1 /* SPDX-License-Identifier: GPL-2.0-only */ 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4 #ifndef _LINUX_BPF_H 5 #define _LINUX_BPF_H 1 6 7 #include <uapi/linux/bpf.h> 8 #include <uapi/linux/filter.h> 9 10 #include <linux/workqueue.h> 11 #include <linux/file.h> 12 #include <linux/percpu.h> 13 #include <linux/err.h> 14 #include <linux/rbtree_latch.h> 15 #include <linux/numa.h> 16 #include <linux/mm_types.h> 17 #include <linux/wait.h> 18 #include <linux/refcount.h> 19 #include <linux/mutex.h> 20 #include <linux/module.h> 21 #include <linux/kallsyms.h> 22 #include <linux/capability.h> 23 #include <linux/sched/mm.h> 24 #include <linux/slab.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/stddef.h> 27 #include <linux/bpfptr.h> 28 #include <linux/btf.h> 29 #include <linux/rcupdate_trace.h> 30 #include <linux/static_call.h> 31 #include <linux/memcontrol.h> 32 33 struct bpf_verifier_env; 34 struct bpf_verifier_log; 35 struct perf_event; 36 struct bpf_prog; 37 struct bpf_prog_aux; 38 struct bpf_map; 39 struct sock; 40 struct seq_file; 41 struct btf; 42 struct btf_type; 43 struct exception_table_entry; 44 struct seq_operations; 45 struct bpf_iter_aux_info; 46 struct bpf_local_storage; 47 struct bpf_local_storage_map; 48 struct kobject; 49 struct mem_cgroup; 50 struct module; 51 struct bpf_func_state; 52 struct ftrace_ops; 53 struct cgroup; 54 55 extern struct idr btf_idr; 56 extern spinlock_t btf_idr_lock; 57 extern struct kobject *btf_kobj; 58 extern struct bpf_mem_alloc bpf_global_ma; 59 extern bool bpf_global_ma_set; 60 61 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64); 62 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data, 63 struct bpf_iter_aux_info *aux); 64 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data); 65 typedef unsigned int (*bpf_func_t)(const void *, 66 const struct bpf_insn *); 67 struct bpf_iter_seq_info { 68 const struct seq_operations *seq_ops; 69 bpf_iter_init_seq_priv_t init_seq_private; 70 bpf_iter_fini_seq_priv_t fini_seq_private; 71 u32 seq_priv_size; 72 }; 73 74 /* map is generic key/value storage optionally accessible by eBPF programs */ 75 struct bpf_map_ops { 76 /* funcs callable from userspace (via syscall) */ 77 int (*map_alloc_check)(union bpf_attr *attr); 78 struct bpf_map *(*map_alloc)(union bpf_attr *attr); 79 void (*map_release)(struct bpf_map *map, struct file *map_file); 80 void (*map_free)(struct bpf_map *map); 81 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key); 82 void (*map_release_uref)(struct bpf_map *map); 83 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key); 84 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr, 85 union bpf_attr __user *uattr); 86 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key, 87 void *value, u64 flags); 88 int (*map_lookup_and_delete_batch)(struct bpf_map *map, 89 const union bpf_attr *attr, 90 union bpf_attr __user *uattr); 91 int (*map_update_batch)(struct bpf_map *map, struct file *map_file, 92 const union bpf_attr *attr, 93 union bpf_attr __user *uattr); 94 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr, 95 union bpf_attr __user *uattr); 96 97 /* funcs callable from userspace and from eBPF programs */ 98 void *(*map_lookup_elem)(struct bpf_map *map, void *key); 99 int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags); 100 int (*map_delete_elem)(struct bpf_map *map, void *key); 101 int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags); 102 int (*map_pop_elem)(struct bpf_map *map, void *value); 103 int (*map_peek_elem)(struct bpf_map *map, void *value); 104 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu); 105 106 /* funcs called by prog_array and perf_event_array map */ 107 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file, 108 int fd); 109 void (*map_fd_put_ptr)(void *ptr); 110 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf); 111 u32 (*map_fd_sys_lookup_elem)(void *ptr); 112 void (*map_seq_show_elem)(struct bpf_map *map, void *key, 113 struct seq_file *m); 114 int (*map_check_btf)(const struct bpf_map *map, 115 const struct btf *btf, 116 const struct btf_type *key_type, 117 const struct btf_type *value_type); 118 119 /* Prog poke tracking helpers. */ 120 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux); 121 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux); 122 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old, 123 struct bpf_prog *new); 124 125 /* Direct value access helpers. */ 126 int (*map_direct_value_addr)(const struct bpf_map *map, 127 u64 *imm, u32 off); 128 int (*map_direct_value_meta)(const struct bpf_map *map, 129 u64 imm, u32 *off); 130 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma); 131 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp, 132 struct poll_table_struct *pts); 133 134 /* Functions called by bpf_local_storage maps */ 135 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap, 136 void *owner, u32 size); 137 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap, 138 void *owner, u32 size); 139 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner); 140 141 /* Misc helpers.*/ 142 int (*map_redirect)(struct bpf_map *map, u64 key, u64 flags); 143 144 /* map_meta_equal must be implemented for maps that can be 145 * used as an inner map. It is a runtime check to ensure 146 * an inner map can be inserted to an outer map. 147 * 148 * Some properties of the inner map has been used during the 149 * verification time. When inserting an inner map at the runtime, 150 * map_meta_equal has to ensure the inserting map has the same 151 * properties that the verifier has used earlier. 152 */ 153 bool (*map_meta_equal)(const struct bpf_map *meta0, 154 const struct bpf_map *meta1); 155 156 157 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env, 158 struct bpf_func_state *caller, 159 struct bpf_func_state *callee); 160 int (*map_for_each_callback)(struct bpf_map *map, 161 bpf_callback_t callback_fn, 162 void *callback_ctx, u64 flags); 163 164 u64 (*map_mem_usage)(const struct bpf_map *map); 165 166 /* BTF id of struct allocated by map_alloc */ 167 int *map_btf_id; 168 169 /* bpf_iter info used to open a seq_file */ 170 const struct bpf_iter_seq_info *iter_seq_info; 171 }; 172 173 enum { 174 /* Support at most 10 fields in a BTF type */ 175 BTF_FIELDS_MAX = 10, 176 }; 177 178 enum btf_field_type { 179 BPF_SPIN_LOCK = (1 << 0), 180 BPF_TIMER = (1 << 1), 181 BPF_KPTR_UNREF = (1 << 2), 182 BPF_KPTR_REF = (1 << 3), 183 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF, 184 BPF_LIST_HEAD = (1 << 4), 185 BPF_LIST_NODE = (1 << 5), 186 BPF_RB_ROOT = (1 << 6), 187 BPF_RB_NODE = (1 << 7), 188 BPF_GRAPH_NODE_OR_ROOT = BPF_LIST_NODE | BPF_LIST_HEAD | 189 BPF_RB_NODE | BPF_RB_ROOT, 190 }; 191 192 struct btf_field_kptr { 193 struct btf *btf; 194 struct module *module; 195 btf_dtor_kfunc_t dtor; 196 u32 btf_id; 197 }; 198 199 struct btf_field_graph_root { 200 struct btf *btf; 201 u32 value_btf_id; 202 u32 node_offset; 203 struct btf_record *value_rec; 204 }; 205 206 struct btf_field { 207 u32 offset; 208 enum btf_field_type type; 209 union { 210 struct btf_field_kptr kptr; 211 struct btf_field_graph_root graph_root; 212 }; 213 }; 214 215 struct btf_record { 216 u32 cnt; 217 u32 field_mask; 218 int spin_lock_off; 219 int timer_off; 220 struct btf_field fields[]; 221 }; 222 223 struct btf_field_offs { 224 u32 cnt; 225 u32 field_off[BTF_FIELDS_MAX]; 226 u8 field_sz[BTF_FIELDS_MAX]; 227 }; 228 229 struct bpf_map { 230 /* The first two cachelines with read-mostly members of which some 231 * are also accessed in fast-path (e.g. ops, max_entries). 232 */ 233 const struct bpf_map_ops *ops ____cacheline_aligned; 234 struct bpf_map *inner_map_meta; 235 #ifdef CONFIG_SECURITY 236 void *security; 237 #endif 238 enum bpf_map_type map_type; 239 u32 key_size; 240 u32 value_size; 241 u32 max_entries; 242 u64 map_extra; /* any per-map-type extra fields */ 243 u32 map_flags; 244 u32 id; 245 struct btf_record *record; 246 int numa_node; 247 u32 btf_key_type_id; 248 u32 btf_value_type_id; 249 u32 btf_vmlinux_value_type_id; 250 struct btf *btf; 251 #ifdef CONFIG_MEMCG_KMEM 252 struct obj_cgroup *objcg; 253 #endif 254 char name[BPF_OBJ_NAME_LEN]; 255 struct btf_field_offs *field_offs; 256 /* The 3rd and 4th cacheline with misc members to avoid false sharing 257 * particularly with refcounting. 258 */ 259 atomic64_t refcnt ____cacheline_aligned; 260 atomic64_t usercnt; 261 struct work_struct work; 262 struct mutex freeze_mutex; 263 atomic64_t writecnt; 264 /* 'Ownership' of program-containing map is claimed by the first program 265 * that is going to use this map or by the first program which FD is 266 * stored in the map to make sure that all callers and callees have the 267 * same prog type, JITed flag and xdp_has_frags flag. 268 */ 269 struct { 270 spinlock_t lock; 271 enum bpf_prog_type type; 272 bool jited; 273 bool xdp_has_frags; 274 } owner; 275 bool bypass_spec_v1; 276 bool frozen; /* write-once; write-protected by freeze_mutex */ 277 }; 278 279 static inline const char *btf_field_type_name(enum btf_field_type type) 280 { 281 switch (type) { 282 case BPF_SPIN_LOCK: 283 return "bpf_spin_lock"; 284 case BPF_TIMER: 285 return "bpf_timer"; 286 case BPF_KPTR_UNREF: 287 case BPF_KPTR_REF: 288 return "kptr"; 289 case BPF_LIST_HEAD: 290 return "bpf_list_head"; 291 case BPF_LIST_NODE: 292 return "bpf_list_node"; 293 case BPF_RB_ROOT: 294 return "bpf_rb_root"; 295 case BPF_RB_NODE: 296 return "bpf_rb_node"; 297 default: 298 WARN_ON_ONCE(1); 299 return "unknown"; 300 } 301 } 302 303 static inline u32 btf_field_type_size(enum btf_field_type type) 304 { 305 switch (type) { 306 case BPF_SPIN_LOCK: 307 return sizeof(struct bpf_spin_lock); 308 case BPF_TIMER: 309 return sizeof(struct bpf_timer); 310 case BPF_KPTR_UNREF: 311 case BPF_KPTR_REF: 312 return sizeof(u64); 313 case BPF_LIST_HEAD: 314 return sizeof(struct bpf_list_head); 315 case BPF_LIST_NODE: 316 return sizeof(struct bpf_list_node); 317 case BPF_RB_ROOT: 318 return sizeof(struct bpf_rb_root); 319 case BPF_RB_NODE: 320 return sizeof(struct bpf_rb_node); 321 default: 322 WARN_ON_ONCE(1); 323 return 0; 324 } 325 } 326 327 static inline u32 btf_field_type_align(enum btf_field_type type) 328 { 329 switch (type) { 330 case BPF_SPIN_LOCK: 331 return __alignof__(struct bpf_spin_lock); 332 case BPF_TIMER: 333 return __alignof__(struct bpf_timer); 334 case BPF_KPTR_UNREF: 335 case BPF_KPTR_REF: 336 return __alignof__(u64); 337 case BPF_LIST_HEAD: 338 return __alignof__(struct bpf_list_head); 339 case BPF_LIST_NODE: 340 return __alignof__(struct bpf_list_node); 341 case BPF_RB_ROOT: 342 return __alignof__(struct bpf_rb_root); 343 case BPF_RB_NODE: 344 return __alignof__(struct bpf_rb_node); 345 default: 346 WARN_ON_ONCE(1); 347 return 0; 348 } 349 } 350 351 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type) 352 { 353 if (IS_ERR_OR_NULL(rec)) 354 return false; 355 return rec->field_mask & type; 356 } 357 358 static inline void bpf_obj_init(const struct btf_field_offs *foffs, void *obj) 359 { 360 int i; 361 362 if (!foffs) 363 return; 364 for (i = 0; i < foffs->cnt; i++) 365 memset(obj + foffs->field_off[i], 0, foffs->field_sz[i]); 366 } 367 368 /* 'dst' must be a temporary buffer and should not point to memory that is being 369 * used in parallel by a bpf program or bpf syscall, otherwise the access from 370 * the bpf program or bpf syscall may be corrupted by the reinitialization, 371 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory 372 * allocator, it is still possible for 'dst' to be used in parallel by a bpf 373 * program or bpf syscall. 374 */ 375 static inline void check_and_init_map_value(struct bpf_map *map, void *dst) 376 { 377 bpf_obj_init(map->field_offs, dst); 378 } 379 380 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and 381 * forced to use 'long' read/writes to try to atomically copy long counters. 382 * Best-effort only. No barriers here, since it _will_ race with concurrent 383 * updates from BPF programs. Called from bpf syscall and mostly used with 384 * size 8 or 16 bytes, so ask compiler to inline it. 385 */ 386 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size) 387 { 388 const long *lsrc = src; 389 long *ldst = dst; 390 391 size /= sizeof(long); 392 while (size--) 393 *ldst++ = *lsrc++; 394 } 395 396 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */ 397 static inline void bpf_obj_memcpy(struct btf_field_offs *foffs, 398 void *dst, void *src, u32 size, 399 bool long_memcpy) 400 { 401 u32 curr_off = 0; 402 int i; 403 404 if (likely(!foffs)) { 405 if (long_memcpy) 406 bpf_long_memcpy(dst, src, round_up(size, 8)); 407 else 408 memcpy(dst, src, size); 409 return; 410 } 411 412 for (i = 0; i < foffs->cnt; i++) { 413 u32 next_off = foffs->field_off[i]; 414 u32 sz = next_off - curr_off; 415 416 memcpy(dst + curr_off, src + curr_off, sz); 417 curr_off += foffs->field_sz[i] + sz; 418 } 419 memcpy(dst + curr_off, src + curr_off, size - curr_off); 420 } 421 422 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src) 423 { 424 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, false); 425 } 426 427 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src) 428 { 429 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, true); 430 } 431 432 static inline void bpf_obj_memzero(struct btf_field_offs *foffs, void *dst, u32 size) 433 { 434 u32 curr_off = 0; 435 int i; 436 437 if (likely(!foffs)) { 438 memset(dst, 0, size); 439 return; 440 } 441 442 for (i = 0; i < foffs->cnt; i++) { 443 u32 next_off = foffs->field_off[i]; 444 u32 sz = next_off - curr_off; 445 446 memset(dst + curr_off, 0, sz); 447 curr_off += foffs->field_sz[i] + sz; 448 } 449 memset(dst + curr_off, 0, size - curr_off); 450 } 451 452 static inline void zero_map_value(struct bpf_map *map, void *dst) 453 { 454 bpf_obj_memzero(map->field_offs, dst, map->value_size); 455 } 456 457 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src, 458 bool lock_src); 459 void bpf_timer_cancel_and_free(void *timer); 460 void bpf_list_head_free(const struct btf_field *field, void *list_head, 461 struct bpf_spin_lock *spin_lock); 462 void bpf_rb_root_free(const struct btf_field *field, void *rb_root, 463 struct bpf_spin_lock *spin_lock); 464 465 466 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size); 467 468 struct bpf_offload_dev; 469 struct bpf_offloaded_map; 470 471 struct bpf_map_dev_ops { 472 int (*map_get_next_key)(struct bpf_offloaded_map *map, 473 void *key, void *next_key); 474 int (*map_lookup_elem)(struct bpf_offloaded_map *map, 475 void *key, void *value); 476 int (*map_update_elem)(struct bpf_offloaded_map *map, 477 void *key, void *value, u64 flags); 478 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key); 479 }; 480 481 struct bpf_offloaded_map { 482 struct bpf_map map; 483 struct net_device *netdev; 484 const struct bpf_map_dev_ops *dev_ops; 485 void *dev_priv; 486 struct list_head offloads; 487 }; 488 489 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map) 490 { 491 return container_of(map, struct bpf_offloaded_map, map); 492 } 493 494 static inline bool bpf_map_offload_neutral(const struct bpf_map *map) 495 { 496 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 497 } 498 499 static inline bool bpf_map_support_seq_show(const struct bpf_map *map) 500 { 501 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) && 502 map->ops->map_seq_show_elem; 503 } 504 505 int map_check_no_btf(const struct bpf_map *map, 506 const struct btf *btf, 507 const struct btf_type *key_type, 508 const struct btf_type *value_type); 509 510 bool bpf_map_meta_equal(const struct bpf_map *meta0, 511 const struct bpf_map *meta1); 512 513 extern const struct bpf_map_ops bpf_map_offload_ops; 514 515 /* bpf_type_flag contains a set of flags that are applicable to the values of 516 * arg_type, ret_type and reg_type. For example, a pointer value may be null, 517 * or a memory is read-only. We classify types into two categories: base types 518 * and extended types. Extended types are base types combined with a type flag. 519 * 520 * Currently there are no more than 32 base types in arg_type, ret_type and 521 * reg_types. 522 */ 523 #define BPF_BASE_TYPE_BITS 8 524 525 enum bpf_type_flag { 526 /* PTR may be NULL. */ 527 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS), 528 529 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is 530 * compatible with both mutable and immutable memory. 531 */ 532 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS), 533 534 /* MEM points to BPF ring buffer reservation. */ 535 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS), 536 537 /* MEM is in user address space. */ 538 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS), 539 540 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged 541 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In 542 * order to drop this tag, it must be passed into bpf_per_cpu_ptr() 543 * or bpf_this_cpu_ptr(), which will return the pointer corresponding 544 * to the specified cpu. 545 */ 546 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS), 547 548 /* Indicates that the argument will be released. */ 549 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS), 550 551 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark 552 * unreferenced and referenced kptr loaded from map value using a load 553 * instruction, so that they can only be dereferenced but not escape the 554 * BPF program into the kernel (i.e. cannot be passed as arguments to 555 * kfunc or bpf helpers). 556 */ 557 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS), 558 559 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS), 560 561 /* DYNPTR points to memory local to the bpf program. */ 562 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS), 563 564 /* DYNPTR points to a kernel-produced ringbuf record. */ 565 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS), 566 567 /* Size is known at compile time. */ 568 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS), 569 570 /* MEM is of an allocated object of type in program BTF. This is used to 571 * tag PTR_TO_BTF_ID allocated using bpf_obj_new. 572 */ 573 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS), 574 575 /* PTR was passed from the kernel in a trusted context, and may be 576 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions. 577 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above. 578 * PTR_UNTRUSTED refers to a kptr that was read directly from a map 579 * without invoking bpf_kptr_xchg(). What we really need to know is 580 * whether a pointer is safe to pass to a kfunc or BPF helper function. 581 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF 582 * helpers, they do not cover all possible instances of unsafe 583 * pointers. For example, a pointer that was obtained from walking a 584 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the 585 * fact that it may be NULL, invalid, etc. This is due to backwards 586 * compatibility requirements, as this was the behavior that was first 587 * introduced when kptrs were added. The behavior is now considered 588 * deprecated, and PTR_UNTRUSTED will eventually be removed. 589 * 590 * PTR_TRUSTED, on the other hand, is a pointer that the kernel 591 * guarantees to be valid and safe to pass to kfuncs and BPF helpers. 592 * For example, pointers passed to tracepoint arguments are considered 593 * PTR_TRUSTED, as are pointers that are passed to struct_ops 594 * callbacks. As alluded to above, pointers that are obtained from 595 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a 596 * struct task_struct *task is PTR_TRUSTED, then accessing 597 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored 598 * in a BPF register. Similarly, pointers passed to certain programs 599 * types such as kretprobes are not guaranteed to be valid, as they may 600 * for example contain an object that was recently freed. 601 */ 602 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS), 603 604 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */ 605 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS), 606 607 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning. 608 * Currently only valid for linked-list and rbtree nodes. 609 */ 610 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS), 611 612 /* DYNPTR points to sk_buff */ 613 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS), 614 615 /* DYNPTR points to xdp_buff */ 616 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS), 617 618 __BPF_TYPE_FLAG_MAX, 619 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1, 620 }; 621 622 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \ 623 | DYNPTR_TYPE_XDP) 624 625 /* Max number of base types. */ 626 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS) 627 628 /* Max number of all types. */ 629 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1)) 630 631 /* function argument constraints */ 632 enum bpf_arg_type { 633 ARG_DONTCARE = 0, /* unused argument in helper function */ 634 635 /* the following constraints used to prototype 636 * bpf_map_lookup/update/delete_elem() functions 637 */ 638 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */ 639 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */ 640 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */ 641 642 /* Used to prototype bpf_memcmp() and other functions that access data 643 * on eBPF program stack 644 */ 645 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */ 646 647 ARG_CONST_SIZE, /* number of bytes accessed from memory */ 648 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */ 649 650 ARG_PTR_TO_CTX, /* pointer to context */ 651 ARG_ANYTHING, /* any (initialized) argument is ok */ 652 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */ 653 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */ 654 ARG_PTR_TO_INT, /* pointer to int */ 655 ARG_PTR_TO_LONG, /* pointer to long */ 656 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */ 657 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */ 658 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */ 659 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */ 660 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */ 661 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */ 662 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */ 663 ARG_PTR_TO_STACK, /* pointer to stack */ 664 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */ 665 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */ 666 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */ 667 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */ 668 __BPF_ARG_TYPE_MAX, 669 670 /* Extended arg_types. */ 671 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE, 672 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM, 673 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX, 674 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET, 675 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK, 676 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID, 677 /* pointer to memory does not need to be initialized, helper function must fill 678 * all bytes or clear them in error case. 679 */ 680 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM, 681 /* Pointer to valid memory of size known at compile time. */ 682 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM, 683 684 /* This must be the last entry. Its purpose is to ensure the enum is 685 * wide enough to hold the higher bits reserved for bpf_type_flag. 686 */ 687 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT, 688 }; 689 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 690 691 /* type of values returned from helper functions */ 692 enum bpf_return_type { 693 RET_INTEGER, /* function returns integer */ 694 RET_VOID, /* function doesn't return anything */ 695 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */ 696 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */ 697 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */ 698 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */ 699 RET_PTR_TO_MEM, /* returns a pointer to memory */ 700 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */ 701 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */ 702 __BPF_RET_TYPE_MAX, 703 704 /* Extended ret_types. */ 705 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE, 706 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET, 707 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK, 708 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON, 709 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM, 710 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM, 711 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID, 712 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID, 713 714 /* This must be the last entry. Its purpose is to ensure the enum is 715 * wide enough to hold the higher bits reserved for bpf_type_flag. 716 */ 717 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT, 718 }; 719 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 720 721 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs 722 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL 723 * instructions after verifying 724 */ 725 struct bpf_func_proto { 726 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 727 bool gpl_only; 728 bool pkt_access; 729 bool might_sleep; 730 enum bpf_return_type ret_type; 731 union { 732 struct { 733 enum bpf_arg_type arg1_type; 734 enum bpf_arg_type arg2_type; 735 enum bpf_arg_type arg3_type; 736 enum bpf_arg_type arg4_type; 737 enum bpf_arg_type arg5_type; 738 }; 739 enum bpf_arg_type arg_type[5]; 740 }; 741 union { 742 struct { 743 u32 *arg1_btf_id; 744 u32 *arg2_btf_id; 745 u32 *arg3_btf_id; 746 u32 *arg4_btf_id; 747 u32 *arg5_btf_id; 748 }; 749 u32 *arg_btf_id[5]; 750 struct { 751 size_t arg1_size; 752 size_t arg2_size; 753 size_t arg3_size; 754 size_t arg4_size; 755 size_t arg5_size; 756 }; 757 size_t arg_size[5]; 758 }; 759 int *ret_btf_id; /* return value btf_id */ 760 bool (*allowed)(const struct bpf_prog *prog); 761 }; 762 763 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is 764 * the first argument to eBPF programs. 765 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *' 766 */ 767 struct bpf_context; 768 769 enum bpf_access_type { 770 BPF_READ = 1, 771 BPF_WRITE = 2 772 }; 773 774 /* types of values stored in eBPF registers */ 775 /* Pointer types represent: 776 * pointer 777 * pointer + imm 778 * pointer + (u16) var 779 * pointer + (u16) var + imm 780 * if (range > 0) then [ptr, ptr + range - off) is safe to access 781 * if (id > 0) means that some 'var' was added 782 * if (off > 0) means that 'imm' was added 783 */ 784 enum bpf_reg_type { 785 NOT_INIT = 0, /* nothing was written into register */ 786 SCALAR_VALUE, /* reg doesn't contain a valid pointer */ 787 PTR_TO_CTX, /* reg points to bpf_context */ 788 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */ 789 PTR_TO_MAP_VALUE, /* reg points to map element value */ 790 PTR_TO_MAP_KEY, /* reg points to a map element key */ 791 PTR_TO_STACK, /* reg == frame_pointer + offset */ 792 PTR_TO_PACKET_META, /* skb->data - meta_len */ 793 PTR_TO_PACKET, /* reg points to skb->data */ 794 PTR_TO_PACKET_END, /* skb->data + headlen */ 795 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */ 796 PTR_TO_SOCKET, /* reg points to struct bpf_sock */ 797 PTR_TO_SOCK_COMMON, /* reg points to sock_common */ 798 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */ 799 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */ 800 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */ 801 /* PTR_TO_BTF_ID points to a kernel struct that does not need 802 * to be null checked by the BPF program. This does not imply the 803 * pointer is _not_ null and in practice this can easily be a null 804 * pointer when reading pointer chains. The assumption is program 805 * context will handle null pointer dereference typically via fault 806 * handling. The verifier must keep this in mind and can make no 807 * assumptions about null or non-null when doing branch analysis. 808 * Further, when passed into helpers the helpers can not, without 809 * additional context, assume the value is non-null. 810 */ 811 PTR_TO_BTF_ID, 812 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not 813 * been checked for null. Used primarily to inform the verifier 814 * an explicit null check is required for this struct. 815 */ 816 PTR_TO_MEM, /* reg points to valid memory region */ 817 PTR_TO_BUF, /* reg points to a read/write buffer */ 818 PTR_TO_FUNC, /* reg points to a bpf program function */ 819 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */ 820 __BPF_REG_TYPE_MAX, 821 822 /* Extended reg_types. */ 823 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE, 824 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET, 825 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON, 826 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK, 827 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID, 828 829 /* This must be the last entry. Its purpose is to ensure the enum is 830 * wide enough to hold the higher bits reserved for bpf_type_flag. 831 */ 832 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT, 833 }; 834 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT); 835 836 /* The information passed from prog-specific *_is_valid_access 837 * back to the verifier. 838 */ 839 struct bpf_insn_access_aux { 840 enum bpf_reg_type reg_type; 841 union { 842 int ctx_field_size; 843 struct { 844 struct btf *btf; 845 u32 btf_id; 846 }; 847 }; 848 struct bpf_verifier_log *log; /* for verbose logs */ 849 }; 850 851 static inline void 852 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size) 853 { 854 aux->ctx_field_size = size; 855 } 856 857 static inline bool bpf_pseudo_func(const struct bpf_insn *insn) 858 { 859 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) && 860 insn->src_reg == BPF_PSEUDO_FUNC; 861 } 862 863 struct bpf_prog_ops { 864 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr, 865 union bpf_attr __user *uattr); 866 }; 867 868 struct bpf_reg_state; 869 struct bpf_verifier_ops { 870 /* return eBPF function prototype for verification */ 871 const struct bpf_func_proto * 872 (*get_func_proto)(enum bpf_func_id func_id, 873 const struct bpf_prog *prog); 874 875 /* return true if 'size' wide access at offset 'off' within bpf_context 876 * with 'type' (read or write) is allowed 877 */ 878 bool (*is_valid_access)(int off, int size, enum bpf_access_type type, 879 const struct bpf_prog *prog, 880 struct bpf_insn_access_aux *info); 881 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write, 882 const struct bpf_prog *prog); 883 int (*gen_ld_abs)(const struct bpf_insn *orig, 884 struct bpf_insn *insn_buf); 885 u32 (*convert_ctx_access)(enum bpf_access_type type, 886 const struct bpf_insn *src, 887 struct bpf_insn *dst, 888 struct bpf_prog *prog, u32 *target_size); 889 int (*btf_struct_access)(struct bpf_verifier_log *log, 890 const struct bpf_reg_state *reg, 891 int off, int size, enum bpf_access_type atype, 892 u32 *next_btf_id, enum bpf_type_flag *flag); 893 }; 894 895 struct bpf_prog_offload_ops { 896 /* verifier basic callbacks */ 897 int (*insn_hook)(struct bpf_verifier_env *env, 898 int insn_idx, int prev_insn_idx); 899 int (*finalize)(struct bpf_verifier_env *env); 900 /* verifier optimization callbacks (called after .finalize) */ 901 int (*replace_insn)(struct bpf_verifier_env *env, u32 off, 902 struct bpf_insn *insn); 903 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt); 904 /* program management callbacks */ 905 int (*prepare)(struct bpf_prog *prog); 906 int (*translate)(struct bpf_prog *prog); 907 void (*destroy)(struct bpf_prog *prog); 908 }; 909 910 struct bpf_prog_offload { 911 struct bpf_prog *prog; 912 struct net_device *netdev; 913 struct bpf_offload_dev *offdev; 914 void *dev_priv; 915 struct list_head offloads; 916 bool dev_state; 917 bool opt_failed; 918 void *jited_image; 919 u32 jited_len; 920 }; 921 922 enum bpf_cgroup_storage_type { 923 BPF_CGROUP_STORAGE_SHARED, 924 BPF_CGROUP_STORAGE_PERCPU, 925 __BPF_CGROUP_STORAGE_MAX 926 }; 927 928 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX 929 930 /* The longest tracepoint has 12 args. 931 * See include/trace/bpf_probe.h 932 */ 933 #define MAX_BPF_FUNC_ARGS 12 934 935 /* The maximum number of arguments passed through registers 936 * a single function may have. 937 */ 938 #define MAX_BPF_FUNC_REG_ARGS 5 939 940 /* The argument is a structure. */ 941 #define BTF_FMODEL_STRUCT_ARG BIT(0) 942 943 /* The argument is signed. */ 944 #define BTF_FMODEL_SIGNED_ARG BIT(1) 945 946 struct btf_func_model { 947 u8 ret_size; 948 u8 ret_flags; 949 u8 nr_args; 950 u8 arg_size[MAX_BPF_FUNC_ARGS]; 951 u8 arg_flags[MAX_BPF_FUNC_ARGS]; 952 }; 953 954 /* Restore arguments before returning from trampoline to let original function 955 * continue executing. This flag is used for fentry progs when there are no 956 * fexit progs. 957 */ 958 #define BPF_TRAMP_F_RESTORE_REGS BIT(0) 959 /* Call original function after fentry progs, but before fexit progs. 960 * Makes sense for fentry/fexit, normal calls and indirect calls. 961 */ 962 #define BPF_TRAMP_F_CALL_ORIG BIT(1) 963 /* Skip current frame and return to parent. Makes sense for fentry/fexit 964 * programs only. Should not be used with normal calls and indirect calls. 965 */ 966 #define BPF_TRAMP_F_SKIP_FRAME BIT(2) 967 /* Store IP address of the caller on the trampoline stack, 968 * so it's available for trampoline's programs. 969 */ 970 #define BPF_TRAMP_F_IP_ARG BIT(3) 971 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */ 972 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4) 973 974 /* Get original function from stack instead of from provided direct address. 975 * Makes sense for trampolines with fexit or fmod_ret programs. 976 */ 977 #define BPF_TRAMP_F_ORIG_STACK BIT(5) 978 979 /* This trampoline is on a function with another ftrace_ops with IPMODIFY, 980 * e.g., a live patch. This flag is set and cleared by ftrace call backs, 981 */ 982 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6) 983 984 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50 985 * bytes on x86. 986 */ 987 enum { 988 #if defined(__s390x__) 989 BPF_MAX_TRAMP_LINKS = 27, 990 #else 991 BPF_MAX_TRAMP_LINKS = 38, 992 #endif 993 }; 994 995 struct bpf_tramp_links { 996 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS]; 997 int nr_links; 998 }; 999 1000 struct bpf_tramp_run_ctx; 1001 1002 /* Different use cases for BPF trampoline: 1003 * 1. replace nop at the function entry (kprobe equivalent) 1004 * flags = BPF_TRAMP_F_RESTORE_REGS 1005 * fentry = a set of programs to run before returning from trampoline 1006 * 1007 * 2. replace nop at the function entry (kprobe + kretprobe equivalent) 1008 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME 1009 * orig_call = fentry_ip + MCOUNT_INSN_SIZE 1010 * fentry = a set of program to run before calling original function 1011 * fexit = a set of program to run after original function 1012 * 1013 * 3. replace direct call instruction anywhere in the function body 1014 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid) 1015 * With flags = 0 1016 * fentry = a set of programs to run before returning from trampoline 1017 * With flags = BPF_TRAMP_F_CALL_ORIG 1018 * orig_call = original callback addr or direct function addr 1019 * fentry = a set of program to run before calling original function 1020 * fexit = a set of program to run after original function 1021 */ 1022 struct bpf_tramp_image; 1023 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end, 1024 const struct btf_func_model *m, u32 flags, 1025 struct bpf_tramp_links *tlinks, 1026 void *orig_call); 1027 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog, 1028 struct bpf_tramp_run_ctx *run_ctx); 1029 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start, 1030 struct bpf_tramp_run_ctx *run_ctx); 1031 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr); 1032 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr); 1033 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog, 1034 struct bpf_tramp_run_ctx *run_ctx); 1035 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start, 1036 struct bpf_tramp_run_ctx *run_ctx); 1037 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog); 1038 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog); 1039 1040 struct bpf_ksym { 1041 unsigned long start; 1042 unsigned long end; 1043 char name[KSYM_NAME_LEN]; 1044 struct list_head lnode; 1045 struct latch_tree_node tnode; 1046 bool prog; 1047 }; 1048 1049 enum bpf_tramp_prog_type { 1050 BPF_TRAMP_FENTRY, 1051 BPF_TRAMP_FEXIT, 1052 BPF_TRAMP_MODIFY_RETURN, 1053 BPF_TRAMP_MAX, 1054 BPF_TRAMP_REPLACE, /* more than MAX */ 1055 }; 1056 1057 struct bpf_tramp_image { 1058 void *image; 1059 struct bpf_ksym ksym; 1060 struct percpu_ref pcref; 1061 void *ip_after_call; 1062 void *ip_epilogue; 1063 union { 1064 struct rcu_head rcu; 1065 struct work_struct work; 1066 }; 1067 }; 1068 1069 struct bpf_trampoline { 1070 /* hlist for trampoline_table */ 1071 struct hlist_node hlist; 1072 struct ftrace_ops *fops; 1073 /* serializes access to fields of this trampoline */ 1074 struct mutex mutex; 1075 refcount_t refcnt; 1076 u32 flags; 1077 u64 key; 1078 struct { 1079 struct btf_func_model model; 1080 void *addr; 1081 bool ftrace_managed; 1082 } func; 1083 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF 1084 * program by replacing one of its functions. func.addr is the address 1085 * of the function it replaced. 1086 */ 1087 struct bpf_prog *extension_prog; 1088 /* list of BPF programs using this trampoline */ 1089 struct hlist_head progs_hlist[BPF_TRAMP_MAX]; 1090 /* Number of attached programs. A counter per kind. */ 1091 int progs_cnt[BPF_TRAMP_MAX]; 1092 /* Executable image of trampoline */ 1093 struct bpf_tramp_image *cur_image; 1094 u64 selector; 1095 struct module *mod; 1096 }; 1097 1098 struct bpf_attach_target_info { 1099 struct btf_func_model fmodel; 1100 long tgt_addr; 1101 const char *tgt_name; 1102 const struct btf_type *tgt_type; 1103 }; 1104 1105 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */ 1106 1107 struct bpf_dispatcher_prog { 1108 struct bpf_prog *prog; 1109 refcount_t users; 1110 }; 1111 1112 struct bpf_dispatcher { 1113 /* dispatcher mutex */ 1114 struct mutex mutex; 1115 void *func; 1116 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX]; 1117 int num_progs; 1118 void *image; 1119 void *rw_image; 1120 u32 image_off; 1121 struct bpf_ksym ksym; 1122 #ifdef CONFIG_HAVE_STATIC_CALL 1123 struct static_call_key *sc_key; 1124 void *sc_tramp; 1125 #endif 1126 }; 1127 1128 static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func( 1129 const void *ctx, 1130 const struct bpf_insn *insnsi, 1131 bpf_func_t bpf_func) 1132 { 1133 return bpf_func(ctx, insnsi); 1134 } 1135 1136 /* the implementation of the opaque uapi struct bpf_dynptr */ 1137 struct bpf_dynptr_kern { 1138 void *data; 1139 /* Size represents the number of usable bytes of dynptr data. 1140 * If for example the offset is at 4 for a local dynptr whose data is 1141 * of type u64, the number of usable bytes is 4. 1142 * 1143 * The upper 8 bits are reserved. It is as follows: 1144 * Bits 0 - 23 = size 1145 * Bits 24 - 30 = dynptr type 1146 * Bit 31 = whether dynptr is read-only 1147 */ 1148 u32 size; 1149 u32 offset; 1150 } __aligned(8); 1151 1152 enum bpf_dynptr_type { 1153 BPF_DYNPTR_TYPE_INVALID, 1154 /* Points to memory that is local to the bpf program */ 1155 BPF_DYNPTR_TYPE_LOCAL, 1156 /* Underlying data is a ringbuf record */ 1157 BPF_DYNPTR_TYPE_RINGBUF, 1158 /* Underlying data is a sk_buff */ 1159 BPF_DYNPTR_TYPE_SKB, 1160 /* Underlying data is a xdp_buff */ 1161 BPF_DYNPTR_TYPE_XDP, 1162 }; 1163 1164 int bpf_dynptr_check_size(u32 size); 1165 u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr); 1166 1167 #ifdef CONFIG_BPF_JIT 1168 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1169 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr); 1170 struct bpf_trampoline *bpf_trampoline_get(u64 key, 1171 struct bpf_attach_target_info *tgt_info); 1172 void bpf_trampoline_put(struct bpf_trampoline *tr); 1173 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs); 1174 1175 /* 1176 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn 1177 * indirection with a direct call to the bpf program. If the architecture does 1178 * not have STATIC_CALL, avoid a double-indirection. 1179 */ 1180 #ifdef CONFIG_HAVE_STATIC_CALL 1181 1182 #define __BPF_DISPATCHER_SC_INIT(_name) \ 1183 .sc_key = &STATIC_CALL_KEY(_name), \ 1184 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name), 1185 1186 #define __BPF_DISPATCHER_SC(name) \ 1187 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func) 1188 1189 #define __BPF_DISPATCHER_CALL(name) \ 1190 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func) 1191 1192 #define __BPF_DISPATCHER_UPDATE(_d, _new) \ 1193 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new)) 1194 1195 #else 1196 #define __BPF_DISPATCHER_SC_INIT(name) 1197 #define __BPF_DISPATCHER_SC(name) 1198 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi) 1199 #define __BPF_DISPATCHER_UPDATE(_d, _new) 1200 #endif 1201 1202 #define BPF_DISPATCHER_INIT(_name) { \ 1203 .mutex = __MUTEX_INITIALIZER(_name.mutex), \ 1204 .func = &_name##_func, \ 1205 .progs = {}, \ 1206 .num_progs = 0, \ 1207 .image = NULL, \ 1208 .image_off = 0, \ 1209 .ksym = { \ 1210 .name = #_name, \ 1211 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \ 1212 }, \ 1213 __BPF_DISPATCHER_SC_INIT(_name##_call) \ 1214 } 1215 1216 #define DEFINE_BPF_DISPATCHER(name) \ 1217 __BPF_DISPATCHER_SC(name); \ 1218 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \ 1219 const void *ctx, \ 1220 const struct bpf_insn *insnsi, \ 1221 bpf_func_t bpf_func) \ 1222 { \ 1223 return __BPF_DISPATCHER_CALL(name); \ 1224 } \ 1225 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \ 1226 struct bpf_dispatcher bpf_dispatcher_##name = \ 1227 BPF_DISPATCHER_INIT(bpf_dispatcher_##name); 1228 1229 #define DECLARE_BPF_DISPATCHER(name) \ 1230 unsigned int bpf_dispatcher_##name##_func( \ 1231 const void *ctx, \ 1232 const struct bpf_insn *insnsi, \ 1233 bpf_func_t bpf_func); \ 1234 extern struct bpf_dispatcher bpf_dispatcher_##name; 1235 1236 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func 1237 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name) 1238 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from, 1239 struct bpf_prog *to); 1240 /* Called only from JIT-enabled code, so there's no need for stubs. */ 1241 void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym); 1242 void bpf_image_ksym_del(struct bpf_ksym *ksym); 1243 void bpf_ksym_add(struct bpf_ksym *ksym); 1244 void bpf_ksym_del(struct bpf_ksym *ksym); 1245 int bpf_jit_charge_modmem(u32 size); 1246 void bpf_jit_uncharge_modmem(u32 size); 1247 bool bpf_prog_has_trampoline(const struct bpf_prog *prog); 1248 #else 1249 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link, 1250 struct bpf_trampoline *tr) 1251 { 1252 return -ENOTSUPP; 1253 } 1254 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, 1255 struct bpf_trampoline *tr) 1256 { 1257 return -ENOTSUPP; 1258 } 1259 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key, 1260 struct bpf_attach_target_info *tgt_info) 1261 { 1262 return ERR_PTR(-EOPNOTSUPP); 1263 } 1264 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {} 1265 #define DEFINE_BPF_DISPATCHER(name) 1266 #define DECLARE_BPF_DISPATCHER(name) 1267 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func 1268 #define BPF_DISPATCHER_PTR(name) NULL 1269 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, 1270 struct bpf_prog *from, 1271 struct bpf_prog *to) {} 1272 static inline bool is_bpf_image_address(unsigned long address) 1273 { 1274 return false; 1275 } 1276 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog) 1277 { 1278 return false; 1279 } 1280 #endif 1281 1282 struct bpf_func_info_aux { 1283 u16 linkage; 1284 bool unreliable; 1285 }; 1286 1287 enum bpf_jit_poke_reason { 1288 BPF_POKE_REASON_TAIL_CALL, 1289 }; 1290 1291 /* Descriptor of pokes pointing /into/ the JITed image. */ 1292 struct bpf_jit_poke_descriptor { 1293 void *tailcall_target; 1294 void *tailcall_bypass; 1295 void *bypass_addr; 1296 void *aux; 1297 union { 1298 struct { 1299 struct bpf_map *map; 1300 u32 key; 1301 } tail_call; 1302 }; 1303 bool tailcall_target_stable; 1304 u8 adj_off; 1305 u16 reason; 1306 u32 insn_idx; 1307 }; 1308 1309 /* reg_type info for ctx arguments */ 1310 struct bpf_ctx_arg_aux { 1311 u32 offset; 1312 enum bpf_reg_type reg_type; 1313 u32 btf_id; 1314 }; 1315 1316 struct btf_mod_pair { 1317 struct btf *btf; 1318 struct module *module; 1319 }; 1320 1321 struct bpf_kfunc_desc_tab; 1322 1323 struct bpf_prog_aux { 1324 atomic64_t refcnt; 1325 u32 used_map_cnt; 1326 u32 used_btf_cnt; 1327 u32 max_ctx_offset; 1328 u32 max_pkt_offset; 1329 u32 max_tp_access; 1330 u32 stack_depth; 1331 u32 id; 1332 u32 func_cnt; /* used by non-func prog as the number of func progs */ 1333 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */ 1334 u32 attach_btf_id; /* in-kernel BTF type id to attach to */ 1335 u32 ctx_arg_info_size; 1336 u32 max_rdonly_access; 1337 u32 max_rdwr_access; 1338 struct btf *attach_btf; 1339 const struct bpf_ctx_arg_aux *ctx_arg_info; 1340 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */ 1341 struct bpf_prog *dst_prog; 1342 struct bpf_trampoline *dst_trampoline; 1343 enum bpf_prog_type saved_dst_prog_type; 1344 enum bpf_attach_type saved_dst_attach_type; 1345 bool verifier_zext; /* Zero extensions has been inserted by verifier. */ 1346 bool dev_bound; /* Program is bound to the netdev. */ 1347 bool offload_requested; /* Program is bound and offloaded to the netdev. */ 1348 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */ 1349 bool func_proto_unreliable; 1350 bool sleepable; 1351 bool tail_call_reachable; 1352 bool xdp_has_frags; 1353 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */ 1354 const struct btf_type *attach_func_proto; 1355 /* function name for valid attach_btf_id */ 1356 const char *attach_func_name; 1357 struct bpf_prog **func; 1358 void *jit_data; /* JIT specific data. arch dependent */ 1359 struct bpf_jit_poke_descriptor *poke_tab; 1360 struct bpf_kfunc_desc_tab *kfunc_tab; 1361 struct bpf_kfunc_btf_tab *kfunc_btf_tab; 1362 u32 size_poke_tab; 1363 struct bpf_ksym ksym; 1364 const struct bpf_prog_ops *ops; 1365 struct bpf_map **used_maps; 1366 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */ 1367 struct btf_mod_pair *used_btfs; 1368 struct bpf_prog *prog; 1369 struct user_struct *user; 1370 u64 load_time; /* ns since boottime */ 1371 u32 verified_insns; 1372 int cgroup_atype; /* enum cgroup_bpf_attach_type */ 1373 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1374 char name[BPF_OBJ_NAME_LEN]; 1375 #ifdef CONFIG_SECURITY 1376 void *security; 1377 #endif 1378 struct bpf_prog_offload *offload; 1379 struct btf *btf; 1380 struct bpf_func_info *func_info; 1381 struct bpf_func_info_aux *func_info_aux; 1382 /* bpf_line_info loaded from userspace. linfo->insn_off 1383 * has the xlated insn offset. 1384 * Both the main and sub prog share the same linfo. 1385 * The subprog can access its first linfo by 1386 * using the linfo_idx. 1387 */ 1388 struct bpf_line_info *linfo; 1389 /* jited_linfo is the jited addr of the linfo. It has a 1390 * one to one mapping to linfo: 1391 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off. 1392 * Both the main and sub prog share the same jited_linfo. 1393 * The subprog can access its first jited_linfo by 1394 * using the linfo_idx. 1395 */ 1396 void **jited_linfo; 1397 u32 func_info_cnt; 1398 u32 nr_linfo; 1399 /* subprog can use linfo_idx to access its first linfo and 1400 * jited_linfo. 1401 * main prog always has linfo_idx == 0 1402 */ 1403 u32 linfo_idx; 1404 u32 num_exentries; 1405 struct exception_table_entry *extable; 1406 union { 1407 struct work_struct work; 1408 struct rcu_head rcu; 1409 }; 1410 }; 1411 1412 struct bpf_prog { 1413 u16 pages; /* Number of allocated pages */ 1414 u16 jited:1, /* Is our filter JIT'ed? */ 1415 jit_requested:1,/* archs need to JIT the prog */ 1416 gpl_compatible:1, /* Is filter GPL compatible? */ 1417 cb_access:1, /* Is control block accessed? */ 1418 dst_needed:1, /* Do we need dst entry? */ 1419 blinding_requested:1, /* needs constant blinding */ 1420 blinded:1, /* Was blinded */ 1421 is_func:1, /* program is a bpf function */ 1422 kprobe_override:1, /* Do we override a kprobe? */ 1423 has_callchain_buf:1, /* callchain buffer allocated? */ 1424 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 1425 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 1426 call_get_func_ip:1, /* Do we call get_func_ip() */ 1427 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */ 1428 enum bpf_prog_type type; /* Type of BPF program */ 1429 enum bpf_attach_type expected_attach_type; /* For some prog types */ 1430 u32 len; /* Number of filter blocks */ 1431 u32 jited_len; /* Size of jited insns in bytes */ 1432 u8 tag[BPF_TAG_SIZE]; 1433 struct bpf_prog_stats __percpu *stats; 1434 int __percpu *active; 1435 unsigned int (*bpf_func)(const void *ctx, 1436 const struct bpf_insn *insn); 1437 struct bpf_prog_aux *aux; /* Auxiliary fields */ 1438 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 1439 /* Instructions for interpreter */ 1440 union { 1441 DECLARE_FLEX_ARRAY(struct sock_filter, insns); 1442 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi); 1443 }; 1444 }; 1445 1446 struct bpf_array_aux { 1447 /* Programs with direct jumps into programs part of this array. */ 1448 struct list_head poke_progs; 1449 struct bpf_map *map; 1450 struct mutex poke_mutex; 1451 struct work_struct work; 1452 }; 1453 1454 struct bpf_link { 1455 atomic64_t refcnt; 1456 u32 id; 1457 enum bpf_link_type type; 1458 const struct bpf_link_ops *ops; 1459 struct bpf_prog *prog; 1460 struct work_struct work; 1461 }; 1462 1463 struct bpf_link_ops { 1464 void (*release)(struct bpf_link *link); 1465 void (*dealloc)(struct bpf_link *link); 1466 int (*detach)(struct bpf_link *link); 1467 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog, 1468 struct bpf_prog *old_prog); 1469 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq); 1470 int (*fill_link_info)(const struct bpf_link *link, 1471 struct bpf_link_info *info); 1472 }; 1473 1474 struct bpf_tramp_link { 1475 struct bpf_link link; 1476 struct hlist_node tramp_hlist; 1477 u64 cookie; 1478 }; 1479 1480 struct bpf_shim_tramp_link { 1481 struct bpf_tramp_link link; 1482 struct bpf_trampoline *trampoline; 1483 }; 1484 1485 struct bpf_tracing_link { 1486 struct bpf_tramp_link link; 1487 enum bpf_attach_type attach_type; 1488 struct bpf_trampoline *trampoline; 1489 struct bpf_prog *tgt_prog; 1490 }; 1491 1492 struct bpf_link_primer { 1493 struct bpf_link *link; 1494 struct file *file; 1495 int fd; 1496 u32 id; 1497 }; 1498 1499 struct bpf_struct_ops_value; 1500 struct btf_member; 1501 1502 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64 1503 struct bpf_struct_ops { 1504 const struct bpf_verifier_ops *verifier_ops; 1505 int (*init)(struct btf *btf); 1506 int (*check_member)(const struct btf_type *t, 1507 const struct btf_member *member, 1508 const struct bpf_prog *prog); 1509 int (*init_member)(const struct btf_type *t, 1510 const struct btf_member *member, 1511 void *kdata, const void *udata); 1512 int (*reg)(void *kdata); 1513 void (*unreg)(void *kdata); 1514 const struct btf_type *type; 1515 const struct btf_type *value_type; 1516 const char *name; 1517 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS]; 1518 u32 type_id; 1519 u32 value_id; 1520 }; 1521 1522 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL) 1523 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA)) 1524 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id); 1525 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log); 1526 bool bpf_struct_ops_get(const void *kdata); 1527 void bpf_struct_ops_put(const void *kdata); 1528 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key, 1529 void *value); 1530 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks, 1531 struct bpf_tramp_link *link, 1532 const struct btf_func_model *model, 1533 void *image, void *image_end); 1534 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1535 { 1536 if (owner == BPF_MODULE_OWNER) 1537 return bpf_struct_ops_get(data); 1538 else 1539 return try_module_get(owner); 1540 } 1541 static inline void bpf_module_put(const void *data, struct module *owner) 1542 { 1543 if (owner == BPF_MODULE_OWNER) 1544 bpf_struct_ops_put(data); 1545 else 1546 module_put(owner); 1547 } 1548 1549 #ifdef CONFIG_NET 1550 /* Define it here to avoid the use of forward declaration */ 1551 struct bpf_dummy_ops_state { 1552 int val; 1553 }; 1554 1555 struct bpf_dummy_ops { 1556 int (*test_1)(struct bpf_dummy_ops_state *cb); 1557 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2, 1558 char a3, unsigned long a4); 1559 int (*test_sleepable)(struct bpf_dummy_ops_state *cb); 1560 }; 1561 1562 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr, 1563 union bpf_attr __user *uattr); 1564 #endif 1565 #else 1566 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id) 1567 { 1568 return NULL; 1569 } 1570 static inline void bpf_struct_ops_init(struct btf *btf, 1571 struct bpf_verifier_log *log) 1572 { 1573 } 1574 static inline bool bpf_try_module_get(const void *data, struct module *owner) 1575 { 1576 return try_module_get(owner); 1577 } 1578 static inline void bpf_module_put(const void *data, struct module *owner) 1579 { 1580 module_put(owner); 1581 } 1582 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, 1583 void *key, 1584 void *value) 1585 { 1586 return -EINVAL; 1587 } 1588 #endif 1589 1590 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM) 1591 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1592 int cgroup_atype); 1593 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog); 1594 #else 1595 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog, 1596 int cgroup_atype) 1597 { 1598 return -EOPNOTSUPP; 1599 } 1600 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog) 1601 { 1602 } 1603 #endif 1604 1605 struct bpf_array { 1606 struct bpf_map map; 1607 u32 elem_size; 1608 u32 index_mask; 1609 struct bpf_array_aux *aux; 1610 union { 1611 DECLARE_FLEX_ARRAY(char, value) __aligned(8); 1612 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8); 1613 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8); 1614 }; 1615 }; 1616 1617 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */ 1618 #define MAX_TAIL_CALL_CNT 33 1619 1620 /* Maximum number of loops for bpf_loop */ 1621 #define BPF_MAX_LOOPS BIT(23) 1622 1623 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \ 1624 BPF_F_RDONLY_PROG | \ 1625 BPF_F_WRONLY | \ 1626 BPF_F_WRONLY_PROG) 1627 1628 #define BPF_MAP_CAN_READ BIT(0) 1629 #define BPF_MAP_CAN_WRITE BIT(1) 1630 1631 /* Maximum number of user-producer ring buffer samples that can be drained in 1632 * a call to bpf_user_ringbuf_drain(). 1633 */ 1634 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024) 1635 1636 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map) 1637 { 1638 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1639 1640 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is 1641 * not possible. 1642 */ 1643 if (access_flags & BPF_F_RDONLY_PROG) 1644 return BPF_MAP_CAN_READ; 1645 else if (access_flags & BPF_F_WRONLY_PROG) 1646 return BPF_MAP_CAN_WRITE; 1647 else 1648 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE; 1649 } 1650 1651 static inline bool bpf_map_flags_access_ok(u32 access_flags) 1652 { 1653 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) != 1654 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG); 1655 } 1656 1657 struct bpf_event_entry { 1658 struct perf_event *event; 1659 struct file *perf_file; 1660 struct file *map_file; 1661 struct rcu_head rcu; 1662 }; 1663 1664 static inline bool map_type_contains_progs(struct bpf_map *map) 1665 { 1666 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY || 1667 map->map_type == BPF_MAP_TYPE_DEVMAP || 1668 map->map_type == BPF_MAP_TYPE_CPUMAP; 1669 } 1670 1671 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp); 1672 int bpf_prog_calc_tag(struct bpf_prog *fp); 1673 1674 const struct bpf_func_proto *bpf_get_trace_printk_proto(void); 1675 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void); 1676 1677 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src, 1678 unsigned long off, unsigned long len); 1679 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type, 1680 const struct bpf_insn *src, 1681 struct bpf_insn *dst, 1682 struct bpf_prog *prog, 1683 u32 *target_size); 1684 1685 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size, 1686 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy); 1687 1688 /* an array of programs to be executed under rcu_lock. 1689 * 1690 * Typical usage: 1691 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run); 1692 * 1693 * the structure returned by bpf_prog_array_alloc() should be populated 1694 * with program pointers and the last pointer must be NULL. 1695 * The user has to keep refcnt on the program and make sure the program 1696 * is removed from the array before bpf_prog_put(). 1697 * The 'struct bpf_prog_array *' should only be replaced with xchg() 1698 * since other cpus are walking the array of pointers in parallel. 1699 */ 1700 struct bpf_prog_array_item { 1701 struct bpf_prog *prog; 1702 union { 1703 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]; 1704 u64 bpf_cookie; 1705 }; 1706 }; 1707 1708 struct bpf_prog_array { 1709 struct rcu_head rcu; 1710 struct bpf_prog_array_item items[]; 1711 }; 1712 1713 struct bpf_empty_prog_array { 1714 struct bpf_prog_array hdr; 1715 struct bpf_prog *null_prog; 1716 }; 1717 1718 /* to avoid allocating empty bpf_prog_array for cgroups that 1719 * don't have bpf program attached use one global 'bpf_empty_prog_array' 1720 * It will not be modified the caller of bpf_prog_array_alloc() 1721 * (since caller requested prog_cnt == 0) 1722 * that pointer should be 'freed' by bpf_prog_array_free() 1723 */ 1724 extern struct bpf_empty_prog_array bpf_empty_prog_array; 1725 1726 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags); 1727 void bpf_prog_array_free(struct bpf_prog_array *progs); 1728 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */ 1729 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs); 1730 int bpf_prog_array_length(struct bpf_prog_array *progs); 1731 bool bpf_prog_array_is_empty(struct bpf_prog_array *array); 1732 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs, 1733 __u32 __user *prog_ids, u32 cnt); 1734 1735 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs, 1736 struct bpf_prog *old_prog); 1737 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index); 1738 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index, 1739 struct bpf_prog *prog); 1740 int bpf_prog_array_copy_info(struct bpf_prog_array *array, 1741 u32 *prog_ids, u32 request_cnt, 1742 u32 *prog_cnt); 1743 int bpf_prog_array_copy(struct bpf_prog_array *old_array, 1744 struct bpf_prog *exclude_prog, 1745 struct bpf_prog *include_prog, 1746 u64 bpf_cookie, 1747 struct bpf_prog_array **new_array); 1748 1749 struct bpf_run_ctx {}; 1750 1751 struct bpf_cg_run_ctx { 1752 struct bpf_run_ctx run_ctx; 1753 const struct bpf_prog_array_item *prog_item; 1754 int retval; 1755 }; 1756 1757 struct bpf_trace_run_ctx { 1758 struct bpf_run_ctx run_ctx; 1759 u64 bpf_cookie; 1760 }; 1761 1762 struct bpf_tramp_run_ctx { 1763 struct bpf_run_ctx run_ctx; 1764 u64 bpf_cookie; 1765 struct bpf_run_ctx *saved_run_ctx; 1766 }; 1767 1768 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx) 1769 { 1770 struct bpf_run_ctx *old_ctx = NULL; 1771 1772 #ifdef CONFIG_BPF_SYSCALL 1773 old_ctx = current->bpf_ctx; 1774 current->bpf_ctx = new_ctx; 1775 #endif 1776 return old_ctx; 1777 } 1778 1779 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx) 1780 { 1781 #ifdef CONFIG_BPF_SYSCALL 1782 current->bpf_ctx = old_ctx; 1783 #endif 1784 } 1785 1786 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */ 1787 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0) 1788 /* BPF program asks to set CN on the packet. */ 1789 #define BPF_RET_SET_CN (1 << 0) 1790 1791 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx); 1792 1793 static __always_inline u32 1794 bpf_prog_run_array(const struct bpf_prog_array *array, 1795 const void *ctx, bpf_prog_run_fn run_prog) 1796 { 1797 const struct bpf_prog_array_item *item; 1798 const struct bpf_prog *prog; 1799 struct bpf_run_ctx *old_run_ctx; 1800 struct bpf_trace_run_ctx run_ctx; 1801 u32 ret = 1; 1802 1803 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held"); 1804 1805 if (unlikely(!array)) 1806 return ret; 1807 1808 migrate_disable(); 1809 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1810 item = &array->items[0]; 1811 while ((prog = READ_ONCE(item->prog))) { 1812 run_ctx.bpf_cookie = item->bpf_cookie; 1813 ret &= run_prog(prog, ctx); 1814 item++; 1815 } 1816 bpf_reset_run_ctx(old_run_ctx); 1817 migrate_enable(); 1818 return ret; 1819 } 1820 1821 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs: 1822 * 1823 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array 1824 * overall. As a result, we must use the bpf_prog_array_free_sleepable 1825 * in order to use the tasks_trace rcu grace period. 1826 * 1827 * When a non-sleepable program is inside the array, we take the rcu read 1828 * section and disable preemption for that program alone, so it can access 1829 * rcu-protected dynamically sized maps. 1830 */ 1831 static __always_inline u32 1832 bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu, 1833 const void *ctx, bpf_prog_run_fn run_prog) 1834 { 1835 const struct bpf_prog_array_item *item; 1836 const struct bpf_prog *prog; 1837 const struct bpf_prog_array *array; 1838 struct bpf_run_ctx *old_run_ctx; 1839 struct bpf_trace_run_ctx run_ctx; 1840 u32 ret = 1; 1841 1842 might_fault(); 1843 1844 rcu_read_lock_trace(); 1845 migrate_disable(); 1846 1847 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held()); 1848 if (unlikely(!array)) 1849 goto out; 1850 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx); 1851 item = &array->items[0]; 1852 while ((prog = READ_ONCE(item->prog))) { 1853 if (!prog->aux->sleepable) 1854 rcu_read_lock(); 1855 1856 run_ctx.bpf_cookie = item->bpf_cookie; 1857 ret &= run_prog(prog, ctx); 1858 item++; 1859 1860 if (!prog->aux->sleepable) 1861 rcu_read_unlock(); 1862 } 1863 bpf_reset_run_ctx(old_run_ctx); 1864 out: 1865 migrate_enable(); 1866 rcu_read_unlock_trace(); 1867 return ret; 1868 } 1869 1870 #ifdef CONFIG_BPF_SYSCALL 1871 DECLARE_PER_CPU(int, bpf_prog_active); 1872 extern struct mutex bpf_stats_enabled_mutex; 1873 1874 /* 1875 * Block execution of BPF programs attached to instrumentation (perf, 1876 * kprobes, tracepoints) to prevent deadlocks on map operations as any of 1877 * these events can happen inside a region which holds a map bucket lock 1878 * and can deadlock on it. 1879 */ 1880 static inline void bpf_disable_instrumentation(void) 1881 { 1882 migrate_disable(); 1883 this_cpu_inc(bpf_prog_active); 1884 } 1885 1886 static inline void bpf_enable_instrumentation(void) 1887 { 1888 this_cpu_dec(bpf_prog_active); 1889 migrate_enable(); 1890 } 1891 1892 extern const struct file_operations bpf_map_fops; 1893 extern const struct file_operations bpf_prog_fops; 1894 extern const struct file_operations bpf_iter_fops; 1895 1896 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 1897 extern const struct bpf_prog_ops _name ## _prog_ops; \ 1898 extern const struct bpf_verifier_ops _name ## _verifier_ops; 1899 #define BPF_MAP_TYPE(_id, _ops) \ 1900 extern const struct bpf_map_ops _ops; 1901 #define BPF_LINK_TYPE(_id, _name) 1902 #include <linux/bpf_types.h> 1903 #undef BPF_PROG_TYPE 1904 #undef BPF_MAP_TYPE 1905 #undef BPF_LINK_TYPE 1906 1907 extern const struct bpf_prog_ops bpf_offload_prog_ops; 1908 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops; 1909 extern const struct bpf_verifier_ops xdp_analyzer_ops; 1910 1911 struct bpf_prog *bpf_prog_get(u32 ufd); 1912 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type, 1913 bool attach_drv); 1914 void bpf_prog_add(struct bpf_prog *prog, int i); 1915 void bpf_prog_sub(struct bpf_prog *prog, int i); 1916 void bpf_prog_inc(struct bpf_prog *prog); 1917 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog); 1918 void bpf_prog_put(struct bpf_prog *prog); 1919 1920 void bpf_prog_free_id(struct bpf_prog *prog); 1921 void bpf_map_free_id(struct bpf_map *map); 1922 1923 struct btf_field *btf_record_find(const struct btf_record *rec, 1924 u32 offset, enum btf_field_type type); 1925 void btf_record_free(struct btf_record *rec); 1926 void bpf_map_free_record(struct bpf_map *map); 1927 struct btf_record *btf_record_dup(const struct btf_record *rec); 1928 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b); 1929 void bpf_obj_free_timer(const struct btf_record *rec, void *obj); 1930 void bpf_obj_free_fields(const struct btf_record *rec, void *obj); 1931 1932 struct bpf_map *bpf_map_get(u32 ufd); 1933 struct bpf_map *bpf_map_get_with_uref(u32 ufd); 1934 struct bpf_map *__bpf_map_get(struct fd f); 1935 void bpf_map_inc(struct bpf_map *map); 1936 void bpf_map_inc_with_uref(struct bpf_map *map); 1937 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map); 1938 void bpf_map_put_with_uref(struct bpf_map *map); 1939 void bpf_map_put(struct bpf_map *map); 1940 void *bpf_map_area_alloc(u64 size, int numa_node); 1941 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node); 1942 void bpf_map_area_free(void *base); 1943 bool bpf_map_write_active(const struct bpf_map *map); 1944 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr); 1945 int generic_map_lookup_batch(struct bpf_map *map, 1946 const union bpf_attr *attr, 1947 union bpf_attr __user *uattr); 1948 int generic_map_update_batch(struct bpf_map *map, struct file *map_file, 1949 const union bpf_attr *attr, 1950 union bpf_attr __user *uattr); 1951 int generic_map_delete_batch(struct bpf_map *map, 1952 const union bpf_attr *attr, 1953 union bpf_attr __user *uattr); 1954 struct bpf_map *bpf_map_get_curr_or_next(u32 *id); 1955 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id); 1956 1957 #ifdef CONFIG_MEMCG_KMEM 1958 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1959 int node); 1960 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags); 1961 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, 1962 gfp_t flags); 1963 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, 1964 size_t align, gfp_t flags); 1965 #else 1966 static inline void * 1967 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags, 1968 int node) 1969 { 1970 return kmalloc_node(size, flags, node); 1971 } 1972 1973 static inline void * 1974 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags) 1975 { 1976 return kzalloc(size, flags); 1977 } 1978 1979 static inline void * 1980 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags) 1981 { 1982 return kvcalloc(n, size, flags); 1983 } 1984 1985 static inline void __percpu * 1986 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align, 1987 gfp_t flags) 1988 { 1989 return __alloc_percpu_gfp(size, align, flags); 1990 } 1991 #endif 1992 1993 extern int sysctl_unprivileged_bpf_disabled; 1994 1995 static inline bool bpf_allow_ptr_leaks(void) 1996 { 1997 return perfmon_capable(); 1998 } 1999 2000 static inline bool bpf_allow_uninit_stack(void) 2001 { 2002 return perfmon_capable(); 2003 } 2004 2005 static inline bool bpf_bypass_spec_v1(void) 2006 { 2007 return perfmon_capable(); 2008 } 2009 2010 static inline bool bpf_bypass_spec_v4(void) 2011 { 2012 return perfmon_capable(); 2013 } 2014 2015 int bpf_map_new_fd(struct bpf_map *map, int flags); 2016 int bpf_prog_new_fd(struct bpf_prog *prog); 2017 2018 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2019 const struct bpf_link_ops *ops, struct bpf_prog *prog); 2020 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer); 2021 int bpf_link_settle(struct bpf_link_primer *primer); 2022 void bpf_link_cleanup(struct bpf_link_primer *primer); 2023 void bpf_link_inc(struct bpf_link *link); 2024 void bpf_link_put(struct bpf_link *link); 2025 int bpf_link_new_fd(struct bpf_link *link); 2026 struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd); 2027 struct bpf_link *bpf_link_get_from_fd(u32 ufd); 2028 struct bpf_link *bpf_link_get_curr_or_next(u32 *id); 2029 2030 int bpf_obj_pin_user(u32 ufd, const char __user *pathname); 2031 int bpf_obj_get_user(const char __user *pathname, int flags); 2032 2033 #define BPF_ITER_FUNC_PREFIX "bpf_iter_" 2034 #define DEFINE_BPF_ITER_FUNC(target, args...) \ 2035 extern int bpf_iter_ ## target(args); \ 2036 int __init bpf_iter_ ## target(args) { return 0; } 2037 2038 /* 2039 * The task type of iterators. 2040 * 2041 * For BPF task iterators, they can be parameterized with various 2042 * parameters to visit only some of tasks. 2043 * 2044 * BPF_TASK_ITER_ALL (default) 2045 * Iterate over resources of every task. 2046 * 2047 * BPF_TASK_ITER_TID 2048 * Iterate over resources of a task/tid. 2049 * 2050 * BPF_TASK_ITER_TGID 2051 * Iterate over resources of every task of a process / task group. 2052 */ 2053 enum bpf_iter_task_type { 2054 BPF_TASK_ITER_ALL = 0, 2055 BPF_TASK_ITER_TID, 2056 BPF_TASK_ITER_TGID, 2057 }; 2058 2059 struct bpf_iter_aux_info { 2060 /* for map_elem iter */ 2061 struct bpf_map *map; 2062 2063 /* for cgroup iter */ 2064 struct { 2065 struct cgroup *start; /* starting cgroup */ 2066 enum bpf_cgroup_iter_order order; 2067 } cgroup; 2068 struct { 2069 enum bpf_iter_task_type type; 2070 u32 pid; 2071 } task; 2072 }; 2073 2074 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog, 2075 union bpf_iter_link_info *linfo, 2076 struct bpf_iter_aux_info *aux); 2077 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux); 2078 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux, 2079 struct seq_file *seq); 2080 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux, 2081 struct bpf_link_info *info); 2082 typedef const struct bpf_func_proto * 2083 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id, 2084 const struct bpf_prog *prog); 2085 2086 enum bpf_iter_feature { 2087 BPF_ITER_RESCHED = BIT(0), 2088 }; 2089 2090 #define BPF_ITER_CTX_ARG_MAX 2 2091 struct bpf_iter_reg { 2092 const char *target; 2093 bpf_iter_attach_target_t attach_target; 2094 bpf_iter_detach_target_t detach_target; 2095 bpf_iter_show_fdinfo_t show_fdinfo; 2096 bpf_iter_fill_link_info_t fill_link_info; 2097 bpf_iter_get_func_proto_t get_func_proto; 2098 u32 ctx_arg_info_size; 2099 u32 feature; 2100 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX]; 2101 const struct bpf_iter_seq_info *seq_info; 2102 }; 2103 2104 struct bpf_iter_meta { 2105 __bpf_md_ptr(struct seq_file *, seq); 2106 u64 session_id; 2107 u64 seq_num; 2108 }; 2109 2110 struct bpf_iter__bpf_map_elem { 2111 __bpf_md_ptr(struct bpf_iter_meta *, meta); 2112 __bpf_md_ptr(struct bpf_map *, map); 2113 __bpf_md_ptr(void *, key); 2114 __bpf_md_ptr(void *, value); 2115 }; 2116 2117 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info); 2118 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info); 2119 bool bpf_iter_prog_supported(struct bpf_prog *prog); 2120 const struct bpf_func_proto * 2121 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog); 2122 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog); 2123 int bpf_iter_new_fd(struct bpf_link *link); 2124 bool bpf_link_is_iter(struct bpf_link *link); 2125 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop); 2126 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx); 2127 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux, 2128 struct seq_file *seq); 2129 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux, 2130 struct bpf_link_info *info); 2131 2132 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 2133 struct bpf_func_state *caller, 2134 struct bpf_func_state *callee); 2135 2136 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value); 2137 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value); 2138 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value, 2139 u64 flags); 2140 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 2141 u64 flags); 2142 2143 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value); 2144 2145 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 2146 void *key, void *value, u64 map_flags); 2147 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2148 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file, 2149 void *key, void *value, u64 map_flags); 2150 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value); 2151 2152 int bpf_get_file_flag(int flags); 2153 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size, 2154 size_t actual_size); 2155 2156 /* verify correctness of eBPF program */ 2157 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr); 2158 2159 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2160 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth); 2161 #endif 2162 2163 struct btf *bpf_get_btf_vmlinux(void); 2164 2165 /* Map specifics */ 2166 struct xdp_frame; 2167 struct sk_buff; 2168 struct bpf_dtab_netdev; 2169 struct bpf_cpu_map_entry; 2170 2171 void __dev_flush(void); 2172 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2173 struct net_device *dev_rx); 2174 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2175 struct net_device *dev_rx); 2176 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2177 struct bpf_map *map, bool exclude_ingress); 2178 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb, 2179 struct bpf_prog *xdp_prog); 2180 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2181 struct bpf_prog *xdp_prog, struct bpf_map *map, 2182 bool exclude_ingress); 2183 2184 void __cpu_map_flush(void); 2185 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf, 2186 struct net_device *dev_rx); 2187 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2188 struct sk_buff *skb); 2189 2190 /* Return map's numa specified by userspace */ 2191 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr) 2192 { 2193 return (attr->map_flags & BPF_F_NUMA_NODE) ? 2194 attr->numa_node : NUMA_NO_NODE; 2195 } 2196 2197 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type); 2198 int array_map_alloc_check(union bpf_attr *attr); 2199 2200 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr, 2201 union bpf_attr __user *uattr); 2202 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr, 2203 union bpf_attr __user *uattr); 2204 int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2205 const union bpf_attr *kattr, 2206 union bpf_attr __user *uattr); 2207 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2208 const union bpf_attr *kattr, 2209 union bpf_attr __user *uattr); 2210 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog, 2211 const union bpf_attr *kattr, 2212 union bpf_attr __user *uattr); 2213 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2214 const union bpf_attr *kattr, 2215 union bpf_attr __user *uattr); 2216 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 2217 const struct bpf_prog *prog, 2218 struct bpf_insn_access_aux *info); 2219 2220 static inline bool bpf_tracing_ctx_access(int off, int size, 2221 enum bpf_access_type type) 2222 { 2223 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 2224 return false; 2225 if (type != BPF_READ) 2226 return false; 2227 if (off % size != 0) 2228 return false; 2229 return true; 2230 } 2231 2232 static inline bool bpf_tracing_btf_ctx_access(int off, int size, 2233 enum bpf_access_type type, 2234 const struct bpf_prog *prog, 2235 struct bpf_insn_access_aux *info) 2236 { 2237 if (!bpf_tracing_ctx_access(off, size, type)) 2238 return false; 2239 return btf_ctx_access(off, size, type, prog, info); 2240 } 2241 2242 int btf_struct_access(struct bpf_verifier_log *log, 2243 const struct bpf_reg_state *reg, 2244 int off, int size, enum bpf_access_type atype, 2245 u32 *next_btf_id, enum bpf_type_flag *flag); 2246 bool btf_struct_ids_match(struct bpf_verifier_log *log, 2247 const struct btf *btf, u32 id, int off, 2248 const struct btf *need_btf, u32 need_type_id, 2249 bool strict); 2250 2251 int btf_distill_func_proto(struct bpf_verifier_log *log, 2252 struct btf *btf, 2253 const struct btf_type *func_proto, 2254 const char *func_name, 2255 struct btf_func_model *m); 2256 2257 struct bpf_reg_state; 2258 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 2259 struct bpf_reg_state *regs); 2260 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 2261 struct bpf_reg_state *regs); 2262 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 2263 struct bpf_reg_state *reg); 2264 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 2265 struct btf *btf, const struct btf_type *t); 2266 2267 struct bpf_prog *bpf_prog_by_id(u32 id); 2268 struct bpf_link *bpf_link_by_id(u32 id); 2269 2270 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id); 2271 void bpf_task_storage_free(struct task_struct *task); 2272 void bpf_cgrp_storage_free(struct cgroup *cgroup); 2273 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog); 2274 const struct btf_func_model * 2275 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2276 const struct bpf_insn *insn); 2277 struct bpf_core_ctx { 2278 struct bpf_verifier_log *log; 2279 const struct btf *btf; 2280 }; 2281 2282 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 2283 const struct bpf_reg_state *reg, 2284 int off, const char *suffix); 2285 2286 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 2287 const struct btf *reg_btf, u32 reg_id, 2288 const struct btf *arg_btf, u32 arg_id); 2289 2290 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 2291 int relo_idx, void *insn); 2292 2293 static inline bool unprivileged_ebpf_enabled(void) 2294 { 2295 return !sysctl_unprivileged_bpf_disabled; 2296 } 2297 2298 /* Not all bpf prog type has the bpf_ctx. 2299 * For the bpf prog type that has initialized the bpf_ctx, 2300 * this function can be used to decide if a kernel function 2301 * is called by a bpf program. 2302 */ 2303 static inline bool has_current_bpf_ctx(void) 2304 { 2305 return !!current->bpf_ctx; 2306 } 2307 2308 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog); 2309 2310 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2311 enum bpf_dynptr_type type, u32 offset, u32 size); 2312 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr); 2313 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr); 2314 #else /* !CONFIG_BPF_SYSCALL */ 2315 static inline struct bpf_prog *bpf_prog_get(u32 ufd) 2316 { 2317 return ERR_PTR(-EOPNOTSUPP); 2318 } 2319 2320 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, 2321 enum bpf_prog_type type, 2322 bool attach_drv) 2323 { 2324 return ERR_PTR(-EOPNOTSUPP); 2325 } 2326 2327 static inline void bpf_prog_add(struct bpf_prog *prog, int i) 2328 { 2329 } 2330 2331 static inline void bpf_prog_sub(struct bpf_prog *prog, int i) 2332 { 2333 } 2334 2335 static inline void bpf_prog_put(struct bpf_prog *prog) 2336 { 2337 } 2338 2339 static inline void bpf_prog_inc(struct bpf_prog *prog) 2340 { 2341 } 2342 2343 static inline struct bpf_prog *__must_check 2344 bpf_prog_inc_not_zero(struct bpf_prog *prog) 2345 { 2346 return ERR_PTR(-EOPNOTSUPP); 2347 } 2348 2349 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type, 2350 const struct bpf_link_ops *ops, 2351 struct bpf_prog *prog) 2352 { 2353 } 2354 2355 static inline int bpf_link_prime(struct bpf_link *link, 2356 struct bpf_link_primer *primer) 2357 { 2358 return -EOPNOTSUPP; 2359 } 2360 2361 static inline int bpf_link_settle(struct bpf_link_primer *primer) 2362 { 2363 return -EOPNOTSUPP; 2364 } 2365 2366 static inline void bpf_link_cleanup(struct bpf_link_primer *primer) 2367 { 2368 } 2369 2370 static inline void bpf_link_inc(struct bpf_link *link) 2371 { 2372 } 2373 2374 static inline void bpf_link_put(struct bpf_link *link) 2375 { 2376 } 2377 2378 static inline int bpf_obj_get_user(const char __user *pathname, int flags) 2379 { 2380 return -EOPNOTSUPP; 2381 } 2382 2383 static inline void __dev_flush(void) 2384 { 2385 } 2386 2387 struct xdp_frame; 2388 struct bpf_dtab_netdev; 2389 struct bpf_cpu_map_entry; 2390 2391 static inline 2392 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf, 2393 struct net_device *dev_rx) 2394 { 2395 return 0; 2396 } 2397 2398 static inline 2399 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf, 2400 struct net_device *dev_rx) 2401 { 2402 return 0; 2403 } 2404 2405 static inline 2406 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx, 2407 struct bpf_map *map, bool exclude_ingress) 2408 { 2409 return 0; 2410 } 2411 2412 struct sk_buff; 2413 2414 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, 2415 struct sk_buff *skb, 2416 struct bpf_prog *xdp_prog) 2417 { 2418 return 0; 2419 } 2420 2421 static inline 2422 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb, 2423 struct bpf_prog *xdp_prog, struct bpf_map *map, 2424 bool exclude_ingress) 2425 { 2426 return 0; 2427 } 2428 2429 static inline void __cpu_map_flush(void) 2430 { 2431 } 2432 2433 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, 2434 struct xdp_frame *xdpf, 2435 struct net_device *dev_rx) 2436 { 2437 return 0; 2438 } 2439 2440 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu, 2441 struct sk_buff *skb) 2442 { 2443 return -EOPNOTSUPP; 2444 } 2445 2446 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name, 2447 enum bpf_prog_type type) 2448 { 2449 return ERR_PTR(-EOPNOTSUPP); 2450 } 2451 2452 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog, 2453 const union bpf_attr *kattr, 2454 union bpf_attr __user *uattr) 2455 { 2456 return -ENOTSUPP; 2457 } 2458 2459 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog, 2460 const union bpf_attr *kattr, 2461 union bpf_attr __user *uattr) 2462 { 2463 return -ENOTSUPP; 2464 } 2465 2466 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog, 2467 const union bpf_attr *kattr, 2468 union bpf_attr __user *uattr) 2469 { 2470 return -ENOTSUPP; 2471 } 2472 2473 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog, 2474 const union bpf_attr *kattr, 2475 union bpf_attr __user *uattr) 2476 { 2477 return -ENOTSUPP; 2478 } 2479 2480 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog, 2481 const union bpf_attr *kattr, 2482 union bpf_attr __user *uattr) 2483 { 2484 return -ENOTSUPP; 2485 } 2486 2487 static inline void bpf_map_put(struct bpf_map *map) 2488 { 2489 } 2490 2491 static inline struct bpf_prog *bpf_prog_by_id(u32 id) 2492 { 2493 return ERR_PTR(-ENOTSUPP); 2494 } 2495 2496 static inline int btf_struct_access(struct bpf_verifier_log *log, 2497 const struct bpf_reg_state *reg, 2498 int off, int size, enum bpf_access_type atype, 2499 u32 *next_btf_id, enum bpf_type_flag *flag) 2500 { 2501 return -EACCES; 2502 } 2503 2504 static inline const struct bpf_func_proto * 2505 bpf_base_func_proto(enum bpf_func_id func_id) 2506 { 2507 return NULL; 2508 } 2509 2510 static inline void bpf_task_storage_free(struct task_struct *task) 2511 { 2512 } 2513 2514 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2515 { 2516 return false; 2517 } 2518 2519 static inline const struct btf_func_model * 2520 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2521 const struct bpf_insn *insn) 2522 { 2523 return NULL; 2524 } 2525 2526 static inline bool unprivileged_ebpf_enabled(void) 2527 { 2528 return false; 2529 } 2530 2531 static inline bool has_current_bpf_ctx(void) 2532 { 2533 return false; 2534 } 2535 2536 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog) 2537 { 2538 } 2539 2540 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup) 2541 { 2542 } 2543 2544 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data, 2545 enum bpf_dynptr_type type, u32 offset, u32 size) 2546 { 2547 } 2548 2549 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr) 2550 { 2551 } 2552 2553 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr) 2554 { 2555 } 2556 #endif /* CONFIG_BPF_SYSCALL */ 2557 2558 void __bpf_free_used_btfs(struct bpf_prog_aux *aux, 2559 struct btf_mod_pair *used_btfs, u32 len); 2560 2561 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd, 2562 enum bpf_prog_type type) 2563 { 2564 return bpf_prog_get_type_dev(ufd, type, false); 2565 } 2566 2567 void __bpf_free_used_maps(struct bpf_prog_aux *aux, 2568 struct bpf_map **used_maps, u32 len); 2569 2570 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool); 2571 2572 int bpf_prog_offload_compile(struct bpf_prog *prog); 2573 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog); 2574 int bpf_prog_offload_info_fill(struct bpf_prog_info *info, 2575 struct bpf_prog *prog); 2576 2577 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map); 2578 2579 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value); 2580 int bpf_map_offload_update_elem(struct bpf_map *map, 2581 void *key, void *value, u64 flags); 2582 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key); 2583 int bpf_map_offload_get_next_key(struct bpf_map *map, 2584 void *key, void *next_key); 2585 2586 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map); 2587 2588 struct bpf_offload_dev * 2589 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv); 2590 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev); 2591 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev); 2592 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev, 2593 struct net_device *netdev); 2594 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev, 2595 struct net_device *netdev); 2596 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev); 2597 2598 void unpriv_ebpf_notify(int new_state); 2599 2600 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL) 2601 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2602 struct bpf_prog_aux *prog_aux); 2603 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id); 2604 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr); 2605 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog); 2606 void bpf_dev_bound_netdev_unregister(struct net_device *dev); 2607 2608 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2609 { 2610 return aux->dev_bound; 2611 } 2612 2613 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux) 2614 { 2615 return aux->offload_requested; 2616 } 2617 2618 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs); 2619 2620 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2621 { 2622 return unlikely(map->ops == &bpf_map_offload_ops); 2623 } 2624 2625 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr); 2626 void bpf_map_offload_map_free(struct bpf_map *map); 2627 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map); 2628 int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2629 const union bpf_attr *kattr, 2630 union bpf_attr __user *uattr); 2631 2632 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog); 2633 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype); 2634 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags); 2635 int sock_map_bpf_prog_query(const union bpf_attr *attr, 2636 union bpf_attr __user *uattr); 2637 2638 void sock_map_unhash(struct sock *sk); 2639 void sock_map_destroy(struct sock *sk); 2640 void sock_map_close(struct sock *sk, long timeout); 2641 #else 2642 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log, 2643 struct bpf_prog_aux *prog_aux) 2644 { 2645 return -EOPNOTSUPP; 2646 } 2647 2648 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, 2649 u32 func_id) 2650 { 2651 return NULL; 2652 } 2653 2654 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog, 2655 union bpf_attr *attr) 2656 { 2657 return -EOPNOTSUPP; 2658 } 2659 2660 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, 2661 struct bpf_prog *old_prog) 2662 { 2663 return -EOPNOTSUPP; 2664 } 2665 2666 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev) 2667 { 2668 } 2669 2670 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux) 2671 { 2672 return false; 2673 } 2674 2675 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux) 2676 { 2677 return false; 2678 } 2679 2680 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs) 2681 { 2682 return false; 2683 } 2684 2685 static inline bool bpf_map_is_offloaded(struct bpf_map *map) 2686 { 2687 return false; 2688 } 2689 2690 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr) 2691 { 2692 return ERR_PTR(-EOPNOTSUPP); 2693 } 2694 2695 static inline void bpf_map_offload_map_free(struct bpf_map *map) 2696 { 2697 } 2698 2699 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map) 2700 { 2701 return 0; 2702 } 2703 2704 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog, 2705 const union bpf_attr *kattr, 2706 union bpf_attr __user *uattr) 2707 { 2708 return -ENOTSUPP; 2709 } 2710 2711 #ifdef CONFIG_BPF_SYSCALL 2712 static inline int sock_map_get_from_fd(const union bpf_attr *attr, 2713 struct bpf_prog *prog) 2714 { 2715 return -EINVAL; 2716 } 2717 2718 static inline int sock_map_prog_detach(const union bpf_attr *attr, 2719 enum bpf_prog_type ptype) 2720 { 2721 return -EOPNOTSUPP; 2722 } 2723 2724 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, 2725 u64 flags) 2726 { 2727 return -EOPNOTSUPP; 2728 } 2729 2730 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr, 2731 union bpf_attr __user *uattr) 2732 { 2733 return -EINVAL; 2734 } 2735 #endif /* CONFIG_BPF_SYSCALL */ 2736 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */ 2737 2738 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) 2739 void bpf_sk_reuseport_detach(struct sock *sk); 2740 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key, 2741 void *value); 2742 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key, 2743 void *value, u64 map_flags); 2744 #else 2745 static inline void bpf_sk_reuseport_detach(struct sock *sk) 2746 { 2747 } 2748 2749 #ifdef CONFIG_BPF_SYSCALL 2750 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, 2751 void *key, void *value) 2752 { 2753 return -EOPNOTSUPP; 2754 } 2755 2756 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, 2757 void *key, void *value, 2758 u64 map_flags) 2759 { 2760 return -EOPNOTSUPP; 2761 } 2762 #endif /* CONFIG_BPF_SYSCALL */ 2763 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */ 2764 2765 /* verifier prototypes for helper functions called from eBPF programs */ 2766 extern const struct bpf_func_proto bpf_map_lookup_elem_proto; 2767 extern const struct bpf_func_proto bpf_map_update_elem_proto; 2768 extern const struct bpf_func_proto bpf_map_delete_elem_proto; 2769 extern const struct bpf_func_proto bpf_map_push_elem_proto; 2770 extern const struct bpf_func_proto bpf_map_pop_elem_proto; 2771 extern const struct bpf_func_proto bpf_map_peek_elem_proto; 2772 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto; 2773 2774 extern const struct bpf_func_proto bpf_get_prandom_u32_proto; 2775 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto; 2776 extern const struct bpf_func_proto bpf_get_numa_node_id_proto; 2777 extern const struct bpf_func_proto bpf_tail_call_proto; 2778 extern const struct bpf_func_proto bpf_ktime_get_ns_proto; 2779 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto; 2780 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto; 2781 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto; 2782 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto; 2783 extern const struct bpf_func_proto bpf_get_current_comm_proto; 2784 extern const struct bpf_func_proto bpf_get_stackid_proto; 2785 extern const struct bpf_func_proto bpf_get_stack_proto; 2786 extern const struct bpf_func_proto bpf_get_task_stack_proto; 2787 extern const struct bpf_func_proto bpf_get_stackid_proto_pe; 2788 extern const struct bpf_func_proto bpf_get_stack_proto_pe; 2789 extern const struct bpf_func_proto bpf_sock_map_update_proto; 2790 extern const struct bpf_func_proto bpf_sock_hash_update_proto; 2791 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto; 2792 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto; 2793 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto; 2794 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto; 2795 extern const struct bpf_func_proto bpf_msg_redirect_map_proto; 2796 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto; 2797 extern const struct bpf_func_proto bpf_sk_redirect_map_proto; 2798 extern const struct bpf_func_proto bpf_spin_lock_proto; 2799 extern const struct bpf_func_proto bpf_spin_unlock_proto; 2800 extern const struct bpf_func_proto bpf_get_local_storage_proto; 2801 extern const struct bpf_func_proto bpf_strtol_proto; 2802 extern const struct bpf_func_proto bpf_strtoul_proto; 2803 extern const struct bpf_func_proto bpf_tcp_sock_proto; 2804 extern const struct bpf_func_proto bpf_jiffies64_proto; 2805 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto; 2806 extern const struct bpf_func_proto bpf_event_output_data_proto; 2807 extern const struct bpf_func_proto bpf_ringbuf_output_proto; 2808 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto; 2809 extern const struct bpf_func_proto bpf_ringbuf_submit_proto; 2810 extern const struct bpf_func_proto bpf_ringbuf_discard_proto; 2811 extern const struct bpf_func_proto bpf_ringbuf_query_proto; 2812 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto; 2813 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto; 2814 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto; 2815 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto; 2816 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto; 2817 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto; 2818 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto; 2819 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto; 2820 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto; 2821 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto; 2822 extern const struct bpf_func_proto bpf_copy_from_user_proto; 2823 extern const struct bpf_func_proto bpf_snprintf_btf_proto; 2824 extern const struct bpf_func_proto bpf_snprintf_proto; 2825 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto; 2826 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto; 2827 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto; 2828 extern const struct bpf_func_proto bpf_sock_from_file_proto; 2829 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto; 2830 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto; 2831 extern const struct bpf_func_proto bpf_task_storage_get_proto; 2832 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto; 2833 extern const struct bpf_func_proto bpf_task_storage_delete_proto; 2834 extern const struct bpf_func_proto bpf_for_each_map_elem_proto; 2835 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto; 2836 extern const struct bpf_func_proto bpf_sk_setsockopt_proto; 2837 extern const struct bpf_func_proto bpf_sk_getsockopt_proto; 2838 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto; 2839 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto; 2840 extern const struct bpf_func_proto bpf_find_vma_proto; 2841 extern const struct bpf_func_proto bpf_loop_proto; 2842 extern const struct bpf_func_proto bpf_copy_from_user_task_proto; 2843 extern const struct bpf_func_proto bpf_set_retval_proto; 2844 extern const struct bpf_func_proto bpf_get_retval_proto; 2845 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto; 2846 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto; 2847 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto; 2848 2849 const struct bpf_func_proto *tracing_prog_func_proto( 2850 enum bpf_func_id func_id, const struct bpf_prog *prog); 2851 2852 /* Shared helpers among cBPF and eBPF. */ 2853 void bpf_user_rnd_init_once(void); 2854 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2855 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 2856 2857 #if defined(CONFIG_NET) 2858 bool bpf_sock_common_is_valid_access(int off, int size, 2859 enum bpf_access_type type, 2860 struct bpf_insn_access_aux *info); 2861 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2862 struct bpf_insn_access_aux *info); 2863 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2864 const struct bpf_insn *si, 2865 struct bpf_insn *insn_buf, 2866 struct bpf_prog *prog, 2867 u32 *target_size); 2868 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 2869 struct bpf_dynptr_kern *ptr); 2870 #else 2871 static inline bool bpf_sock_common_is_valid_access(int off, int size, 2872 enum bpf_access_type type, 2873 struct bpf_insn_access_aux *info) 2874 { 2875 return false; 2876 } 2877 static inline bool bpf_sock_is_valid_access(int off, int size, 2878 enum bpf_access_type type, 2879 struct bpf_insn_access_aux *info) 2880 { 2881 return false; 2882 } 2883 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type, 2884 const struct bpf_insn *si, 2885 struct bpf_insn *insn_buf, 2886 struct bpf_prog *prog, 2887 u32 *target_size) 2888 { 2889 return 0; 2890 } 2891 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags, 2892 struct bpf_dynptr_kern *ptr) 2893 { 2894 return -EOPNOTSUPP; 2895 } 2896 #endif 2897 2898 #ifdef CONFIG_INET 2899 struct sk_reuseport_kern { 2900 struct sk_buff *skb; 2901 struct sock *sk; 2902 struct sock *selected_sk; 2903 struct sock *migrating_sk; 2904 void *data_end; 2905 u32 hash; 2906 u32 reuseport_id; 2907 bool bind_inany; 2908 }; 2909 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2910 struct bpf_insn_access_aux *info); 2911 2912 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2913 const struct bpf_insn *si, 2914 struct bpf_insn *insn_buf, 2915 struct bpf_prog *prog, 2916 u32 *target_size); 2917 2918 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type, 2919 struct bpf_insn_access_aux *info); 2920 2921 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2922 const struct bpf_insn *si, 2923 struct bpf_insn *insn_buf, 2924 struct bpf_prog *prog, 2925 u32 *target_size); 2926 #else 2927 static inline bool bpf_tcp_sock_is_valid_access(int off, int size, 2928 enum bpf_access_type type, 2929 struct bpf_insn_access_aux *info) 2930 { 2931 return false; 2932 } 2933 2934 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type, 2935 const struct bpf_insn *si, 2936 struct bpf_insn *insn_buf, 2937 struct bpf_prog *prog, 2938 u32 *target_size) 2939 { 2940 return 0; 2941 } 2942 static inline bool bpf_xdp_sock_is_valid_access(int off, int size, 2943 enum bpf_access_type type, 2944 struct bpf_insn_access_aux *info) 2945 { 2946 return false; 2947 } 2948 2949 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type, 2950 const struct bpf_insn *si, 2951 struct bpf_insn *insn_buf, 2952 struct bpf_prog *prog, 2953 u32 *target_size) 2954 { 2955 return 0; 2956 } 2957 #endif /* CONFIG_INET */ 2958 2959 enum bpf_text_poke_type { 2960 BPF_MOD_CALL, 2961 BPF_MOD_JUMP, 2962 }; 2963 2964 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, 2965 void *addr1, void *addr2); 2966 2967 void *bpf_arch_text_copy(void *dst, void *src, size_t len); 2968 int bpf_arch_text_invalidate(void *dst, size_t len); 2969 2970 struct btf_id_set; 2971 bool btf_id_set_contains(const struct btf_id_set *set, u32 id); 2972 2973 #define MAX_BPRINTF_VARARGS 12 2974 #define MAX_BPRINTF_BUF 1024 2975 2976 struct bpf_bprintf_data { 2977 u32 *bin_args; 2978 char *buf; 2979 bool get_bin_args; 2980 bool get_buf; 2981 }; 2982 2983 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args, 2984 u32 num_args, struct bpf_bprintf_data *data); 2985 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data); 2986 2987 #ifdef CONFIG_BPF_LSM 2988 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype); 2989 void bpf_cgroup_atype_put(int cgroup_atype); 2990 #else 2991 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {} 2992 static inline void bpf_cgroup_atype_put(int cgroup_atype) {} 2993 #endif /* CONFIG_BPF_LSM */ 2994 2995 struct key; 2996 2997 #ifdef CONFIG_KEYS 2998 struct bpf_key { 2999 struct key *key; 3000 bool has_ref; 3001 }; 3002 #endif /* CONFIG_KEYS */ 3003 3004 static inline bool type_is_alloc(u32 type) 3005 { 3006 return type & MEM_ALLOC; 3007 } 3008 3009 static inline gfp_t bpf_memcg_flags(gfp_t flags) 3010 { 3011 if (memcg_bpf_enabled()) 3012 return flags | __GFP_ACCOUNT; 3013 return flags; 3014 } 3015 3016 #endif /* _LINUX_BPF_H */ 3017