 2886 return 0; 2887 } 2888 2889 static inline 2890 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2891 struct bpf_prog *xdp_prog, struct bpf_map *map, 2892 bool exclude_ingress) 2893 { 2894 return 0; 2895 } 2896 2897 static inline void __cpu_map_flush(struct list_head *flush_list) 2898 { 2899 } 2900 2901 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2902 struct xdp_frame *xdpf, 2903 struct net_device *dev_rx) 2904 { 2905 return 0; 2906 } 2907 2908 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2909 struct sk_buff *skb) 2910 { 2911 return -EOPNOTSUPP; 2912 } 2913 2914 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2915 enum bpf_prog_type type) 2916 { 2917 return ERR_PTR(-EOPNOTSUPP); 2918 } 2919 2920 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2921 const union bpf_attr *kattr, 2922 union bpf_attr __user *uattr) 2923 { 2924 return -ENOTSUPP; 2925 } 2926 2927 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2928 const union bpf_attr *kattr, 2929 union bpf_attr __user *uattr) 2930 { 2931 return -ENOTSUPP; 2932 } 2933 2934 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2935 const union bpf_attr *kattr, 2936 union bpf_attr __user *uattr) 2937 { 2938 return -ENOTSUPP; 2939 } 2940 2941 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2942 const union bpf_attr *kattr, 2943 union bpf_attr __user *uattr) 2944 { 2945 return -ENOTSUPP; 2946 } 2947 2948 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2949 const union bpf_attr *kattr, 2950 union bpf_attr __user *uattr) 2951 { 2952 return -ENOTSUPP; 2953 } 2954 2955 static inline void bpf_map_put(struct bpf_map *map) 2956 { 2957 } 2958 2959 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2960 { 2961 return ERR_PTR(-ENOTSUPP); 2962 } 2963 2964 static inline int btf_struct_access(struct bpf_verifier_log *log, 2965 const struct bpf_reg_state *reg, 2966 int off, int size, enum bpf_access_type atype, 2967 u32 *next_btf_id, enum bpf_type_flag *flag, 2968 const char **field_name) 2969 { 2970 return -EACCES; 2971 } 2972 2973 static inline const struct bpf_func_proto * 2974 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 2975 { 2976 return NULL; 2977 } 2978 2979 static inline void bpf_task_storage_free(struct task_struct *task) 2980 { 2981 } 2982 2983 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2984 { 2985 return false; 2986 } 2987 2988 static inline const struct btf_func_model * 2989 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2990 const struct bpf_insn *insn) 2991 { 2992 return NULL; 2993 } 2994 2995 static inline int 2996 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2997 u16 btf_fd_idx, u8 **func_addr) 2998 { 2999 return -ENOTSUPP; 3000 } 3001 3002 static inline bool unprivileged_ebpf_enabled(void) 3003 { 3004 return false; 3005 } 3006 3007 static inline bool has_current_bpf_ctx(void) 3008 { 3009 return false; 3010 } 3011 3012 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 3013 { 3014 } 3015 3016 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 3017 { 3018 } 3019 3020 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 3021 enum bpf_dynptr_type type, u32 offset, u32 size) 3022 { 3023 } 3024 3025 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 3026 { 3027 } 3028 3029 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 3030 { 3031 } 3032 #endif /* CONFIG_BPF_SYSCALL */ 3033 3034 static __always_inline int 3035 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr) 3036 { 3037 int ret = -EFAULT; 3038 3039 if (IS_ENABLED(CONFIG_BPF_EVENTS)) 3040 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size); 3041 if (unlikely(ret < 0)) 3042 memset(dst, 0, size); 3043 return ret; 3044 } 3045 3046 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len); 3047 3048 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 3049 enum bpf_prog_type type) 3050 { 3051 return bpf_prog_get_type_dev(ufd, type, false); 3052 } 3053 3054 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 3055 struct bpf_map **used_maps, u32 len); 3056 3057 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 3058 3059 int bpf_prog_offload_compile(struct bpf_prog *prog); 3060 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 3061 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 3062 struct bpf_prog *prog); 3063 3064 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 3065 3066 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 3067 int bpf_map_offload_update_elem(struct bpf_map *map, 3068 void *key, void *value, u64 flags); 3069 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 3070 int bpf_map_offload_get_next_key(struct bpf_map *map, 3071 void *key, void *next_key); 3072 3073 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 3074 3075 struct bpf_offload_dev * 3076 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 3077 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 3078 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 3079 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 3080 struct net_device *netdev); 3081 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 3082 struct net_device *netdev); 3083 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 3084 3085 void unpriv_ebpf_notify(int new_state); 3086 3087 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 3088 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3089 struct bpf_prog_aux *prog_aux); 3090 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 3091 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 3092 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 3093 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 3094 3095 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3096 { 3097 return aux->dev_bound; 3098 } 3099 3100 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 3101 { 3102 return aux->offload_requested; 3103 } 3104 3105 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 3106 3107 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3108 { 3109 return unlikely(map->ops == &bpf_map_offload_ops); 3110 } 3111 3112 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 3113 void bpf_map_offload_map_free(struct bpf_map *map); 3114 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 3115 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3116 const union bpf_attr *kattr, 3117 union bpf_attr __user *uattr); 3118 3119 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 3120 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 3121 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 3122 int sock_map_bpf_prog_query(const union bpf_attr *attr, 3123 union bpf_attr __user *uattr); 3124 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog); 3125 3126 void sock_map_unhash(struct sock *sk); 3127 void sock_map_destroy(struct sock *sk); 3128 void sock_map_close(struct sock *sk, long timeout); 3129 #else 3130 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 3131 struct bpf_prog_aux *prog_aux) 3132 { 3133 return -EOPNOTSUPP; 3134 } 3135 3136 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 3137 u32 func_id) 3138 { 3139 return NULL; 3140 } 3141 3142 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 3143 union bpf_attr *attr) 3144 { 3145 return -EOPNOTSUPP; 3146 } 3147 3148 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 3149 struct bpf_prog *old_prog) 3150 { 3151 return -EOPNOTSUPP; 3152 } 3153 3154 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 3155 { 3156 } 3157 3158 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 3159 { 3160 return false; 3161 } 3162 3163 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 3164 { 3165 return false; 3166 } 3167 3168 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 3169 { 3170 return false; 3171 } 3172 3173 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 3174 { 3175 return false; 3176 } 3177 3178 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 3179 { 3180 return ERR_PTR(-EOPNOTSUPP); 3181 } 3182 3183 static inline void bpf_map_offload_map_free(struct bpf_map *map) 3184 { 3185 } 3186 3187 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 3188 { 3189 return 0; 3190 } 3191 3192 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 3193 const union bpf_attr *kattr, 3194 union bpf_attr __user *uattr) 3195 { 3196 return -ENOTSUPP; 3197 } 3198 3199 #ifdef CONFIG_BPF_SYSCALL 3200 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 3201 struct bpf_prog *prog) 3202 { 3203 return -EINVAL; 3204 } 3205 3206 static inline int sock_map_prog_detach(const union bpf_attr *attr, 3207 enum bpf_prog_type ptype) 3208 { 3209 return -EOPNOTSUPP; 3210 } 3211 3212 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 3213 u64 flags) 3214 { 3215 return -EOPNOTSUPP; 3216 } 3217 3218 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 3219 union bpf_attr __user *uattr) 3220 { 3221 return -EINVAL; 3222 } 3223 3224 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog) 3225 { 3226 return -EOPNOTSUPP; 3227 } 3228 #endif /* CONFIG_BPF_SYSCALL */ 3229 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 3230 3231 static __always_inline void 3232 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array) 3233 { 3234 const struct bpf_prog_array_item *item; 3235 struct bpf_prog *prog; 3236 3237 if (unlikely(!array)) 3238 return; 3239 3240 item = &array->items[0]; 3241 while ((prog = READ_ONCE(item->prog))) { 3242 bpf_prog_inc_misses_counter(prog); 3243 item++; 3244 } 3245 } 3246 3247 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 3248 void bpf_sk_reuseport_detach(struct sock *sk); 3249 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 3250 void *value); 3251 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 3252 void *value, u64 map_flags); 3253 #else 3254 static inline void bpf_sk_reuseport_detach(struct sock *sk) 3255 { 3256 } 3257 3258 #ifdef CONFIG_BPF_SYSCALL 3259 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 3260 void *key, void *value) 3261 { 3262 return -EOPNOTSUPP; 3263 } 3264 3265 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 3266 void *key, void *value, 3267 u64 map_flags) 3268 { 3269 return -EOPNOTSUPP; 3270 } 3271 #endif /* CONFIG_BPF_SYSCALL */ 3272 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 3273 3274 /* verifier prototypes for helper functions called from eBPF programs */ 3275 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 3276 extern const struct bpf_func_proto bpf_map_update_elem_proto; 3277 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 3278 extern const struct bpf_func_proto bpf_map_push_elem_proto; 3279 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 3280 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 3281 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 3282 3283 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 3284 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 3285 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 3286 extern const struct bpf_func_proto bpf_tail_call_proto; 3287 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 3288 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 3289 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 3290 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 3291 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 3292 extern const struct bpf_func_proto bpf_get_current_comm_proto; 3293 extern const struct bpf_func_proto bpf_get_stackid_proto; 3294 extern const struct bpf_func_proto bpf_get_stack_proto; 3295 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto; 3296 extern const struct bpf_func_proto bpf_get_task_stack_proto; 3297 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto; 3298 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 3299 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 3300 extern const struct bpf_func_proto bpf_sock_map_update_proto; 3301 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 3302 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 3303 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 3304 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 3305 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto; 3306 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 3307 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 3308 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 3309 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 3310 extern const struct bpf_func_proto bpf_spin_lock_proto; 3311 extern const struct bpf_func_proto bpf_spin_unlock_proto; 3312 extern const struct bpf_func_proto bpf_get_local_storage_proto; 3313 extern const struct bpf_func_proto bpf_strtol_proto; 3314 extern const struct bpf_func_proto bpf_strtoul_proto; 3315 extern const struct bpf_func_proto bpf_tcp_sock_proto; 3316 extern const struct bpf_func_proto bpf_jiffies64_proto; 3317 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 3318 extern const struct bpf_func_proto bpf_event_output_data_proto; 3319 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 3320 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 3321 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 3322 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 3323 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 3324 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 3325 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 3326 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 3327 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 3328 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 3329 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 3330 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 3331 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 3332 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 3333 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 3334 extern const struct bpf_func_proto bpf_copy_from_user_proto; 3335 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 3336 extern const struct bpf_func_proto bpf_snprintf_proto; 3337 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 3338 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 3339 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 3340 extern const struct bpf_func_proto bpf_sock_from_file_proto; 3341 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 3342 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 3343 extern const struct bpf_func_proto bpf_task_storage_get_proto; 3344 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 3345 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 3346 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 3347 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 3348 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 3349 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 3350 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 3351 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 3352 extern const struct bpf_func_proto bpf_find_vma_proto; 3353 extern const struct bpf_func_proto bpf_loop_proto; 3354 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 3355 extern const struct bpf_func_proto bpf_set_retval_proto; 3356 extern const struct bpf_func_proto bpf_get_retval_proto; 3357 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 3358 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 3359 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 3360 3361 const struct bpf_func_proto *tracing_prog_func_proto( 3362 enum bpf_func_id func_id, const struct bpf_prog *prog); 3363 3364 /* Shared helpers among cBPF and eBPF. */ 3365 void bpf_user_rnd_init_once(void); 3366 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3367 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 3368 3369 #if defined(CONFIG_NET) 3370 bool bpf_sock_common_is_valid_access(int off, int size, 3371 enum bpf_access_type type, 3372 struct bpf_insn_access_aux *info); 3373 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3374 struct bpf_insn_access_aux *info); 3375 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3376 const struct bpf_insn *si, 3377 struct bpf_insn *insn_buf, 3378 struct bpf_prog *prog, 3379 u32 *target_size); 3380 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3381 struct bpf_dynptr *ptr); 3382 #else 3383 static inline bool bpf_sock_common_is_valid_access(int off, int size, 3384 enum bpf_access_type type, 3385 struct bpf_insn_access_aux *info) 3386 { 3387 return false; 3388 } 3389 static inline bool bpf_sock_is_valid_access(int off, int size, 3390 enum bpf_access_type type, 3391 struct bpf_insn_access_aux *info) 3392 { 3393 return false; 3394 } 3395 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 3396 const struct bpf_insn *si, 3397 struct bpf_insn *insn_buf, 3398 struct bpf_prog *prog, 3399 u32 *target_size) 3400 { 3401 return 0; 3402 } 3403 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags, 3404 struct bpf_dynptr *ptr) 3405 { 3406 return -EOPNOTSUPP; 3407 } 3408 #endif 3409 3410 #ifdef CONFIG_INET 3411 struct sk_reuseport_kern { 3412 struct sk_buff *skb; 3413 struct sock *sk; 3414 struct sock *selected_sk; 3415 struct sock *migrating_sk; 3416 void *data_end; 3417 u32 hash; 3418 u32 reuseport_id; 3419 bool bind_inany; 3420 }; 3421 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3422 struct bpf_insn_access_aux *info); 3423 3424 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3425 const struct bpf_insn *si, 3426 struct bpf_insn *insn_buf, 3427 struct bpf_prog *prog, 3428 u32 *target_size); 3429 3430 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3431 struct bpf_insn_access_aux *info); 3432 3433 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3434 const struct bpf_insn *si, 3435 struct bpf_insn *insn_buf, 3436 struct bpf_prog *prog, 3437 u32 *target_size); 3438 #else 3439 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3440 enum bpf_access_type type, 3441 struct bpf_insn_access_aux *info) 3442 { 3443 return false; 3444 } 3445 3446 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3447 const struct bpf_insn *si, 3448 struct bpf_insn *insn_buf, 3449 struct bpf_prog *prog, 3450 u32 *target_size) 3451 { 3452 return 0; 3453 } 3454 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3455 enum bpf_access_type type, 3456 struct bpf_insn_access_aux *info) 3457 { 3458 return false; 3459 } 3460 3461 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3462 const struct bpf_insn *si, 3463 struct bpf_insn *insn_buf, 3464 struct bpf_prog *prog, 3465 u32 *target_size) 3466 { 3467 return 0; 3468 } 3469 #endif /* CONFIG_INET */ 3470 3471 enum bpf_text_poke_type { 3472 BPF_MOD_CALL, 3473 BPF_MOD_JUMP, 3474 }; 3475 3476 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3477 void *addr1, void *addr2); 3478 3479 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke, 3480 struct bpf_prog *new, struct bpf_prog *old); 3481 3482 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3483 int bpf_arch_text_invalidate(void *dst, size_t len); 3484 3485 struct btf_id_set; 3486 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3487 3488 #define MAX_BPRINTF_VARARGS 12 3489 #define MAX_BPRINTF_BUF 1024 3490 3491 struct bpf_bprintf_data { 3492 u32 *bin_args; 3493 char *buf; 3494 bool get_bin_args; 3495 bool get_buf; 3496 }; 3497 3498 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3499 u32 num_args, struct bpf_bprintf_data *data); 3500 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3501 3502 #ifdef CONFIG_BPF_LSM 3503 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3504 void bpf_cgroup_atype_put(int cgroup_atype); 3505 #else 3506 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3507 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3508 #endif /* CONFIG_BPF_LSM */ 3509 3510 struct key; 3511 3512 #ifdef CONFIG_KEYS 3513 struct bpf_key { 3514 struct key *key; 3515 bool has_ref; 3516 }; 3517 #endif /* CONFIG_KEYS */ 3518 3519 static inline bool type_is_alloc(u32 type) 3520 { 3521 return type & MEM_ALLOC; 3522 } 3523 3524 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3525 { 3526 if (memcg_bpf_enabled()) 3527 return flags | __GFP_ACCOUNT; 3528 return flags; 3529 } 3530 3531 static inline bool bpf_is_subprog(const struct bpf_prog *prog) 3532 { 3533 return prog->aux->func_idx != 0; 3534 } 3535 3536 static inline bool bpf_prog_is_raw_tp(const struct bpf_prog *prog) 3537 { 3538 return prog->type == BPF_PROG_TYPE_TRACING && 3539 prog->expected_attach_type == BPF_TRACE_RAW_TP; 3540 } 3541 3542 #endif /* _LINUX_BPF_H */ 3543