xref: /linux-6.15/include/linux/bpf.h (revision 18536722)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 
33 struct bpf_verifier_env;
34 struct bpf_verifier_log;
35 struct perf_event;
36 struct bpf_prog;
37 struct bpf_prog_aux;
38 struct bpf_map;
39 struct sock;
40 struct seq_file;
41 struct btf;
42 struct btf_type;
43 struct exception_table_entry;
44 struct seq_operations;
45 struct bpf_iter_aux_info;
46 struct bpf_local_storage;
47 struct bpf_local_storage_map;
48 struct kobject;
49 struct mem_cgroup;
50 struct module;
51 struct bpf_func_state;
52 struct ftrace_ops;
53 struct cgroup;
54 
55 extern struct idr btf_idr;
56 extern spinlock_t btf_idr_lock;
57 extern struct kobject *btf_kobj;
58 extern struct bpf_mem_alloc bpf_global_ma;
59 extern bool bpf_global_ma_set;
60 
61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
63 					struct bpf_iter_aux_info *aux);
64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
65 typedef unsigned int (*bpf_func_t)(const void *,
66 				   const struct bpf_insn *);
67 struct bpf_iter_seq_info {
68 	const struct seq_operations *seq_ops;
69 	bpf_iter_init_seq_priv_t init_seq_private;
70 	bpf_iter_fini_seq_priv_t fini_seq_private;
71 	u32 seq_priv_size;
72 };
73 
74 /* map is generic key/value storage optionally accessible by eBPF programs */
75 struct bpf_map_ops {
76 	/* funcs callable from userspace (via syscall) */
77 	int (*map_alloc_check)(union bpf_attr *attr);
78 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
79 	void (*map_release)(struct bpf_map *map, struct file *map_file);
80 	void (*map_free)(struct bpf_map *map);
81 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
82 	void (*map_release_uref)(struct bpf_map *map);
83 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
84 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
85 				union bpf_attr __user *uattr);
86 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
87 					  void *value, u64 flags);
88 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
89 					   const union bpf_attr *attr,
90 					   union bpf_attr __user *uattr);
91 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
92 				const union bpf_attr *attr,
93 				union bpf_attr __user *uattr);
94 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
95 				union bpf_attr __user *uattr);
96 
97 	/* funcs callable from userspace and from eBPF programs */
98 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
99 	int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
100 	int (*map_delete_elem)(struct bpf_map *map, void *key);
101 	int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
102 	int (*map_pop_elem)(struct bpf_map *map, void *value);
103 	int (*map_peek_elem)(struct bpf_map *map, void *value);
104 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
105 
106 	/* funcs called by prog_array and perf_event_array map */
107 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
108 				int fd);
109 	void (*map_fd_put_ptr)(void *ptr);
110 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
111 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
112 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
113 				  struct seq_file *m);
114 	int (*map_check_btf)(const struct bpf_map *map,
115 			     const struct btf *btf,
116 			     const struct btf_type *key_type,
117 			     const struct btf_type *value_type);
118 
119 	/* Prog poke tracking helpers. */
120 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
122 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
123 			     struct bpf_prog *new);
124 
125 	/* Direct value access helpers. */
126 	int (*map_direct_value_addr)(const struct bpf_map *map,
127 				     u64 *imm, u32 off);
128 	int (*map_direct_value_meta)(const struct bpf_map *map,
129 				     u64 imm, u32 *off);
130 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
131 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
132 			     struct poll_table_struct *pts);
133 
134 	/* Functions called by bpf_local_storage maps */
135 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
136 					void *owner, u32 size);
137 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
138 					   void *owner, u32 size);
139 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
140 
141 	/* Misc helpers.*/
142 	int (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
143 
144 	/* map_meta_equal must be implemented for maps that can be
145 	 * used as an inner map.  It is a runtime check to ensure
146 	 * an inner map can be inserted to an outer map.
147 	 *
148 	 * Some properties of the inner map has been used during the
149 	 * verification time.  When inserting an inner map at the runtime,
150 	 * map_meta_equal has to ensure the inserting map has the same
151 	 * properties that the verifier has used earlier.
152 	 */
153 	bool (*map_meta_equal)(const struct bpf_map *meta0,
154 			       const struct bpf_map *meta1);
155 
156 
157 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
158 					      struct bpf_func_state *caller,
159 					      struct bpf_func_state *callee);
160 	int (*map_for_each_callback)(struct bpf_map *map,
161 				     bpf_callback_t callback_fn,
162 				     void *callback_ctx, u64 flags);
163 
164 	u64 (*map_mem_usage)(const struct bpf_map *map);
165 
166 	/* BTF id of struct allocated by map_alloc */
167 	int *map_btf_id;
168 
169 	/* bpf_iter info used to open a seq_file */
170 	const struct bpf_iter_seq_info *iter_seq_info;
171 };
172 
173 enum {
174 	/* Support at most 10 fields in a BTF type */
175 	BTF_FIELDS_MAX	   = 10,
176 };
177 
178 enum btf_field_type {
179 	BPF_SPIN_LOCK  = (1 << 0),
180 	BPF_TIMER      = (1 << 1),
181 	BPF_KPTR_UNREF = (1 << 2),
182 	BPF_KPTR_REF   = (1 << 3),
183 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF,
184 	BPF_LIST_HEAD  = (1 << 4),
185 	BPF_LIST_NODE  = (1 << 5),
186 	BPF_RB_ROOT    = (1 << 6),
187 	BPF_RB_NODE    = (1 << 7),
188 	BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD |
189 				 BPF_RB_NODE | BPF_RB_ROOT,
190 };
191 
192 struct btf_field_kptr {
193 	struct btf *btf;
194 	struct module *module;
195 	btf_dtor_kfunc_t dtor;
196 	u32 btf_id;
197 };
198 
199 struct btf_field_graph_root {
200 	struct btf *btf;
201 	u32 value_btf_id;
202 	u32 node_offset;
203 	struct btf_record *value_rec;
204 };
205 
206 struct btf_field {
207 	u32 offset;
208 	enum btf_field_type type;
209 	union {
210 		struct btf_field_kptr kptr;
211 		struct btf_field_graph_root graph_root;
212 	};
213 };
214 
215 struct btf_record {
216 	u32 cnt;
217 	u32 field_mask;
218 	int spin_lock_off;
219 	int timer_off;
220 	struct btf_field fields[];
221 };
222 
223 struct btf_field_offs {
224 	u32 cnt;
225 	u32 field_off[BTF_FIELDS_MAX];
226 	u8 field_sz[BTF_FIELDS_MAX];
227 };
228 
229 struct bpf_map {
230 	/* The first two cachelines with read-mostly members of which some
231 	 * are also accessed in fast-path (e.g. ops, max_entries).
232 	 */
233 	const struct bpf_map_ops *ops ____cacheline_aligned;
234 	struct bpf_map *inner_map_meta;
235 #ifdef CONFIG_SECURITY
236 	void *security;
237 #endif
238 	enum bpf_map_type map_type;
239 	u32 key_size;
240 	u32 value_size;
241 	u32 max_entries;
242 	u64 map_extra; /* any per-map-type extra fields */
243 	u32 map_flags;
244 	u32 id;
245 	struct btf_record *record;
246 	int numa_node;
247 	u32 btf_key_type_id;
248 	u32 btf_value_type_id;
249 	u32 btf_vmlinux_value_type_id;
250 	struct btf *btf;
251 #ifdef CONFIG_MEMCG_KMEM
252 	struct obj_cgroup *objcg;
253 #endif
254 	char name[BPF_OBJ_NAME_LEN];
255 	struct btf_field_offs *field_offs;
256 	/* The 3rd and 4th cacheline with misc members to avoid false sharing
257 	 * particularly with refcounting.
258 	 */
259 	atomic64_t refcnt ____cacheline_aligned;
260 	atomic64_t usercnt;
261 	struct work_struct work;
262 	struct mutex freeze_mutex;
263 	atomic64_t writecnt;
264 	/* 'Ownership' of program-containing map is claimed by the first program
265 	 * that is going to use this map or by the first program which FD is
266 	 * stored in the map to make sure that all callers and callees have the
267 	 * same prog type, JITed flag and xdp_has_frags flag.
268 	 */
269 	struct {
270 		spinlock_t lock;
271 		enum bpf_prog_type type;
272 		bool jited;
273 		bool xdp_has_frags;
274 	} owner;
275 	bool bypass_spec_v1;
276 	bool frozen; /* write-once; write-protected by freeze_mutex */
277 };
278 
279 static inline const char *btf_field_type_name(enum btf_field_type type)
280 {
281 	switch (type) {
282 	case BPF_SPIN_LOCK:
283 		return "bpf_spin_lock";
284 	case BPF_TIMER:
285 		return "bpf_timer";
286 	case BPF_KPTR_UNREF:
287 	case BPF_KPTR_REF:
288 		return "kptr";
289 	case BPF_LIST_HEAD:
290 		return "bpf_list_head";
291 	case BPF_LIST_NODE:
292 		return "bpf_list_node";
293 	case BPF_RB_ROOT:
294 		return "bpf_rb_root";
295 	case BPF_RB_NODE:
296 		return "bpf_rb_node";
297 	default:
298 		WARN_ON_ONCE(1);
299 		return "unknown";
300 	}
301 }
302 
303 static inline u32 btf_field_type_size(enum btf_field_type type)
304 {
305 	switch (type) {
306 	case BPF_SPIN_LOCK:
307 		return sizeof(struct bpf_spin_lock);
308 	case BPF_TIMER:
309 		return sizeof(struct bpf_timer);
310 	case BPF_KPTR_UNREF:
311 	case BPF_KPTR_REF:
312 		return sizeof(u64);
313 	case BPF_LIST_HEAD:
314 		return sizeof(struct bpf_list_head);
315 	case BPF_LIST_NODE:
316 		return sizeof(struct bpf_list_node);
317 	case BPF_RB_ROOT:
318 		return sizeof(struct bpf_rb_root);
319 	case BPF_RB_NODE:
320 		return sizeof(struct bpf_rb_node);
321 	default:
322 		WARN_ON_ONCE(1);
323 		return 0;
324 	}
325 }
326 
327 static inline u32 btf_field_type_align(enum btf_field_type type)
328 {
329 	switch (type) {
330 	case BPF_SPIN_LOCK:
331 		return __alignof__(struct bpf_spin_lock);
332 	case BPF_TIMER:
333 		return __alignof__(struct bpf_timer);
334 	case BPF_KPTR_UNREF:
335 	case BPF_KPTR_REF:
336 		return __alignof__(u64);
337 	case BPF_LIST_HEAD:
338 		return __alignof__(struct bpf_list_head);
339 	case BPF_LIST_NODE:
340 		return __alignof__(struct bpf_list_node);
341 	case BPF_RB_ROOT:
342 		return __alignof__(struct bpf_rb_root);
343 	case BPF_RB_NODE:
344 		return __alignof__(struct bpf_rb_node);
345 	default:
346 		WARN_ON_ONCE(1);
347 		return 0;
348 	}
349 }
350 
351 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
352 {
353 	if (IS_ERR_OR_NULL(rec))
354 		return false;
355 	return rec->field_mask & type;
356 }
357 
358 static inline void bpf_obj_init(const struct btf_field_offs *foffs, void *obj)
359 {
360 	int i;
361 
362 	if (!foffs)
363 		return;
364 	for (i = 0; i < foffs->cnt; i++)
365 		memset(obj + foffs->field_off[i], 0, foffs->field_sz[i]);
366 }
367 
368 /* 'dst' must be a temporary buffer and should not point to memory that is being
369  * used in parallel by a bpf program or bpf syscall, otherwise the access from
370  * the bpf program or bpf syscall may be corrupted by the reinitialization,
371  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
372  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
373  * program or bpf syscall.
374  */
375 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
376 {
377 	bpf_obj_init(map->field_offs, dst);
378 }
379 
380 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
381  * forced to use 'long' read/writes to try to atomically copy long counters.
382  * Best-effort only.  No barriers here, since it _will_ race with concurrent
383  * updates from BPF programs. Called from bpf syscall and mostly used with
384  * size 8 or 16 bytes, so ask compiler to inline it.
385  */
386 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
387 {
388 	const long *lsrc = src;
389 	long *ldst = dst;
390 
391 	size /= sizeof(long);
392 	while (size--)
393 		*ldst++ = *lsrc++;
394 }
395 
396 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
397 static inline void bpf_obj_memcpy(struct btf_field_offs *foffs,
398 				  void *dst, void *src, u32 size,
399 				  bool long_memcpy)
400 {
401 	u32 curr_off = 0;
402 	int i;
403 
404 	if (likely(!foffs)) {
405 		if (long_memcpy)
406 			bpf_long_memcpy(dst, src, round_up(size, 8));
407 		else
408 			memcpy(dst, src, size);
409 		return;
410 	}
411 
412 	for (i = 0; i < foffs->cnt; i++) {
413 		u32 next_off = foffs->field_off[i];
414 		u32 sz = next_off - curr_off;
415 
416 		memcpy(dst + curr_off, src + curr_off, sz);
417 		curr_off += foffs->field_sz[i] + sz;
418 	}
419 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
420 }
421 
422 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
423 {
424 	bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, false);
425 }
426 
427 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
428 {
429 	bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, true);
430 }
431 
432 static inline void bpf_obj_memzero(struct btf_field_offs *foffs, void *dst, u32 size)
433 {
434 	u32 curr_off = 0;
435 	int i;
436 
437 	if (likely(!foffs)) {
438 		memset(dst, 0, size);
439 		return;
440 	}
441 
442 	for (i = 0; i < foffs->cnt; i++) {
443 		u32 next_off = foffs->field_off[i];
444 		u32 sz = next_off - curr_off;
445 
446 		memset(dst + curr_off, 0, sz);
447 		curr_off += foffs->field_sz[i] + sz;
448 	}
449 	memset(dst + curr_off, 0, size - curr_off);
450 }
451 
452 static inline void zero_map_value(struct bpf_map *map, void *dst)
453 {
454 	bpf_obj_memzero(map->field_offs, dst, map->value_size);
455 }
456 
457 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
458 			   bool lock_src);
459 void bpf_timer_cancel_and_free(void *timer);
460 void bpf_list_head_free(const struct btf_field *field, void *list_head,
461 			struct bpf_spin_lock *spin_lock);
462 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
463 		      struct bpf_spin_lock *spin_lock);
464 
465 
466 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
467 
468 struct bpf_offload_dev;
469 struct bpf_offloaded_map;
470 
471 struct bpf_map_dev_ops {
472 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
473 				void *key, void *next_key);
474 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
475 			       void *key, void *value);
476 	int (*map_update_elem)(struct bpf_offloaded_map *map,
477 			       void *key, void *value, u64 flags);
478 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
479 };
480 
481 struct bpf_offloaded_map {
482 	struct bpf_map map;
483 	struct net_device *netdev;
484 	const struct bpf_map_dev_ops *dev_ops;
485 	void *dev_priv;
486 	struct list_head offloads;
487 };
488 
489 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
490 {
491 	return container_of(map, struct bpf_offloaded_map, map);
492 }
493 
494 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
495 {
496 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
497 }
498 
499 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
500 {
501 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
502 		map->ops->map_seq_show_elem;
503 }
504 
505 int map_check_no_btf(const struct bpf_map *map,
506 		     const struct btf *btf,
507 		     const struct btf_type *key_type,
508 		     const struct btf_type *value_type);
509 
510 bool bpf_map_meta_equal(const struct bpf_map *meta0,
511 			const struct bpf_map *meta1);
512 
513 extern const struct bpf_map_ops bpf_map_offload_ops;
514 
515 /* bpf_type_flag contains a set of flags that are applicable to the values of
516  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
517  * or a memory is read-only. We classify types into two categories: base types
518  * and extended types. Extended types are base types combined with a type flag.
519  *
520  * Currently there are no more than 32 base types in arg_type, ret_type and
521  * reg_types.
522  */
523 #define BPF_BASE_TYPE_BITS	8
524 
525 enum bpf_type_flag {
526 	/* PTR may be NULL. */
527 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
528 
529 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
530 	 * compatible with both mutable and immutable memory.
531 	 */
532 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
533 
534 	/* MEM points to BPF ring buffer reservation. */
535 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
536 
537 	/* MEM is in user address space. */
538 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
539 
540 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
541 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
542 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
543 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
544 	 * to the specified cpu.
545 	 */
546 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
547 
548 	/* Indicates that the argument will be released. */
549 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
550 
551 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
552 	 * unreferenced and referenced kptr loaded from map value using a load
553 	 * instruction, so that they can only be dereferenced but not escape the
554 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
555 	 * kfunc or bpf helpers).
556 	 */
557 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
558 
559 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
560 
561 	/* DYNPTR points to memory local to the bpf program. */
562 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
563 
564 	/* DYNPTR points to a kernel-produced ringbuf record. */
565 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
566 
567 	/* Size is known at compile time. */
568 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
569 
570 	/* MEM is of an allocated object of type in program BTF. This is used to
571 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
572 	 */
573 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
574 
575 	/* PTR was passed from the kernel in a trusted context, and may be
576 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
577 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
578 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
579 	 * without invoking bpf_kptr_xchg(). What we really need to know is
580 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
581 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
582 	 * helpers, they do not cover all possible instances of unsafe
583 	 * pointers. For example, a pointer that was obtained from walking a
584 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
585 	 * fact that it may be NULL, invalid, etc. This is due to backwards
586 	 * compatibility requirements, as this was the behavior that was first
587 	 * introduced when kptrs were added. The behavior is now considered
588 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
589 	 *
590 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
591 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
592 	 * For example, pointers passed to tracepoint arguments are considered
593 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
594 	 * callbacks. As alluded to above, pointers that are obtained from
595 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
596 	 * struct task_struct *task is PTR_TRUSTED, then accessing
597 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
598 	 * in a BPF register. Similarly, pointers passed to certain programs
599 	 * types such as kretprobes are not guaranteed to be valid, as they may
600 	 * for example contain an object that was recently freed.
601 	 */
602 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
603 
604 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
605 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
606 
607 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
608 	 * Currently only valid for linked-list and rbtree nodes.
609 	 */
610 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
611 
612 	/* DYNPTR points to sk_buff */
613 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
614 
615 	/* DYNPTR points to xdp_buff */
616 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
617 
618 	__BPF_TYPE_FLAG_MAX,
619 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
620 };
621 
622 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
623 				 | DYNPTR_TYPE_XDP)
624 
625 /* Max number of base types. */
626 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
627 
628 /* Max number of all types. */
629 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
630 
631 /* function argument constraints */
632 enum bpf_arg_type {
633 	ARG_DONTCARE = 0,	/* unused argument in helper function */
634 
635 	/* the following constraints used to prototype
636 	 * bpf_map_lookup/update/delete_elem() functions
637 	 */
638 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
639 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
640 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
641 
642 	/* Used to prototype bpf_memcmp() and other functions that access data
643 	 * on eBPF program stack
644 	 */
645 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
646 
647 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
648 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
649 
650 	ARG_PTR_TO_CTX,		/* pointer to context */
651 	ARG_ANYTHING,		/* any (initialized) argument is ok */
652 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
653 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
654 	ARG_PTR_TO_INT,		/* pointer to int */
655 	ARG_PTR_TO_LONG,	/* pointer to long */
656 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
657 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
658 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
659 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
660 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
661 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
662 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
663 	ARG_PTR_TO_STACK,	/* pointer to stack */
664 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
665 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
666 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
667 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
668 	__BPF_ARG_TYPE_MAX,
669 
670 	/* Extended arg_types. */
671 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
672 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
673 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
674 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
675 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
676 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
677 	/* pointer to memory does not need to be initialized, helper function must fill
678 	 * all bytes or clear them in error case.
679 	 */
680 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
681 	/* Pointer to valid memory of size known at compile time. */
682 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
683 
684 	/* This must be the last entry. Its purpose is to ensure the enum is
685 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
686 	 */
687 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
688 };
689 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
690 
691 /* type of values returned from helper functions */
692 enum bpf_return_type {
693 	RET_INTEGER,			/* function returns integer */
694 	RET_VOID,			/* function doesn't return anything */
695 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
696 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
697 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
698 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
699 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
700 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
701 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
702 	__BPF_RET_TYPE_MAX,
703 
704 	/* Extended ret_types. */
705 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
706 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
707 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
708 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
709 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
710 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
711 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
712 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
713 
714 	/* This must be the last entry. Its purpose is to ensure the enum is
715 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
716 	 */
717 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
718 };
719 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
720 
721 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
722  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
723  * instructions after verifying
724  */
725 struct bpf_func_proto {
726 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
727 	bool gpl_only;
728 	bool pkt_access;
729 	bool might_sleep;
730 	enum bpf_return_type ret_type;
731 	union {
732 		struct {
733 			enum bpf_arg_type arg1_type;
734 			enum bpf_arg_type arg2_type;
735 			enum bpf_arg_type arg3_type;
736 			enum bpf_arg_type arg4_type;
737 			enum bpf_arg_type arg5_type;
738 		};
739 		enum bpf_arg_type arg_type[5];
740 	};
741 	union {
742 		struct {
743 			u32 *arg1_btf_id;
744 			u32 *arg2_btf_id;
745 			u32 *arg3_btf_id;
746 			u32 *arg4_btf_id;
747 			u32 *arg5_btf_id;
748 		};
749 		u32 *arg_btf_id[5];
750 		struct {
751 			size_t arg1_size;
752 			size_t arg2_size;
753 			size_t arg3_size;
754 			size_t arg4_size;
755 			size_t arg5_size;
756 		};
757 		size_t arg_size[5];
758 	};
759 	int *ret_btf_id; /* return value btf_id */
760 	bool (*allowed)(const struct bpf_prog *prog);
761 };
762 
763 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
764  * the first argument to eBPF programs.
765  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
766  */
767 struct bpf_context;
768 
769 enum bpf_access_type {
770 	BPF_READ = 1,
771 	BPF_WRITE = 2
772 };
773 
774 /* types of values stored in eBPF registers */
775 /* Pointer types represent:
776  * pointer
777  * pointer + imm
778  * pointer + (u16) var
779  * pointer + (u16) var + imm
780  * if (range > 0) then [ptr, ptr + range - off) is safe to access
781  * if (id > 0) means that some 'var' was added
782  * if (off > 0) means that 'imm' was added
783  */
784 enum bpf_reg_type {
785 	NOT_INIT = 0,		 /* nothing was written into register */
786 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
787 	PTR_TO_CTX,		 /* reg points to bpf_context */
788 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
789 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
790 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
791 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
792 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
793 	PTR_TO_PACKET,		 /* reg points to skb->data */
794 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
795 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
796 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
797 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
798 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
799 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
800 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
801 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
802 	 * to be null checked by the BPF program. This does not imply the
803 	 * pointer is _not_ null and in practice this can easily be a null
804 	 * pointer when reading pointer chains. The assumption is program
805 	 * context will handle null pointer dereference typically via fault
806 	 * handling. The verifier must keep this in mind and can make no
807 	 * assumptions about null or non-null when doing branch analysis.
808 	 * Further, when passed into helpers the helpers can not, without
809 	 * additional context, assume the value is non-null.
810 	 */
811 	PTR_TO_BTF_ID,
812 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
813 	 * been checked for null. Used primarily to inform the verifier
814 	 * an explicit null check is required for this struct.
815 	 */
816 	PTR_TO_MEM,		 /* reg points to valid memory region */
817 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
818 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
819 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
820 	__BPF_REG_TYPE_MAX,
821 
822 	/* Extended reg_types. */
823 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
824 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
825 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
826 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
827 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
828 
829 	/* This must be the last entry. Its purpose is to ensure the enum is
830 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
831 	 */
832 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
833 };
834 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
835 
836 /* The information passed from prog-specific *_is_valid_access
837  * back to the verifier.
838  */
839 struct bpf_insn_access_aux {
840 	enum bpf_reg_type reg_type;
841 	union {
842 		int ctx_field_size;
843 		struct {
844 			struct btf *btf;
845 			u32 btf_id;
846 		};
847 	};
848 	struct bpf_verifier_log *log; /* for verbose logs */
849 };
850 
851 static inline void
852 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
853 {
854 	aux->ctx_field_size = size;
855 }
856 
857 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
858 {
859 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
860 	       insn->src_reg == BPF_PSEUDO_FUNC;
861 }
862 
863 struct bpf_prog_ops {
864 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
865 			union bpf_attr __user *uattr);
866 };
867 
868 struct bpf_reg_state;
869 struct bpf_verifier_ops {
870 	/* return eBPF function prototype for verification */
871 	const struct bpf_func_proto *
872 	(*get_func_proto)(enum bpf_func_id func_id,
873 			  const struct bpf_prog *prog);
874 
875 	/* return true if 'size' wide access at offset 'off' within bpf_context
876 	 * with 'type' (read or write) is allowed
877 	 */
878 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
879 				const struct bpf_prog *prog,
880 				struct bpf_insn_access_aux *info);
881 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
882 			    const struct bpf_prog *prog);
883 	int (*gen_ld_abs)(const struct bpf_insn *orig,
884 			  struct bpf_insn *insn_buf);
885 	u32 (*convert_ctx_access)(enum bpf_access_type type,
886 				  const struct bpf_insn *src,
887 				  struct bpf_insn *dst,
888 				  struct bpf_prog *prog, u32 *target_size);
889 	int (*btf_struct_access)(struct bpf_verifier_log *log,
890 				 const struct bpf_reg_state *reg,
891 				 int off, int size, enum bpf_access_type atype,
892 				 u32 *next_btf_id, enum bpf_type_flag *flag);
893 };
894 
895 struct bpf_prog_offload_ops {
896 	/* verifier basic callbacks */
897 	int (*insn_hook)(struct bpf_verifier_env *env,
898 			 int insn_idx, int prev_insn_idx);
899 	int (*finalize)(struct bpf_verifier_env *env);
900 	/* verifier optimization callbacks (called after .finalize) */
901 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
902 			    struct bpf_insn *insn);
903 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
904 	/* program management callbacks */
905 	int (*prepare)(struct bpf_prog *prog);
906 	int (*translate)(struct bpf_prog *prog);
907 	void (*destroy)(struct bpf_prog *prog);
908 };
909 
910 struct bpf_prog_offload {
911 	struct bpf_prog		*prog;
912 	struct net_device	*netdev;
913 	struct bpf_offload_dev	*offdev;
914 	void			*dev_priv;
915 	struct list_head	offloads;
916 	bool			dev_state;
917 	bool			opt_failed;
918 	void			*jited_image;
919 	u32			jited_len;
920 };
921 
922 enum bpf_cgroup_storage_type {
923 	BPF_CGROUP_STORAGE_SHARED,
924 	BPF_CGROUP_STORAGE_PERCPU,
925 	__BPF_CGROUP_STORAGE_MAX
926 };
927 
928 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
929 
930 /* The longest tracepoint has 12 args.
931  * See include/trace/bpf_probe.h
932  */
933 #define MAX_BPF_FUNC_ARGS 12
934 
935 /* The maximum number of arguments passed through registers
936  * a single function may have.
937  */
938 #define MAX_BPF_FUNC_REG_ARGS 5
939 
940 /* The argument is a structure. */
941 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
942 
943 /* The argument is signed. */
944 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
945 
946 struct btf_func_model {
947 	u8 ret_size;
948 	u8 ret_flags;
949 	u8 nr_args;
950 	u8 arg_size[MAX_BPF_FUNC_ARGS];
951 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
952 };
953 
954 /* Restore arguments before returning from trampoline to let original function
955  * continue executing. This flag is used for fentry progs when there are no
956  * fexit progs.
957  */
958 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
959 /* Call original function after fentry progs, but before fexit progs.
960  * Makes sense for fentry/fexit, normal calls and indirect calls.
961  */
962 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
963 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
964  * programs only. Should not be used with normal calls and indirect calls.
965  */
966 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
967 /* Store IP address of the caller on the trampoline stack,
968  * so it's available for trampoline's programs.
969  */
970 #define BPF_TRAMP_F_IP_ARG		BIT(3)
971 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
972 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
973 
974 /* Get original function from stack instead of from provided direct address.
975  * Makes sense for trampolines with fexit or fmod_ret programs.
976  */
977 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
978 
979 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
980  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
981  */
982 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
983 
984 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
985  * bytes on x86.
986  */
987 enum {
988 #if defined(__s390x__)
989 	BPF_MAX_TRAMP_LINKS = 27,
990 #else
991 	BPF_MAX_TRAMP_LINKS = 38,
992 #endif
993 };
994 
995 struct bpf_tramp_links {
996 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
997 	int nr_links;
998 };
999 
1000 struct bpf_tramp_run_ctx;
1001 
1002 /* Different use cases for BPF trampoline:
1003  * 1. replace nop at the function entry (kprobe equivalent)
1004  *    flags = BPF_TRAMP_F_RESTORE_REGS
1005  *    fentry = a set of programs to run before returning from trampoline
1006  *
1007  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1008  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1009  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1010  *    fentry = a set of program to run before calling original function
1011  *    fexit = a set of program to run after original function
1012  *
1013  * 3. replace direct call instruction anywhere in the function body
1014  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1015  *    With flags = 0
1016  *      fentry = a set of programs to run before returning from trampoline
1017  *    With flags = BPF_TRAMP_F_CALL_ORIG
1018  *      orig_call = original callback addr or direct function addr
1019  *      fentry = a set of program to run before calling original function
1020  *      fexit = a set of program to run after original function
1021  */
1022 struct bpf_tramp_image;
1023 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
1024 				const struct btf_func_model *m, u32 flags,
1025 				struct bpf_tramp_links *tlinks,
1026 				void *orig_call);
1027 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1028 					     struct bpf_tramp_run_ctx *run_ctx);
1029 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1030 					     struct bpf_tramp_run_ctx *run_ctx);
1031 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1032 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1033 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1034 				      struct bpf_tramp_run_ctx *run_ctx);
1035 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1036 				      struct bpf_tramp_run_ctx *run_ctx);
1037 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1038 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1039 
1040 struct bpf_ksym {
1041 	unsigned long		 start;
1042 	unsigned long		 end;
1043 	char			 name[KSYM_NAME_LEN];
1044 	struct list_head	 lnode;
1045 	struct latch_tree_node	 tnode;
1046 	bool			 prog;
1047 };
1048 
1049 enum bpf_tramp_prog_type {
1050 	BPF_TRAMP_FENTRY,
1051 	BPF_TRAMP_FEXIT,
1052 	BPF_TRAMP_MODIFY_RETURN,
1053 	BPF_TRAMP_MAX,
1054 	BPF_TRAMP_REPLACE, /* more than MAX */
1055 };
1056 
1057 struct bpf_tramp_image {
1058 	void *image;
1059 	struct bpf_ksym ksym;
1060 	struct percpu_ref pcref;
1061 	void *ip_after_call;
1062 	void *ip_epilogue;
1063 	union {
1064 		struct rcu_head rcu;
1065 		struct work_struct work;
1066 	};
1067 };
1068 
1069 struct bpf_trampoline {
1070 	/* hlist for trampoline_table */
1071 	struct hlist_node hlist;
1072 	struct ftrace_ops *fops;
1073 	/* serializes access to fields of this trampoline */
1074 	struct mutex mutex;
1075 	refcount_t refcnt;
1076 	u32 flags;
1077 	u64 key;
1078 	struct {
1079 		struct btf_func_model model;
1080 		void *addr;
1081 		bool ftrace_managed;
1082 	} func;
1083 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1084 	 * program by replacing one of its functions. func.addr is the address
1085 	 * of the function it replaced.
1086 	 */
1087 	struct bpf_prog *extension_prog;
1088 	/* list of BPF programs using this trampoline */
1089 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1090 	/* Number of attached programs. A counter per kind. */
1091 	int progs_cnt[BPF_TRAMP_MAX];
1092 	/* Executable image of trampoline */
1093 	struct bpf_tramp_image *cur_image;
1094 	u64 selector;
1095 	struct module *mod;
1096 };
1097 
1098 struct bpf_attach_target_info {
1099 	struct btf_func_model fmodel;
1100 	long tgt_addr;
1101 	const char *tgt_name;
1102 	const struct btf_type *tgt_type;
1103 };
1104 
1105 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1106 
1107 struct bpf_dispatcher_prog {
1108 	struct bpf_prog *prog;
1109 	refcount_t users;
1110 };
1111 
1112 struct bpf_dispatcher {
1113 	/* dispatcher mutex */
1114 	struct mutex mutex;
1115 	void *func;
1116 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1117 	int num_progs;
1118 	void *image;
1119 	void *rw_image;
1120 	u32 image_off;
1121 	struct bpf_ksym ksym;
1122 #ifdef CONFIG_HAVE_STATIC_CALL
1123 	struct static_call_key *sc_key;
1124 	void *sc_tramp;
1125 #endif
1126 };
1127 
1128 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1129 	const void *ctx,
1130 	const struct bpf_insn *insnsi,
1131 	bpf_func_t bpf_func)
1132 {
1133 	return bpf_func(ctx, insnsi);
1134 }
1135 
1136 /* the implementation of the opaque uapi struct bpf_dynptr */
1137 struct bpf_dynptr_kern {
1138 	void *data;
1139 	/* Size represents the number of usable bytes of dynptr data.
1140 	 * If for example the offset is at 4 for a local dynptr whose data is
1141 	 * of type u64, the number of usable bytes is 4.
1142 	 *
1143 	 * The upper 8 bits are reserved. It is as follows:
1144 	 * Bits 0 - 23 = size
1145 	 * Bits 24 - 30 = dynptr type
1146 	 * Bit 31 = whether dynptr is read-only
1147 	 */
1148 	u32 size;
1149 	u32 offset;
1150 } __aligned(8);
1151 
1152 enum bpf_dynptr_type {
1153 	BPF_DYNPTR_TYPE_INVALID,
1154 	/* Points to memory that is local to the bpf program */
1155 	BPF_DYNPTR_TYPE_LOCAL,
1156 	/* Underlying data is a ringbuf record */
1157 	BPF_DYNPTR_TYPE_RINGBUF,
1158 	/* Underlying data is a sk_buff */
1159 	BPF_DYNPTR_TYPE_SKB,
1160 	/* Underlying data is a xdp_buff */
1161 	BPF_DYNPTR_TYPE_XDP,
1162 };
1163 
1164 int bpf_dynptr_check_size(u32 size);
1165 u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr);
1166 
1167 #ifdef CONFIG_BPF_JIT
1168 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1169 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1170 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1171 					  struct bpf_attach_target_info *tgt_info);
1172 void bpf_trampoline_put(struct bpf_trampoline *tr);
1173 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1174 
1175 /*
1176  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1177  * indirection with a direct call to the bpf program. If the architecture does
1178  * not have STATIC_CALL, avoid a double-indirection.
1179  */
1180 #ifdef CONFIG_HAVE_STATIC_CALL
1181 
1182 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1183 	.sc_key = &STATIC_CALL_KEY(_name),			\
1184 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1185 
1186 #define __BPF_DISPATCHER_SC(name)				\
1187 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1188 
1189 #define __BPF_DISPATCHER_CALL(name)				\
1190 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1191 
1192 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1193 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1194 
1195 #else
1196 #define __BPF_DISPATCHER_SC_INIT(name)
1197 #define __BPF_DISPATCHER_SC(name)
1198 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1199 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1200 #endif
1201 
1202 #define BPF_DISPATCHER_INIT(_name) {				\
1203 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1204 	.func = &_name##_func,					\
1205 	.progs = {},						\
1206 	.num_progs = 0,						\
1207 	.image = NULL,						\
1208 	.image_off = 0,						\
1209 	.ksym = {						\
1210 		.name  = #_name,				\
1211 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1212 	},							\
1213 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1214 }
1215 
1216 #define DEFINE_BPF_DISPATCHER(name)					\
1217 	__BPF_DISPATCHER_SC(name);					\
1218 	noinline __nocfi unsigned int bpf_dispatcher_##name##_func(	\
1219 		const void *ctx,					\
1220 		const struct bpf_insn *insnsi,				\
1221 		bpf_func_t bpf_func)					\
1222 	{								\
1223 		return __BPF_DISPATCHER_CALL(name);			\
1224 	}								\
1225 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1226 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1227 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1228 
1229 #define DECLARE_BPF_DISPATCHER(name)					\
1230 	unsigned int bpf_dispatcher_##name##_func(			\
1231 		const void *ctx,					\
1232 		const struct bpf_insn *insnsi,				\
1233 		bpf_func_t bpf_func);					\
1234 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1235 
1236 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1237 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1238 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1239 				struct bpf_prog *to);
1240 /* Called only from JIT-enabled code, so there's no need for stubs. */
1241 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1242 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1243 void bpf_ksym_add(struct bpf_ksym *ksym);
1244 void bpf_ksym_del(struct bpf_ksym *ksym);
1245 int bpf_jit_charge_modmem(u32 size);
1246 void bpf_jit_uncharge_modmem(u32 size);
1247 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1248 #else
1249 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1250 					   struct bpf_trampoline *tr)
1251 {
1252 	return -ENOTSUPP;
1253 }
1254 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1255 					     struct bpf_trampoline *tr)
1256 {
1257 	return -ENOTSUPP;
1258 }
1259 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1260 							struct bpf_attach_target_info *tgt_info)
1261 {
1262 	return ERR_PTR(-EOPNOTSUPP);
1263 }
1264 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1265 #define DEFINE_BPF_DISPATCHER(name)
1266 #define DECLARE_BPF_DISPATCHER(name)
1267 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1268 #define BPF_DISPATCHER_PTR(name) NULL
1269 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1270 					      struct bpf_prog *from,
1271 					      struct bpf_prog *to) {}
1272 static inline bool is_bpf_image_address(unsigned long address)
1273 {
1274 	return false;
1275 }
1276 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1277 {
1278 	return false;
1279 }
1280 #endif
1281 
1282 struct bpf_func_info_aux {
1283 	u16 linkage;
1284 	bool unreliable;
1285 };
1286 
1287 enum bpf_jit_poke_reason {
1288 	BPF_POKE_REASON_TAIL_CALL,
1289 };
1290 
1291 /* Descriptor of pokes pointing /into/ the JITed image. */
1292 struct bpf_jit_poke_descriptor {
1293 	void *tailcall_target;
1294 	void *tailcall_bypass;
1295 	void *bypass_addr;
1296 	void *aux;
1297 	union {
1298 		struct {
1299 			struct bpf_map *map;
1300 			u32 key;
1301 		} tail_call;
1302 	};
1303 	bool tailcall_target_stable;
1304 	u8 adj_off;
1305 	u16 reason;
1306 	u32 insn_idx;
1307 };
1308 
1309 /* reg_type info for ctx arguments */
1310 struct bpf_ctx_arg_aux {
1311 	u32 offset;
1312 	enum bpf_reg_type reg_type;
1313 	u32 btf_id;
1314 };
1315 
1316 struct btf_mod_pair {
1317 	struct btf *btf;
1318 	struct module *module;
1319 };
1320 
1321 struct bpf_kfunc_desc_tab;
1322 
1323 struct bpf_prog_aux {
1324 	atomic64_t refcnt;
1325 	u32 used_map_cnt;
1326 	u32 used_btf_cnt;
1327 	u32 max_ctx_offset;
1328 	u32 max_pkt_offset;
1329 	u32 max_tp_access;
1330 	u32 stack_depth;
1331 	u32 id;
1332 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1333 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1334 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1335 	u32 ctx_arg_info_size;
1336 	u32 max_rdonly_access;
1337 	u32 max_rdwr_access;
1338 	struct btf *attach_btf;
1339 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1340 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1341 	struct bpf_prog *dst_prog;
1342 	struct bpf_trampoline *dst_trampoline;
1343 	enum bpf_prog_type saved_dst_prog_type;
1344 	enum bpf_attach_type saved_dst_attach_type;
1345 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1346 	bool dev_bound; /* Program is bound to the netdev. */
1347 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1348 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1349 	bool func_proto_unreliable;
1350 	bool sleepable;
1351 	bool tail_call_reachable;
1352 	bool xdp_has_frags;
1353 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1354 	const struct btf_type *attach_func_proto;
1355 	/* function name for valid attach_btf_id */
1356 	const char *attach_func_name;
1357 	struct bpf_prog **func;
1358 	void *jit_data; /* JIT specific data. arch dependent */
1359 	struct bpf_jit_poke_descriptor *poke_tab;
1360 	struct bpf_kfunc_desc_tab *kfunc_tab;
1361 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1362 	u32 size_poke_tab;
1363 	struct bpf_ksym ksym;
1364 	const struct bpf_prog_ops *ops;
1365 	struct bpf_map **used_maps;
1366 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1367 	struct btf_mod_pair *used_btfs;
1368 	struct bpf_prog *prog;
1369 	struct user_struct *user;
1370 	u64 load_time; /* ns since boottime */
1371 	u32 verified_insns;
1372 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1373 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1374 	char name[BPF_OBJ_NAME_LEN];
1375 #ifdef CONFIG_SECURITY
1376 	void *security;
1377 #endif
1378 	struct bpf_prog_offload *offload;
1379 	struct btf *btf;
1380 	struct bpf_func_info *func_info;
1381 	struct bpf_func_info_aux *func_info_aux;
1382 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1383 	 * has the xlated insn offset.
1384 	 * Both the main and sub prog share the same linfo.
1385 	 * The subprog can access its first linfo by
1386 	 * using the linfo_idx.
1387 	 */
1388 	struct bpf_line_info *linfo;
1389 	/* jited_linfo is the jited addr of the linfo.  It has a
1390 	 * one to one mapping to linfo:
1391 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1392 	 * Both the main and sub prog share the same jited_linfo.
1393 	 * The subprog can access its first jited_linfo by
1394 	 * using the linfo_idx.
1395 	 */
1396 	void **jited_linfo;
1397 	u32 func_info_cnt;
1398 	u32 nr_linfo;
1399 	/* subprog can use linfo_idx to access its first linfo and
1400 	 * jited_linfo.
1401 	 * main prog always has linfo_idx == 0
1402 	 */
1403 	u32 linfo_idx;
1404 	u32 num_exentries;
1405 	struct exception_table_entry *extable;
1406 	union {
1407 		struct work_struct work;
1408 		struct rcu_head	rcu;
1409 	};
1410 };
1411 
1412 struct bpf_prog {
1413 	u16			pages;		/* Number of allocated pages */
1414 	u16			jited:1,	/* Is our filter JIT'ed? */
1415 				jit_requested:1,/* archs need to JIT the prog */
1416 				gpl_compatible:1, /* Is filter GPL compatible? */
1417 				cb_access:1,	/* Is control block accessed? */
1418 				dst_needed:1,	/* Do we need dst entry? */
1419 				blinding_requested:1, /* needs constant blinding */
1420 				blinded:1,	/* Was blinded */
1421 				is_func:1,	/* program is a bpf function */
1422 				kprobe_override:1, /* Do we override a kprobe? */
1423 				has_callchain_buf:1, /* callchain buffer allocated? */
1424 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1425 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1426 				call_get_func_ip:1, /* Do we call get_func_ip() */
1427 				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1428 	enum bpf_prog_type	type;		/* Type of BPF program */
1429 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1430 	u32			len;		/* Number of filter blocks */
1431 	u32			jited_len;	/* Size of jited insns in bytes */
1432 	u8			tag[BPF_TAG_SIZE];
1433 	struct bpf_prog_stats __percpu *stats;
1434 	int __percpu		*active;
1435 	unsigned int		(*bpf_func)(const void *ctx,
1436 					    const struct bpf_insn *insn);
1437 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1438 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1439 	/* Instructions for interpreter */
1440 	union {
1441 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1442 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1443 	};
1444 };
1445 
1446 struct bpf_array_aux {
1447 	/* Programs with direct jumps into programs part of this array. */
1448 	struct list_head poke_progs;
1449 	struct bpf_map *map;
1450 	struct mutex poke_mutex;
1451 	struct work_struct work;
1452 };
1453 
1454 struct bpf_link {
1455 	atomic64_t refcnt;
1456 	u32 id;
1457 	enum bpf_link_type type;
1458 	const struct bpf_link_ops *ops;
1459 	struct bpf_prog *prog;
1460 	struct work_struct work;
1461 };
1462 
1463 struct bpf_link_ops {
1464 	void (*release)(struct bpf_link *link);
1465 	void (*dealloc)(struct bpf_link *link);
1466 	int (*detach)(struct bpf_link *link);
1467 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1468 			   struct bpf_prog *old_prog);
1469 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1470 	int (*fill_link_info)(const struct bpf_link *link,
1471 			      struct bpf_link_info *info);
1472 };
1473 
1474 struct bpf_tramp_link {
1475 	struct bpf_link link;
1476 	struct hlist_node tramp_hlist;
1477 	u64 cookie;
1478 };
1479 
1480 struct bpf_shim_tramp_link {
1481 	struct bpf_tramp_link link;
1482 	struct bpf_trampoline *trampoline;
1483 };
1484 
1485 struct bpf_tracing_link {
1486 	struct bpf_tramp_link link;
1487 	enum bpf_attach_type attach_type;
1488 	struct bpf_trampoline *trampoline;
1489 	struct bpf_prog *tgt_prog;
1490 };
1491 
1492 struct bpf_link_primer {
1493 	struct bpf_link *link;
1494 	struct file *file;
1495 	int fd;
1496 	u32 id;
1497 };
1498 
1499 struct bpf_struct_ops_value;
1500 struct btf_member;
1501 
1502 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1503 struct bpf_struct_ops {
1504 	const struct bpf_verifier_ops *verifier_ops;
1505 	int (*init)(struct btf *btf);
1506 	int (*check_member)(const struct btf_type *t,
1507 			    const struct btf_member *member,
1508 			    const struct bpf_prog *prog);
1509 	int (*init_member)(const struct btf_type *t,
1510 			   const struct btf_member *member,
1511 			   void *kdata, const void *udata);
1512 	int (*reg)(void *kdata);
1513 	void (*unreg)(void *kdata);
1514 	const struct btf_type *type;
1515 	const struct btf_type *value_type;
1516 	const char *name;
1517 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1518 	u32 type_id;
1519 	u32 value_id;
1520 };
1521 
1522 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1523 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1524 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1525 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1526 bool bpf_struct_ops_get(const void *kdata);
1527 void bpf_struct_ops_put(const void *kdata);
1528 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1529 				       void *value);
1530 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1531 				      struct bpf_tramp_link *link,
1532 				      const struct btf_func_model *model,
1533 				      void *image, void *image_end);
1534 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1535 {
1536 	if (owner == BPF_MODULE_OWNER)
1537 		return bpf_struct_ops_get(data);
1538 	else
1539 		return try_module_get(owner);
1540 }
1541 static inline void bpf_module_put(const void *data, struct module *owner)
1542 {
1543 	if (owner == BPF_MODULE_OWNER)
1544 		bpf_struct_ops_put(data);
1545 	else
1546 		module_put(owner);
1547 }
1548 
1549 #ifdef CONFIG_NET
1550 /* Define it here to avoid the use of forward declaration */
1551 struct bpf_dummy_ops_state {
1552 	int val;
1553 };
1554 
1555 struct bpf_dummy_ops {
1556 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1557 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1558 		      char a3, unsigned long a4);
1559 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1560 };
1561 
1562 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1563 			    union bpf_attr __user *uattr);
1564 #endif
1565 #else
1566 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1567 {
1568 	return NULL;
1569 }
1570 static inline void bpf_struct_ops_init(struct btf *btf,
1571 				       struct bpf_verifier_log *log)
1572 {
1573 }
1574 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1575 {
1576 	return try_module_get(owner);
1577 }
1578 static inline void bpf_module_put(const void *data, struct module *owner)
1579 {
1580 	module_put(owner);
1581 }
1582 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1583 						     void *key,
1584 						     void *value)
1585 {
1586 	return -EINVAL;
1587 }
1588 #endif
1589 
1590 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1591 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1592 				    int cgroup_atype);
1593 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1594 #else
1595 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1596 						  int cgroup_atype)
1597 {
1598 	return -EOPNOTSUPP;
1599 }
1600 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1601 {
1602 }
1603 #endif
1604 
1605 struct bpf_array {
1606 	struct bpf_map map;
1607 	u32 elem_size;
1608 	u32 index_mask;
1609 	struct bpf_array_aux *aux;
1610 	union {
1611 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1612 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1613 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1614 	};
1615 };
1616 
1617 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1618 #define MAX_TAIL_CALL_CNT 33
1619 
1620 /* Maximum number of loops for bpf_loop */
1621 #define BPF_MAX_LOOPS	BIT(23)
1622 
1623 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1624 				 BPF_F_RDONLY_PROG |	\
1625 				 BPF_F_WRONLY |		\
1626 				 BPF_F_WRONLY_PROG)
1627 
1628 #define BPF_MAP_CAN_READ	BIT(0)
1629 #define BPF_MAP_CAN_WRITE	BIT(1)
1630 
1631 /* Maximum number of user-producer ring buffer samples that can be drained in
1632  * a call to bpf_user_ringbuf_drain().
1633  */
1634 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1635 
1636 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1637 {
1638 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1639 
1640 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1641 	 * not possible.
1642 	 */
1643 	if (access_flags & BPF_F_RDONLY_PROG)
1644 		return BPF_MAP_CAN_READ;
1645 	else if (access_flags & BPF_F_WRONLY_PROG)
1646 		return BPF_MAP_CAN_WRITE;
1647 	else
1648 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1649 }
1650 
1651 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1652 {
1653 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1654 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1655 }
1656 
1657 struct bpf_event_entry {
1658 	struct perf_event *event;
1659 	struct file *perf_file;
1660 	struct file *map_file;
1661 	struct rcu_head rcu;
1662 };
1663 
1664 static inline bool map_type_contains_progs(struct bpf_map *map)
1665 {
1666 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1667 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1668 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1669 }
1670 
1671 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1672 int bpf_prog_calc_tag(struct bpf_prog *fp);
1673 
1674 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1675 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1676 
1677 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1678 					unsigned long off, unsigned long len);
1679 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1680 					const struct bpf_insn *src,
1681 					struct bpf_insn *dst,
1682 					struct bpf_prog *prog,
1683 					u32 *target_size);
1684 
1685 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1686 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1687 
1688 /* an array of programs to be executed under rcu_lock.
1689  *
1690  * Typical usage:
1691  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1692  *
1693  * the structure returned by bpf_prog_array_alloc() should be populated
1694  * with program pointers and the last pointer must be NULL.
1695  * The user has to keep refcnt on the program and make sure the program
1696  * is removed from the array before bpf_prog_put().
1697  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1698  * since other cpus are walking the array of pointers in parallel.
1699  */
1700 struct bpf_prog_array_item {
1701 	struct bpf_prog *prog;
1702 	union {
1703 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1704 		u64 bpf_cookie;
1705 	};
1706 };
1707 
1708 struct bpf_prog_array {
1709 	struct rcu_head rcu;
1710 	struct bpf_prog_array_item items[];
1711 };
1712 
1713 struct bpf_empty_prog_array {
1714 	struct bpf_prog_array hdr;
1715 	struct bpf_prog *null_prog;
1716 };
1717 
1718 /* to avoid allocating empty bpf_prog_array for cgroups that
1719  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1720  * It will not be modified the caller of bpf_prog_array_alloc()
1721  * (since caller requested prog_cnt == 0)
1722  * that pointer should be 'freed' by bpf_prog_array_free()
1723  */
1724 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1725 
1726 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1727 void bpf_prog_array_free(struct bpf_prog_array *progs);
1728 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1729 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1730 int bpf_prog_array_length(struct bpf_prog_array *progs);
1731 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1732 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1733 				__u32 __user *prog_ids, u32 cnt);
1734 
1735 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1736 				struct bpf_prog *old_prog);
1737 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1738 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1739 			     struct bpf_prog *prog);
1740 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1741 			     u32 *prog_ids, u32 request_cnt,
1742 			     u32 *prog_cnt);
1743 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1744 			struct bpf_prog *exclude_prog,
1745 			struct bpf_prog *include_prog,
1746 			u64 bpf_cookie,
1747 			struct bpf_prog_array **new_array);
1748 
1749 struct bpf_run_ctx {};
1750 
1751 struct bpf_cg_run_ctx {
1752 	struct bpf_run_ctx run_ctx;
1753 	const struct bpf_prog_array_item *prog_item;
1754 	int retval;
1755 };
1756 
1757 struct bpf_trace_run_ctx {
1758 	struct bpf_run_ctx run_ctx;
1759 	u64 bpf_cookie;
1760 };
1761 
1762 struct bpf_tramp_run_ctx {
1763 	struct bpf_run_ctx run_ctx;
1764 	u64 bpf_cookie;
1765 	struct bpf_run_ctx *saved_run_ctx;
1766 };
1767 
1768 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1769 {
1770 	struct bpf_run_ctx *old_ctx = NULL;
1771 
1772 #ifdef CONFIG_BPF_SYSCALL
1773 	old_ctx = current->bpf_ctx;
1774 	current->bpf_ctx = new_ctx;
1775 #endif
1776 	return old_ctx;
1777 }
1778 
1779 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1780 {
1781 #ifdef CONFIG_BPF_SYSCALL
1782 	current->bpf_ctx = old_ctx;
1783 #endif
1784 }
1785 
1786 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1787 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
1788 /* BPF program asks to set CN on the packet. */
1789 #define BPF_RET_SET_CN						(1 << 0)
1790 
1791 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1792 
1793 static __always_inline u32
1794 bpf_prog_run_array(const struct bpf_prog_array *array,
1795 		   const void *ctx, bpf_prog_run_fn run_prog)
1796 {
1797 	const struct bpf_prog_array_item *item;
1798 	const struct bpf_prog *prog;
1799 	struct bpf_run_ctx *old_run_ctx;
1800 	struct bpf_trace_run_ctx run_ctx;
1801 	u32 ret = 1;
1802 
1803 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1804 
1805 	if (unlikely(!array))
1806 		return ret;
1807 
1808 	migrate_disable();
1809 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1810 	item = &array->items[0];
1811 	while ((prog = READ_ONCE(item->prog))) {
1812 		run_ctx.bpf_cookie = item->bpf_cookie;
1813 		ret &= run_prog(prog, ctx);
1814 		item++;
1815 	}
1816 	bpf_reset_run_ctx(old_run_ctx);
1817 	migrate_enable();
1818 	return ret;
1819 }
1820 
1821 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1822  *
1823  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1824  * overall. As a result, we must use the bpf_prog_array_free_sleepable
1825  * in order to use the tasks_trace rcu grace period.
1826  *
1827  * When a non-sleepable program is inside the array, we take the rcu read
1828  * section and disable preemption for that program alone, so it can access
1829  * rcu-protected dynamically sized maps.
1830  */
1831 static __always_inline u32
1832 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu,
1833 			     const void *ctx, bpf_prog_run_fn run_prog)
1834 {
1835 	const struct bpf_prog_array_item *item;
1836 	const struct bpf_prog *prog;
1837 	const struct bpf_prog_array *array;
1838 	struct bpf_run_ctx *old_run_ctx;
1839 	struct bpf_trace_run_ctx run_ctx;
1840 	u32 ret = 1;
1841 
1842 	might_fault();
1843 
1844 	rcu_read_lock_trace();
1845 	migrate_disable();
1846 
1847 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1848 	if (unlikely(!array))
1849 		goto out;
1850 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1851 	item = &array->items[0];
1852 	while ((prog = READ_ONCE(item->prog))) {
1853 		if (!prog->aux->sleepable)
1854 			rcu_read_lock();
1855 
1856 		run_ctx.bpf_cookie = item->bpf_cookie;
1857 		ret &= run_prog(prog, ctx);
1858 		item++;
1859 
1860 		if (!prog->aux->sleepable)
1861 			rcu_read_unlock();
1862 	}
1863 	bpf_reset_run_ctx(old_run_ctx);
1864 out:
1865 	migrate_enable();
1866 	rcu_read_unlock_trace();
1867 	return ret;
1868 }
1869 
1870 #ifdef CONFIG_BPF_SYSCALL
1871 DECLARE_PER_CPU(int, bpf_prog_active);
1872 extern struct mutex bpf_stats_enabled_mutex;
1873 
1874 /*
1875  * Block execution of BPF programs attached to instrumentation (perf,
1876  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
1877  * these events can happen inside a region which holds a map bucket lock
1878  * and can deadlock on it.
1879  */
1880 static inline void bpf_disable_instrumentation(void)
1881 {
1882 	migrate_disable();
1883 	this_cpu_inc(bpf_prog_active);
1884 }
1885 
1886 static inline void bpf_enable_instrumentation(void)
1887 {
1888 	this_cpu_dec(bpf_prog_active);
1889 	migrate_enable();
1890 }
1891 
1892 extern const struct file_operations bpf_map_fops;
1893 extern const struct file_operations bpf_prog_fops;
1894 extern const struct file_operations bpf_iter_fops;
1895 
1896 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
1897 	extern const struct bpf_prog_ops _name ## _prog_ops; \
1898 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
1899 #define BPF_MAP_TYPE(_id, _ops) \
1900 	extern const struct bpf_map_ops _ops;
1901 #define BPF_LINK_TYPE(_id, _name)
1902 #include <linux/bpf_types.h>
1903 #undef BPF_PROG_TYPE
1904 #undef BPF_MAP_TYPE
1905 #undef BPF_LINK_TYPE
1906 
1907 extern const struct bpf_prog_ops bpf_offload_prog_ops;
1908 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
1909 extern const struct bpf_verifier_ops xdp_analyzer_ops;
1910 
1911 struct bpf_prog *bpf_prog_get(u32 ufd);
1912 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
1913 				       bool attach_drv);
1914 void bpf_prog_add(struct bpf_prog *prog, int i);
1915 void bpf_prog_sub(struct bpf_prog *prog, int i);
1916 void bpf_prog_inc(struct bpf_prog *prog);
1917 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
1918 void bpf_prog_put(struct bpf_prog *prog);
1919 
1920 void bpf_prog_free_id(struct bpf_prog *prog);
1921 void bpf_map_free_id(struct bpf_map *map);
1922 
1923 struct btf_field *btf_record_find(const struct btf_record *rec,
1924 				  u32 offset, enum btf_field_type type);
1925 void btf_record_free(struct btf_record *rec);
1926 void bpf_map_free_record(struct bpf_map *map);
1927 struct btf_record *btf_record_dup(const struct btf_record *rec);
1928 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
1929 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
1930 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
1931 
1932 struct bpf_map *bpf_map_get(u32 ufd);
1933 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
1934 struct bpf_map *__bpf_map_get(struct fd f);
1935 void bpf_map_inc(struct bpf_map *map);
1936 void bpf_map_inc_with_uref(struct bpf_map *map);
1937 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
1938 void bpf_map_put_with_uref(struct bpf_map *map);
1939 void bpf_map_put(struct bpf_map *map);
1940 void *bpf_map_area_alloc(u64 size, int numa_node);
1941 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
1942 void bpf_map_area_free(void *base);
1943 bool bpf_map_write_active(const struct bpf_map *map);
1944 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
1945 int  generic_map_lookup_batch(struct bpf_map *map,
1946 			      const union bpf_attr *attr,
1947 			      union bpf_attr __user *uattr);
1948 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
1949 			      const union bpf_attr *attr,
1950 			      union bpf_attr __user *uattr);
1951 int  generic_map_delete_batch(struct bpf_map *map,
1952 			      const union bpf_attr *attr,
1953 			      union bpf_attr __user *uattr);
1954 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
1955 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
1956 
1957 #ifdef CONFIG_MEMCG_KMEM
1958 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1959 			   int node);
1960 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
1961 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
1962 		       gfp_t flags);
1963 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
1964 				    size_t align, gfp_t flags);
1965 #else
1966 static inline void *
1967 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1968 		     int node)
1969 {
1970 	return kmalloc_node(size, flags, node);
1971 }
1972 
1973 static inline void *
1974 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
1975 {
1976 	return kzalloc(size, flags);
1977 }
1978 
1979 static inline void *
1980 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
1981 {
1982 	return kvcalloc(n, size, flags);
1983 }
1984 
1985 static inline void __percpu *
1986 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
1987 		     gfp_t flags)
1988 {
1989 	return __alloc_percpu_gfp(size, align, flags);
1990 }
1991 #endif
1992 
1993 extern int sysctl_unprivileged_bpf_disabled;
1994 
1995 static inline bool bpf_allow_ptr_leaks(void)
1996 {
1997 	return perfmon_capable();
1998 }
1999 
2000 static inline bool bpf_allow_uninit_stack(void)
2001 {
2002 	return perfmon_capable();
2003 }
2004 
2005 static inline bool bpf_bypass_spec_v1(void)
2006 {
2007 	return perfmon_capable();
2008 }
2009 
2010 static inline bool bpf_bypass_spec_v4(void)
2011 {
2012 	return perfmon_capable();
2013 }
2014 
2015 int bpf_map_new_fd(struct bpf_map *map, int flags);
2016 int bpf_prog_new_fd(struct bpf_prog *prog);
2017 
2018 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2019 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2020 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2021 int bpf_link_settle(struct bpf_link_primer *primer);
2022 void bpf_link_cleanup(struct bpf_link_primer *primer);
2023 void bpf_link_inc(struct bpf_link *link);
2024 void bpf_link_put(struct bpf_link *link);
2025 int bpf_link_new_fd(struct bpf_link *link);
2026 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd);
2027 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2028 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2029 
2030 int bpf_obj_pin_user(u32 ufd, const char __user *pathname);
2031 int bpf_obj_get_user(const char __user *pathname, int flags);
2032 
2033 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2034 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2035 	extern int bpf_iter_ ## target(args);			\
2036 	int __init bpf_iter_ ## target(args) { return 0; }
2037 
2038 /*
2039  * The task type of iterators.
2040  *
2041  * For BPF task iterators, they can be parameterized with various
2042  * parameters to visit only some of tasks.
2043  *
2044  * BPF_TASK_ITER_ALL (default)
2045  *	Iterate over resources of every task.
2046  *
2047  * BPF_TASK_ITER_TID
2048  *	Iterate over resources of a task/tid.
2049  *
2050  * BPF_TASK_ITER_TGID
2051  *	Iterate over resources of every task of a process / task group.
2052  */
2053 enum bpf_iter_task_type {
2054 	BPF_TASK_ITER_ALL = 0,
2055 	BPF_TASK_ITER_TID,
2056 	BPF_TASK_ITER_TGID,
2057 };
2058 
2059 struct bpf_iter_aux_info {
2060 	/* for map_elem iter */
2061 	struct bpf_map *map;
2062 
2063 	/* for cgroup iter */
2064 	struct {
2065 		struct cgroup *start; /* starting cgroup */
2066 		enum bpf_cgroup_iter_order order;
2067 	} cgroup;
2068 	struct {
2069 		enum bpf_iter_task_type	type;
2070 		u32 pid;
2071 	} task;
2072 };
2073 
2074 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2075 					union bpf_iter_link_info *linfo,
2076 					struct bpf_iter_aux_info *aux);
2077 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2078 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2079 					struct seq_file *seq);
2080 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2081 					 struct bpf_link_info *info);
2082 typedef const struct bpf_func_proto *
2083 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2084 			     const struct bpf_prog *prog);
2085 
2086 enum bpf_iter_feature {
2087 	BPF_ITER_RESCHED	= BIT(0),
2088 };
2089 
2090 #define BPF_ITER_CTX_ARG_MAX 2
2091 struct bpf_iter_reg {
2092 	const char *target;
2093 	bpf_iter_attach_target_t attach_target;
2094 	bpf_iter_detach_target_t detach_target;
2095 	bpf_iter_show_fdinfo_t show_fdinfo;
2096 	bpf_iter_fill_link_info_t fill_link_info;
2097 	bpf_iter_get_func_proto_t get_func_proto;
2098 	u32 ctx_arg_info_size;
2099 	u32 feature;
2100 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2101 	const struct bpf_iter_seq_info *seq_info;
2102 };
2103 
2104 struct bpf_iter_meta {
2105 	__bpf_md_ptr(struct seq_file *, seq);
2106 	u64 session_id;
2107 	u64 seq_num;
2108 };
2109 
2110 struct bpf_iter__bpf_map_elem {
2111 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2112 	__bpf_md_ptr(struct bpf_map *, map);
2113 	__bpf_md_ptr(void *, key);
2114 	__bpf_md_ptr(void *, value);
2115 };
2116 
2117 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2118 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2119 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2120 const struct bpf_func_proto *
2121 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2122 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2123 int bpf_iter_new_fd(struct bpf_link *link);
2124 bool bpf_link_is_iter(struct bpf_link *link);
2125 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2126 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2127 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2128 			      struct seq_file *seq);
2129 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2130 				struct bpf_link_info *info);
2131 
2132 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2133 				   struct bpf_func_state *caller,
2134 				   struct bpf_func_state *callee);
2135 
2136 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2137 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2138 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2139 			   u64 flags);
2140 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2141 			    u64 flags);
2142 
2143 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2144 
2145 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2146 				 void *key, void *value, u64 map_flags);
2147 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2148 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2149 				void *key, void *value, u64 map_flags);
2150 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2151 
2152 int bpf_get_file_flag(int flags);
2153 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2154 			     size_t actual_size);
2155 
2156 /* verify correctness of eBPF program */
2157 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr);
2158 
2159 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2160 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2161 #endif
2162 
2163 struct btf *bpf_get_btf_vmlinux(void);
2164 
2165 /* Map specifics */
2166 struct xdp_frame;
2167 struct sk_buff;
2168 struct bpf_dtab_netdev;
2169 struct bpf_cpu_map_entry;
2170 
2171 void __dev_flush(void);
2172 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2173 		    struct net_device *dev_rx);
2174 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2175 		    struct net_device *dev_rx);
2176 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2177 			  struct bpf_map *map, bool exclude_ingress);
2178 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2179 			     struct bpf_prog *xdp_prog);
2180 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2181 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2182 			   bool exclude_ingress);
2183 
2184 void __cpu_map_flush(void);
2185 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2186 		    struct net_device *dev_rx);
2187 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2188 			     struct sk_buff *skb);
2189 
2190 /* Return map's numa specified by userspace */
2191 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2192 {
2193 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2194 		attr->numa_node : NUMA_NO_NODE;
2195 }
2196 
2197 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2198 int array_map_alloc_check(union bpf_attr *attr);
2199 
2200 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2201 			  union bpf_attr __user *uattr);
2202 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2203 			  union bpf_attr __user *uattr);
2204 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2205 			      const union bpf_attr *kattr,
2206 			      union bpf_attr __user *uattr);
2207 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2208 				     const union bpf_attr *kattr,
2209 				     union bpf_attr __user *uattr);
2210 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2211 			     const union bpf_attr *kattr,
2212 			     union bpf_attr __user *uattr);
2213 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2214 				const union bpf_attr *kattr,
2215 				union bpf_attr __user *uattr);
2216 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2217 		    const struct bpf_prog *prog,
2218 		    struct bpf_insn_access_aux *info);
2219 
2220 static inline bool bpf_tracing_ctx_access(int off, int size,
2221 					  enum bpf_access_type type)
2222 {
2223 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2224 		return false;
2225 	if (type != BPF_READ)
2226 		return false;
2227 	if (off % size != 0)
2228 		return false;
2229 	return true;
2230 }
2231 
2232 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2233 					      enum bpf_access_type type,
2234 					      const struct bpf_prog *prog,
2235 					      struct bpf_insn_access_aux *info)
2236 {
2237 	if (!bpf_tracing_ctx_access(off, size, type))
2238 		return false;
2239 	return btf_ctx_access(off, size, type, prog, info);
2240 }
2241 
2242 int btf_struct_access(struct bpf_verifier_log *log,
2243 		      const struct bpf_reg_state *reg,
2244 		      int off, int size, enum bpf_access_type atype,
2245 		      u32 *next_btf_id, enum bpf_type_flag *flag);
2246 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2247 			  const struct btf *btf, u32 id, int off,
2248 			  const struct btf *need_btf, u32 need_type_id,
2249 			  bool strict);
2250 
2251 int btf_distill_func_proto(struct bpf_verifier_log *log,
2252 			   struct btf *btf,
2253 			   const struct btf_type *func_proto,
2254 			   const char *func_name,
2255 			   struct btf_func_model *m);
2256 
2257 struct bpf_reg_state;
2258 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2259 				struct bpf_reg_state *regs);
2260 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2261 			   struct bpf_reg_state *regs);
2262 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2263 			  struct bpf_reg_state *reg);
2264 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2265 			 struct btf *btf, const struct btf_type *t);
2266 
2267 struct bpf_prog *bpf_prog_by_id(u32 id);
2268 struct bpf_link *bpf_link_by_id(u32 id);
2269 
2270 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2271 void bpf_task_storage_free(struct task_struct *task);
2272 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2273 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2274 const struct btf_func_model *
2275 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2276 			 const struct bpf_insn *insn);
2277 struct bpf_core_ctx {
2278 	struct bpf_verifier_log *log;
2279 	const struct btf *btf;
2280 };
2281 
2282 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2283 				const struct bpf_reg_state *reg,
2284 				int off, const char *suffix);
2285 
2286 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2287 			       const struct btf *reg_btf, u32 reg_id,
2288 			       const struct btf *arg_btf, u32 arg_id);
2289 
2290 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2291 		   int relo_idx, void *insn);
2292 
2293 static inline bool unprivileged_ebpf_enabled(void)
2294 {
2295 	return !sysctl_unprivileged_bpf_disabled;
2296 }
2297 
2298 /* Not all bpf prog type has the bpf_ctx.
2299  * For the bpf prog type that has initialized the bpf_ctx,
2300  * this function can be used to decide if a kernel function
2301  * is called by a bpf program.
2302  */
2303 static inline bool has_current_bpf_ctx(void)
2304 {
2305 	return !!current->bpf_ctx;
2306 }
2307 
2308 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2309 
2310 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2311 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2312 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2313 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2314 #else /* !CONFIG_BPF_SYSCALL */
2315 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2316 {
2317 	return ERR_PTR(-EOPNOTSUPP);
2318 }
2319 
2320 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2321 						     enum bpf_prog_type type,
2322 						     bool attach_drv)
2323 {
2324 	return ERR_PTR(-EOPNOTSUPP);
2325 }
2326 
2327 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2328 {
2329 }
2330 
2331 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2332 {
2333 }
2334 
2335 static inline void bpf_prog_put(struct bpf_prog *prog)
2336 {
2337 }
2338 
2339 static inline void bpf_prog_inc(struct bpf_prog *prog)
2340 {
2341 }
2342 
2343 static inline struct bpf_prog *__must_check
2344 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2345 {
2346 	return ERR_PTR(-EOPNOTSUPP);
2347 }
2348 
2349 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2350 				 const struct bpf_link_ops *ops,
2351 				 struct bpf_prog *prog)
2352 {
2353 }
2354 
2355 static inline int bpf_link_prime(struct bpf_link *link,
2356 				 struct bpf_link_primer *primer)
2357 {
2358 	return -EOPNOTSUPP;
2359 }
2360 
2361 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2362 {
2363 	return -EOPNOTSUPP;
2364 }
2365 
2366 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2367 {
2368 }
2369 
2370 static inline void bpf_link_inc(struct bpf_link *link)
2371 {
2372 }
2373 
2374 static inline void bpf_link_put(struct bpf_link *link)
2375 {
2376 }
2377 
2378 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2379 {
2380 	return -EOPNOTSUPP;
2381 }
2382 
2383 static inline void __dev_flush(void)
2384 {
2385 }
2386 
2387 struct xdp_frame;
2388 struct bpf_dtab_netdev;
2389 struct bpf_cpu_map_entry;
2390 
2391 static inline
2392 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2393 		    struct net_device *dev_rx)
2394 {
2395 	return 0;
2396 }
2397 
2398 static inline
2399 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2400 		    struct net_device *dev_rx)
2401 {
2402 	return 0;
2403 }
2404 
2405 static inline
2406 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2407 			  struct bpf_map *map, bool exclude_ingress)
2408 {
2409 	return 0;
2410 }
2411 
2412 struct sk_buff;
2413 
2414 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2415 					   struct sk_buff *skb,
2416 					   struct bpf_prog *xdp_prog)
2417 {
2418 	return 0;
2419 }
2420 
2421 static inline
2422 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2423 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2424 			   bool exclude_ingress)
2425 {
2426 	return 0;
2427 }
2428 
2429 static inline void __cpu_map_flush(void)
2430 {
2431 }
2432 
2433 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2434 				  struct xdp_frame *xdpf,
2435 				  struct net_device *dev_rx)
2436 {
2437 	return 0;
2438 }
2439 
2440 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2441 					   struct sk_buff *skb)
2442 {
2443 	return -EOPNOTSUPP;
2444 }
2445 
2446 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2447 				enum bpf_prog_type type)
2448 {
2449 	return ERR_PTR(-EOPNOTSUPP);
2450 }
2451 
2452 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2453 					const union bpf_attr *kattr,
2454 					union bpf_attr __user *uattr)
2455 {
2456 	return -ENOTSUPP;
2457 }
2458 
2459 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2460 					const union bpf_attr *kattr,
2461 					union bpf_attr __user *uattr)
2462 {
2463 	return -ENOTSUPP;
2464 }
2465 
2466 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2467 					    const union bpf_attr *kattr,
2468 					    union bpf_attr __user *uattr)
2469 {
2470 	return -ENOTSUPP;
2471 }
2472 
2473 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2474 						   const union bpf_attr *kattr,
2475 						   union bpf_attr __user *uattr)
2476 {
2477 	return -ENOTSUPP;
2478 }
2479 
2480 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2481 					      const union bpf_attr *kattr,
2482 					      union bpf_attr __user *uattr)
2483 {
2484 	return -ENOTSUPP;
2485 }
2486 
2487 static inline void bpf_map_put(struct bpf_map *map)
2488 {
2489 }
2490 
2491 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2492 {
2493 	return ERR_PTR(-ENOTSUPP);
2494 }
2495 
2496 static inline int btf_struct_access(struct bpf_verifier_log *log,
2497 				    const struct bpf_reg_state *reg,
2498 				    int off, int size, enum bpf_access_type atype,
2499 				    u32 *next_btf_id, enum bpf_type_flag *flag)
2500 {
2501 	return -EACCES;
2502 }
2503 
2504 static inline const struct bpf_func_proto *
2505 bpf_base_func_proto(enum bpf_func_id func_id)
2506 {
2507 	return NULL;
2508 }
2509 
2510 static inline void bpf_task_storage_free(struct task_struct *task)
2511 {
2512 }
2513 
2514 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2515 {
2516 	return false;
2517 }
2518 
2519 static inline const struct btf_func_model *
2520 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2521 			 const struct bpf_insn *insn)
2522 {
2523 	return NULL;
2524 }
2525 
2526 static inline bool unprivileged_ebpf_enabled(void)
2527 {
2528 	return false;
2529 }
2530 
2531 static inline bool has_current_bpf_ctx(void)
2532 {
2533 	return false;
2534 }
2535 
2536 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2537 {
2538 }
2539 
2540 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2541 {
2542 }
2543 
2544 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2545 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2546 {
2547 }
2548 
2549 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2550 {
2551 }
2552 
2553 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2554 {
2555 }
2556 #endif /* CONFIG_BPF_SYSCALL */
2557 
2558 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2559 			  struct btf_mod_pair *used_btfs, u32 len);
2560 
2561 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2562 						 enum bpf_prog_type type)
2563 {
2564 	return bpf_prog_get_type_dev(ufd, type, false);
2565 }
2566 
2567 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2568 			  struct bpf_map **used_maps, u32 len);
2569 
2570 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2571 
2572 int bpf_prog_offload_compile(struct bpf_prog *prog);
2573 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2574 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2575 			       struct bpf_prog *prog);
2576 
2577 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2578 
2579 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2580 int bpf_map_offload_update_elem(struct bpf_map *map,
2581 				void *key, void *value, u64 flags);
2582 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2583 int bpf_map_offload_get_next_key(struct bpf_map *map,
2584 				 void *key, void *next_key);
2585 
2586 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2587 
2588 struct bpf_offload_dev *
2589 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2590 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2591 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2592 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2593 				    struct net_device *netdev);
2594 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2595 				       struct net_device *netdev);
2596 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2597 
2598 void unpriv_ebpf_notify(int new_state);
2599 
2600 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2601 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2602 			      struct bpf_prog_aux *prog_aux);
2603 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2604 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2605 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2606 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2607 
2608 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2609 {
2610 	return aux->dev_bound;
2611 }
2612 
2613 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2614 {
2615 	return aux->offload_requested;
2616 }
2617 
2618 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2619 
2620 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2621 {
2622 	return unlikely(map->ops == &bpf_map_offload_ops);
2623 }
2624 
2625 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2626 void bpf_map_offload_map_free(struct bpf_map *map);
2627 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2628 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2629 			      const union bpf_attr *kattr,
2630 			      union bpf_attr __user *uattr);
2631 
2632 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2633 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2634 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2635 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2636 			    union bpf_attr __user *uattr);
2637 
2638 void sock_map_unhash(struct sock *sk);
2639 void sock_map_destroy(struct sock *sk);
2640 void sock_map_close(struct sock *sk, long timeout);
2641 #else
2642 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2643 					    struct bpf_prog_aux *prog_aux)
2644 {
2645 	return -EOPNOTSUPP;
2646 }
2647 
2648 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2649 						u32 func_id)
2650 {
2651 	return NULL;
2652 }
2653 
2654 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2655 					  union bpf_attr *attr)
2656 {
2657 	return -EOPNOTSUPP;
2658 }
2659 
2660 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2661 					     struct bpf_prog *old_prog)
2662 {
2663 	return -EOPNOTSUPP;
2664 }
2665 
2666 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2667 {
2668 }
2669 
2670 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2671 {
2672 	return false;
2673 }
2674 
2675 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2676 {
2677 	return false;
2678 }
2679 
2680 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2681 {
2682 	return false;
2683 }
2684 
2685 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2686 {
2687 	return false;
2688 }
2689 
2690 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2691 {
2692 	return ERR_PTR(-EOPNOTSUPP);
2693 }
2694 
2695 static inline void bpf_map_offload_map_free(struct bpf_map *map)
2696 {
2697 }
2698 
2699 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
2700 {
2701 	return 0;
2702 }
2703 
2704 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2705 					    const union bpf_attr *kattr,
2706 					    union bpf_attr __user *uattr)
2707 {
2708 	return -ENOTSUPP;
2709 }
2710 
2711 #ifdef CONFIG_BPF_SYSCALL
2712 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2713 				       struct bpf_prog *prog)
2714 {
2715 	return -EINVAL;
2716 }
2717 
2718 static inline int sock_map_prog_detach(const union bpf_attr *attr,
2719 				       enum bpf_prog_type ptype)
2720 {
2721 	return -EOPNOTSUPP;
2722 }
2723 
2724 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2725 					   u64 flags)
2726 {
2727 	return -EOPNOTSUPP;
2728 }
2729 
2730 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2731 					  union bpf_attr __user *uattr)
2732 {
2733 	return -EINVAL;
2734 }
2735 #endif /* CONFIG_BPF_SYSCALL */
2736 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2737 
2738 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2739 void bpf_sk_reuseport_detach(struct sock *sk);
2740 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2741 				       void *value);
2742 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2743 				       void *value, u64 map_flags);
2744 #else
2745 static inline void bpf_sk_reuseport_detach(struct sock *sk)
2746 {
2747 }
2748 
2749 #ifdef CONFIG_BPF_SYSCALL
2750 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2751 						     void *key, void *value)
2752 {
2753 	return -EOPNOTSUPP;
2754 }
2755 
2756 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2757 						     void *key, void *value,
2758 						     u64 map_flags)
2759 {
2760 	return -EOPNOTSUPP;
2761 }
2762 #endif /* CONFIG_BPF_SYSCALL */
2763 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2764 
2765 /* verifier prototypes for helper functions called from eBPF programs */
2766 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2767 extern const struct bpf_func_proto bpf_map_update_elem_proto;
2768 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2769 extern const struct bpf_func_proto bpf_map_push_elem_proto;
2770 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2771 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2772 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2773 
2774 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2775 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2776 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2777 extern const struct bpf_func_proto bpf_tail_call_proto;
2778 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2779 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2780 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2781 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2782 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2783 extern const struct bpf_func_proto bpf_get_current_comm_proto;
2784 extern const struct bpf_func_proto bpf_get_stackid_proto;
2785 extern const struct bpf_func_proto bpf_get_stack_proto;
2786 extern const struct bpf_func_proto bpf_get_task_stack_proto;
2787 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2788 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
2789 extern const struct bpf_func_proto bpf_sock_map_update_proto;
2790 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
2791 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
2792 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
2793 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
2794 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
2795 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
2796 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
2797 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
2798 extern const struct bpf_func_proto bpf_spin_lock_proto;
2799 extern const struct bpf_func_proto bpf_spin_unlock_proto;
2800 extern const struct bpf_func_proto bpf_get_local_storage_proto;
2801 extern const struct bpf_func_proto bpf_strtol_proto;
2802 extern const struct bpf_func_proto bpf_strtoul_proto;
2803 extern const struct bpf_func_proto bpf_tcp_sock_proto;
2804 extern const struct bpf_func_proto bpf_jiffies64_proto;
2805 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
2806 extern const struct bpf_func_proto bpf_event_output_data_proto;
2807 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
2808 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
2809 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
2810 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
2811 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
2812 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
2813 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
2814 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
2815 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
2816 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
2817 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
2818 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
2819 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
2820 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
2821 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
2822 extern const struct bpf_func_proto bpf_copy_from_user_proto;
2823 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
2824 extern const struct bpf_func_proto bpf_snprintf_proto;
2825 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
2826 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
2827 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
2828 extern const struct bpf_func_proto bpf_sock_from_file_proto;
2829 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
2830 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
2831 extern const struct bpf_func_proto bpf_task_storage_get_proto;
2832 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
2833 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
2834 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
2835 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
2836 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
2837 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
2838 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
2839 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
2840 extern const struct bpf_func_proto bpf_find_vma_proto;
2841 extern const struct bpf_func_proto bpf_loop_proto;
2842 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
2843 extern const struct bpf_func_proto bpf_set_retval_proto;
2844 extern const struct bpf_func_proto bpf_get_retval_proto;
2845 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
2846 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
2847 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
2848 
2849 const struct bpf_func_proto *tracing_prog_func_proto(
2850   enum bpf_func_id func_id, const struct bpf_prog *prog);
2851 
2852 /* Shared helpers among cBPF and eBPF. */
2853 void bpf_user_rnd_init_once(void);
2854 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2855 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2856 
2857 #if defined(CONFIG_NET)
2858 bool bpf_sock_common_is_valid_access(int off, int size,
2859 				     enum bpf_access_type type,
2860 				     struct bpf_insn_access_aux *info);
2861 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2862 			      struct bpf_insn_access_aux *info);
2863 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2864 				const struct bpf_insn *si,
2865 				struct bpf_insn *insn_buf,
2866 				struct bpf_prog *prog,
2867 				u32 *target_size);
2868 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2869 			       struct bpf_dynptr_kern *ptr);
2870 #else
2871 static inline bool bpf_sock_common_is_valid_access(int off, int size,
2872 						   enum bpf_access_type type,
2873 						   struct bpf_insn_access_aux *info)
2874 {
2875 	return false;
2876 }
2877 static inline bool bpf_sock_is_valid_access(int off, int size,
2878 					    enum bpf_access_type type,
2879 					    struct bpf_insn_access_aux *info)
2880 {
2881 	return false;
2882 }
2883 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2884 					      const struct bpf_insn *si,
2885 					      struct bpf_insn *insn_buf,
2886 					      struct bpf_prog *prog,
2887 					      u32 *target_size)
2888 {
2889 	return 0;
2890 }
2891 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
2892 					     struct bpf_dynptr_kern *ptr)
2893 {
2894 	return -EOPNOTSUPP;
2895 }
2896 #endif
2897 
2898 #ifdef CONFIG_INET
2899 struct sk_reuseport_kern {
2900 	struct sk_buff *skb;
2901 	struct sock *sk;
2902 	struct sock *selected_sk;
2903 	struct sock *migrating_sk;
2904 	void *data_end;
2905 	u32 hash;
2906 	u32 reuseport_id;
2907 	bool bind_inany;
2908 };
2909 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2910 				  struct bpf_insn_access_aux *info);
2911 
2912 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2913 				    const struct bpf_insn *si,
2914 				    struct bpf_insn *insn_buf,
2915 				    struct bpf_prog *prog,
2916 				    u32 *target_size);
2917 
2918 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2919 				  struct bpf_insn_access_aux *info);
2920 
2921 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2922 				    const struct bpf_insn *si,
2923 				    struct bpf_insn *insn_buf,
2924 				    struct bpf_prog *prog,
2925 				    u32 *target_size);
2926 #else
2927 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
2928 						enum bpf_access_type type,
2929 						struct bpf_insn_access_aux *info)
2930 {
2931 	return false;
2932 }
2933 
2934 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2935 						  const struct bpf_insn *si,
2936 						  struct bpf_insn *insn_buf,
2937 						  struct bpf_prog *prog,
2938 						  u32 *target_size)
2939 {
2940 	return 0;
2941 }
2942 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
2943 						enum bpf_access_type type,
2944 						struct bpf_insn_access_aux *info)
2945 {
2946 	return false;
2947 }
2948 
2949 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2950 						  const struct bpf_insn *si,
2951 						  struct bpf_insn *insn_buf,
2952 						  struct bpf_prog *prog,
2953 						  u32 *target_size)
2954 {
2955 	return 0;
2956 }
2957 #endif /* CONFIG_INET */
2958 
2959 enum bpf_text_poke_type {
2960 	BPF_MOD_CALL,
2961 	BPF_MOD_JUMP,
2962 };
2963 
2964 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2965 		       void *addr1, void *addr2);
2966 
2967 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
2968 int bpf_arch_text_invalidate(void *dst, size_t len);
2969 
2970 struct btf_id_set;
2971 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
2972 
2973 #define MAX_BPRINTF_VARARGS		12
2974 #define MAX_BPRINTF_BUF			1024
2975 
2976 struct bpf_bprintf_data {
2977 	u32 *bin_args;
2978 	char *buf;
2979 	bool get_bin_args;
2980 	bool get_buf;
2981 };
2982 
2983 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
2984 			u32 num_args, struct bpf_bprintf_data *data);
2985 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
2986 
2987 #ifdef CONFIG_BPF_LSM
2988 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
2989 void bpf_cgroup_atype_put(int cgroup_atype);
2990 #else
2991 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
2992 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
2993 #endif /* CONFIG_BPF_LSM */
2994 
2995 struct key;
2996 
2997 #ifdef CONFIG_KEYS
2998 struct bpf_key {
2999 	struct key *key;
3000 	bool has_ref;
3001 };
3002 #endif /* CONFIG_KEYS */
3003 
3004 static inline bool type_is_alloc(u32 type)
3005 {
3006 	return type & MEM_ALLOC;
3007 }
3008 
3009 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3010 {
3011 	if (memcg_bpf_enabled())
3012 		return flags | __GFP_ACCOUNT;
3013 	return flags;
3014 }
3015 
3016 #endif /* _LINUX_BPF_H */
3017