1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 33 struct bpf_verifier_env; 34 struct bpf_verifier_log; 35 struct perf_event; 36 struct bpf_prog; 37 struct bpf_prog_aux; 38 struct bpf_map; 39 struct sock; 40 struct seq_file; 41 struct btf; 42 struct btf_type; 43 struct exception_table_entry; 44 struct seq_operations; 45 struct bpf_iter_aux_info; 46 struct bpf_local_storage; 47 struct bpf_local_storage_map; 48 struct kobject; 49 struct mem_cgroup; 50 struct module; 51 struct bpf_func_state; 52 struct ftrace_ops; 53 struct cgroup; 54 55 extern struct idr btf_idr; 56 extern spinlock_t btf_idr_lock; 57 extern struct kobject *btf_kobj; 58 extern struct bpf_mem_alloc bpf_global_ma; 59 extern bool bpf_global_ma_set; 60 61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 63 struct bpf_iter_aux_info *aux); 64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 65 typedef unsigned int (*bpf_func_t)(const void *, 66 const struct bpf_insn *); 67 struct bpf_iter_seq_info { 68 const struct seq_operations *seq_ops; 69 bpf_iter_init_seq_priv_t init_seq_private; 70 bpf_iter_fini_seq_priv_t fini_seq_private; 71 u32 seq_priv_size; 72 }; 73 74 /* map is generic key/value storage optionally accessible by eBPF programs */ 75 struct bpf_map_ops { 76 /* funcs callable from userspace (via syscall) */ 77 int (*map_alloc_check)(union bpf_attr *attr); 78 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 79 void (*map_release)(struct bpf_map *map, struct file *map_file); 80 void (*map_free)(struct bpf_map *map); 81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 82 void (*map_release_uref)(struct bpf_map *map); 83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 85 union bpf_attr __user *uattr); 86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 87 void *value, u64 flags); 88 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 89 const union bpf_attr *attr, 90 union bpf_attr __user *uattr); 91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 92 const union bpf_attr *attr, 93 union bpf_attr __user *uattr); 94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 95 union bpf_attr __user *uattr); 96 97 /* funcs callable from userspace and from eBPF programs */ 98 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 99 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 100 long (*map_delete_elem)(struct bpf_map *map, void *key); 101 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 102 long (*map_pop_elem)(struct bpf_map *map, void *value); 103 long (*map_peek_elem)(struct bpf_map *map, void *value); 104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 105 106 /* funcs called by prog_array and perf_event_array map */ 107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 108 int fd); 109 void (*map_fd_put_ptr)(void *ptr); 110 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 111 u32 (*map_fd_sys_lookup_elem)(void *ptr); 112 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 113 struct seq_file *m); 114 int (*map_check_btf)(const struct bpf_map *map, 115 const struct btf *btf, 116 const struct btf_type *key_type, 117 const struct btf_type *value_type); 118 119 /* Prog poke tracking helpers. */ 120 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 121 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 122 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 123 struct bpf_prog *new); 124 125 /* Direct value access helpers. */ 126 int (*map_direct_value_addr)(const struct bpf_map *map, 127 u64 *imm, u32 off); 128 int (*map_direct_value_meta)(const struct bpf_map *map, 129 u64 imm, u32 *off); 130 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 131 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 132 struct poll_table_struct *pts); 133 134 /* Functions called by bpf_local_storage maps */ 135 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 136 void *owner, u32 size); 137 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 138 void *owner, u32 size); 139 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 140 141 /* Misc helpers.*/ 142 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 143 144 /* map_meta_equal must be implemented for maps that can be 145 * used as an inner map. It is a runtime check to ensure 146 * an inner map can be inserted to an outer map. 147 * 148 * Some properties of the inner map has been used during the 149 * verification time. When inserting an inner map at the runtime, 150 * map_meta_equal has to ensure the inserting map has the same 151 * properties that the verifier has used earlier. 152 */ 153 bool (*map_meta_equal)(const struct bpf_map *meta0, 154 const struct bpf_map *meta1); 155 156 157 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 158 struct bpf_func_state *caller, 159 struct bpf_func_state *callee); 160 long (*map_for_each_callback)(struct bpf_map *map, 161 bpf_callback_t callback_fn, 162 void *callback_ctx, u64 flags); 163 164 u64 (*map_mem_usage)(const struct bpf_map *map); 165 166 /* BTF id of struct allocated by map_alloc */ 167 int *map_btf_id; 168 169 /* bpf_iter info used to open a seq_file */ 170 const struct bpf_iter_seq_info *iter_seq_info; 171 }; 172 173 enum { 174 /* Support at most 10 fields in a BTF type */ 175 BTF_FIELDS_MAX = 10, 176 }; 177 178 enum btf_field_type { 179 BPF_SPIN_LOCK = (1 << 0), 180 BPF_TIMER = (1 << 1), 181 BPF_KPTR_UNREF = (1 << 2), 182 BPF_KPTR_REF = (1 << 3), 183 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF, 184 BPF_LIST_HEAD = (1 << 4), 185 BPF_LIST_NODE = (1 << 5), 186 BPF_RB_ROOT = (1 << 6), 187 BPF_RB_NODE = (1 << 7), 188 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD | 189 BPF_RB_NODE | BPF_RB_ROOT, 190 BPF_REFCOUNT = (1 << 8), 191 }; 192 193 typedef void (*btf_dtor_kfunc_t)(void *); 194 195 struct btf_field_kptr { 196 struct btf *btf; 197 struct module *module; 198 /* dtor used if btf_is_kernel(btf), otherwise the type is 199 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used 200 */ 201 btf_dtor_kfunc_t dtor; 202 u32 btf_id; 203 }; 204 205 struct btf_field_graph_root { 206 struct btf *btf; 207 u32 value_btf_id; 208 u32 node_offset; 209 struct btf_record *value_rec; 210 }; 211 212 struct btf_field { 213 u32 offset; 214 u32 size; 215 enum btf_field_type type; 216 union { 217 struct btf_field_kptr kptr; 218 struct btf_field_graph_root graph_root; 219 }; 220 }; 221 222 struct btf_record { 223 u32 cnt; 224 u32 field_mask; 225 int spin_lock_off; 226 int timer_off; 227 int refcount_off; 228 struct btf_field fields[]; 229 }; 230 231 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */ 232 struct bpf_rb_node_kern { 233 struct rb_node rb_node; 234 void *owner; 235 } __attribute__((aligned(8))); 236 237 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */ 238 struct bpf_list_node_kern { 239 struct list_head list_head; 240 void *owner; 241 } __attribute__((aligned(8))); 242 243 struct bpf_map { 244 /* The first two cachelines with read-mostly members of which some 245 * are also accessed in fast-path (e.g. ops, max_entries). 246 */ 247 const struct bpf_map_ops *ops ____cacheline_aligned; 248 struct bpf_map *inner_map_meta; 249 #ifdef CONFIG_SECURITY 250 void *security; 251 #endif 252 enum bpf_map_type map_type; 253 u32 key_size; 254 u32 value_size; 255 u32 max_entries; 256 u64 map_extra; /* any per-map-type extra fields */ 257 u32 map_flags; 258 u32 id; 259 struct btf_record *record; 260 int numa_node; 261 u32 btf_key_type_id; 262 u32 btf_value_type_id; 263 u32 btf_vmlinux_value_type_id; 264 struct btf *btf; 265 #ifdef CONFIG_MEMCG_KMEM 266 struct obj_cgroup *objcg; 267 #endif 268 char name[BPF_OBJ_NAME_LEN]; 269 /* The 3rd and 4th cacheline with misc members to avoid false sharing 270 * particularly with refcounting. 271 */ 272 atomic64_t refcnt ____cacheline_aligned; 273 atomic64_t usercnt; 274 struct work_struct work; 275 struct mutex freeze_mutex; 276 atomic64_t writecnt; 277 /* 'Ownership' of program-containing map is claimed by the first program 278 * that is going to use this map or by the first program which FD is 279 * stored in the map to make sure that all callers and callees have the 280 * same prog type, JITed flag and xdp_has_frags flag. 281 */ 282 struct { 283 spinlock_t lock; 284 enum bpf_prog_type type; 285 bool jited; 286 bool xdp_has_frags; 287 } owner; 288 bool bypass_spec_v1; 289 bool frozen; /* write-once; write-protected by freeze_mutex */ 290 s64 __percpu *elem_count; 291 }; 292 293 static inline const char *btf_field_type_name(enum btf_field_type type) 294 { 295 switch (type) { 296 case BPF_SPIN_LOCK: 297 return "bpf_spin_lock"; 298 case BPF_TIMER: 299 return "bpf_timer"; 300 case BPF_KPTR_UNREF: 301 case BPF_KPTR_REF: 302 return "kptr"; 303 case BPF_LIST_HEAD: 304 return "bpf_list_head"; 305 case BPF_LIST_NODE: 306 return "bpf_list_node"; 307 case BPF_RB_ROOT: 308 return "bpf_rb_root"; 309 case BPF_RB_NODE: 310 return "bpf_rb_node"; 311 case BPF_REFCOUNT: 312 return "bpf_refcount"; 313 default: 314 WARN_ON_ONCE(1); 315 return "unknown"; 316 } 317 } 318 319 static inline u32 btf_field_type_size(enum btf_field_type type) 320 { 321 switch (type) { 322 case BPF_SPIN_LOCK: 323 return sizeof(struct bpf_spin_lock); 324 case BPF_TIMER: 325 return sizeof(struct bpf_timer); 326 case BPF_KPTR_UNREF: 327 case BPF_KPTR_REF: 328 return sizeof(u64); 329 case BPF_LIST_HEAD: 330 return sizeof(struct bpf_list_head); 331 case BPF_LIST_NODE: 332 return sizeof(struct bpf_list_node); 333 case BPF_RB_ROOT: 334 return sizeof(struct bpf_rb_root); 335 case BPF_RB_NODE: 336 return sizeof(struct bpf_rb_node); 337 case BPF_REFCOUNT: 338 return sizeof(struct bpf_refcount); 339 default: 340 WARN_ON_ONCE(1); 341 return 0; 342 } 343 } 344 345 static inline u32 btf_field_type_align(enum btf_field_type type) 346 { 347 switch (type) { 348 case BPF_SPIN_LOCK: 349 return __alignof__(struct bpf_spin_lock); 350 case BPF_TIMER: 351 return __alignof__(struct bpf_timer); 352 case BPF_KPTR_UNREF: 353 case BPF_KPTR_REF: 354 return __alignof__(u64); 355 case BPF_LIST_HEAD: 356 return __alignof__(struct bpf_list_head); 357 case BPF_LIST_NODE: 358 return __alignof__(struct bpf_list_node); 359 case BPF_RB_ROOT: 360 return __alignof__(struct bpf_rb_root); 361 case BPF_RB_NODE: 362 return __alignof__(struct bpf_rb_node); 363 case BPF_REFCOUNT: 364 return __alignof__(struct bpf_refcount); 365 default: 366 WARN_ON_ONCE(1); 367 return 0; 368 } 369 } 370 371 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr) 372 { 373 memset(addr, 0, field->size); 374 375 switch (field->type) { 376 case BPF_REFCOUNT: 377 refcount_set((refcount_t *)addr, 1); 378 break; 379 case BPF_RB_NODE: 380 RB_CLEAR_NODE((struct rb_node *)addr); 381 break; 382 case BPF_LIST_HEAD: 383 case BPF_LIST_NODE: 384 INIT_LIST_HEAD((struct list_head *)addr); 385 break; 386 case BPF_RB_ROOT: 387 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */ 388 case BPF_SPIN_LOCK: 389 case BPF_TIMER: 390 case BPF_KPTR_UNREF: 391 case BPF_KPTR_REF: 392 break; 393 default: 394 WARN_ON_ONCE(1); 395 return; 396 } 397 } 398 399 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 400 { 401 if (IS_ERR_OR_NULL(rec)) 402 return false; 403 return rec->field_mask & type; 404 } 405 406 static inline void bpf_obj_init(const struct btf_record *rec, void *obj) 407 { 408 int i; 409 410 if (IS_ERR_OR_NULL(rec)) 411 return; 412 for (i = 0; i < rec->cnt; i++) 413 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset); 414 } 415 416 /* 'dst' must be a temporary buffer and should not point to memory that is being 417 * used in parallel by a bpf program or bpf syscall, otherwise the access from 418 * the bpf program or bpf syscall may be corrupted by the reinitialization, 419 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 420 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 421 * program or bpf syscall. 422 */ 423 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 424 { 425 bpf_obj_init(map->record, dst); 426 } 427 428 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 429 * forced to use 'long' read/writes to try to atomically copy long counters. 430 * Best-effort only. No barriers here, since it _will_ race with concurrent 431 * updates from BPF programs. Called from bpf syscall and mostly used with 432 * size 8 or 16 bytes, so ask compiler to inline it. 433 */ 434 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 435 { 436 const long *lsrc = src; 437 long *ldst = dst; 438 439 size /= sizeof(long); 440 while (size--) 441 *ldst++ = *lsrc++; 442 } 443 444 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 445 static inline void bpf_obj_memcpy(struct btf_record *rec, 446 void *dst, void *src, u32 size, 447 bool long_memcpy) 448 { 449 u32 curr_off = 0; 450 int i; 451 452 if (IS_ERR_OR_NULL(rec)) { 453 if (long_memcpy) 454 bpf_long_memcpy(dst, src, round_up(size, 8)); 455 else 456 memcpy(dst, src, size); 457 return; 458 } 459 460 for (i = 0; i < rec->cnt; i++) { 461 u32 next_off = rec->fields[i].offset; 462 u32 sz = next_off - curr_off; 463 464 memcpy(dst + curr_off, src + curr_off, sz); 465 curr_off += rec->fields[i].size + sz; 466 } 467 memcpy(dst + curr_off, src + curr_off, size - curr_off); 468 } 469 470 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 471 { 472 bpf_obj_memcpy(map->record, dst, src, map->value_size, false); 473 } 474 475 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 476 { 477 bpf_obj_memcpy(map->record, dst, src, map->value_size, true); 478 } 479 480 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size) 481 { 482 u32 curr_off = 0; 483 int i; 484 485 if (IS_ERR_OR_NULL(rec)) { 486 memset(dst, 0, size); 487 return; 488 } 489 490 for (i = 0; i < rec->cnt; i++) { 491 u32 next_off = rec->fields[i].offset; 492 u32 sz = next_off - curr_off; 493 494 memset(dst + curr_off, 0, sz); 495 curr_off += rec->fields[i].size + sz; 496 } 497 memset(dst + curr_off, 0, size - curr_off); 498 } 499 500 static inline void zero_map_value(struct bpf_map *map, void *dst) 501 { 502 bpf_obj_memzero(map->record, dst, map->value_size); 503 } 504 505 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 506 bool lock_src); 507 void bpf_timer_cancel_and_free(void *timer); 508 void bpf_list_head_free(const struct btf_field *field, void *list_head, 509 struct bpf_spin_lock *spin_lock); 510 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 511 struct bpf_spin_lock *spin_lock); 512 513 514 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 515 516 struct bpf_offload_dev; 517 struct bpf_offloaded_map; 518 519 struct bpf_map_dev_ops { 520 int (*map_get_next_key)(struct bpf_offloaded_map *map, 521 void *key, void *next_key); 522 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 523 void *key, void *value); 524 int (*map_update_elem)(struct bpf_offloaded_map *map, 525 void *key, void *value, u64 flags); 526 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 527 }; 528 529 struct bpf_offloaded_map { 530 struct bpf_map map; 531 struct net_device *netdev; 532 const struct bpf_map_dev_ops *dev_ops; 533 void *dev_priv; 534 struct list_head offloads; 535 }; 536 537 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 538 { 539 return container_of(map, struct bpf_offloaded_map, map); 540 } 541 542 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 543 { 544 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 545 } 546 547 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 548 { 549 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 550 map->ops->map_seq_show_elem; 551 } 552 553 int map_check_no_btf(const struct bpf_map *map, 554 const struct btf *btf, 555 const struct btf_type *key_type, 556 const struct btf_type *value_type); 557 558 bool bpf_map_meta_equal(const struct bpf_map *meta0, 559 const struct bpf_map *meta1); 560 561 extern const struct bpf_map_ops bpf_map_offload_ops; 562 563 /* bpf_type_flag contains a set of flags that are applicable to the values of 564 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 565 * or a memory is read-only. We classify types into two categories: base types 566 * and extended types. Extended types are base types combined with a type flag. 567 * 568 * Currently there are no more than 32 base types in arg_type, ret_type and 569 * reg_types. 570 */ 571 #define BPF_BASE_TYPE_BITS 8 572 573 enum bpf_type_flag { 574 /* PTR may be NULL. */ 575 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 576 577 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 578 * compatible with both mutable and immutable memory. 579 */ 580 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 581 582 /* MEM points to BPF ring buffer reservation. */ 583 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 584 585 /* MEM is in user address space. */ 586 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 587 588 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 589 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 590 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 591 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 592 * to the specified cpu. 593 */ 594 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 595 596 /* Indicates that the argument will be released. */ 597 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 598 599 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 600 * unreferenced and referenced kptr loaded from map value using a load 601 * instruction, so that they can only be dereferenced but not escape the 602 * BPF program into the kernel (i.e. cannot be passed as arguments to 603 * kfunc or bpf helpers). 604 */ 605 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 606 607 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 608 609 /* DYNPTR points to memory local to the bpf program. */ 610 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 611 612 /* DYNPTR points to a kernel-produced ringbuf record. */ 613 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 614 615 /* Size is known at compile time. */ 616 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 617 618 /* MEM is of an allocated object of type in program BTF. This is used to 619 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 620 */ 621 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 622 623 /* PTR was passed from the kernel in a trusted context, and may be 624 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 625 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 626 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 627 * without invoking bpf_kptr_xchg(). What we really need to know is 628 * whether a pointer is safe to pass to a kfunc or BPF helper function. 629 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 630 * helpers, they do not cover all possible instances of unsafe 631 * pointers. For example, a pointer that was obtained from walking a 632 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 633 * fact that it may be NULL, invalid, etc. This is due to backwards 634 * compatibility requirements, as this was the behavior that was first 635 * introduced when kptrs were added. The behavior is now considered 636 * deprecated, and PTR_UNTRUSTED will eventually be removed. 637 * 638 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 639 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 640 * For example, pointers passed to tracepoint arguments are considered 641 * PTR_TRUSTED, as are pointers that are passed to struct_ops 642 * callbacks. As alluded to above, pointers that are obtained from 643 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 644 * struct task_struct *task is PTR_TRUSTED, then accessing 645 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 646 * in a BPF register. Similarly, pointers passed to certain programs 647 * types such as kretprobes are not guaranteed to be valid, as they may 648 * for example contain an object that was recently freed. 649 */ 650 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 651 652 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 653 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 654 655 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 656 * Currently only valid for linked-list and rbtree nodes. 657 */ 658 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 659 660 /* DYNPTR points to sk_buff */ 661 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 662 663 /* DYNPTR points to xdp_buff */ 664 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 665 666 __BPF_TYPE_FLAG_MAX, 667 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 668 }; 669 670 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 671 | DYNPTR_TYPE_XDP) 672 673 /* Max number of base types. */ 674 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 675 676 /* Max number of all types. */ 677 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 678 679 /* function argument constraints */ 680 enum bpf_arg_type { 681 ARG_DONTCARE = 0, /* unused argument in helper function */ 682 683 /* the following constraints used to prototype 684 * bpf_map_lookup/update/delete_elem() functions 685 */ 686 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 687 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 688 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 689 690 /* Used to prototype bpf_memcmp() and other functions that access data 691 * on eBPF program stack 692 */ 693 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 694 695 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 696 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 697 698 ARG_PTR_TO_CTX, /* pointer to context */ 699 ARG_ANYTHING, /* any (initialized) argument is ok */ 700 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 701 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 702 ARG_PTR_TO_INT, /* pointer to int */ 703 ARG_PTR_TO_LONG, /* pointer to long */ 704 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 705 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 706 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 707 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 708 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 709 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 710 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 711 ARG_PTR_TO_STACK, /* pointer to stack */ 712 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 713 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 714 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 715 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 716 __BPF_ARG_TYPE_MAX, 717 718 /* Extended arg_types. */ 719 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 720 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 721 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 722 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 723 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 724 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 725 /* pointer to memory does not need to be initialized, helper function must fill 726 * all bytes or clear them in error case. 727 */ 728 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 729 /* Pointer to valid memory of size known at compile time. */ 730 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 731 732 /* This must be the last entry. Its purpose is to ensure the enum is 733 * wide enough to hold the higher bits reserved for bpf_type_flag. 734 */ 735 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 736 }; 737 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 738 739 /* type of values returned from helper functions */ 740 enum bpf_return_type { 741 RET_INTEGER, /* function returns integer */ 742 RET_VOID, /* function doesn't return anything */ 743 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 744 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 745 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 746 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 747 RET_PTR_TO_MEM, /* returns a pointer to memory */ 748 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 749 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 750 __BPF_RET_TYPE_MAX, 751 752 /* Extended ret_types. */ 753 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 754 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 755 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 756 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 757 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 758 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 759 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 760 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 761 762 /* This must be the last entry. Its purpose is to ensure the enum is 763 * wide enough to hold the higher bits reserved for bpf_type_flag. 764 */ 765 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 766 }; 767 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 768 769 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 770 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 771 * instructions after verifying 772 */ 773 struct bpf_func_proto { 774 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 775 bool gpl_only; 776 bool pkt_access; 777 bool might_sleep; 778 enum bpf_return_type ret_type; 779 union { 780 struct { 781 enum bpf_arg_type arg1_type; 782 enum bpf_arg_type arg2_type; 783 enum bpf_arg_type arg3_type; 784 enum bpf_arg_type arg4_type; 785 enum bpf_arg_type arg5_type; 786 }; 787 enum bpf_arg_type arg_type[5]; 788 }; 789 union { 790 struct { 791 u32 *arg1_btf_id; 792 u32 *arg2_btf_id; 793 u32 *arg3_btf_id; 794 u32 *arg4_btf_id; 795 u32 *arg5_btf_id; 796 }; 797 u32 *arg_btf_id[5]; 798 struct { 799 size_t arg1_size; 800 size_t arg2_size; 801 size_t arg3_size; 802 size_t arg4_size; 803 size_t arg5_size; 804 }; 805 size_t arg_size[5]; 806 }; 807 int *ret_btf_id; /* return value btf_id */ 808 bool (*allowed)(const struct bpf_prog *prog); 809 }; 810 811 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 812 * the first argument to eBPF programs. 813 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 814 */ 815 struct bpf_context; 816 817 enum bpf_access_type { 818 BPF_READ = 1, 819 BPF_WRITE = 2 820 }; 821 822 /* types of values stored in eBPF registers */ 823 /* Pointer types represent: 824 * pointer 825 * pointer + imm 826 * pointer + (u16) var 827 * pointer + (u16) var + imm 828 * if (range > 0) then [ptr, ptr + range - off) is safe to access 829 * if (id > 0) means that some 'var' was added 830 * if (off > 0) means that 'imm' was added 831 */ 832 enum bpf_reg_type { 833 NOT_INIT = 0, /* nothing was written into register */ 834 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 835 PTR_TO_CTX, /* reg points to bpf_context */ 836 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 837 PTR_TO_MAP_VALUE, /* reg points to map element value */ 838 PTR_TO_MAP_KEY, /* reg points to a map element key */ 839 PTR_TO_STACK, /* reg == frame_pointer + offset */ 840 PTR_TO_PACKET_META, /* skb->data - meta_len */ 841 PTR_TO_PACKET, /* reg points to skb->data */ 842 PTR_TO_PACKET_END, /* skb->data + headlen */ 843 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 844 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 845 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 846 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 847 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 848 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 849 /* PTR_TO_BTF_ID points to a kernel struct that does not need 850 * to be null checked by the BPF program. This does not imply the 851 * pointer is _not_ null and in practice this can easily be a null 852 * pointer when reading pointer chains. The assumption is program 853 * context will handle null pointer dereference typically via fault 854 * handling. The verifier must keep this in mind and can make no 855 * assumptions about null or non-null when doing branch analysis. 856 * Further, when passed into helpers the helpers can not, without 857 * additional context, assume the value is non-null. 858 */ 859 PTR_TO_BTF_ID, 860 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 861 * been checked for null. Used primarily to inform the verifier 862 * an explicit null check is required for this struct. 863 */ 864 PTR_TO_MEM, /* reg points to valid memory region */ 865 PTR_TO_BUF, /* reg points to a read/write buffer */ 866 PTR_TO_FUNC, /* reg points to a bpf program function */ 867 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 868 __BPF_REG_TYPE_MAX, 869 870 /* Extended reg_types. */ 871 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 872 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 873 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 874 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 875 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 876 877 /* This must be the last entry. Its purpose is to ensure the enum is 878 * wide enough to hold the higher bits reserved for bpf_type_flag. 879 */ 880 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 881 }; 882 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 883 884 /* The information passed from prog-specific *_is_valid_access 885 * back to the verifier. 886 */ 887 struct bpf_insn_access_aux { 888 enum bpf_reg_type reg_type; 889 union { 890 int ctx_field_size; 891 struct { 892 struct btf *btf; 893 u32 btf_id; 894 }; 895 }; 896 struct bpf_verifier_log *log; /* for verbose logs */ 897 }; 898 899 static inline void 900 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 901 { 902 aux->ctx_field_size = size; 903 } 904 905 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 906 { 907 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 908 insn->src_reg == BPF_PSEUDO_FUNC; 909 } 910 911 struct bpf_prog_ops { 912 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 913 union bpf_attr __user *uattr); 914 }; 915 916 struct bpf_reg_state; 917 struct bpf_verifier_ops { 918 /* return eBPF function prototype for verification */ 919 const struct bpf_func_proto * 920 (*get_func_proto)(enum bpf_func_id func_id, 921 const struct bpf_prog *prog); 922 923 /* return true if 'size' wide access at offset 'off' within bpf_context 924 * with 'type' (read or write) is allowed 925 */ 926 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 927 const struct bpf_prog *prog, 928 struct bpf_insn_access_aux *info); 929 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 930 const struct bpf_prog *prog); 931 int (*gen_ld_abs)(const struct bpf_insn *orig, 932 struct bpf_insn *insn_buf); 933 u32 (*convert_ctx_access)(enum bpf_access_type type, 934 const struct bpf_insn *src, 935 struct bpf_insn *dst, 936 struct bpf_prog *prog, u32 *target_size); 937 int (*btf_struct_access)(struct bpf_verifier_log *log, 938 const struct bpf_reg_state *reg, 939 int off, int size); 940 }; 941 942 struct bpf_prog_offload_ops { 943 /* verifier basic callbacks */ 944 int (*insn_hook)(struct bpf_verifier_env *env, 945 int insn_idx, int prev_insn_idx); 946 int (*finalize)(struct bpf_verifier_env *env); 947 /* verifier optimization callbacks (called after .finalize) */ 948 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 949 struct bpf_insn *insn); 950 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 951 /* program management callbacks */ 952 int (*prepare)(struct bpf_prog *prog); 953 int (*translate)(struct bpf_prog *prog); 954 void (*destroy)(struct bpf_prog *prog); 955 }; 956 957 struct bpf_prog_offload { 958 struct bpf_prog *prog; 959 struct net_device *netdev; 960 struct bpf_offload_dev *offdev; 961 void *dev_priv; 962 struct list_head offloads; 963 bool dev_state; 964 bool opt_failed; 965 void *jited_image; 966 u32 jited_len; 967 }; 968 969 enum bpf_cgroup_storage_type { 970 BPF_CGROUP_STORAGE_SHARED, 971 BPF_CGROUP_STORAGE_PERCPU, 972 __BPF_CGROUP_STORAGE_MAX 973 }; 974 975 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 976 977 /* The longest tracepoint has 12 args. 978 * See include/trace/bpf_probe.h 979 */ 980 #define MAX_BPF_FUNC_ARGS 12 981 982 /* The maximum number of arguments passed through registers 983 * a single function may have. 984 */ 985 #define MAX_BPF_FUNC_REG_ARGS 5 986 987 /* The argument is a structure. */ 988 #define BTF_FMODEL_STRUCT_ARG BIT(0) 989 990 /* The argument is signed. */ 991 #define BTF_FMODEL_SIGNED_ARG BIT(1) 992 993 struct btf_func_model { 994 u8 ret_size; 995 u8 ret_flags; 996 u8 nr_args; 997 u8 arg_size[MAX_BPF_FUNC_ARGS]; 998 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 999 }; 1000 1001 /* Restore arguments before returning from trampoline to let original function 1002 * continue executing. This flag is used for fentry progs when there are no 1003 * fexit progs. 1004 */ 1005 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 1006 /* Call original function after fentry progs, but before fexit progs. 1007 * Makes sense for fentry/fexit, normal calls and indirect calls. 1008 */ 1009 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 1010 /* Skip current frame and return to parent. Makes sense for fentry/fexit 1011 * programs only. Should not be used with normal calls and indirect calls. 1012 */ 1013 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 1014 /* Store IP address of the caller on the trampoline stack, 1015 * so it's available for trampoline's programs. 1016 */ 1017 #define BPF_TRAMP_F_IP_ARG BIT(3) 1018 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 1019 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 1020 1021 /* Get original function from stack instead of from provided direct address. 1022 * Makes sense for trampolines with fexit or fmod_ret programs. 1023 */ 1024 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 1025 1026 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 1027 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 1028 */ 1029 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 1030 1031 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 1032 * bytes on x86. 1033 */ 1034 enum { 1035 #if defined(__s390x__) 1036 BPF_MAX_TRAMP_LINKS = 27, 1037 #else 1038 BPF_MAX_TRAMP_LINKS = 38, 1039 #endif 1040 }; 1041 1042 struct bpf_tramp_links { 1043 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 1044 int nr_links; 1045 }; 1046 1047 struct bpf_tramp_run_ctx; 1048 1049 /* Different use cases for BPF trampoline: 1050 * 1. replace nop at the function entry (kprobe equivalent) 1051 * flags = BPF_TRAMP_F_RESTORE_REGS 1052 * fentry = a set of programs to run before returning from trampoline 1053 * 1054 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1055 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1056 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1057 * fentry = a set of program to run before calling original function 1058 * fexit = a set of program to run after original function 1059 * 1060 * 3. replace direct call instruction anywhere in the function body 1061 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1062 * With flags = 0 1063 * fentry = a set of programs to run before returning from trampoline 1064 * With flags = BPF_TRAMP_F_CALL_ORIG 1065 * orig_call = original callback addr or direct function addr 1066 * fentry = a set of program to run before calling original function 1067 * fexit = a set of program to run after original function 1068 */ 1069 struct bpf_tramp_image; 1070 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 1071 const struct btf_func_model *m, u32 flags, 1072 struct bpf_tramp_links *tlinks, 1073 void *orig_call); 1074 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1075 struct bpf_tramp_run_ctx *run_ctx); 1076 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1077 struct bpf_tramp_run_ctx *run_ctx); 1078 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1079 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1080 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1081 struct bpf_tramp_run_ctx *run_ctx); 1082 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1083 struct bpf_tramp_run_ctx *run_ctx); 1084 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1085 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1086 1087 struct bpf_ksym { 1088 unsigned long start; 1089 unsigned long end; 1090 char name[KSYM_NAME_LEN]; 1091 struct list_head lnode; 1092 struct latch_tree_node tnode; 1093 bool prog; 1094 }; 1095 1096 enum bpf_tramp_prog_type { 1097 BPF_TRAMP_FENTRY, 1098 BPF_TRAMP_FEXIT, 1099 BPF_TRAMP_MODIFY_RETURN, 1100 BPF_TRAMP_MAX, 1101 BPF_TRAMP_REPLACE, /* more than MAX */ 1102 }; 1103 1104 struct bpf_tramp_image { 1105 void *image; 1106 struct bpf_ksym ksym; 1107 struct percpu_ref pcref; 1108 void *ip_after_call; 1109 void *ip_epilogue; 1110 union { 1111 struct rcu_head rcu; 1112 struct work_struct work; 1113 }; 1114 }; 1115 1116 struct bpf_trampoline { 1117 /* hlist for trampoline_table */ 1118 struct hlist_node hlist; 1119 struct ftrace_ops *fops; 1120 /* serializes access to fields of this trampoline */ 1121 struct mutex mutex; 1122 refcount_t refcnt; 1123 u32 flags; 1124 u64 key; 1125 struct { 1126 struct btf_func_model model; 1127 void *addr; 1128 bool ftrace_managed; 1129 } func; 1130 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1131 * program by replacing one of its functions. func.addr is the address 1132 * of the function it replaced. 1133 */ 1134 struct bpf_prog *extension_prog; 1135 /* list of BPF programs using this trampoline */ 1136 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1137 /* Number of attached programs. A counter per kind. */ 1138 int progs_cnt[BPF_TRAMP_MAX]; 1139 /* Executable image of trampoline */ 1140 struct bpf_tramp_image *cur_image; 1141 struct module *mod; 1142 }; 1143 1144 struct bpf_attach_target_info { 1145 struct btf_func_model fmodel; 1146 long tgt_addr; 1147 struct module *tgt_mod; 1148 const char *tgt_name; 1149 const struct btf_type *tgt_type; 1150 }; 1151 1152 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1153 1154 struct bpf_dispatcher_prog { 1155 struct bpf_prog *prog; 1156 refcount_t users; 1157 }; 1158 1159 struct bpf_dispatcher { 1160 /* dispatcher mutex */ 1161 struct mutex mutex; 1162 void *func; 1163 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1164 int num_progs; 1165 void *image; 1166 void *rw_image; 1167 u32 image_off; 1168 struct bpf_ksym ksym; 1169 #ifdef CONFIG_HAVE_STATIC_CALL 1170 struct static_call_key *sc_key; 1171 void *sc_tramp; 1172 #endif 1173 }; 1174 1175 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( 1176 const void *ctx, 1177 const struct bpf_insn *insnsi, 1178 bpf_func_t bpf_func) 1179 { 1180 return bpf_func(ctx, insnsi); 1181 } 1182 1183 /* the implementation of the opaque uapi struct bpf_dynptr */ 1184 struct bpf_dynptr_kern { 1185 void *data; 1186 /* Size represents the number of usable bytes of dynptr data. 1187 * If for example the offset is at 4 for a local dynptr whose data is 1188 * of type u64, the number of usable bytes is 4. 1189 * 1190 * The upper 8 bits are reserved. It is as follows: 1191 * Bits 0 - 23 = size 1192 * Bits 24 - 30 = dynptr type 1193 * Bit 31 = whether dynptr is read-only 1194 */ 1195 u32 size; 1196 u32 offset; 1197 } __aligned(8); 1198 1199 enum bpf_dynptr_type { 1200 BPF_DYNPTR_TYPE_INVALID, 1201 /* Points to memory that is local to the bpf program */ 1202 BPF_DYNPTR_TYPE_LOCAL, 1203 /* Underlying data is a ringbuf record */ 1204 BPF_DYNPTR_TYPE_RINGBUF, 1205 /* Underlying data is a sk_buff */ 1206 BPF_DYNPTR_TYPE_SKB, 1207 /* Underlying data is a xdp_buff */ 1208 BPF_DYNPTR_TYPE_XDP, 1209 }; 1210 1211 int bpf_dynptr_check_size(u32 size); 1212 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr); 1213 1214 #ifdef CONFIG_BPF_JIT 1215 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1216 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1217 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1218 struct bpf_attach_target_info *tgt_info); 1219 void bpf_trampoline_put(struct bpf_trampoline *tr); 1220 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1221 1222 /* 1223 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1224 * indirection with a direct call to the bpf program. If the architecture does 1225 * not have STATIC_CALL, avoid a double-indirection. 1226 */ 1227 #ifdef CONFIG_HAVE_STATIC_CALL 1228 1229 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1230 .sc_key = &STATIC_CALL_KEY(_name), \ 1231 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1232 1233 #define __BPF_DISPATCHER_SC(name) \ 1234 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1235 1236 #define __BPF_DISPATCHER_CALL(name) \ 1237 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1238 1239 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1240 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1241 1242 #else 1243 #define __BPF_DISPATCHER_SC_INIT(name) 1244 #define __BPF_DISPATCHER_SC(name) 1245 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1246 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1247 #endif 1248 1249 #define BPF_DISPATCHER_INIT(_name) { \ 1250 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1251 .func = &_name##_func, \ 1252 .progs = {}, \ 1253 .num_progs = 0, \ 1254 .image = NULL, \ 1255 .image_off = 0, \ 1256 .ksym = { \ 1257 .name = #_name, \ 1258 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1259 }, \ 1260 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1261 } 1262 1263 #define DEFINE_BPF_DISPATCHER(name) \ 1264 __BPF_DISPATCHER_SC(name); \ 1265 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ 1266 const void *ctx, \ 1267 const struct bpf_insn *insnsi, \ 1268 bpf_func_t bpf_func) \ 1269 { \ 1270 return __BPF_DISPATCHER_CALL(name); \ 1271 } \ 1272 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1273 struct bpf_dispatcher bpf_dispatcher_##name = \ 1274 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1275 1276 #define DECLARE_BPF_DISPATCHER(name) \ 1277 unsigned int bpf_dispatcher_##name##_func( \ 1278 const void *ctx, \ 1279 const struct bpf_insn *insnsi, \ 1280 bpf_func_t bpf_func); \ 1281 extern struct bpf_dispatcher bpf_dispatcher_##name; 1282 1283 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1284 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1285 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1286 struct bpf_prog *to); 1287 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1288 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); 1289 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1290 void bpf_ksym_add(struct bpf_ksym *ksym); 1291 void bpf_ksym_del(struct bpf_ksym *ksym); 1292 int bpf_jit_charge_modmem(u32 size); 1293 void bpf_jit_uncharge_modmem(u32 size); 1294 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1295 #else 1296 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1297 struct bpf_trampoline *tr) 1298 { 1299 return -ENOTSUPP; 1300 } 1301 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1302 struct bpf_trampoline *tr) 1303 { 1304 return -ENOTSUPP; 1305 } 1306 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1307 struct bpf_attach_target_info *tgt_info) 1308 { 1309 return ERR_PTR(-EOPNOTSUPP); 1310 } 1311 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1312 #define DEFINE_BPF_DISPATCHER(name) 1313 #define DECLARE_BPF_DISPATCHER(name) 1314 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1315 #define BPF_DISPATCHER_PTR(name) NULL 1316 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1317 struct bpf_prog *from, 1318 struct bpf_prog *to) {} 1319 static inline bool is_bpf_image_address(unsigned long address) 1320 { 1321 return false; 1322 } 1323 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1324 { 1325 return false; 1326 } 1327 #endif 1328 1329 struct bpf_func_info_aux { 1330 u16 linkage; 1331 bool unreliable; 1332 }; 1333 1334 enum bpf_jit_poke_reason { 1335 BPF_POKE_REASON_TAIL_CALL, 1336 }; 1337 1338 /* Descriptor of pokes pointing /into/ the JITed image. */ 1339 struct bpf_jit_poke_descriptor { 1340 void *tailcall_target; 1341 void *tailcall_bypass; 1342 void *bypass_addr; 1343 void *aux; 1344 union { 1345 struct { 1346 struct bpf_map *map; 1347 u32 key; 1348 } tail_call; 1349 }; 1350 bool tailcall_target_stable; 1351 u8 adj_off; 1352 u16 reason; 1353 u32 insn_idx; 1354 }; 1355 1356 /* reg_type info for ctx arguments */ 1357 struct bpf_ctx_arg_aux { 1358 u32 offset; 1359 enum bpf_reg_type reg_type; 1360 u32 btf_id; 1361 }; 1362 1363 struct btf_mod_pair { 1364 struct btf *btf; 1365 struct module *module; 1366 }; 1367 1368 struct bpf_kfunc_desc_tab; 1369 1370 struct bpf_prog_aux { 1371 atomic64_t refcnt; 1372 u32 used_map_cnt; 1373 u32 used_btf_cnt; 1374 u32 max_ctx_offset; 1375 u32 max_pkt_offset; 1376 u32 max_tp_access; 1377 u32 stack_depth; 1378 u32 id; 1379 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1380 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1381 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1382 u32 ctx_arg_info_size; 1383 u32 max_rdonly_access; 1384 u32 max_rdwr_access; 1385 struct btf *attach_btf; 1386 const struct bpf_ctx_arg_aux *ctx_arg_info; 1387 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1388 struct bpf_prog *dst_prog; 1389 struct bpf_trampoline *dst_trampoline; 1390 enum bpf_prog_type saved_dst_prog_type; 1391 enum bpf_attach_type saved_dst_attach_type; 1392 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1393 bool dev_bound; /* Program is bound to the netdev. */ 1394 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1395 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1396 bool func_proto_unreliable; 1397 bool sleepable; 1398 bool tail_call_reachable; 1399 bool xdp_has_frags; 1400 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1401 const struct btf_type *attach_func_proto; 1402 /* function name for valid attach_btf_id */ 1403 const char *attach_func_name; 1404 struct bpf_prog **func; 1405 void *jit_data; /* JIT specific data. arch dependent */ 1406 struct bpf_jit_poke_descriptor *poke_tab; 1407 struct bpf_kfunc_desc_tab *kfunc_tab; 1408 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1409 u32 size_poke_tab; 1410 struct bpf_ksym ksym; 1411 const struct bpf_prog_ops *ops; 1412 struct bpf_map **used_maps; 1413 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1414 struct btf_mod_pair *used_btfs; 1415 struct bpf_prog *prog; 1416 struct user_struct *user; 1417 u64 load_time; /* ns since boottime */ 1418 u32 verified_insns; 1419 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1420 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1421 char name[BPF_OBJ_NAME_LEN]; 1422 #ifdef CONFIG_SECURITY 1423 void *security; 1424 #endif 1425 struct bpf_prog_offload *offload; 1426 struct btf *btf; 1427 struct bpf_func_info *func_info; 1428 struct bpf_func_info_aux *func_info_aux; 1429 /* bpf_line_info loaded from userspace. linfo->insn_off 1430 * has the xlated insn offset. 1431 * Both the main and sub prog share the same linfo. 1432 * The subprog can access its first linfo by 1433 * using the linfo_idx. 1434 */ 1435 struct bpf_line_info *linfo; 1436 /* jited_linfo is the jited addr of the linfo. It has a 1437 * one to one mapping to linfo: 1438 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1439 * Both the main and sub prog share the same jited_linfo. 1440 * The subprog can access its first jited_linfo by 1441 * using the linfo_idx. 1442 */ 1443 void **jited_linfo; 1444 u32 func_info_cnt; 1445 u32 nr_linfo; 1446 /* subprog can use linfo_idx to access its first linfo and 1447 * jited_linfo. 1448 * main prog always has linfo_idx == 0 1449 */ 1450 u32 linfo_idx; 1451 struct module *mod; 1452 u32 num_exentries; 1453 struct exception_table_entry *extable; 1454 union { 1455 struct work_struct work; 1456 struct rcu_head rcu; 1457 }; 1458 }; 1459 1460 struct bpf_prog { 1461 u16 pages; /* Number of allocated pages */ 1462 u16 jited:1, /* Is our filter JIT'ed? */ 1463 jit_requested:1,/* archs need to JIT the prog */ 1464 gpl_compatible:1, /* Is filter GPL compatible? */ 1465 cb_access:1, /* Is control block accessed? */ 1466 dst_needed:1, /* Do we need dst entry? */ 1467 blinding_requested:1, /* needs constant blinding */ 1468 blinded:1, /* Was blinded */ 1469 is_func:1, /* program is a bpf function */ 1470 kprobe_override:1, /* Do we override a kprobe? */ 1471 has_callchain_buf:1, /* callchain buffer allocated? */ 1472 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1473 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1474 call_get_func_ip:1, /* Do we call get_func_ip() */ 1475 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1476 enum bpf_prog_type type; /* Type of BPF program */ 1477 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1478 u32 len; /* Number of filter blocks */ 1479 u32 jited_len; /* Size of jited insns in bytes */ 1480 u8 tag[BPF_TAG_SIZE]; 1481 struct bpf_prog_stats __percpu *stats; 1482 int __percpu *active; 1483 unsigned int (*bpf_func)(const void *ctx, 1484 const struct bpf_insn *insn); 1485 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1486 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1487 /* Instructions for interpreter */ 1488 union { 1489 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1490 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1491 }; 1492 }; 1493 1494 struct bpf_array_aux { 1495 /* Programs with direct jumps into programs part of this array. */ 1496 struct list_head poke_progs; 1497 struct bpf_map *map; 1498 struct mutex poke_mutex; 1499 struct work_struct work; 1500 }; 1501 1502 struct bpf_link { 1503 atomic64_t refcnt; 1504 u32 id; 1505 enum bpf_link_type type; 1506 const struct bpf_link_ops *ops; 1507 struct bpf_prog *prog; 1508 struct work_struct work; 1509 }; 1510 1511 struct bpf_link_ops { 1512 void (*release)(struct bpf_link *link); 1513 void (*dealloc)(struct bpf_link *link); 1514 int (*detach)(struct bpf_link *link); 1515 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1516 struct bpf_prog *old_prog); 1517 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1518 int (*fill_link_info)(const struct bpf_link *link, 1519 struct bpf_link_info *info); 1520 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map, 1521 struct bpf_map *old_map); 1522 }; 1523 1524 struct bpf_tramp_link { 1525 struct bpf_link link; 1526 struct hlist_node tramp_hlist; 1527 u64 cookie; 1528 }; 1529 1530 struct bpf_shim_tramp_link { 1531 struct bpf_tramp_link link; 1532 struct bpf_trampoline *trampoline; 1533 }; 1534 1535 struct bpf_tracing_link { 1536 struct bpf_tramp_link link; 1537 enum bpf_attach_type attach_type; 1538 struct bpf_trampoline *trampoline; 1539 struct bpf_prog *tgt_prog; 1540 }; 1541 1542 struct bpf_link_primer { 1543 struct bpf_link *link; 1544 struct file *file; 1545 int fd; 1546 u32 id; 1547 }; 1548 1549 struct bpf_struct_ops_value; 1550 struct btf_member; 1551 1552 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1553 struct bpf_struct_ops { 1554 const struct bpf_verifier_ops *verifier_ops; 1555 int (*init)(struct btf *btf); 1556 int (*check_member)(const struct btf_type *t, 1557 const struct btf_member *member, 1558 const struct bpf_prog *prog); 1559 int (*init_member)(const struct btf_type *t, 1560 const struct btf_member *member, 1561 void *kdata, const void *udata); 1562 int (*reg)(void *kdata); 1563 void (*unreg)(void *kdata); 1564 int (*update)(void *kdata, void *old_kdata); 1565 int (*validate)(void *kdata); 1566 const struct btf_type *type; 1567 const struct btf_type *value_type; 1568 const char *name; 1569 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1570 u32 type_id; 1571 u32 value_id; 1572 }; 1573 1574 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1575 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1576 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); 1577 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); 1578 bool bpf_struct_ops_get(const void *kdata); 1579 void bpf_struct_ops_put(const void *kdata); 1580 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1581 void *value); 1582 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1583 struct bpf_tramp_link *link, 1584 const struct btf_func_model *model, 1585 void *image, void *image_end); 1586 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1587 { 1588 if (owner == BPF_MODULE_OWNER) 1589 return bpf_struct_ops_get(data); 1590 else 1591 return try_module_get(owner); 1592 } 1593 static inline void bpf_module_put(const void *data, struct module *owner) 1594 { 1595 if (owner == BPF_MODULE_OWNER) 1596 bpf_struct_ops_put(data); 1597 else 1598 module_put(owner); 1599 } 1600 int bpf_struct_ops_link_create(union bpf_attr *attr); 1601 1602 #ifdef CONFIG_NET 1603 /* Define it here to avoid the use of forward declaration */ 1604 struct bpf_dummy_ops_state { 1605 int val; 1606 }; 1607 1608 struct bpf_dummy_ops { 1609 int (*test_1)(struct bpf_dummy_ops_state *cb); 1610 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1611 char a3, unsigned long a4); 1612 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1613 }; 1614 1615 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1616 union bpf_attr __user *uattr); 1617 #endif 1618 #else 1619 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) 1620 { 1621 return NULL; 1622 } 1623 static inline void bpf_struct_ops_init(struct btf *btf, 1624 struct bpf_verifier_log *log) 1625 { 1626 } 1627 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1628 { 1629 return try_module_get(owner); 1630 } 1631 static inline void bpf_module_put(const void *data, struct module *owner) 1632 { 1633 module_put(owner); 1634 } 1635 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1636 void *key, 1637 void *value) 1638 { 1639 return -EINVAL; 1640 } 1641 static inline int bpf_struct_ops_link_create(union bpf_attr *attr) 1642 { 1643 return -EOPNOTSUPP; 1644 } 1645 1646 #endif 1647 1648 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1649 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1650 int cgroup_atype); 1651 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1652 #else 1653 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1654 int cgroup_atype) 1655 { 1656 return -EOPNOTSUPP; 1657 } 1658 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1659 { 1660 } 1661 #endif 1662 1663 struct bpf_array { 1664 struct bpf_map map; 1665 u32 elem_size; 1666 u32 index_mask; 1667 struct bpf_array_aux *aux; 1668 union { 1669 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1670 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1671 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1672 }; 1673 }; 1674 1675 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1676 #define MAX_TAIL_CALL_CNT 33 1677 1678 /* Maximum number of loops for bpf_loop and bpf_iter_num. 1679 * It's enum to expose it (and thus make it discoverable) through BTF. 1680 */ 1681 enum { 1682 BPF_MAX_LOOPS = 8 * 1024 * 1024, 1683 }; 1684 1685 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1686 BPF_F_RDONLY_PROG | \ 1687 BPF_F_WRONLY | \ 1688 BPF_F_WRONLY_PROG) 1689 1690 #define BPF_MAP_CAN_READ BIT(0) 1691 #define BPF_MAP_CAN_WRITE BIT(1) 1692 1693 /* Maximum number of user-producer ring buffer samples that can be drained in 1694 * a call to bpf_user_ringbuf_drain(). 1695 */ 1696 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1697 1698 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1699 { 1700 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1701 1702 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1703 * not possible. 1704 */ 1705 if (access_flags & BPF_F_RDONLY_PROG) 1706 return BPF_MAP_CAN_READ; 1707 else if (access_flags & BPF_F_WRONLY_PROG) 1708 return BPF_MAP_CAN_WRITE; 1709 else 1710 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1711 } 1712 1713 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1714 { 1715 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1716 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1717 } 1718 1719 struct bpf_event_entry { 1720 struct perf_event *event; 1721 struct file *perf_file; 1722 struct file *map_file; 1723 struct rcu_head rcu; 1724 }; 1725 1726 static inline bool map_type_contains_progs(struct bpf_map *map) 1727 { 1728 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1729 map->map_type == BPF_MAP_TYPE_DEVMAP || 1730 map->map_type == BPF_MAP_TYPE_CPUMAP; 1731 } 1732 1733 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1734 int bpf_prog_calc_tag(struct bpf_prog *fp); 1735 1736 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1737 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1738 1739 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1740 unsigned long off, unsigned long len); 1741 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1742 const struct bpf_insn *src, 1743 struct bpf_insn *dst, 1744 struct bpf_prog *prog, 1745 u32 *target_size); 1746 1747 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1748 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1749 1750 /* an array of programs to be executed under rcu_lock. 1751 * 1752 * Typical usage: 1753 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1754 * 1755 * the structure returned by bpf_prog_array_alloc() should be populated 1756 * with program pointers and the last pointer must be NULL. 1757 * The user has to keep refcnt on the program and make sure the program 1758 * is removed from the array before bpf_prog_put(). 1759 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1760 * since other cpus are walking the array of pointers in parallel. 1761 */ 1762 struct bpf_prog_array_item { 1763 struct bpf_prog *prog; 1764 union { 1765 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1766 u64 bpf_cookie; 1767 }; 1768 }; 1769 1770 struct bpf_prog_array { 1771 struct rcu_head rcu; 1772 struct bpf_prog_array_item items[]; 1773 }; 1774 1775 struct bpf_empty_prog_array { 1776 struct bpf_prog_array hdr; 1777 struct bpf_prog *null_prog; 1778 }; 1779 1780 /* to avoid allocating empty bpf_prog_array for cgroups that 1781 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1782 * It will not be modified the caller of bpf_prog_array_alloc() 1783 * (since caller requested prog_cnt == 0) 1784 * that pointer should be 'freed' by bpf_prog_array_free() 1785 */ 1786 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1787 1788 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1789 void bpf_prog_array_free(struct bpf_prog_array *progs); 1790 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1791 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1792 int bpf_prog_array_length(struct bpf_prog_array *progs); 1793 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1794 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1795 __u32 __user *prog_ids, u32 cnt); 1796 1797 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1798 struct bpf_prog *old_prog); 1799 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1800 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1801 struct bpf_prog *prog); 1802 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1803 u32 *prog_ids, u32 request_cnt, 1804 u32 *prog_cnt); 1805 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1806 struct bpf_prog *exclude_prog, 1807 struct bpf_prog *include_prog, 1808 u64 bpf_cookie, 1809 struct bpf_prog_array **new_array); 1810 1811 struct bpf_run_ctx {}; 1812 1813 struct bpf_cg_run_ctx { 1814 struct bpf_run_ctx run_ctx; 1815 const struct bpf_prog_array_item *prog_item; 1816 int retval; 1817 }; 1818 1819 struct bpf_trace_run_ctx { 1820 struct bpf_run_ctx run_ctx; 1821 u64 bpf_cookie; 1822 }; 1823 1824 struct bpf_tramp_run_ctx { 1825 struct bpf_run_ctx run_ctx; 1826 u64 bpf_cookie; 1827 struct bpf_run_ctx *saved_run_ctx; 1828 }; 1829 1830 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 1831 { 1832 struct bpf_run_ctx *old_ctx = NULL; 1833 1834 #ifdef CONFIG_BPF_SYSCALL 1835 old_ctx = current->bpf_ctx; 1836 current->bpf_ctx = new_ctx; 1837 #endif 1838 return old_ctx; 1839 } 1840 1841 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 1842 { 1843 #ifdef CONFIG_BPF_SYSCALL 1844 current->bpf_ctx = old_ctx; 1845 #endif 1846 } 1847 1848 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 1849 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 1850 /* BPF program asks to set CN on the packet. */ 1851 #define BPF_RET_SET_CN (1 << 0) 1852 1853 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 1854 1855 static __always_inline u32 1856 bpf_prog_run_array(const struct bpf_prog_array *array, 1857 const void *ctx, bpf_prog_run_fn run_prog) 1858 { 1859 const struct bpf_prog_array_item *item; 1860 const struct bpf_prog *prog; 1861 struct bpf_run_ctx *old_run_ctx; 1862 struct bpf_trace_run_ctx run_ctx; 1863 u32 ret = 1; 1864 1865 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 1866 1867 if (unlikely(!array)) 1868 return ret; 1869 1870 migrate_disable(); 1871 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1872 item = &array->items[0]; 1873 while ((prog = READ_ONCE(item->prog))) { 1874 run_ctx.bpf_cookie = item->bpf_cookie; 1875 ret &= run_prog(prog, ctx); 1876 item++; 1877 } 1878 bpf_reset_run_ctx(old_run_ctx); 1879 migrate_enable(); 1880 return ret; 1881 } 1882 1883 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 1884 * 1885 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 1886 * overall. As a result, we must use the bpf_prog_array_free_sleepable 1887 * in order to use the tasks_trace rcu grace period. 1888 * 1889 * When a non-sleepable program is inside the array, we take the rcu read 1890 * section and disable preemption for that program alone, so it can access 1891 * rcu-protected dynamically sized maps. 1892 */ 1893 static __always_inline u32 1894 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu, 1895 const void *ctx, bpf_prog_run_fn run_prog) 1896 { 1897 const struct bpf_prog_array_item *item; 1898 const struct bpf_prog *prog; 1899 const struct bpf_prog_array *array; 1900 struct bpf_run_ctx *old_run_ctx; 1901 struct bpf_trace_run_ctx run_ctx; 1902 u32 ret = 1; 1903 1904 might_fault(); 1905 1906 rcu_read_lock_trace(); 1907 migrate_disable(); 1908 1909 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 1910 if (unlikely(!array)) 1911 goto out; 1912 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1913 item = &array->items[0]; 1914 while ((prog = READ_ONCE(item->prog))) { 1915 if (!prog->aux->sleepable) 1916 rcu_read_lock(); 1917 1918 run_ctx.bpf_cookie = item->bpf_cookie; 1919 ret &= run_prog(prog, ctx); 1920 item++; 1921 1922 if (!prog->aux->sleepable) 1923 rcu_read_unlock(); 1924 } 1925 bpf_reset_run_ctx(old_run_ctx); 1926 out: 1927 migrate_enable(); 1928 rcu_read_unlock_trace(); 1929 return ret; 1930 } 1931 1932 #ifdef CONFIG_BPF_SYSCALL 1933 DECLARE_PER_CPU(int, bpf_prog_active); 1934 extern struct mutex bpf_stats_enabled_mutex; 1935 1936 /* 1937 * Block execution of BPF programs attached to instrumentation (perf, 1938 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 1939 * these events can happen inside a region which holds a map bucket lock 1940 * and can deadlock on it. 1941 */ 1942 static inline void bpf_disable_instrumentation(void) 1943 { 1944 migrate_disable(); 1945 this_cpu_inc(bpf_prog_active); 1946 } 1947 1948 static inline void bpf_enable_instrumentation(void) 1949 { 1950 this_cpu_dec(bpf_prog_active); 1951 migrate_enable(); 1952 } 1953 1954 extern const struct file_operations bpf_map_fops; 1955 extern const struct file_operations bpf_prog_fops; 1956 extern const struct file_operations bpf_iter_fops; 1957 1958 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 1959 extern const struct bpf_prog_ops _name ## _prog_ops; \ 1960 extern const struct bpf_verifier_ops _name ## _verifier_ops; 1961 #define BPF_MAP_TYPE(_id, _ops) \ 1962 extern const struct bpf_map_ops _ops; 1963 #define BPF_LINK_TYPE(_id, _name) 1964 #include <linux/bpf_types.h> 1965 #undef BPF_PROG_TYPE 1966 #undef BPF_MAP_TYPE 1967 #undef BPF_LINK_TYPE 1968 1969 extern const struct bpf_prog_ops bpf_offload_prog_ops; 1970 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 1971 extern const struct bpf_verifier_ops xdp_analyzer_ops; 1972 1973 struct bpf_prog *bpf_prog_get(u32 ufd); 1974 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 1975 bool attach_drv); 1976 void bpf_prog_add(struct bpf_prog *prog, int i); 1977 void bpf_prog_sub(struct bpf_prog *prog, int i); 1978 void bpf_prog_inc(struct bpf_prog *prog); 1979 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 1980 void bpf_prog_put(struct bpf_prog *prog); 1981 1982 void bpf_prog_free_id(struct bpf_prog *prog); 1983 void bpf_map_free_id(struct bpf_map *map); 1984 1985 struct btf_field *btf_record_find(const struct btf_record *rec, 1986 u32 offset, u32 field_mask); 1987 void btf_record_free(struct btf_record *rec); 1988 void bpf_map_free_record(struct bpf_map *map); 1989 struct btf_record *btf_record_dup(const struct btf_record *rec); 1990 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 1991 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 1992 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 1993 1994 struct bpf_map *bpf_map_get(u32 ufd); 1995 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 1996 struct bpf_map *__bpf_map_get(struct fd f); 1997 void bpf_map_inc(struct bpf_map *map); 1998 void bpf_map_inc_with_uref(struct bpf_map *map); 1999 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref); 2000 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 2001 void bpf_map_put_with_uref(struct bpf_map *map); 2002 void bpf_map_put(struct bpf_map *map); 2003 void *bpf_map_area_alloc(u64 size, int numa_node); 2004 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 2005 void bpf_map_area_free(void *base); 2006 bool bpf_map_write_active(const struct bpf_map *map); 2007 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 2008 int generic_map_lookup_batch(struct bpf_map *map, 2009 const union bpf_attr *attr, 2010 union bpf_attr __user *uattr); 2011 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 2012 const union bpf_attr *attr, 2013 union bpf_attr __user *uattr); 2014 int generic_map_delete_batch(struct bpf_map *map, 2015 const union bpf_attr *attr, 2016 union bpf_attr __user *uattr); 2017 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 2018 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 2019 2020 #ifdef CONFIG_MEMCG_KMEM 2021 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2022 int node); 2023 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 2024 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 2025 gfp_t flags); 2026 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 2027 size_t align, gfp_t flags); 2028 #else 2029 static inline void * 2030 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 2031 int node) 2032 { 2033 return kmalloc_node(size, flags, node); 2034 } 2035 2036 static inline void * 2037 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 2038 { 2039 return kzalloc(size, flags); 2040 } 2041 2042 static inline void * 2043 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 2044 { 2045 return kvcalloc(n, size, flags); 2046 } 2047 2048 static inline void __percpu * 2049 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 2050 gfp_t flags) 2051 { 2052 return __alloc_percpu_gfp(size, align, flags); 2053 } 2054 #endif 2055 2056 static inline int 2057 bpf_map_init_elem_count(struct bpf_map *map) 2058 { 2059 size_t size = sizeof(*map->elem_count), align = size; 2060 gfp_t flags = GFP_USER | __GFP_NOWARN; 2061 2062 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags); 2063 if (!map->elem_count) 2064 return -ENOMEM; 2065 2066 return 0; 2067 } 2068 2069 static inline void 2070 bpf_map_free_elem_count(struct bpf_map *map) 2071 { 2072 free_percpu(map->elem_count); 2073 } 2074 2075 static inline void bpf_map_inc_elem_count(struct bpf_map *map) 2076 { 2077 this_cpu_inc(*map->elem_count); 2078 } 2079 2080 static inline void bpf_map_dec_elem_count(struct bpf_map *map) 2081 { 2082 this_cpu_dec(*map->elem_count); 2083 } 2084 2085 extern int sysctl_unprivileged_bpf_disabled; 2086 2087 static inline bool bpf_allow_ptr_leaks(void) 2088 { 2089 return perfmon_capable(); 2090 } 2091 2092 static inline bool bpf_allow_uninit_stack(void) 2093 { 2094 return perfmon_capable(); 2095 } 2096 2097 static inline bool bpf_bypass_spec_v1(void) 2098 { 2099 return perfmon_capable(); 2100 } 2101 2102 static inline bool bpf_bypass_spec_v4(void) 2103 { 2104 return perfmon_capable(); 2105 } 2106 2107 int bpf_map_new_fd(struct bpf_map *map, int flags); 2108 int bpf_prog_new_fd(struct bpf_prog *prog); 2109 2110 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2111 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2112 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2113 int bpf_link_settle(struct bpf_link_primer *primer); 2114 void bpf_link_cleanup(struct bpf_link_primer *primer); 2115 void bpf_link_inc(struct bpf_link *link); 2116 void bpf_link_put(struct bpf_link *link); 2117 int bpf_link_new_fd(struct bpf_link *link); 2118 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); 2119 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2120 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2121 2122 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname); 2123 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags); 2124 2125 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2126 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2127 extern int bpf_iter_ ## target(args); \ 2128 int __init bpf_iter_ ## target(args) { return 0; } 2129 2130 /* 2131 * The task type of iterators. 2132 * 2133 * For BPF task iterators, they can be parameterized with various 2134 * parameters to visit only some of tasks. 2135 * 2136 * BPF_TASK_ITER_ALL (default) 2137 * Iterate over resources of every task. 2138 * 2139 * BPF_TASK_ITER_TID 2140 * Iterate over resources of a task/tid. 2141 * 2142 * BPF_TASK_ITER_TGID 2143 * Iterate over resources of every task of a process / task group. 2144 */ 2145 enum bpf_iter_task_type { 2146 BPF_TASK_ITER_ALL = 0, 2147 BPF_TASK_ITER_TID, 2148 BPF_TASK_ITER_TGID, 2149 }; 2150 2151 struct bpf_iter_aux_info { 2152 /* for map_elem iter */ 2153 struct bpf_map *map; 2154 2155 /* for cgroup iter */ 2156 struct { 2157 struct cgroup *start; /* starting cgroup */ 2158 enum bpf_cgroup_iter_order order; 2159 } cgroup; 2160 struct { 2161 enum bpf_iter_task_type type; 2162 u32 pid; 2163 } task; 2164 }; 2165 2166 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2167 union bpf_iter_link_info *linfo, 2168 struct bpf_iter_aux_info *aux); 2169 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2170 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2171 struct seq_file *seq); 2172 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2173 struct bpf_link_info *info); 2174 typedef const struct bpf_func_proto * 2175 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2176 const struct bpf_prog *prog); 2177 2178 enum bpf_iter_feature { 2179 BPF_ITER_RESCHED = BIT(0), 2180 }; 2181 2182 #define BPF_ITER_CTX_ARG_MAX 2 2183 struct bpf_iter_reg { 2184 const char *target; 2185 bpf_iter_attach_target_t attach_target; 2186 bpf_iter_detach_target_t detach_target; 2187 bpf_iter_show_fdinfo_t show_fdinfo; 2188 bpf_iter_fill_link_info_t fill_link_info; 2189 bpf_iter_get_func_proto_t get_func_proto; 2190 u32 ctx_arg_info_size; 2191 u32 feature; 2192 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2193 const struct bpf_iter_seq_info *seq_info; 2194 }; 2195 2196 struct bpf_iter_meta { 2197 __bpf_md_ptr(struct seq_file *, seq); 2198 u64 session_id; 2199 u64 seq_num; 2200 }; 2201 2202 struct bpf_iter__bpf_map_elem { 2203 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2204 __bpf_md_ptr(struct bpf_map *, map); 2205 __bpf_md_ptr(void *, key); 2206 __bpf_md_ptr(void *, value); 2207 }; 2208 2209 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2210 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2211 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2212 const struct bpf_func_proto * 2213 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2214 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2215 int bpf_iter_new_fd(struct bpf_link *link); 2216 bool bpf_link_is_iter(struct bpf_link *link); 2217 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2218 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2219 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2220 struct seq_file *seq); 2221 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2222 struct bpf_link_info *info); 2223 2224 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2225 struct bpf_func_state *caller, 2226 struct bpf_func_state *callee); 2227 2228 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2229 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2230 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2231 u64 flags); 2232 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2233 u64 flags); 2234 2235 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2236 2237 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2238 void *key, void *value, u64 map_flags); 2239 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2240 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2241 void *key, void *value, u64 map_flags); 2242 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2243 2244 int bpf_get_file_flag(int flags); 2245 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2246 size_t actual_size); 2247 2248 /* verify correctness of eBPF program */ 2249 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size); 2250 2251 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2252 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2253 #endif 2254 2255 struct btf *bpf_get_btf_vmlinux(void); 2256 2257 /* Map specifics */ 2258 struct xdp_frame; 2259 struct sk_buff; 2260 struct bpf_dtab_netdev; 2261 struct bpf_cpu_map_entry; 2262 2263 void __dev_flush(void); 2264 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2265 struct net_device *dev_rx); 2266 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2267 struct net_device *dev_rx); 2268 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2269 struct bpf_map *map, bool exclude_ingress); 2270 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2271 struct bpf_prog *xdp_prog); 2272 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2273 struct bpf_prog *xdp_prog, struct bpf_map *map, 2274 bool exclude_ingress); 2275 2276 void __cpu_map_flush(void); 2277 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2278 struct net_device *dev_rx); 2279 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2280 struct sk_buff *skb); 2281 2282 /* Return map's numa specified by userspace */ 2283 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2284 { 2285 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2286 attr->numa_node : NUMA_NO_NODE; 2287 } 2288 2289 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2290 int array_map_alloc_check(union bpf_attr *attr); 2291 2292 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2293 union bpf_attr __user *uattr); 2294 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2295 union bpf_attr __user *uattr); 2296 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2297 const union bpf_attr *kattr, 2298 union bpf_attr __user *uattr); 2299 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2300 const union bpf_attr *kattr, 2301 union bpf_attr __user *uattr); 2302 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2303 const union bpf_attr *kattr, 2304 union bpf_attr __user *uattr); 2305 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2306 const union bpf_attr *kattr, 2307 union bpf_attr __user *uattr); 2308 int bpf_prog_test_run_nf(struct bpf_prog *prog, 2309 const union bpf_attr *kattr, 2310 union bpf_attr __user *uattr); 2311 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2312 const struct bpf_prog *prog, 2313 struct bpf_insn_access_aux *info); 2314 2315 static inline bool bpf_tracing_ctx_access(int off, int size, 2316 enum bpf_access_type type) 2317 { 2318 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2319 return false; 2320 if (type != BPF_READ) 2321 return false; 2322 if (off % size != 0) 2323 return false; 2324 return true; 2325 } 2326 2327 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2328 enum bpf_access_type type, 2329 const struct bpf_prog *prog, 2330 struct bpf_insn_access_aux *info) 2331 { 2332 if (!bpf_tracing_ctx_access(off, size, type)) 2333 return false; 2334 return btf_ctx_access(off, size, type, prog, info); 2335 } 2336 2337 int btf_struct_access(struct bpf_verifier_log *log, 2338 const struct bpf_reg_state *reg, 2339 int off, int size, enum bpf_access_type atype, 2340 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name); 2341 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2342 const struct btf *btf, u32 id, int off, 2343 const struct btf *need_btf, u32 need_type_id, 2344 bool strict); 2345 2346 int btf_distill_func_proto(struct bpf_verifier_log *log, 2347 struct btf *btf, 2348 const struct btf_type *func_proto, 2349 const char *func_name, 2350 struct btf_func_model *m); 2351 2352 struct bpf_reg_state; 2353 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 2354 struct bpf_reg_state *regs); 2355 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 2356 struct bpf_reg_state *regs); 2357 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 2358 struct bpf_reg_state *reg); 2359 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2360 struct btf *btf, const struct btf_type *t); 2361 2362 struct bpf_prog *bpf_prog_by_id(u32 id); 2363 struct bpf_link *bpf_link_by_id(u32 id); 2364 2365 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); 2366 void bpf_task_storage_free(struct task_struct *task); 2367 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2368 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2369 const struct btf_func_model * 2370 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2371 const struct bpf_insn *insn); 2372 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2373 u16 btf_fd_idx, u8 **func_addr); 2374 2375 struct bpf_core_ctx { 2376 struct bpf_verifier_log *log; 2377 const struct btf *btf; 2378 }; 2379 2380 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2381 const struct bpf_reg_state *reg, 2382 const char *field_name, u32 btf_id, const char *suffix); 2383 2384 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2385 const struct btf *reg_btf, u32 reg_id, 2386 const struct btf *arg_btf, u32 arg_id); 2387 2388 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2389 int relo_idx, void *insn); 2390 2391 static inline bool unprivileged_ebpf_enabled(void) 2392 { 2393 return !sysctl_unprivileged_bpf_disabled; 2394 } 2395 2396 /* Not all bpf prog type has the bpf_ctx. 2397 * For the bpf prog type that has initialized the bpf_ctx, 2398 * this function can be used to decide if a kernel function 2399 * is called by a bpf program. 2400 */ 2401 static inline bool has_current_bpf_ctx(void) 2402 { 2403 return !!current->bpf_ctx; 2404 } 2405 2406 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2407 2408 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2409 enum bpf_dynptr_type type, u32 offset, u32 size); 2410 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2411 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2412 #else /* !CONFIG_BPF_SYSCALL */ 2413 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2414 { 2415 return ERR_PTR(-EOPNOTSUPP); 2416 } 2417 2418 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2419 enum bpf_prog_type type, 2420 bool attach_drv) 2421 { 2422 return ERR_PTR(-EOPNOTSUPP); 2423 } 2424 2425 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2426 { 2427 } 2428 2429 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2430 { 2431 } 2432 2433 static inline void bpf_prog_put(struct bpf_prog *prog) 2434 { 2435 } 2436 2437 static inline void bpf_prog_inc(struct bpf_prog *prog) 2438 { 2439 } 2440 2441 static inline struct bpf_prog *__must_check 2442 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2443 { 2444 return ERR_PTR(-EOPNOTSUPP); 2445 } 2446 2447 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2448 const struct bpf_link_ops *ops, 2449 struct bpf_prog *prog) 2450 { 2451 } 2452 2453 static inline int bpf_link_prime(struct bpf_link *link, 2454 struct bpf_link_primer *primer) 2455 { 2456 return -EOPNOTSUPP; 2457 } 2458 2459 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2460 { 2461 return -EOPNOTSUPP; 2462 } 2463 2464 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2465 { 2466 } 2467 2468 static inline void bpf_link_inc(struct bpf_link *link) 2469 { 2470 } 2471 2472 static inline void bpf_link_put(struct bpf_link *link) 2473 { 2474 } 2475 2476 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2477 { 2478 return -EOPNOTSUPP; 2479 } 2480 2481 static inline void __dev_flush(void) 2482 { 2483 } 2484 2485 struct xdp_frame; 2486 struct bpf_dtab_netdev; 2487 struct bpf_cpu_map_entry; 2488 2489 static inline 2490 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2491 struct net_device *dev_rx) 2492 { 2493 return 0; 2494 } 2495 2496 static inline 2497 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2498 struct net_device *dev_rx) 2499 { 2500 return 0; 2501 } 2502 2503 static inline 2504 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2505 struct bpf_map *map, bool exclude_ingress) 2506 { 2507 return 0; 2508 } 2509 2510 struct sk_buff; 2511 2512 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2513 struct sk_buff *skb, 2514 struct bpf_prog *xdp_prog) 2515 { 2516 return 0; 2517 } 2518 2519 static inline 2520 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2521 struct bpf_prog *xdp_prog, struct bpf_map *map, 2522 bool exclude_ingress) 2523 { 2524 return 0; 2525 } 2526 2527 static inline void __cpu_map_flush(void) 2528 { 2529 } 2530 2531 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2532 struct xdp_frame *xdpf, 2533 struct net_device *dev_rx) 2534 { 2535 return 0; 2536 } 2537 2538 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2539 struct sk_buff *skb) 2540 { 2541 return -EOPNOTSUPP; 2542 } 2543 2544 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2545 enum bpf_prog_type type) 2546 { 2547 return ERR_PTR(-EOPNOTSUPP); 2548 } 2549 2550 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2551 const union bpf_attr *kattr, 2552 union bpf_attr __user *uattr) 2553 { 2554 return -ENOTSUPP; 2555 } 2556 2557 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2558 const union bpf_attr *kattr, 2559 union bpf_attr __user *uattr) 2560 { 2561 return -ENOTSUPP; 2562 } 2563 2564 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2565 const union bpf_attr *kattr, 2566 union bpf_attr __user *uattr) 2567 { 2568 return -ENOTSUPP; 2569 } 2570 2571 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2572 const union bpf_attr *kattr, 2573 union bpf_attr __user *uattr) 2574 { 2575 return -ENOTSUPP; 2576 } 2577 2578 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2579 const union bpf_attr *kattr, 2580 union bpf_attr __user *uattr) 2581 { 2582 return -ENOTSUPP; 2583 } 2584 2585 static inline void bpf_map_put(struct bpf_map *map) 2586 { 2587 } 2588 2589 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2590 { 2591 return ERR_PTR(-ENOTSUPP); 2592 } 2593 2594 static inline int btf_struct_access(struct bpf_verifier_log *log, 2595 const struct bpf_reg_state *reg, 2596 int off, int size, enum bpf_access_type atype, 2597 u32 *next_btf_id, enum bpf_type_flag *flag, 2598 const char **field_name) 2599 { 2600 return -EACCES; 2601 } 2602 2603 static inline const struct bpf_func_proto * 2604 bpf_base_func_proto(enum bpf_func_id func_id) 2605 { 2606 return NULL; 2607 } 2608 2609 static inline void bpf_task_storage_free(struct task_struct *task) 2610 { 2611 } 2612 2613 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2614 { 2615 return false; 2616 } 2617 2618 static inline const struct btf_func_model * 2619 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2620 const struct bpf_insn *insn) 2621 { 2622 return NULL; 2623 } 2624 2625 static inline int 2626 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2627 u16 btf_fd_idx, u8 **func_addr) 2628 { 2629 return -ENOTSUPP; 2630 } 2631 2632 static inline bool unprivileged_ebpf_enabled(void) 2633 { 2634 return false; 2635 } 2636 2637 static inline bool has_current_bpf_ctx(void) 2638 { 2639 return false; 2640 } 2641 2642 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2643 { 2644 } 2645 2646 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2647 { 2648 } 2649 2650 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2651 enum bpf_dynptr_type type, u32 offset, u32 size) 2652 { 2653 } 2654 2655 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2656 { 2657 } 2658 2659 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2660 { 2661 } 2662 #endif /* CONFIG_BPF_SYSCALL */ 2663 2664 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2665 struct btf_mod_pair *used_btfs, u32 len); 2666 2667 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2668 enum bpf_prog_type type) 2669 { 2670 return bpf_prog_get_type_dev(ufd, type, false); 2671 } 2672 2673 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2674 struct bpf_map **used_maps, u32 len); 2675 2676 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2677 2678 int bpf_prog_offload_compile(struct bpf_prog *prog); 2679 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2680 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2681 struct bpf_prog *prog); 2682 2683 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2684 2685 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2686 int bpf_map_offload_update_elem(struct bpf_map *map, 2687 void *key, void *value, u64 flags); 2688 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2689 int bpf_map_offload_get_next_key(struct bpf_map *map, 2690 void *key, void *next_key); 2691 2692 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2693 2694 struct bpf_offload_dev * 2695 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2696 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2697 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2698 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2699 struct net_device *netdev); 2700 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2701 struct net_device *netdev); 2702 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2703 2704 void unpriv_ebpf_notify(int new_state); 2705 2706 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2707 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2708 struct bpf_prog_aux *prog_aux); 2709 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2710 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2711 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2712 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2713 2714 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2715 { 2716 return aux->dev_bound; 2717 } 2718 2719 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2720 { 2721 return aux->offload_requested; 2722 } 2723 2724 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2725 2726 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2727 { 2728 return unlikely(map->ops == &bpf_map_offload_ops); 2729 } 2730 2731 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2732 void bpf_map_offload_map_free(struct bpf_map *map); 2733 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2734 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2735 const union bpf_attr *kattr, 2736 union bpf_attr __user *uattr); 2737 2738 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2739 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2740 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2741 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2742 union bpf_attr __user *uattr); 2743 2744 void sock_map_unhash(struct sock *sk); 2745 void sock_map_destroy(struct sock *sk); 2746 void sock_map_close(struct sock *sk, long timeout); 2747 #else 2748 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2749 struct bpf_prog_aux *prog_aux) 2750 { 2751 return -EOPNOTSUPP; 2752 } 2753 2754 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 2755 u32 func_id) 2756 { 2757 return NULL; 2758 } 2759 2760 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 2761 union bpf_attr *attr) 2762 { 2763 return -EOPNOTSUPP; 2764 } 2765 2766 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 2767 struct bpf_prog *old_prog) 2768 { 2769 return -EOPNOTSUPP; 2770 } 2771 2772 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 2773 { 2774 } 2775 2776 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2777 { 2778 return false; 2779 } 2780 2781 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 2782 { 2783 return false; 2784 } 2785 2786 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 2787 { 2788 return false; 2789 } 2790 2791 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2792 { 2793 return false; 2794 } 2795 2796 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 2797 { 2798 return ERR_PTR(-EOPNOTSUPP); 2799 } 2800 2801 static inline void bpf_map_offload_map_free(struct bpf_map *map) 2802 { 2803 } 2804 2805 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 2806 { 2807 return 0; 2808 } 2809 2810 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2811 const union bpf_attr *kattr, 2812 union bpf_attr __user *uattr) 2813 { 2814 return -ENOTSUPP; 2815 } 2816 2817 #ifdef CONFIG_BPF_SYSCALL 2818 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 2819 struct bpf_prog *prog) 2820 { 2821 return -EINVAL; 2822 } 2823 2824 static inline int sock_map_prog_detach(const union bpf_attr *attr, 2825 enum bpf_prog_type ptype) 2826 { 2827 return -EOPNOTSUPP; 2828 } 2829 2830 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 2831 u64 flags) 2832 { 2833 return -EOPNOTSUPP; 2834 } 2835 2836 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 2837 union bpf_attr __user *uattr) 2838 { 2839 return -EINVAL; 2840 } 2841 #endif /* CONFIG_BPF_SYSCALL */ 2842 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 2843 2844 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 2845 void bpf_sk_reuseport_detach(struct sock *sk); 2846 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 2847 void *value); 2848 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 2849 void *value, u64 map_flags); 2850 #else 2851 static inline void bpf_sk_reuseport_detach(struct sock *sk) 2852 { 2853 } 2854 2855 #ifdef CONFIG_BPF_SYSCALL 2856 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 2857 void *key, void *value) 2858 { 2859 return -EOPNOTSUPP; 2860 } 2861 2862 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 2863 void *key, void *value, 2864 u64 map_flags) 2865 { 2866 return -EOPNOTSUPP; 2867 } 2868 #endif /* CONFIG_BPF_SYSCALL */ 2869 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 2870 2871 /* verifier prototypes for helper functions called from eBPF programs */ 2872 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 2873 extern const struct bpf_func_proto bpf_map_update_elem_proto; 2874 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 2875 extern const struct bpf_func_proto bpf_map_push_elem_proto; 2876 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 2877 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 2878 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 2879 2880 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 2881 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 2882 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 2883 extern const struct bpf_func_proto bpf_tail_call_proto; 2884 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 2885 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 2886 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 2887 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 2888 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 2889 extern const struct bpf_func_proto bpf_get_current_comm_proto; 2890 extern const struct bpf_func_proto bpf_get_stackid_proto; 2891 extern const struct bpf_func_proto bpf_get_stack_proto; 2892 extern const struct bpf_func_proto bpf_get_task_stack_proto; 2893 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 2894 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 2895 extern const struct bpf_func_proto bpf_sock_map_update_proto; 2896 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 2897 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 2898 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 2899 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 2900 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 2901 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 2902 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 2903 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 2904 extern const struct bpf_func_proto bpf_spin_lock_proto; 2905 extern const struct bpf_func_proto bpf_spin_unlock_proto; 2906 extern const struct bpf_func_proto bpf_get_local_storage_proto; 2907 extern const struct bpf_func_proto bpf_strtol_proto; 2908 extern const struct bpf_func_proto bpf_strtoul_proto; 2909 extern const struct bpf_func_proto bpf_tcp_sock_proto; 2910 extern const struct bpf_func_proto bpf_jiffies64_proto; 2911 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 2912 extern const struct bpf_func_proto bpf_event_output_data_proto; 2913 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 2914 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 2915 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 2916 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 2917 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 2918 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 2919 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 2920 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 2921 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 2922 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 2923 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 2924 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 2925 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 2926 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 2927 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 2928 extern const struct bpf_func_proto bpf_copy_from_user_proto; 2929 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 2930 extern const struct bpf_func_proto bpf_snprintf_proto; 2931 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 2932 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 2933 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 2934 extern const struct bpf_func_proto bpf_sock_from_file_proto; 2935 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 2936 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 2937 extern const struct bpf_func_proto bpf_task_storage_get_proto; 2938 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 2939 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 2940 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 2941 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 2942 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 2943 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 2944 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 2945 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 2946 extern const struct bpf_func_proto bpf_find_vma_proto; 2947 extern const struct bpf_func_proto bpf_loop_proto; 2948 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 2949 extern const struct bpf_func_proto bpf_set_retval_proto; 2950 extern const struct bpf_func_proto bpf_get_retval_proto; 2951 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 2952 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 2953 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 2954 2955 const struct bpf_func_proto *tracing_prog_func_proto( 2956 enum bpf_func_id func_id, const struct bpf_prog *prog); 2957 2958 /* Shared helpers among cBPF and eBPF. */ 2959 void bpf_user_rnd_init_once(void); 2960 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2961 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2962 2963 #if defined(CONFIG_NET) 2964 bool bpf_sock_common_is_valid_access(int off, int size, 2965 enum bpf_access_type type, 2966 struct bpf_insn_access_aux *info); 2967 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2968 struct bpf_insn_access_aux *info); 2969 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2970 const struct bpf_insn *si, 2971 struct bpf_insn *insn_buf, 2972 struct bpf_prog *prog, 2973 u32 *target_size); 2974 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 2975 struct bpf_dynptr_kern *ptr); 2976 #else 2977 static inline bool bpf_sock_common_is_valid_access(int off, int size, 2978 enum bpf_access_type type, 2979 struct bpf_insn_access_aux *info) 2980 { 2981 return false; 2982 } 2983 static inline bool bpf_sock_is_valid_access(int off, int size, 2984 enum bpf_access_type type, 2985 struct bpf_insn_access_aux *info) 2986 { 2987 return false; 2988 } 2989 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2990 const struct bpf_insn *si, 2991 struct bpf_insn *insn_buf, 2992 struct bpf_prog *prog, 2993 u32 *target_size) 2994 { 2995 return 0; 2996 } 2997 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 2998 struct bpf_dynptr_kern *ptr) 2999 { 3000 return -EOPNOTSUPP; 3001 } 3002 #endif 3003 3004 #ifdef CONFIG_INET 3005 struct sk_reuseport_kern { 3006 struct sk_buff *skb; 3007 struct sock *sk; 3008 struct sock *selected_sk; 3009 struct sock *migrating_sk; 3010 void *data_end; 3011 u32 hash; 3012 u32 reuseport_id; 3013 bool bind_inany; 3014 }; 3015 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3016 struct bpf_insn_access_aux *info); 3017 3018 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3019 const struct bpf_insn *si, 3020 struct bpf_insn *insn_buf, 3021 struct bpf_prog *prog, 3022 u32 *target_size); 3023 3024 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 3025 struct bpf_insn_access_aux *info); 3026 3027 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3028 const struct bpf_insn *si, 3029 struct bpf_insn *insn_buf, 3030 struct bpf_prog *prog, 3031 u32 *target_size); 3032 #else 3033 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 3034 enum bpf_access_type type, 3035 struct bpf_insn_access_aux *info) 3036 { 3037 return false; 3038 } 3039 3040 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 3041 const struct bpf_insn *si, 3042 struct bpf_insn *insn_buf, 3043 struct bpf_prog *prog, 3044 u32 *target_size) 3045 { 3046 return 0; 3047 } 3048 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 3049 enum bpf_access_type type, 3050 struct bpf_insn_access_aux *info) 3051 { 3052 return false; 3053 } 3054 3055 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 3056 const struct bpf_insn *si, 3057 struct bpf_insn *insn_buf, 3058 struct bpf_prog *prog, 3059 u32 *target_size) 3060 { 3061 return 0; 3062 } 3063 #endif /* CONFIG_INET */ 3064 3065 enum bpf_text_poke_type { 3066 BPF_MOD_CALL, 3067 BPF_MOD_JUMP, 3068 }; 3069 3070 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 3071 void *addr1, void *addr2); 3072 3073 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 3074 int bpf_arch_text_invalidate(void *dst, size_t len); 3075 3076 struct btf_id_set; 3077 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 3078 3079 #define MAX_BPRINTF_VARARGS 12 3080 #define MAX_BPRINTF_BUF 1024 3081 3082 struct bpf_bprintf_data { 3083 u32 *bin_args; 3084 char *buf; 3085 bool get_bin_args; 3086 bool get_buf; 3087 }; 3088 3089 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 3090 u32 num_args, struct bpf_bprintf_data *data); 3091 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 3092 3093 #ifdef CONFIG_BPF_LSM 3094 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 3095 void bpf_cgroup_atype_put(int cgroup_atype); 3096 #else 3097 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 3098 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 3099 #endif /* CONFIG_BPF_LSM */ 3100 3101 struct key; 3102 3103 #ifdef CONFIG_KEYS 3104 struct bpf_key { 3105 struct key *key; 3106 bool has_ref; 3107 }; 3108 #endif /* CONFIG_KEYS */ 3109 3110 static inline bool type_is_alloc(u32 type) 3111 { 3112 return type & MEM_ALLOC; 3113 } 3114 3115 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3116 { 3117 if (memcg_bpf_enabled()) 3118 return flags | __GFP_ACCOUNT; 3119 return flags; 3120 } 3121 3122 #endif /* _LINUX_BPF_H */ 3123