xref: /linux-6.15/include/linux/bpf.h (revision 0738e55c)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 
34 struct bpf_verifier_env;
35 struct bpf_verifier_log;
36 struct perf_event;
37 struct bpf_prog;
38 struct bpf_prog_aux;
39 struct bpf_map;
40 struct sock;
41 struct seq_file;
42 struct btf;
43 struct btf_type;
44 struct exception_table_entry;
45 struct seq_operations;
46 struct bpf_iter_aux_info;
47 struct bpf_local_storage;
48 struct bpf_local_storage_map;
49 struct kobject;
50 struct mem_cgroup;
51 struct module;
52 struct bpf_func_state;
53 struct ftrace_ops;
54 struct cgroup;
55 struct bpf_token;
56 struct user_namespace;
57 struct super_block;
58 struct inode;
59 
60 extern struct idr btf_idr;
61 extern spinlock_t btf_idr_lock;
62 extern struct kobject *btf_kobj;
63 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
64 extern bool bpf_global_ma_set;
65 
66 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
67 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
68 					struct bpf_iter_aux_info *aux);
69 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
70 typedef unsigned int (*bpf_func_t)(const void *,
71 				   const struct bpf_insn *);
72 struct bpf_iter_seq_info {
73 	const struct seq_operations *seq_ops;
74 	bpf_iter_init_seq_priv_t init_seq_private;
75 	bpf_iter_fini_seq_priv_t fini_seq_private;
76 	u32 seq_priv_size;
77 };
78 
79 /* map is generic key/value storage optionally accessible by eBPF programs */
80 struct bpf_map_ops {
81 	/* funcs callable from userspace (via syscall) */
82 	int (*map_alloc_check)(union bpf_attr *attr);
83 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
84 	void (*map_release)(struct bpf_map *map, struct file *map_file);
85 	void (*map_free)(struct bpf_map *map);
86 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
87 	void (*map_release_uref)(struct bpf_map *map);
88 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
89 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
90 				union bpf_attr __user *uattr);
91 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
92 					  void *value, u64 flags);
93 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
94 					   const union bpf_attr *attr,
95 					   union bpf_attr __user *uattr);
96 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
97 				const union bpf_attr *attr,
98 				union bpf_attr __user *uattr);
99 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
100 				union bpf_attr __user *uattr);
101 
102 	/* funcs callable from userspace and from eBPF programs */
103 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
104 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
105 	long (*map_delete_elem)(struct bpf_map *map, void *key);
106 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
107 	long (*map_pop_elem)(struct bpf_map *map, void *value);
108 	long (*map_peek_elem)(struct bpf_map *map, void *value);
109 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
110 
111 	/* funcs called by prog_array and perf_event_array map */
112 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
113 				int fd);
114 	/* If need_defer is true, the implementation should guarantee that
115 	 * the to-be-put element is still alive before the bpf program, which
116 	 * may manipulate it, exists.
117 	 */
118 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
119 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
120 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
121 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
122 				  struct seq_file *m);
123 	int (*map_check_btf)(const struct bpf_map *map,
124 			     const struct btf *btf,
125 			     const struct btf_type *key_type,
126 			     const struct btf_type *value_type);
127 
128 	/* Prog poke tracking helpers. */
129 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
130 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
131 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
132 			     struct bpf_prog *new);
133 
134 	/* Direct value access helpers. */
135 	int (*map_direct_value_addr)(const struct bpf_map *map,
136 				     u64 *imm, u32 off);
137 	int (*map_direct_value_meta)(const struct bpf_map *map,
138 				     u64 imm, u32 *off);
139 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
140 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
141 			     struct poll_table_struct *pts);
142 
143 	/* Functions called by bpf_local_storage maps */
144 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
145 					void *owner, u32 size);
146 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
147 					   void *owner, u32 size);
148 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
149 
150 	/* Misc helpers.*/
151 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
152 
153 	/* map_meta_equal must be implemented for maps that can be
154 	 * used as an inner map.  It is a runtime check to ensure
155 	 * an inner map can be inserted to an outer map.
156 	 *
157 	 * Some properties of the inner map has been used during the
158 	 * verification time.  When inserting an inner map at the runtime,
159 	 * map_meta_equal has to ensure the inserting map has the same
160 	 * properties that the verifier has used earlier.
161 	 */
162 	bool (*map_meta_equal)(const struct bpf_map *meta0,
163 			       const struct bpf_map *meta1);
164 
165 
166 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
167 					      struct bpf_func_state *caller,
168 					      struct bpf_func_state *callee);
169 	long (*map_for_each_callback)(struct bpf_map *map,
170 				     bpf_callback_t callback_fn,
171 				     void *callback_ctx, u64 flags);
172 
173 	u64 (*map_mem_usage)(const struct bpf_map *map);
174 
175 	/* BTF id of struct allocated by map_alloc */
176 	int *map_btf_id;
177 
178 	/* bpf_iter info used to open a seq_file */
179 	const struct bpf_iter_seq_info *iter_seq_info;
180 };
181 
182 enum {
183 	/* Support at most 10 fields in a BTF type */
184 	BTF_FIELDS_MAX	   = 10,
185 };
186 
187 enum btf_field_type {
188 	BPF_SPIN_LOCK  = (1 << 0),
189 	BPF_TIMER      = (1 << 1),
190 	BPF_KPTR_UNREF = (1 << 2),
191 	BPF_KPTR_REF   = (1 << 3),
192 	BPF_KPTR_PERCPU = (1 << 4),
193 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
194 	BPF_LIST_HEAD  = (1 << 5),
195 	BPF_LIST_NODE  = (1 << 6),
196 	BPF_RB_ROOT    = (1 << 7),
197 	BPF_RB_NODE    = (1 << 8),
198 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
199 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
200 	BPF_REFCOUNT   = (1 << 9),
201 };
202 
203 typedef void (*btf_dtor_kfunc_t)(void *);
204 
205 struct btf_field_kptr {
206 	struct btf *btf;
207 	struct module *module;
208 	/* dtor used if btf_is_kernel(btf), otherwise the type is
209 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
210 	 */
211 	btf_dtor_kfunc_t dtor;
212 	u32 btf_id;
213 };
214 
215 struct btf_field_graph_root {
216 	struct btf *btf;
217 	u32 value_btf_id;
218 	u32 node_offset;
219 	struct btf_record *value_rec;
220 };
221 
222 struct btf_field {
223 	u32 offset;
224 	u32 size;
225 	enum btf_field_type type;
226 	union {
227 		struct btf_field_kptr kptr;
228 		struct btf_field_graph_root graph_root;
229 	};
230 };
231 
232 struct btf_record {
233 	u32 cnt;
234 	u32 field_mask;
235 	int spin_lock_off;
236 	int timer_off;
237 	int refcount_off;
238 	struct btf_field fields[];
239 };
240 
241 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
242 struct bpf_rb_node_kern {
243 	struct rb_node rb_node;
244 	void *owner;
245 } __attribute__((aligned(8)));
246 
247 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
248 struct bpf_list_node_kern {
249 	struct list_head list_head;
250 	void *owner;
251 } __attribute__((aligned(8)));
252 
253 struct bpf_map {
254 	/* The first two cachelines with read-mostly members of which some
255 	 * are also accessed in fast-path (e.g. ops, max_entries).
256 	 */
257 	const struct bpf_map_ops *ops ____cacheline_aligned;
258 	struct bpf_map *inner_map_meta;
259 #ifdef CONFIG_SECURITY
260 	void *security;
261 #endif
262 	enum bpf_map_type map_type;
263 	u32 key_size;
264 	u32 value_size;
265 	u32 max_entries;
266 	u64 map_extra; /* any per-map-type extra fields */
267 	u32 map_flags;
268 	u32 id;
269 	struct btf_record *record;
270 	int numa_node;
271 	u32 btf_key_type_id;
272 	u32 btf_value_type_id;
273 	u32 btf_vmlinux_value_type_id;
274 	struct btf *btf;
275 #ifdef CONFIG_MEMCG_KMEM
276 	struct obj_cgroup *objcg;
277 #endif
278 	char name[BPF_OBJ_NAME_LEN];
279 	/* The 3rd and 4th cacheline with misc members to avoid false sharing
280 	 * particularly with refcounting.
281 	 */
282 	atomic64_t refcnt ____cacheline_aligned;
283 	atomic64_t usercnt;
284 	/* rcu is used before freeing and work is only used during freeing */
285 	union {
286 		struct work_struct work;
287 		struct rcu_head rcu;
288 	};
289 	struct mutex freeze_mutex;
290 	atomic64_t writecnt;
291 	/* 'Ownership' of program-containing map is claimed by the first program
292 	 * that is going to use this map or by the first program which FD is
293 	 * stored in the map to make sure that all callers and callees have the
294 	 * same prog type, JITed flag and xdp_has_frags flag.
295 	 */
296 	struct {
297 		spinlock_t lock;
298 		enum bpf_prog_type type;
299 		bool jited;
300 		bool xdp_has_frags;
301 	} owner;
302 	bool bypass_spec_v1;
303 	bool frozen; /* write-once; write-protected by freeze_mutex */
304 	bool free_after_mult_rcu_gp;
305 	bool free_after_rcu_gp;
306 	atomic64_t sleepable_refcnt;
307 	s64 __percpu *elem_count;
308 };
309 
310 static inline const char *btf_field_type_name(enum btf_field_type type)
311 {
312 	switch (type) {
313 	case BPF_SPIN_LOCK:
314 		return "bpf_spin_lock";
315 	case BPF_TIMER:
316 		return "bpf_timer";
317 	case BPF_KPTR_UNREF:
318 	case BPF_KPTR_REF:
319 		return "kptr";
320 	case BPF_KPTR_PERCPU:
321 		return "percpu_kptr";
322 	case BPF_LIST_HEAD:
323 		return "bpf_list_head";
324 	case BPF_LIST_NODE:
325 		return "bpf_list_node";
326 	case BPF_RB_ROOT:
327 		return "bpf_rb_root";
328 	case BPF_RB_NODE:
329 		return "bpf_rb_node";
330 	case BPF_REFCOUNT:
331 		return "bpf_refcount";
332 	default:
333 		WARN_ON_ONCE(1);
334 		return "unknown";
335 	}
336 }
337 
338 static inline u32 btf_field_type_size(enum btf_field_type type)
339 {
340 	switch (type) {
341 	case BPF_SPIN_LOCK:
342 		return sizeof(struct bpf_spin_lock);
343 	case BPF_TIMER:
344 		return sizeof(struct bpf_timer);
345 	case BPF_KPTR_UNREF:
346 	case BPF_KPTR_REF:
347 	case BPF_KPTR_PERCPU:
348 		return sizeof(u64);
349 	case BPF_LIST_HEAD:
350 		return sizeof(struct bpf_list_head);
351 	case BPF_LIST_NODE:
352 		return sizeof(struct bpf_list_node);
353 	case BPF_RB_ROOT:
354 		return sizeof(struct bpf_rb_root);
355 	case BPF_RB_NODE:
356 		return sizeof(struct bpf_rb_node);
357 	case BPF_REFCOUNT:
358 		return sizeof(struct bpf_refcount);
359 	default:
360 		WARN_ON_ONCE(1);
361 		return 0;
362 	}
363 }
364 
365 static inline u32 btf_field_type_align(enum btf_field_type type)
366 {
367 	switch (type) {
368 	case BPF_SPIN_LOCK:
369 		return __alignof__(struct bpf_spin_lock);
370 	case BPF_TIMER:
371 		return __alignof__(struct bpf_timer);
372 	case BPF_KPTR_UNREF:
373 	case BPF_KPTR_REF:
374 	case BPF_KPTR_PERCPU:
375 		return __alignof__(u64);
376 	case BPF_LIST_HEAD:
377 		return __alignof__(struct bpf_list_head);
378 	case BPF_LIST_NODE:
379 		return __alignof__(struct bpf_list_node);
380 	case BPF_RB_ROOT:
381 		return __alignof__(struct bpf_rb_root);
382 	case BPF_RB_NODE:
383 		return __alignof__(struct bpf_rb_node);
384 	case BPF_REFCOUNT:
385 		return __alignof__(struct bpf_refcount);
386 	default:
387 		WARN_ON_ONCE(1);
388 		return 0;
389 	}
390 }
391 
392 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
393 {
394 	memset(addr, 0, field->size);
395 
396 	switch (field->type) {
397 	case BPF_REFCOUNT:
398 		refcount_set((refcount_t *)addr, 1);
399 		break;
400 	case BPF_RB_NODE:
401 		RB_CLEAR_NODE((struct rb_node *)addr);
402 		break;
403 	case BPF_LIST_HEAD:
404 	case BPF_LIST_NODE:
405 		INIT_LIST_HEAD((struct list_head *)addr);
406 		break;
407 	case BPF_RB_ROOT:
408 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
409 	case BPF_SPIN_LOCK:
410 	case BPF_TIMER:
411 	case BPF_KPTR_UNREF:
412 	case BPF_KPTR_REF:
413 	case BPF_KPTR_PERCPU:
414 		break;
415 	default:
416 		WARN_ON_ONCE(1);
417 		return;
418 	}
419 }
420 
421 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
422 {
423 	if (IS_ERR_OR_NULL(rec))
424 		return false;
425 	return rec->field_mask & type;
426 }
427 
428 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
429 {
430 	int i;
431 
432 	if (IS_ERR_OR_NULL(rec))
433 		return;
434 	for (i = 0; i < rec->cnt; i++)
435 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
436 }
437 
438 /* 'dst' must be a temporary buffer and should not point to memory that is being
439  * used in parallel by a bpf program or bpf syscall, otherwise the access from
440  * the bpf program or bpf syscall may be corrupted by the reinitialization,
441  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
442  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
443  * program or bpf syscall.
444  */
445 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
446 {
447 	bpf_obj_init(map->record, dst);
448 }
449 
450 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
451  * forced to use 'long' read/writes to try to atomically copy long counters.
452  * Best-effort only.  No barriers here, since it _will_ race with concurrent
453  * updates from BPF programs. Called from bpf syscall and mostly used with
454  * size 8 or 16 bytes, so ask compiler to inline it.
455  */
456 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
457 {
458 	const long *lsrc = src;
459 	long *ldst = dst;
460 
461 	size /= sizeof(long);
462 	while (size--)
463 		data_race(*ldst++ = *lsrc++);
464 }
465 
466 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
467 static inline void bpf_obj_memcpy(struct btf_record *rec,
468 				  void *dst, void *src, u32 size,
469 				  bool long_memcpy)
470 {
471 	u32 curr_off = 0;
472 	int i;
473 
474 	if (IS_ERR_OR_NULL(rec)) {
475 		if (long_memcpy)
476 			bpf_long_memcpy(dst, src, round_up(size, 8));
477 		else
478 			memcpy(dst, src, size);
479 		return;
480 	}
481 
482 	for (i = 0; i < rec->cnt; i++) {
483 		u32 next_off = rec->fields[i].offset;
484 		u32 sz = next_off - curr_off;
485 
486 		memcpy(dst + curr_off, src + curr_off, sz);
487 		curr_off += rec->fields[i].size + sz;
488 	}
489 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
490 }
491 
492 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
493 {
494 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
495 }
496 
497 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
498 {
499 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
500 }
501 
502 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
503 {
504 	u32 curr_off = 0;
505 	int i;
506 
507 	if (IS_ERR_OR_NULL(rec)) {
508 		memset(dst, 0, size);
509 		return;
510 	}
511 
512 	for (i = 0; i < rec->cnt; i++) {
513 		u32 next_off = rec->fields[i].offset;
514 		u32 sz = next_off - curr_off;
515 
516 		memset(dst + curr_off, 0, sz);
517 		curr_off += rec->fields[i].size + sz;
518 	}
519 	memset(dst + curr_off, 0, size - curr_off);
520 }
521 
522 static inline void zero_map_value(struct bpf_map *map, void *dst)
523 {
524 	bpf_obj_memzero(map->record, dst, map->value_size);
525 }
526 
527 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
528 			   bool lock_src);
529 void bpf_timer_cancel_and_free(void *timer);
530 void bpf_list_head_free(const struct btf_field *field, void *list_head,
531 			struct bpf_spin_lock *spin_lock);
532 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
533 		      struct bpf_spin_lock *spin_lock);
534 
535 
536 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
537 
538 struct bpf_offload_dev;
539 struct bpf_offloaded_map;
540 
541 struct bpf_map_dev_ops {
542 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
543 				void *key, void *next_key);
544 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
545 			       void *key, void *value);
546 	int (*map_update_elem)(struct bpf_offloaded_map *map,
547 			       void *key, void *value, u64 flags);
548 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
549 };
550 
551 struct bpf_offloaded_map {
552 	struct bpf_map map;
553 	struct net_device *netdev;
554 	const struct bpf_map_dev_ops *dev_ops;
555 	void *dev_priv;
556 	struct list_head offloads;
557 };
558 
559 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
560 {
561 	return container_of(map, struct bpf_offloaded_map, map);
562 }
563 
564 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
565 {
566 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
567 }
568 
569 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
570 {
571 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
572 		map->ops->map_seq_show_elem;
573 }
574 
575 int map_check_no_btf(const struct bpf_map *map,
576 		     const struct btf *btf,
577 		     const struct btf_type *key_type,
578 		     const struct btf_type *value_type);
579 
580 bool bpf_map_meta_equal(const struct bpf_map *meta0,
581 			const struct bpf_map *meta1);
582 
583 extern const struct bpf_map_ops bpf_map_offload_ops;
584 
585 /* bpf_type_flag contains a set of flags that are applicable to the values of
586  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
587  * or a memory is read-only. We classify types into two categories: base types
588  * and extended types. Extended types are base types combined with a type flag.
589  *
590  * Currently there are no more than 32 base types in arg_type, ret_type and
591  * reg_types.
592  */
593 #define BPF_BASE_TYPE_BITS	8
594 
595 enum bpf_type_flag {
596 	/* PTR may be NULL. */
597 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
598 
599 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
600 	 * compatible with both mutable and immutable memory.
601 	 */
602 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
603 
604 	/* MEM points to BPF ring buffer reservation. */
605 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
606 
607 	/* MEM is in user address space. */
608 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
609 
610 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
611 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
612 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
613 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
614 	 * to the specified cpu.
615 	 */
616 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
617 
618 	/* Indicates that the argument will be released. */
619 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
620 
621 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
622 	 * unreferenced and referenced kptr loaded from map value using a load
623 	 * instruction, so that they can only be dereferenced but not escape the
624 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
625 	 * kfunc or bpf helpers).
626 	 */
627 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
628 
629 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
630 
631 	/* DYNPTR points to memory local to the bpf program. */
632 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
633 
634 	/* DYNPTR points to a kernel-produced ringbuf record. */
635 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
636 
637 	/* Size is known at compile time. */
638 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
639 
640 	/* MEM is of an allocated object of type in program BTF. This is used to
641 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
642 	 */
643 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
644 
645 	/* PTR was passed from the kernel in a trusted context, and may be
646 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
647 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
648 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
649 	 * without invoking bpf_kptr_xchg(). What we really need to know is
650 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
651 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
652 	 * helpers, they do not cover all possible instances of unsafe
653 	 * pointers. For example, a pointer that was obtained from walking a
654 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
655 	 * fact that it may be NULL, invalid, etc. This is due to backwards
656 	 * compatibility requirements, as this was the behavior that was first
657 	 * introduced when kptrs were added. The behavior is now considered
658 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
659 	 *
660 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
661 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
662 	 * For example, pointers passed to tracepoint arguments are considered
663 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
664 	 * callbacks. As alluded to above, pointers that are obtained from
665 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
666 	 * struct task_struct *task is PTR_TRUSTED, then accessing
667 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
668 	 * in a BPF register. Similarly, pointers passed to certain programs
669 	 * types such as kretprobes are not guaranteed to be valid, as they may
670 	 * for example contain an object that was recently freed.
671 	 */
672 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
673 
674 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
675 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
676 
677 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
678 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
679 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
680 	 */
681 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
682 
683 	/* DYNPTR points to sk_buff */
684 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
685 
686 	/* DYNPTR points to xdp_buff */
687 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
688 
689 	__BPF_TYPE_FLAG_MAX,
690 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
691 };
692 
693 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
694 				 | DYNPTR_TYPE_XDP)
695 
696 /* Max number of base types. */
697 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
698 
699 /* Max number of all types. */
700 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
701 
702 /* function argument constraints */
703 enum bpf_arg_type {
704 	ARG_DONTCARE = 0,	/* unused argument in helper function */
705 
706 	/* the following constraints used to prototype
707 	 * bpf_map_lookup/update/delete_elem() functions
708 	 */
709 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
710 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
711 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
712 
713 	/* Used to prototype bpf_memcmp() and other functions that access data
714 	 * on eBPF program stack
715 	 */
716 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
717 
718 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
719 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
720 
721 	ARG_PTR_TO_CTX,		/* pointer to context */
722 	ARG_ANYTHING,		/* any (initialized) argument is ok */
723 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
724 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
725 	ARG_PTR_TO_INT,		/* pointer to int */
726 	ARG_PTR_TO_LONG,	/* pointer to long */
727 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
728 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
729 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
730 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
731 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
732 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
733 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
734 	ARG_PTR_TO_STACK,	/* pointer to stack */
735 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
736 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
737 	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
738 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
739 	__BPF_ARG_TYPE_MAX,
740 
741 	/* Extended arg_types. */
742 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
743 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
744 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
745 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
746 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
747 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
748 	/* pointer to memory does not need to be initialized, helper function must fill
749 	 * all bytes or clear them in error case.
750 	 */
751 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
752 	/* Pointer to valid memory of size known at compile time. */
753 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
754 
755 	/* This must be the last entry. Its purpose is to ensure the enum is
756 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
757 	 */
758 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
759 };
760 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
761 
762 /* type of values returned from helper functions */
763 enum bpf_return_type {
764 	RET_INTEGER,			/* function returns integer */
765 	RET_VOID,			/* function doesn't return anything */
766 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
767 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
768 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
769 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
770 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
771 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
772 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
773 	__BPF_RET_TYPE_MAX,
774 
775 	/* Extended ret_types. */
776 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
777 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
778 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
779 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
780 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
781 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
782 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
783 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
784 
785 	/* This must be the last entry. Its purpose is to ensure the enum is
786 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
787 	 */
788 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
789 };
790 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
791 
792 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
793  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
794  * instructions after verifying
795  */
796 struct bpf_func_proto {
797 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
798 	bool gpl_only;
799 	bool pkt_access;
800 	bool might_sleep;
801 	enum bpf_return_type ret_type;
802 	union {
803 		struct {
804 			enum bpf_arg_type arg1_type;
805 			enum bpf_arg_type arg2_type;
806 			enum bpf_arg_type arg3_type;
807 			enum bpf_arg_type arg4_type;
808 			enum bpf_arg_type arg5_type;
809 		};
810 		enum bpf_arg_type arg_type[5];
811 	};
812 	union {
813 		struct {
814 			u32 *arg1_btf_id;
815 			u32 *arg2_btf_id;
816 			u32 *arg3_btf_id;
817 			u32 *arg4_btf_id;
818 			u32 *arg5_btf_id;
819 		};
820 		u32 *arg_btf_id[5];
821 		struct {
822 			size_t arg1_size;
823 			size_t arg2_size;
824 			size_t arg3_size;
825 			size_t arg4_size;
826 			size_t arg5_size;
827 		};
828 		size_t arg_size[5];
829 	};
830 	int *ret_btf_id; /* return value btf_id */
831 	bool (*allowed)(const struct bpf_prog *prog);
832 };
833 
834 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
835  * the first argument to eBPF programs.
836  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
837  */
838 struct bpf_context;
839 
840 enum bpf_access_type {
841 	BPF_READ = 1,
842 	BPF_WRITE = 2
843 };
844 
845 /* types of values stored in eBPF registers */
846 /* Pointer types represent:
847  * pointer
848  * pointer + imm
849  * pointer + (u16) var
850  * pointer + (u16) var + imm
851  * if (range > 0) then [ptr, ptr + range - off) is safe to access
852  * if (id > 0) means that some 'var' was added
853  * if (off > 0) means that 'imm' was added
854  */
855 enum bpf_reg_type {
856 	NOT_INIT = 0,		 /* nothing was written into register */
857 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
858 	PTR_TO_CTX,		 /* reg points to bpf_context */
859 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
860 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
861 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
862 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
863 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
864 	PTR_TO_PACKET,		 /* reg points to skb->data */
865 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
866 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
867 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
868 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
869 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
870 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
871 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
872 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
873 	 * to be null checked by the BPF program. This does not imply the
874 	 * pointer is _not_ null and in practice this can easily be a null
875 	 * pointer when reading pointer chains. The assumption is program
876 	 * context will handle null pointer dereference typically via fault
877 	 * handling. The verifier must keep this in mind and can make no
878 	 * assumptions about null or non-null when doing branch analysis.
879 	 * Further, when passed into helpers the helpers can not, without
880 	 * additional context, assume the value is non-null.
881 	 */
882 	PTR_TO_BTF_ID,
883 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
884 	 * been checked for null. Used primarily to inform the verifier
885 	 * an explicit null check is required for this struct.
886 	 */
887 	PTR_TO_MEM,		 /* reg points to valid memory region */
888 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
889 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
890 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
891 	__BPF_REG_TYPE_MAX,
892 
893 	/* Extended reg_types. */
894 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
895 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
896 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
897 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
898 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
899 
900 	/* This must be the last entry. Its purpose is to ensure the enum is
901 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
902 	 */
903 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
904 };
905 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
906 
907 /* The information passed from prog-specific *_is_valid_access
908  * back to the verifier.
909  */
910 struct bpf_insn_access_aux {
911 	enum bpf_reg_type reg_type;
912 	union {
913 		int ctx_field_size;
914 		struct {
915 			struct btf *btf;
916 			u32 btf_id;
917 		};
918 	};
919 	struct bpf_verifier_log *log; /* for verbose logs */
920 };
921 
922 static inline void
923 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
924 {
925 	aux->ctx_field_size = size;
926 }
927 
928 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
929 {
930 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
931 }
932 
933 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
934 {
935 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
936 }
937 
938 struct bpf_prog_ops {
939 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
940 			union bpf_attr __user *uattr);
941 };
942 
943 struct bpf_reg_state;
944 struct bpf_verifier_ops {
945 	/* return eBPF function prototype for verification */
946 	const struct bpf_func_proto *
947 	(*get_func_proto)(enum bpf_func_id func_id,
948 			  const struct bpf_prog *prog);
949 
950 	/* return true if 'size' wide access at offset 'off' within bpf_context
951 	 * with 'type' (read or write) is allowed
952 	 */
953 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
954 				const struct bpf_prog *prog,
955 				struct bpf_insn_access_aux *info);
956 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
957 			    const struct bpf_prog *prog);
958 	int (*gen_ld_abs)(const struct bpf_insn *orig,
959 			  struct bpf_insn *insn_buf);
960 	u32 (*convert_ctx_access)(enum bpf_access_type type,
961 				  const struct bpf_insn *src,
962 				  struct bpf_insn *dst,
963 				  struct bpf_prog *prog, u32 *target_size);
964 	int (*btf_struct_access)(struct bpf_verifier_log *log,
965 				 const struct bpf_reg_state *reg,
966 				 int off, int size);
967 };
968 
969 struct bpf_prog_offload_ops {
970 	/* verifier basic callbacks */
971 	int (*insn_hook)(struct bpf_verifier_env *env,
972 			 int insn_idx, int prev_insn_idx);
973 	int (*finalize)(struct bpf_verifier_env *env);
974 	/* verifier optimization callbacks (called after .finalize) */
975 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
976 			    struct bpf_insn *insn);
977 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
978 	/* program management callbacks */
979 	int (*prepare)(struct bpf_prog *prog);
980 	int (*translate)(struct bpf_prog *prog);
981 	void (*destroy)(struct bpf_prog *prog);
982 };
983 
984 struct bpf_prog_offload {
985 	struct bpf_prog		*prog;
986 	struct net_device	*netdev;
987 	struct bpf_offload_dev	*offdev;
988 	void			*dev_priv;
989 	struct list_head	offloads;
990 	bool			dev_state;
991 	bool			opt_failed;
992 	void			*jited_image;
993 	u32			jited_len;
994 };
995 
996 enum bpf_cgroup_storage_type {
997 	BPF_CGROUP_STORAGE_SHARED,
998 	BPF_CGROUP_STORAGE_PERCPU,
999 	__BPF_CGROUP_STORAGE_MAX
1000 };
1001 
1002 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1003 
1004 /* The longest tracepoint has 12 args.
1005  * See include/trace/bpf_probe.h
1006  */
1007 #define MAX_BPF_FUNC_ARGS 12
1008 
1009 /* The maximum number of arguments passed through registers
1010  * a single function may have.
1011  */
1012 #define MAX_BPF_FUNC_REG_ARGS 5
1013 
1014 /* The argument is a structure. */
1015 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1016 
1017 /* The argument is signed. */
1018 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1019 
1020 struct btf_func_model {
1021 	u8 ret_size;
1022 	u8 ret_flags;
1023 	u8 nr_args;
1024 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1025 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1026 };
1027 
1028 /* Restore arguments before returning from trampoline to let original function
1029  * continue executing. This flag is used for fentry progs when there are no
1030  * fexit progs.
1031  */
1032 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1033 /* Call original function after fentry progs, but before fexit progs.
1034  * Makes sense for fentry/fexit, normal calls and indirect calls.
1035  */
1036 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1037 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1038  * programs only. Should not be used with normal calls and indirect calls.
1039  */
1040 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1041 /* Store IP address of the caller on the trampoline stack,
1042  * so it's available for trampoline's programs.
1043  */
1044 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1045 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1046 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1047 
1048 /* Get original function from stack instead of from provided direct address.
1049  * Makes sense for trampolines with fexit or fmod_ret programs.
1050  */
1051 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1052 
1053 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1054  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1055  */
1056 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1057 
1058 /* Indicate that current trampoline is in a tail call context. Then, it has to
1059  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1060  */
1061 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1062 
1063 /*
1064  * Indicate the trampoline should be suitable to receive indirect calls;
1065  * without this indirectly calling the generated code can result in #UD/#CP,
1066  * depending on the CFI options.
1067  *
1068  * Used by bpf_struct_ops.
1069  *
1070  * Incompatible with FENTRY usage, overloads @func_addr argument.
1071  */
1072 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1073 
1074 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1075  * bytes on x86.
1076  */
1077 enum {
1078 #if defined(__s390x__)
1079 	BPF_MAX_TRAMP_LINKS = 27,
1080 #else
1081 	BPF_MAX_TRAMP_LINKS = 38,
1082 #endif
1083 };
1084 
1085 struct bpf_tramp_links {
1086 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1087 	int nr_links;
1088 };
1089 
1090 struct bpf_tramp_run_ctx;
1091 
1092 /* Different use cases for BPF trampoline:
1093  * 1. replace nop at the function entry (kprobe equivalent)
1094  *    flags = BPF_TRAMP_F_RESTORE_REGS
1095  *    fentry = a set of programs to run before returning from trampoline
1096  *
1097  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1098  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1099  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1100  *    fentry = a set of program to run before calling original function
1101  *    fexit = a set of program to run after original function
1102  *
1103  * 3. replace direct call instruction anywhere in the function body
1104  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1105  *    With flags = 0
1106  *      fentry = a set of programs to run before returning from trampoline
1107  *    With flags = BPF_TRAMP_F_CALL_ORIG
1108  *      orig_call = original callback addr or direct function addr
1109  *      fentry = a set of program to run before calling original function
1110  *      fexit = a set of program to run after original function
1111  */
1112 struct bpf_tramp_image;
1113 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1114 				const struct btf_func_model *m, u32 flags,
1115 				struct bpf_tramp_links *tlinks,
1116 				void *func_addr);
1117 void *arch_alloc_bpf_trampoline(unsigned int size);
1118 void arch_free_bpf_trampoline(void *image, unsigned int size);
1119 void arch_protect_bpf_trampoline(void *image, unsigned int size);
1120 void arch_unprotect_bpf_trampoline(void *image, unsigned int size);
1121 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1122 			     struct bpf_tramp_links *tlinks, void *func_addr);
1123 
1124 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1125 					     struct bpf_tramp_run_ctx *run_ctx);
1126 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1127 					     struct bpf_tramp_run_ctx *run_ctx);
1128 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1129 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1130 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1131 				      struct bpf_tramp_run_ctx *run_ctx);
1132 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1133 				      struct bpf_tramp_run_ctx *run_ctx);
1134 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1135 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1136 
1137 struct bpf_ksym {
1138 	unsigned long		 start;
1139 	unsigned long		 end;
1140 	char			 name[KSYM_NAME_LEN];
1141 	struct list_head	 lnode;
1142 	struct latch_tree_node	 tnode;
1143 	bool			 prog;
1144 };
1145 
1146 enum bpf_tramp_prog_type {
1147 	BPF_TRAMP_FENTRY,
1148 	BPF_TRAMP_FEXIT,
1149 	BPF_TRAMP_MODIFY_RETURN,
1150 	BPF_TRAMP_MAX,
1151 	BPF_TRAMP_REPLACE, /* more than MAX */
1152 };
1153 
1154 struct bpf_tramp_image {
1155 	void *image;
1156 	int size;
1157 	struct bpf_ksym ksym;
1158 	struct percpu_ref pcref;
1159 	void *ip_after_call;
1160 	void *ip_epilogue;
1161 	union {
1162 		struct rcu_head rcu;
1163 		struct work_struct work;
1164 	};
1165 };
1166 
1167 struct bpf_trampoline {
1168 	/* hlist for trampoline_table */
1169 	struct hlist_node hlist;
1170 	struct ftrace_ops *fops;
1171 	/* serializes access to fields of this trampoline */
1172 	struct mutex mutex;
1173 	refcount_t refcnt;
1174 	u32 flags;
1175 	u64 key;
1176 	struct {
1177 		struct btf_func_model model;
1178 		void *addr;
1179 		bool ftrace_managed;
1180 	} func;
1181 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1182 	 * program by replacing one of its functions. func.addr is the address
1183 	 * of the function it replaced.
1184 	 */
1185 	struct bpf_prog *extension_prog;
1186 	/* list of BPF programs using this trampoline */
1187 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1188 	/* Number of attached programs. A counter per kind. */
1189 	int progs_cnt[BPF_TRAMP_MAX];
1190 	/* Executable image of trampoline */
1191 	struct bpf_tramp_image *cur_image;
1192 	struct module *mod;
1193 };
1194 
1195 struct bpf_attach_target_info {
1196 	struct btf_func_model fmodel;
1197 	long tgt_addr;
1198 	struct module *tgt_mod;
1199 	const char *tgt_name;
1200 	const struct btf_type *tgt_type;
1201 };
1202 
1203 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1204 
1205 struct bpf_dispatcher_prog {
1206 	struct bpf_prog *prog;
1207 	refcount_t users;
1208 };
1209 
1210 struct bpf_dispatcher {
1211 	/* dispatcher mutex */
1212 	struct mutex mutex;
1213 	void *func;
1214 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1215 	int num_progs;
1216 	void *image;
1217 	void *rw_image;
1218 	u32 image_off;
1219 	struct bpf_ksym ksym;
1220 #ifdef CONFIG_HAVE_STATIC_CALL
1221 	struct static_call_key *sc_key;
1222 	void *sc_tramp;
1223 #endif
1224 };
1225 
1226 #ifndef __bpfcall
1227 #define __bpfcall __nocfi
1228 #endif
1229 
1230 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1231 	const void *ctx,
1232 	const struct bpf_insn *insnsi,
1233 	bpf_func_t bpf_func)
1234 {
1235 	return bpf_func(ctx, insnsi);
1236 }
1237 
1238 /* the implementation of the opaque uapi struct bpf_dynptr */
1239 struct bpf_dynptr_kern {
1240 	void *data;
1241 	/* Size represents the number of usable bytes of dynptr data.
1242 	 * If for example the offset is at 4 for a local dynptr whose data is
1243 	 * of type u64, the number of usable bytes is 4.
1244 	 *
1245 	 * The upper 8 bits are reserved. It is as follows:
1246 	 * Bits 0 - 23 = size
1247 	 * Bits 24 - 30 = dynptr type
1248 	 * Bit 31 = whether dynptr is read-only
1249 	 */
1250 	u32 size;
1251 	u32 offset;
1252 } __aligned(8);
1253 
1254 enum bpf_dynptr_type {
1255 	BPF_DYNPTR_TYPE_INVALID,
1256 	/* Points to memory that is local to the bpf program */
1257 	BPF_DYNPTR_TYPE_LOCAL,
1258 	/* Underlying data is a ringbuf record */
1259 	BPF_DYNPTR_TYPE_RINGBUF,
1260 	/* Underlying data is a sk_buff */
1261 	BPF_DYNPTR_TYPE_SKB,
1262 	/* Underlying data is a xdp_buff */
1263 	BPF_DYNPTR_TYPE_XDP,
1264 };
1265 
1266 int bpf_dynptr_check_size(u32 size);
1267 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1268 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1269 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1270 
1271 #ifdef CONFIG_BPF_JIT
1272 int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1273 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1274 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1275 					  struct bpf_attach_target_info *tgt_info);
1276 void bpf_trampoline_put(struct bpf_trampoline *tr);
1277 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1278 
1279 /*
1280  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1281  * indirection with a direct call to the bpf program. If the architecture does
1282  * not have STATIC_CALL, avoid a double-indirection.
1283  */
1284 #ifdef CONFIG_HAVE_STATIC_CALL
1285 
1286 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1287 	.sc_key = &STATIC_CALL_KEY(_name),			\
1288 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1289 
1290 #define __BPF_DISPATCHER_SC(name)				\
1291 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1292 
1293 #define __BPF_DISPATCHER_CALL(name)				\
1294 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1295 
1296 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1297 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1298 
1299 #else
1300 #define __BPF_DISPATCHER_SC_INIT(name)
1301 #define __BPF_DISPATCHER_SC(name)
1302 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1303 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1304 #endif
1305 
1306 #define BPF_DISPATCHER_INIT(_name) {				\
1307 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1308 	.func = &_name##_func,					\
1309 	.progs = {},						\
1310 	.num_progs = 0,						\
1311 	.image = NULL,						\
1312 	.image_off = 0,						\
1313 	.ksym = {						\
1314 		.name  = #_name,				\
1315 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1316 	},							\
1317 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1318 }
1319 
1320 #define DEFINE_BPF_DISPATCHER(name)					\
1321 	__BPF_DISPATCHER_SC(name);					\
1322 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1323 		const void *ctx,					\
1324 		const struct bpf_insn *insnsi,				\
1325 		bpf_func_t bpf_func)					\
1326 	{								\
1327 		return __BPF_DISPATCHER_CALL(name);			\
1328 	}								\
1329 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1330 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1331 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1332 
1333 #define DECLARE_BPF_DISPATCHER(name)					\
1334 	unsigned int bpf_dispatcher_##name##_func(			\
1335 		const void *ctx,					\
1336 		const struct bpf_insn *insnsi,				\
1337 		bpf_func_t bpf_func);					\
1338 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1339 
1340 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1341 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1342 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1343 				struct bpf_prog *to);
1344 /* Called only from JIT-enabled code, so there's no need for stubs. */
1345 void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1346 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1347 void bpf_ksym_add(struct bpf_ksym *ksym);
1348 void bpf_ksym_del(struct bpf_ksym *ksym);
1349 int bpf_jit_charge_modmem(u32 size);
1350 void bpf_jit_uncharge_modmem(u32 size);
1351 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1352 #else
1353 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1354 					   struct bpf_trampoline *tr)
1355 {
1356 	return -ENOTSUPP;
1357 }
1358 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1359 					     struct bpf_trampoline *tr)
1360 {
1361 	return -ENOTSUPP;
1362 }
1363 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1364 							struct bpf_attach_target_info *tgt_info)
1365 {
1366 	return NULL;
1367 }
1368 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1369 #define DEFINE_BPF_DISPATCHER(name)
1370 #define DECLARE_BPF_DISPATCHER(name)
1371 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1372 #define BPF_DISPATCHER_PTR(name) NULL
1373 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1374 					      struct bpf_prog *from,
1375 					      struct bpf_prog *to) {}
1376 static inline bool is_bpf_image_address(unsigned long address)
1377 {
1378 	return false;
1379 }
1380 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1381 {
1382 	return false;
1383 }
1384 #endif
1385 
1386 struct bpf_func_info_aux {
1387 	u16 linkage;
1388 	bool unreliable;
1389 	bool called : 1;
1390 	bool verified : 1;
1391 };
1392 
1393 enum bpf_jit_poke_reason {
1394 	BPF_POKE_REASON_TAIL_CALL,
1395 };
1396 
1397 /* Descriptor of pokes pointing /into/ the JITed image. */
1398 struct bpf_jit_poke_descriptor {
1399 	void *tailcall_target;
1400 	void *tailcall_bypass;
1401 	void *bypass_addr;
1402 	void *aux;
1403 	union {
1404 		struct {
1405 			struct bpf_map *map;
1406 			u32 key;
1407 		} tail_call;
1408 	};
1409 	bool tailcall_target_stable;
1410 	u8 adj_off;
1411 	u16 reason;
1412 	u32 insn_idx;
1413 };
1414 
1415 /* reg_type info for ctx arguments */
1416 struct bpf_ctx_arg_aux {
1417 	u32 offset;
1418 	enum bpf_reg_type reg_type;
1419 	u32 btf_id;
1420 };
1421 
1422 struct btf_mod_pair {
1423 	struct btf *btf;
1424 	struct module *module;
1425 };
1426 
1427 struct bpf_kfunc_desc_tab;
1428 
1429 struct bpf_prog_aux {
1430 	atomic64_t refcnt;
1431 	u32 used_map_cnt;
1432 	u32 used_btf_cnt;
1433 	u32 max_ctx_offset;
1434 	u32 max_pkt_offset;
1435 	u32 max_tp_access;
1436 	u32 stack_depth;
1437 	u32 id;
1438 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1439 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1440 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1441 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1442 	u32 ctx_arg_info_size;
1443 	u32 max_rdonly_access;
1444 	u32 max_rdwr_access;
1445 	struct btf *attach_btf;
1446 	const struct bpf_ctx_arg_aux *ctx_arg_info;
1447 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1448 	struct bpf_prog *dst_prog;
1449 	struct bpf_trampoline *dst_trampoline;
1450 	enum bpf_prog_type saved_dst_prog_type;
1451 	enum bpf_attach_type saved_dst_attach_type;
1452 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1453 	bool dev_bound; /* Program is bound to the netdev. */
1454 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1455 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1456 	bool func_proto_unreliable;
1457 	bool sleepable;
1458 	bool tail_call_reachable;
1459 	bool xdp_has_frags;
1460 	bool exception_cb;
1461 	bool exception_boundary;
1462 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1463 	const struct btf_type *attach_func_proto;
1464 	/* function name for valid attach_btf_id */
1465 	const char *attach_func_name;
1466 	struct bpf_prog **func;
1467 	void *jit_data; /* JIT specific data. arch dependent */
1468 	struct bpf_jit_poke_descriptor *poke_tab;
1469 	struct bpf_kfunc_desc_tab *kfunc_tab;
1470 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1471 	u32 size_poke_tab;
1472 #ifdef CONFIG_FINEIBT
1473 	struct bpf_ksym ksym_prefix;
1474 #endif
1475 	struct bpf_ksym ksym;
1476 	const struct bpf_prog_ops *ops;
1477 	struct bpf_map **used_maps;
1478 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1479 	struct btf_mod_pair *used_btfs;
1480 	struct bpf_prog *prog;
1481 	struct user_struct *user;
1482 	u64 load_time; /* ns since boottime */
1483 	u32 verified_insns;
1484 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1485 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1486 	char name[BPF_OBJ_NAME_LEN];
1487 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1488 #ifdef CONFIG_SECURITY
1489 	void *security;
1490 #endif
1491 	struct bpf_token *token;
1492 	struct bpf_prog_offload *offload;
1493 	struct btf *btf;
1494 	struct bpf_func_info *func_info;
1495 	struct bpf_func_info_aux *func_info_aux;
1496 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1497 	 * has the xlated insn offset.
1498 	 * Both the main and sub prog share the same linfo.
1499 	 * The subprog can access its first linfo by
1500 	 * using the linfo_idx.
1501 	 */
1502 	struct bpf_line_info *linfo;
1503 	/* jited_linfo is the jited addr of the linfo.  It has a
1504 	 * one to one mapping to linfo:
1505 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1506 	 * Both the main and sub prog share the same jited_linfo.
1507 	 * The subprog can access its first jited_linfo by
1508 	 * using the linfo_idx.
1509 	 */
1510 	void **jited_linfo;
1511 	u32 func_info_cnt;
1512 	u32 nr_linfo;
1513 	/* subprog can use linfo_idx to access its first linfo and
1514 	 * jited_linfo.
1515 	 * main prog always has linfo_idx == 0
1516 	 */
1517 	u32 linfo_idx;
1518 	struct module *mod;
1519 	u32 num_exentries;
1520 	struct exception_table_entry *extable;
1521 	union {
1522 		struct work_struct work;
1523 		struct rcu_head	rcu;
1524 	};
1525 };
1526 
1527 struct bpf_prog {
1528 	u16			pages;		/* Number of allocated pages */
1529 	u16			jited:1,	/* Is our filter JIT'ed? */
1530 				jit_requested:1,/* archs need to JIT the prog */
1531 				gpl_compatible:1, /* Is filter GPL compatible? */
1532 				cb_access:1,	/* Is control block accessed? */
1533 				dst_needed:1,	/* Do we need dst entry? */
1534 				blinding_requested:1, /* needs constant blinding */
1535 				blinded:1,	/* Was blinded */
1536 				is_func:1,	/* program is a bpf function */
1537 				kprobe_override:1, /* Do we override a kprobe? */
1538 				has_callchain_buf:1, /* callchain buffer allocated? */
1539 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1540 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1541 				call_get_func_ip:1, /* Do we call get_func_ip() */
1542 				tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1543 	enum bpf_prog_type	type;		/* Type of BPF program */
1544 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1545 	u32			len;		/* Number of filter blocks */
1546 	u32			jited_len;	/* Size of jited insns in bytes */
1547 	u8			tag[BPF_TAG_SIZE];
1548 	struct bpf_prog_stats __percpu *stats;
1549 	int __percpu		*active;
1550 	unsigned int		(*bpf_func)(const void *ctx,
1551 					    const struct bpf_insn *insn);
1552 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1553 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1554 	/* Instructions for interpreter */
1555 	union {
1556 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1557 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1558 	};
1559 };
1560 
1561 struct bpf_array_aux {
1562 	/* Programs with direct jumps into programs part of this array. */
1563 	struct list_head poke_progs;
1564 	struct bpf_map *map;
1565 	struct mutex poke_mutex;
1566 	struct work_struct work;
1567 };
1568 
1569 struct bpf_link {
1570 	atomic64_t refcnt;
1571 	u32 id;
1572 	enum bpf_link_type type;
1573 	const struct bpf_link_ops *ops;
1574 	struct bpf_prog *prog;
1575 	struct work_struct work;
1576 };
1577 
1578 struct bpf_link_ops {
1579 	void (*release)(struct bpf_link *link);
1580 	void (*dealloc)(struct bpf_link *link);
1581 	int (*detach)(struct bpf_link *link);
1582 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1583 			   struct bpf_prog *old_prog);
1584 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1585 	int (*fill_link_info)(const struct bpf_link *link,
1586 			      struct bpf_link_info *info);
1587 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1588 			  struct bpf_map *old_map);
1589 };
1590 
1591 struct bpf_tramp_link {
1592 	struct bpf_link link;
1593 	struct hlist_node tramp_hlist;
1594 	u64 cookie;
1595 };
1596 
1597 struct bpf_shim_tramp_link {
1598 	struct bpf_tramp_link link;
1599 	struct bpf_trampoline *trampoline;
1600 };
1601 
1602 struct bpf_tracing_link {
1603 	struct bpf_tramp_link link;
1604 	enum bpf_attach_type attach_type;
1605 	struct bpf_trampoline *trampoline;
1606 	struct bpf_prog *tgt_prog;
1607 };
1608 
1609 struct bpf_link_primer {
1610 	struct bpf_link *link;
1611 	struct file *file;
1612 	int fd;
1613 	u32 id;
1614 };
1615 
1616 struct bpf_mount_opts {
1617 	kuid_t uid;
1618 	kgid_t gid;
1619 	umode_t mode;
1620 
1621 	/* BPF token-related delegation options */
1622 	u64 delegate_cmds;
1623 	u64 delegate_maps;
1624 	u64 delegate_progs;
1625 	u64 delegate_attachs;
1626 };
1627 
1628 struct bpf_token {
1629 	struct work_struct work;
1630 	atomic64_t refcnt;
1631 	struct user_namespace *userns;
1632 	u64 allowed_cmds;
1633 	u64 allowed_maps;
1634 	u64 allowed_progs;
1635 	u64 allowed_attachs;
1636 #ifdef CONFIG_SECURITY
1637 	void *security;
1638 #endif
1639 };
1640 
1641 struct bpf_struct_ops_value;
1642 struct btf_member;
1643 
1644 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1645 /**
1646  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1647  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1648  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1649  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1650  *		  when determining whether the struct_ops progs in the
1651  *		  struct_ops map are valid.
1652  * @init: A callback that is invoked a single time, and before any other
1653  *	  callback, to initialize the structure. A nonzero return value means
1654  *	  the subsystem could not be initialized.
1655  * @check_member: When defined, a callback invoked by the verifier to allow
1656  *		  the subsystem to determine if an entry in the struct_ops map
1657  *		  is valid. A nonzero return value means that the map is
1658  *		  invalid and should be rejected by the verifier.
1659  * @init_member: A callback that is invoked for each member of the struct_ops
1660  *		 map to allow the subsystem to initialize the member. A nonzero
1661  *		 value means the member could not be initialized. This callback
1662  *		 is exclusive with the @type, @type_id, @value_type, and
1663  *		 @value_id fields.
1664  * @reg: A callback that is invoked when the struct_ops map has been
1665  *	 initialized and is being attached to. Zero means the struct_ops map
1666  *	 has been successfully registered and is live. A nonzero return value
1667  *	 means the struct_ops map could not be registered.
1668  * @unreg: A callback that is invoked when the struct_ops map should be
1669  *	   unregistered.
1670  * @update: A callback that is invoked when the live struct_ops map is being
1671  *	    updated to contain new values. This callback is only invoked when
1672  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1673  *	    it is assumed that the struct_ops map cannot be updated.
1674  * @validate: A callback that is invoked after all of the members have been
1675  *	      initialized. This callback should perform static checks on the
1676  *	      map, meaning that it should either fail or succeed
1677  *	      deterministically. A struct_ops map that has been validated may
1678  *	      not necessarily succeed in being registered if the call to @reg
1679  *	      fails. For example, a valid struct_ops map may be loaded, but
1680  *	      then fail to be registered due to there being another active
1681  *	      struct_ops map on the system in the subsystem already. For this
1682  *	      reason, if this callback is not defined, the check is skipped as
1683  *	      the struct_ops map will have final verification performed in
1684  *	      @reg.
1685  * @type: BTF type.
1686  * @value_type: Value type.
1687  * @name: The name of the struct bpf_struct_ops object.
1688  * @func_models: Func models
1689  * @type_id: BTF type id.
1690  * @value_id: BTF value id.
1691  */
1692 struct bpf_struct_ops {
1693 	const struct bpf_verifier_ops *verifier_ops;
1694 	int (*init)(struct btf *btf);
1695 	int (*check_member)(const struct btf_type *t,
1696 			    const struct btf_member *member,
1697 			    const struct bpf_prog *prog);
1698 	int (*init_member)(const struct btf_type *t,
1699 			   const struct btf_member *member,
1700 			   void *kdata, const void *udata);
1701 	int (*reg)(void *kdata);
1702 	void (*unreg)(void *kdata);
1703 	int (*update)(void *kdata, void *old_kdata);
1704 	int (*validate)(void *kdata);
1705 	const struct btf_type *type;
1706 	const struct btf_type *value_type;
1707 	const char *name;
1708 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1709 	u32 type_id;
1710 	u32 value_id;
1711 	void *cfi_stubs;
1712 };
1713 
1714 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1715 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1716 const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1717 void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1718 bool bpf_struct_ops_get(const void *kdata);
1719 void bpf_struct_ops_put(const void *kdata);
1720 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1721 				       void *value);
1722 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1723 				      struct bpf_tramp_link *link,
1724 				      const struct btf_func_model *model,
1725 				      void *stub_func,
1726 				      void *image, void *image_end);
1727 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1728 {
1729 	if (owner == BPF_MODULE_OWNER)
1730 		return bpf_struct_ops_get(data);
1731 	else
1732 		return try_module_get(owner);
1733 }
1734 static inline void bpf_module_put(const void *data, struct module *owner)
1735 {
1736 	if (owner == BPF_MODULE_OWNER)
1737 		bpf_struct_ops_put(data);
1738 	else
1739 		module_put(owner);
1740 }
1741 int bpf_struct_ops_link_create(union bpf_attr *attr);
1742 
1743 #ifdef CONFIG_NET
1744 /* Define it here to avoid the use of forward declaration */
1745 struct bpf_dummy_ops_state {
1746 	int val;
1747 };
1748 
1749 struct bpf_dummy_ops {
1750 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1751 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1752 		      char a3, unsigned long a4);
1753 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1754 };
1755 
1756 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1757 			    union bpf_attr __user *uattr);
1758 #endif
1759 #else
1760 static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1761 {
1762 	return NULL;
1763 }
1764 static inline void bpf_struct_ops_init(struct btf *btf,
1765 				       struct bpf_verifier_log *log)
1766 {
1767 }
1768 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1769 {
1770 	return try_module_get(owner);
1771 }
1772 static inline void bpf_module_put(const void *data, struct module *owner)
1773 {
1774 	module_put(owner);
1775 }
1776 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1777 						     void *key,
1778 						     void *value)
1779 {
1780 	return -EINVAL;
1781 }
1782 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1783 {
1784 	return -EOPNOTSUPP;
1785 }
1786 
1787 #endif
1788 
1789 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1790 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1791 				    int cgroup_atype);
1792 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1793 #else
1794 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1795 						  int cgroup_atype)
1796 {
1797 	return -EOPNOTSUPP;
1798 }
1799 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1800 {
1801 }
1802 #endif
1803 
1804 struct bpf_array {
1805 	struct bpf_map map;
1806 	u32 elem_size;
1807 	u32 index_mask;
1808 	struct bpf_array_aux *aux;
1809 	union {
1810 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1811 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1812 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1813 	};
1814 };
1815 
1816 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1817 #define MAX_TAIL_CALL_CNT 33
1818 
1819 /* Maximum number of loops for bpf_loop and bpf_iter_num.
1820  * It's enum to expose it (and thus make it discoverable) through BTF.
1821  */
1822 enum {
1823 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1824 };
1825 
1826 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1827 				 BPF_F_RDONLY_PROG |	\
1828 				 BPF_F_WRONLY |		\
1829 				 BPF_F_WRONLY_PROG)
1830 
1831 #define BPF_MAP_CAN_READ	BIT(0)
1832 #define BPF_MAP_CAN_WRITE	BIT(1)
1833 
1834 /* Maximum number of user-producer ring buffer samples that can be drained in
1835  * a call to bpf_user_ringbuf_drain().
1836  */
1837 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1838 
1839 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1840 {
1841 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1842 
1843 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1844 	 * not possible.
1845 	 */
1846 	if (access_flags & BPF_F_RDONLY_PROG)
1847 		return BPF_MAP_CAN_READ;
1848 	else if (access_flags & BPF_F_WRONLY_PROG)
1849 		return BPF_MAP_CAN_WRITE;
1850 	else
1851 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1852 }
1853 
1854 static inline bool bpf_map_flags_access_ok(u32 access_flags)
1855 {
1856 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1857 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1858 }
1859 
1860 struct bpf_event_entry {
1861 	struct perf_event *event;
1862 	struct file *perf_file;
1863 	struct file *map_file;
1864 	struct rcu_head rcu;
1865 };
1866 
1867 static inline bool map_type_contains_progs(struct bpf_map *map)
1868 {
1869 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1870 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1871 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1872 }
1873 
1874 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1875 int bpf_prog_calc_tag(struct bpf_prog *fp);
1876 
1877 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1878 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1879 
1880 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1881 					unsigned long off, unsigned long len);
1882 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1883 					const struct bpf_insn *src,
1884 					struct bpf_insn *dst,
1885 					struct bpf_prog *prog,
1886 					u32 *target_size);
1887 
1888 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1889 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1890 
1891 /* an array of programs to be executed under rcu_lock.
1892  *
1893  * Typical usage:
1894  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1895  *
1896  * the structure returned by bpf_prog_array_alloc() should be populated
1897  * with program pointers and the last pointer must be NULL.
1898  * The user has to keep refcnt on the program and make sure the program
1899  * is removed from the array before bpf_prog_put().
1900  * The 'struct bpf_prog_array *' should only be replaced with xchg()
1901  * since other cpus are walking the array of pointers in parallel.
1902  */
1903 struct bpf_prog_array_item {
1904 	struct bpf_prog *prog;
1905 	union {
1906 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1907 		u64 bpf_cookie;
1908 	};
1909 };
1910 
1911 struct bpf_prog_array {
1912 	struct rcu_head rcu;
1913 	struct bpf_prog_array_item items[];
1914 };
1915 
1916 struct bpf_empty_prog_array {
1917 	struct bpf_prog_array hdr;
1918 	struct bpf_prog *null_prog;
1919 };
1920 
1921 /* to avoid allocating empty bpf_prog_array for cgroups that
1922  * don't have bpf program attached use one global 'bpf_empty_prog_array'
1923  * It will not be modified the caller of bpf_prog_array_alloc()
1924  * (since caller requested prog_cnt == 0)
1925  * that pointer should be 'freed' by bpf_prog_array_free()
1926  */
1927 extern struct bpf_empty_prog_array bpf_empty_prog_array;
1928 
1929 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1930 void bpf_prog_array_free(struct bpf_prog_array *progs);
1931 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1932 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1933 int bpf_prog_array_length(struct bpf_prog_array *progs);
1934 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1935 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1936 				__u32 __user *prog_ids, u32 cnt);
1937 
1938 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1939 				struct bpf_prog *old_prog);
1940 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1941 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1942 			     struct bpf_prog *prog);
1943 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1944 			     u32 *prog_ids, u32 request_cnt,
1945 			     u32 *prog_cnt);
1946 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1947 			struct bpf_prog *exclude_prog,
1948 			struct bpf_prog *include_prog,
1949 			u64 bpf_cookie,
1950 			struct bpf_prog_array **new_array);
1951 
1952 struct bpf_run_ctx {};
1953 
1954 struct bpf_cg_run_ctx {
1955 	struct bpf_run_ctx run_ctx;
1956 	const struct bpf_prog_array_item *prog_item;
1957 	int retval;
1958 };
1959 
1960 struct bpf_trace_run_ctx {
1961 	struct bpf_run_ctx run_ctx;
1962 	u64 bpf_cookie;
1963 	bool is_uprobe;
1964 };
1965 
1966 struct bpf_tramp_run_ctx {
1967 	struct bpf_run_ctx run_ctx;
1968 	u64 bpf_cookie;
1969 	struct bpf_run_ctx *saved_run_ctx;
1970 };
1971 
1972 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1973 {
1974 	struct bpf_run_ctx *old_ctx = NULL;
1975 
1976 #ifdef CONFIG_BPF_SYSCALL
1977 	old_ctx = current->bpf_ctx;
1978 	current->bpf_ctx = new_ctx;
1979 #endif
1980 	return old_ctx;
1981 }
1982 
1983 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1984 {
1985 #ifdef CONFIG_BPF_SYSCALL
1986 	current->bpf_ctx = old_ctx;
1987 #endif
1988 }
1989 
1990 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1991 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
1992 /* BPF program asks to set CN on the packet. */
1993 #define BPF_RET_SET_CN						(1 << 0)
1994 
1995 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1996 
1997 static __always_inline u32
1998 bpf_prog_run_array(const struct bpf_prog_array *array,
1999 		   const void *ctx, bpf_prog_run_fn run_prog)
2000 {
2001 	const struct bpf_prog_array_item *item;
2002 	const struct bpf_prog *prog;
2003 	struct bpf_run_ctx *old_run_ctx;
2004 	struct bpf_trace_run_ctx run_ctx;
2005 	u32 ret = 1;
2006 
2007 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2008 
2009 	if (unlikely(!array))
2010 		return ret;
2011 
2012 	run_ctx.is_uprobe = false;
2013 
2014 	migrate_disable();
2015 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2016 	item = &array->items[0];
2017 	while ((prog = READ_ONCE(item->prog))) {
2018 		run_ctx.bpf_cookie = item->bpf_cookie;
2019 		ret &= run_prog(prog, ctx);
2020 		item++;
2021 	}
2022 	bpf_reset_run_ctx(old_run_ctx);
2023 	migrate_enable();
2024 	return ret;
2025 }
2026 
2027 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2028  *
2029  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2030  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2031  * in order to use the tasks_trace rcu grace period.
2032  *
2033  * When a non-sleepable program is inside the array, we take the rcu read
2034  * section and disable preemption for that program alone, so it can access
2035  * rcu-protected dynamically sized maps.
2036  */
2037 static __always_inline u32
2038 bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2039 			  const void *ctx, bpf_prog_run_fn run_prog)
2040 {
2041 	const struct bpf_prog_array_item *item;
2042 	const struct bpf_prog *prog;
2043 	const struct bpf_prog_array *array;
2044 	struct bpf_run_ctx *old_run_ctx;
2045 	struct bpf_trace_run_ctx run_ctx;
2046 	u32 ret = 1;
2047 
2048 	might_fault();
2049 
2050 	rcu_read_lock_trace();
2051 	migrate_disable();
2052 
2053 	run_ctx.is_uprobe = true;
2054 
2055 	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2056 	if (unlikely(!array))
2057 		goto out;
2058 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2059 	item = &array->items[0];
2060 	while ((prog = READ_ONCE(item->prog))) {
2061 		if (!prog->aux->sleepable)
2062 			rcu_read_lock();
2063 
2064 		run_ctx.bpf_cookie = item->bpf_cookie;
2065 		ret &= run_prog(prog, ctx);
2066 		item++;
2067 
2068 		if (!prog->aux->sleepable)
2069 			rcu_read_unlock();
2070 	}
2071 	bpf_reset_run_ctx(old_run_ctx);
2072 out:
2073 	migrate_enable();
2074 	rcu_read_unlock_trace();
2075 	return ret;
2076 }
2077 
2078 #ifdef CONFIG_BPF_SYSCALL
2079 DECLARE_PER_CPU(int, bpf_prog_active);
2080 extern struct mutex bpf_stats_enabled_mutex;
2081 
2082 /*
2083  * Block execution of BPF programs attached to instrumentation (perf,
2084  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2085  * these events can happen inside a region which holds a map bucket lock
2086  * and can deadlock on it.
2087  */
2088 static inline void bpf_disable_instrumentation(void)
2089 {
2090 	migrate_disable();
2091 	this_cpu_inc(bpf_prog_active);
2092 }
2093 
2094 static inline void bpf_enable_instrumentation(void)
2095 {
2096 	this_cpu_dec(bpf_prog_active);
2097 	migrate_enable();
2098 }
2099 
2100 extern const struct super_operations bpf_super_ops;
2101 extern const struct file_operations bpf_map_fops;
2102 extern const struct file_operations bpf_prog_fops;
2103 extern const struct file_operations bpf_iter_fops;
2104 
2105 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2106 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2107 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2108 #define BPF_MAP_TYPE(_id, _ops) \
2109 	extern const struct bpf_map_ops _ops;
2110 #define BPF_LINK_TYPE(_id, _name)
2111 #include <linux/bpf_types.h>
2112 #undef BPF_PROG_TYPE
2113 #undef BPF_MAP_TYPE
2114 #undef BPF_LINK_TYPE
2115 
2116 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2117 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2118 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2119 
2120 struct bpf_prog *bpf_prog_get(u32 ufd);
2121 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2122 				       bool attach_drv);
2123 void bpf_prog_add(struct bpf_prog *prog, int i);
2124 void bpf_prog_sub(struct bpf_prog *prog, int i);
2125 void bpf_prog_inc(struct bpf_prog *prog);
2126 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2127 void bpf_prog_put(struct bpf_prog *prog);
2128 
2129 void bpf_prog_free_id(struct bpf_prog *prog);
2130 void bpf_map_free_id(struct bpf_map *map);
2131 
2132 struct btf_field *btf_record_find(const struct btf_record *rec,
2133 				  u32 offset, u32 field_mask);
2134 void btf_record_free(struct btf_record *rec);
2135 void bpf_map_free_record(struct bpf_map *map);
2136 struct btf_record *btf_record_dup(const struct btf_record *rec);
2137 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2138 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2139 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2140 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2141 
2142 struct bpf_map *bpf_map_get(u32 ufd);
2143 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2144 struct bpf_map *__bpf_map_get(struct fd f);
2145 void bpf_map_inc(struct bpf_map *map);
2146 void bpf_map_inc_with_uref(struct bpf_map *map);
2147 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2148 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2149 void bpf_map_put_with_uref(struct bpf_map *map);
2150 void bpf_map_put(struct bpf_map *map);
2151 void *bpf_map_area_alloc(u64 size, int numa_node);
2152 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2153 void bpf_map_area_free(void *base);
2154 bool bpf_map_write_active(const struct bpf_map *map);
2155 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2156 int  generic_map_lookup_batch(struct bpf_map *map,
2157 			      const union bpf_attr *attr,
2158 			      union bpf_attr __user *uattr);
2159 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2160 			      const union bpf_attr *attr,
2161 			      union bpf_attr __user *uattr);
2162 int  generic_map_delete_batch(struct bpf_map *map,
2163 			      const union bpf_attr *attr,
2164 			      union bpf_attr __user *uattr);
2165 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2166 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2167 
2168 #ifdef CONFIG_MEMCG_KMEM
2169 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2170 			   int node);
2171 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2172 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2173 		       gfp_t flags);
2174 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2175 				    size_t align, gfp_t flags);
2176 #else
2177 static inline void *
2178 bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2179 		     int node)
2180 {
2181 	return kmalloc_node(size, flags, node);
2182 }
2183 
2184 static inline void *
2185 bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2186 {
2187 	return kzalloc(size, flags);
2188 }
2189 
2190 static inline void *
2191 bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2192 {
2193 	return kvcalloc(n, size, flags);
2194 }
2195 
2196 static inline void __percpu *
2197 bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2198 		     gfp_t flags)
2199 {
2200 	return __alloc_percpu_gfp(size, align, flags);
2201 }
2202 #endif
2203 
2204 static inline int
2205 bpf_map_init_elem_count(struct bpf_map *map)
2206 {
2207 	size_t size = sizeof(*map->elem_count), align = size;
2208 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2209 
2210 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2211 	if (!map->elem_count)
2212 		return -ENOMEM;
2213 
2214 	return 0;
2215 }
2216 
2217 static inline void
2218 bpf_map_free_elem_count(struct bpf_map *map)
2219 {
2220 	free_percpu(map->elem_count);
2221 }
2222 
2223 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2224 {
2225 	this_cpu_inc(*map->elem_count);
2226 }
2227 
2228 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2229 {
2230 	this_cpu_dec(*map->elem_count);
2231 }
2232 
2233 extern int sysctl_unprivileged_bpf_disabled;
2234 
2235 bool bpf_token_capable(const struct bpf_token *token, int cap);
2236 
2237 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2238 {
2239 	return bpf_token_capable(token, CAP_PERFMON);
2240 }
2241 
2242 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2243 {
2244 	return bpf_token_capable(token, CAP_PERFMON);
2245 }
2246 
2247 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2248 {
2249 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2250 }
2251 
2252 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2253 {
2254 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2255 }
2256 
2257 int bpf_map_new_fd(struct bpf_map *map, int flags);
2258 int bpf_prog_new_fd(struct bpf_prog *prog);
2259 
2260 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2261 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2262 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2263 int bpf_link_settle(struct bpf_link_primer *primer);
2264 void bpf_link_cleanup(struct bpf_link_primer *primer);
2265 void bpf_link_inc(struct bpf_link *link);
2266 void bpf_link_put(struct bpf_link *link);
2267 int bpf_link_new_fd(struct bpf_link *link);
2268 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2269 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2270 
2271 void bpf_token_inc(struct bpf_token *token);
2272 void bpf_token_put(struct bpf_token *token);
2273 int bpf_token_create(union bpf_attr *attr);
2274 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2275 
2276 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2277 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2278 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2279 			       enum bpf_prog_type prog_type,
2280 			       enum bpf_attach_type attach_type);
2281 
2282 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2283 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2284 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2285 			    umode_t mode);
2286 
2287 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2288 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2289 	extern int bpf_iter_ ## target(args);			\
2290 	int __init bpf_iter_ ## target(args) { return 0; }
2291 
2292 /*
2293  * The task type of iterators.
2294  *
2295  * For BPF task iterators, they can be parameterized with various
2296  * parameters to visit only some of tasks.
2297  *
2298  * BPF_TASK_ITER_ALL (default)
2299  *	Iterate over resources of every task.
2300  *
2301  * BPF_TASK_ITER_TID
2302  *	Iterate over resources of a task/tid.
2303  *
2304  * BPF_TASK_ITER_TGID
2305  *	Iterate over resources of every task of a process / task group.
2306  */
2307 enum bpf_iter_task_type {
2308 	BPF_TASK_ITER_ALL = 0,
2309 	BPF_TASK_ITER_TID,
2310 	BPF_TASK_ITER_TGID,
2311 };
2312 
2313 struct bpf_iter_aux_info {
2314 	/* for map_elem iter */
2315 	struct bpf_map *map;
2316 
2317 	/* for cgroup iter */
2318 	struct {
2319 		struct cgroup *start; /* starting cgroup */
2320 		enum bpf_cgroup_iter_order order;
2321 	} cgroup;
2322 	struct {
2323 		enum bpf_iter_task_type	type;
2324 		u32 pid;
2325 	} task;
2326 };
2327 
2328 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2329 					union bpf_iter_link_info *linfo,
2330 					struct bpf_iter_aux_info *aux);
2331 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2332 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2333 					struct seq_file *seq);
2334 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2335 					 struct bpf_link_info *info);
2336 typedef const struct bpf_func_proto *
2337 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2338 			     const struct bpf_prog *prog);
2339 
2340 enum bpf_iter_feature {
2341 	BPF_ITER_RESCHED	= BIT(0),
2342 };
2343 
2344 #define BPF_ITER_CTX_ARG_MAX 2
2345 struct bpf_iter_reg {
2346 	const char *target;
2347 	bpf_iter_attach_target_t attach_target;
2348 	bpf_iter_detach_target_t detach_target;
2349 	bpf_iter_show_fdinfo_t show_fdinfo;
2350 	bpf_iter_fill_link_info_t fill_link_info;
2351 	bpf_iter_get_func_proto_t get_func_proto;
2352 	u32 ctx_arg_info_size;
2353 	u32 feature;
2354 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2355 	const struct bpf_iter_seq_info *seq_info;
2356 };
2357 
2358 struct bpf_iter_meta {
2359 	__bpf_md_ptr(struct seq_file *, seq);
2360 	u64 session_id;
2361 	u64 seq_num;
2362 };
2363 
2364 struct bpf_iter__bpf_map_elem {
2365 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2366 	__bpf_md_ptr(struct bpf_map *, map);
2367 	__bpf_md_ptr(void *, key);
2368 	__bpf_md_ptr(void *, value);
2369 };
2370 
2371 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2372 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2373 bool bpf_iter_prog_supported(struct bpf_prog *prog);
2374 const struct bpf_func_proto *
2375 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2376 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2377 int bpf_iter_new_fd(struct bpf_link *link);
2378 bool bpf_link_is_iter(struct bpf_link *link);
2379 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2380 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2381 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2382 			      struct seq_file *seq);
2383 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2384 				struct bpf_link_info *info);
2385 
2386 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2387 				   struct bpf_func_state *caller,
2388 				   struct bpf_func_state *callee);
2389 
2390 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2391 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2392 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2393 			   u64 flags);
2394 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2395 			    u64 flags);
2396 
2397 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2398 
2399 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2400 				 void *key, void *value, u64 map_flags);
2401 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2402 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2403 				void *key, void *value, u64 map_flags);
2404 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2405 
2406 int bpf_get_file_flag(int flags);
2407 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2408 			     size_t actual_size);
2409 
2410 /* verify correctness of eBPF program */
2411 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2412 
2413 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2414 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2415 #endif
2416 
2417 struct btf *bpf_get_btf_vmlinux(void);
2418 
2419 /* Map specifics */
2420 struct xdp_frame;
2421 struct sk_buff;
2422 struct bpf_dtab_netdev;
2423 struct bpf_cpu_map_entry;
2424 
2425 void __dev_flush(void);
2426 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2427 		    struct net_device *dev_rx);
2428 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2429 		    struct net_device *dev_rx);
2430 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2431 			  struct bpf_map *map, bool exclude_ingress);
2432 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2433 			     struct bpf_prog *xdp_prog);
2434 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2435 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2436 			   bool exclude_ingress);
2437 
2438 void __cpu_map_flush(void);
2439 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2440 		    struct net_device *dev_rx);
2441 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2442 			     struct sk_buff *skb);
2443 
2444 /* Return map's numa specified by userspace */
2445 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2446 {
2447 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2448 		attr->numa_node : NUMA_NO_NODE;
2449 }
2450 
2451 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2452 int array_map_alloc_check(union bpf_attr *attr);
2453 
2454 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2455 			  union bpf_attr __user *uattr);
2456 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2457 			  union bpf_attr __user *uattr);
2458 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2459 			      const union bpf_attr *kattr,
2460 			      union bpf_attr __user *uattr);
2461 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2462 				     const union bpf_attr *kattr,
2463 				     union bpf_attr __user *uattr);
2464 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2465 			     const union bpf_attr *kattr,
2466 			     union bpf_attr __user *uattr);
2467 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2468 				const union bpf_attr *kattr,
2469 				union bpf_attr __user *uattr);
2470 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2471 			 const union bpf_attr *kattr,
2472 			 union bpf_attr __user *uattr);
2473 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2474 		    const struct bpf_prog *prog,
2475 		    struct bpf_insn_access_aux *info);
2476 
2477 static inline bool bpf_tracing_ctx_access(int off, int size,
2478 					  enum bpf_access_type type)
2479 {
2480 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2481 		return false;
2482 	if (type != BPF_READ)
2483 		return false;
2484 	if (off % size != 0)
2485 		return false;
2486 	return true;
2487 }
2488 
2489 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2490 					      enum bpf_access_type type,
2491 					      const struct bpf_prog *prog,
2492 					      struct bpf_insn_access_aux *info)
2493 {
2494 	if (!bpf_tracing_ctx_access(off, size, type))
2495 		return false;
2496 	return btf_ctx_access(off, size, type, prog, info);
2497 }
2498 
2499 int btf_struct_access(struct bpf_verifier_log *log,
2500 		      const struct bpf_reg_state *reg,
2501 		      int off, int size, enum bpf_access_type atype,
2502 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2503 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2504 			  const struct btf *btf, u32 id, int off,
2505 			  const struct btf *need_btf, u32 need_type_id,
2506 			  bool strict);
2507 
2508 int btf_distill_func_proto(struct bpf_verifier_log *log,
2509 			   struct btf *btf,
2510 			   const struct btf_type *func_proto,
2511 			   const char *func_name,
2512 			   struct btf_func_model *m);
2513 
2514 struct bpf_reg_state;
2515 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2516 				struct bpf_reg_state *regs);
2517 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2518 			   struct bpf_reg_state *regs);
2519 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2520 			  struct bpf_reg_state *reg, u32 *nargs);
2521 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2522 			 struct btf *btf, const struct btf_type *t);
2523 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2524 				    int comp_idx, const char *tag_key);
2525 
2526 struct bpf_prog *bpf_prog_by_id(u32 id);
2527 struct bpf_link *bpf_link_by_id(u32 id);
2528 
2529 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2530 						 const struct bpf_prog *prog);
2531 void bpf_task_storage_free(struct task_struct *task);
2532 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2533 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2534 const struct btf_func_model *
2535 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2536 			 const struct bpf_insn *insn);
2537 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2538 		       u16 btf_fd_idx, u8 **func_addr);
2539 
2540 struct bpf_core_ctx {
2541 	struct bpf_verifier_log *log;
2542 	const struct btf *btf;
2543 };
2544 
2545 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2546 				const struct bpf_reg_state *reg,
2547 				const char *field_name, u32 btf_id, const char *suffix);
2548 
2549 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2550 			       const struct btf *reg_btf, u32 reg_id,
2551 			       const struct btf *arg_btf, u32 arg_id);
2552 
2553 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2554 		   int relo_idx, void *insn);
2555 
2556 static inline bool unprivileged_ebpf_enabled(void)
2557 {
2558 	return !sysctl_unprivileged_bpf_disabled;
2559 }
2560 
2561 /* Not all bpf prog type has the bpf_ctx.
2562  * For the bpf prog type that has initialized the bpf_ctx,
2563  * this function can be used to decide if a kernel function
2564  * is called by a bpf program.
2565  */
2566 static inline bool has_current_bpf_ctx(void)
2567 {
2568 	return !!current->bpf_ctx;
2569 }
2570 
2571 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2572 
2573 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2574 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2575 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2576 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2577 
2578 bool dev_check_flush(void);
2579 bool cpu_map_check_flush(void);
2580 #else /* !CONFIG_BPF_SYSCALL */
2581 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2582 {
2583 	return ERR_PTR(-EOPNOTSUPP);
2584 }
2585 
2586 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2587 						     enum bpf_prog_type type,
2588 						     bool attach_drv)
2589 {
2590 	return ERR_PTR(-EOPNOTSUPP);
2591 }
2592 
2593 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2594 {
2595 }
2596 
2597 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2598 {
2599 }
2600 
2601 static inline void bpf_prog_put(struct bpf_prog *prog)
2602 {
2603 }
2604 
2605 static inline void bpf_prog_inc(struct bpf_prog *prog)
2606 {
2607 }
2608 
2609 static inline struct bpf_prog *__must_check
2610 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2611 {
2612 	return ERR_PTR(-EOPNOTSUPP);
2613 }
2614 
2615 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2616 				 const struct bpf_link_ops *ops,
2617 				 struct bpf_prog *prog)
2618 {
2619 }
2620 
2621 static inline int bpf_link_prime(struct bpf_link *link,
2622 				 struct bpf_link_primer *primer)
2623 {
2624 	return -EOPNOTSUPP;
2625 }
2626 
2627 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2628 {
2629 	return -EOPNOTSUPP;
2630 }
2631 
2632 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2633 {
2634 }
2635 
2636 static inline void bpf_link_inc(struct bpf_link *link)
2637 {
2638 }
2639 
2640 static inline void bpf_link_put(struct bpf_link *link)
2641 {
2642 }
2643 
2644 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2645 {
2646 	return -EOPNOTSUPP;
2647 }
2648 
2649 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2650 {
2651 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2652 }
2653 
2654 static inline void bpf_token_inc(struct bpf_token *token)
2655 {
2656 }
2657 
2658 static inline void bpf_token_put(struct bpf_token *token)
2659 {
2660 }
2661 
2662 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2663 {
2664 	return ERR_PTR(-EOPNOTSUPP);
2665 }
2666 
2667 static inline void __dev_flush(void)
2668 {
2669 }
2670 
2671 struct xdp_frame;
2672 struct bpf_dtab_netdev;
2673 struct bpf_cpu_map_entry;
2674 
2675 static inline
2676 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2677 		    struct net_device *dev_rx)
2678 {
2679 	return 0;
2680 }
2681 
2682 static inline
2683 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2684 		    struct net_device *dev_rx)
2685 {
2686 	return 0;
2687 }
2688 
2689 static inline
2690 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2691 			  struct bpf_map *map, bool exclude_ingress)
2692 {
2693 	return 0;
2694 }
2695 
2696 struct sk_buff;
2697 
2698 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2699 					   struct sk_buff *skb,
2700 					   struct bpf_prog *xdp_prog)
2701 {
2702 	return 0;
2703 }
2704 
2705 static inline
2706 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2707 			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2708 			   bool exclude_ingress)
2709 {
2710 	return 0;
2711 }
2712 
2713 static inline void __cpu_map_flush(void)
2714 {
2715 }
2716 
2717 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2718 				  struct xdp_frame *xdpf,
2719 				  struct net_device *dev_rx)
2720 {
2721 	return 0;
2722 }
2723 
2724 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2725 					   struct sk_buff *skb)
2726 {
2727 	return -EOPNOTSUPP;
2728 }
2729 
2730 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2731 				enum bpf_prog_type type)
2732 {
2733 	return ERR_PTR(-EOPNOTSUPP);
2734 }
2735 
2736 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2737 					const union bpf_attr *kattr,
2738 					union bpf_attr __user *uattr)
2739 {
2740 	return -ENOTSUPP;
2741 }
2742 
2743 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2744 					const union bpf_attr *kattr,
2745 					union bpf_attr __user *uattr)
2746 {
2747 	return -ENOTSUPP;
2748 }
2749 
2750 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2751 					    const union bpf_attr *kattr,
2752 					    union bpf_attr __user *uattr)
2753 {
2754 	return -ENOTSUPP;
2755 }
2756 
2757 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2758 						   const union bpf_attr *kattr,
2759 						   union bpf_attr __user *uattr)
2760 {
2761 	return -ENOTSUPP;
2762 }
2763 
2764 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2765 					      const union bpf_attr *kattr,
2766 					      union bpf_attr __user *uattr)
2767 {
2768 	return -ENOTSUPP;
2769 }
2770 
2771 static inline void bpf_map_put(struct bpf_map *map)
2772 {
2773 }
2774 
2775 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2776 {
2777 	return ERR_PTR(-ENOTSUPP);
2778 }
2779 
2780 static inline int btf_struct_access(struct bpf_verifier_log *log,
2781 				    const struct bpf_reg_state *reg,
2782 				    int off, int size, enum bpf_access_type atype,
2783 				    u32 *next_btf_id, enum bpf_type_flag *flag,
2784 				    const char **field_name)
2785 {
2786 	return -EACCES;
2787 }
2788 
2789 static inline const struct bpf_func_proto *
2790 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2791 {
2792 	return NULL;
2793 }
2794 
2795 static inline void bpf_task_storage_free(struct task_struct *task)
2796 {
2797 }
2798 
2799 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2800 {
2801 	return false;
2802 }
2803 
2804 static inline const struct btf_func_model *
2805 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2806 			 const struct bpf_insn *insn)
2807 {
2808 	return NULL;
2809 }
2810 
2811 static inline int
2812 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2813 		   u16 btf_fd_idx, u8 **func_addr)
2814 {
2815 	return -ENOTSUPP;
2816 }
2817 
2818 static inline bool unprivileged_ebpf_enabled(void)
2819 {
2820 	return false;
2821 }
2822 
2823 static inline bool has_current_bpf_ctx(void)
2824 {
2825 	return false;
2826 }
2827 
2828 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2829 {
2830 }
2831 
2832 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2833 {
2834 }
2835 
2836 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2837 				   enum bpf_dynptr_type type, u32 offset, u32 size)
2838 {
2839 }
2840 
2841 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2842 {
2843 }
2844 
2845 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2846 {
2847 }
2848 #endif /* CONFIG_BPF_SYSCALL */
2849 
2850 static __always_inline int
2851 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2852 {
2853 	int ret = -EFAULT;
2854 
2855 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2856 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2857 	if (unlikely(ret < 0))
2858 		memset(dst, 0, size);
2859 	return ret;
2860 }
2861 
2862 void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2863 			  struct btf_mod_pair *used_btfs, u32 len);
2864 
2865 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2866 						 enum bpf_prog_type type)
2867 {
2868 	return bpf_prog_get_type_dev(ufd, type, false);
2869 }
2870 
2871 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2872 			  struct bpf_map **used_maps, u32 len);
2873 
2874 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2875 
2876 int bpf_prog_offload_compile(struct bpf_prog *prog);
2877 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2878 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2879 			       struct bpf_prog *prog);
2880 
2881 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2882 
2883 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2884 int bpf_map_offload_update_elem(struct bpf_map *map,
2885 				void *key, void *value, u64 flags);
2886 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2887 int bpf_map_offload_get_next_key(struct bpf_map *map,
2888 				 void *key, void *next_key);
2889 
2890 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2891 
2892 struct bpf_offload_dev *
2893 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2894 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2895 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2896 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2897 				    struct net_device *netdev);
2898 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2899 				       struct net_device *netdev);
2900 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2901 
2902 void unpriv_ebpf_notify(int new_state);
2903 
2904 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2905 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2906 			      struct bpf_prog_aux *prog_aux);
2907 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2908 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2909 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2910 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2911 
2912 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2913 {
2914 	return aux->dev_bound;
2915 }
2916 
2917 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2918 {
2919 	return aux->offload_requested;
2920 }
2921 
2922 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2923 
2924 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2925 {
2926 	return unlikely(map->ops == &bpf_map_offload_ops);
2927 }
2928 
2929 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2930 void bpf_map_offload_map_free(struct bpf_map *map);
2931 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2932 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2933 			      const union bpf_attr *kattr,
2934 			      union bpf_attr __user *uattr);
2935 
2936 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2937 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2938 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2939 int sock_map_bpf_prog_query(const union bpf_attr *attr,
2940 			    union bpf_attr __user *uattr);
2941 
2942 void sock_map_unhash(struct sock *sk);
2943 void sock_map_destroy(struct sock *sk);
2944 void sock_map_close(struct sock *sk, long timeout);
2945 #else
2946 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2947 					    struct bpf_prog_aux *prog_aux)
2948 {
2949 	return -EOPNOTSUPP;
2950 }
2951 
2952 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
2953 						u32 func_id)
2954 {
2955 	return NULL;
2956 }
2957 
2958 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
2959 					  union bpf_attr *attr)
2960 {
2961 	return -EOPNOTSUPP;
2962 }
2963 
2964 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
2965 					     struct bpf_prog *old_prog)
2966 {
2967 	return -EOPNOTSUPP;
2968 }
2969 
2970 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
2971 {
2972 }
2973 
2974 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2975 {
2976 	return false;
2977 }
2978 
2979 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
2980 {
2981 	return false;
2982 }
2983 
2984 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
2985 {
2986 	return false;
2987 }
2988 
2989 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2990 {
2991 	return false;
2992 }
2993 
2994 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2995 {
2996 	return ERR_PTR(-EOPNOTSUPP);
2997 }
2998 
2999 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3000 {
3001 }
3002 
3003 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3004 {
3005 	return 0;
3006 }
3007 
3008 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3009 					    const union bpf_attr *kattr,
3010 					    union bpf_attr __user *uattr)
3011 {
3012 	return -ENOTSUPP;
3013 }
3014 
3015 #ifdef CONFIG_BPF_SYSCALL
3016 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3017 				       struct bpf_prog *prog)
3018 {
3019 	return -EINVAL;
3020 }
3021 
3022 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3023 				       enum bpf_prog_type ptype)
3024 {
3025 	return -EOPNOTSUPP;
3026 }
3027 
3028 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3029 					   u64 flags)
3030 {
3031 	return -EOPNOTSUPP;
3032 }
3033 
3034 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3035 					  union bpf_attr __user *uattr)
3036 {
3037 	return -EINVAL;
3038 }
3039 #endif /* CONFIG_BPF_SYSCALL */
3040 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3041 
3042 static __always_inline void
3043 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3044 {
3045 	const struct bpf_prog_array_item *item;
3046 	struct bpf_prog *prog;
3047 
3048 	if (unlikely(!array))
3049 		return;
3050 
3051 	item = &array->items[0];
3052 	while ((prog = READ_ONCE(item->prog))) {
3053 		bpf_prog_inc_misses_counter(prog);
3054 		item++;
3055 	}
3056 }
3057 
3058 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3059 void bpf_sk_reuseport_detach(struct sock *sk);
3060 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3061 				       void *value);
3062 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3063 				       void *value, u64 map_flags);
3064 #else
3065 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3066 {
3067 }
3068 
3069 #ifdef CONFIG_BPF_SYSCALL
3070 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3071 						     void *key, void *value)
3072 {
3073 	return -EOPNOTSUPP;
3074 }
3075 
3076 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3077 						     void *key, void *value,
3078 						     u64 map_flags)
3079 {
3080 	return -EOPNOTSUPP;
3081 }
3082 #endif /* CONFIG_BPF_SYSCALL */
3083 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3084 
3085 /* verifier prototypes for helper functions called from eBPF programs */
3086 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3087 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3088 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3089 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3090 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3091 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3092 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3093 
3094 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3095 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3096 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3097 extern const struct bpf_func_proto bpf_tail_call_proto;
3098 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3099 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3100 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3101 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3102 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3103 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3104 extern const struct bpf_func_proto bpf_get_stackid_proto;
3105 extern const struct bpf_func_proto bpf_get_stack_proto;
3106 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3107 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3108 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3109 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3110 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3111 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3112 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3113 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3114 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3115 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3116 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3117 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3118 extern const struct bpf_func_proto bpf_spin_lock_proto;
3119 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3120 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3121 extern const struct bpf_func_proto bpf_strtol_proto;
3122 extern const struct bpf_func_proto bpf_strtoul_proto;
3123 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3124 extern const struct bpf_func_proto bpf_jiffies64_proto;
3125 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3126 extern const struct bpf_func_proto bpf_event_output_data_proto;
3127 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3128 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3129 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3130 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3131 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3132 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3133 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3134 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3135 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3136 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3137 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3138 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3139 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3140 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3141 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3142 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3143 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3144 extern const struct bpf_func_proto bpf_snprintf_proto;
3145 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3146 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3147 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3148 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3149 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3150 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3151 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3152 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3153 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3154 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3155 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3156 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3157 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3158 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3159 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3160 extern const struct bpf_func_proto bpf_find_vma_proto;
3161 extern const struct bpf_func_proto bpf_loop_proto;
3162 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3163 extern const struct bpf_func_proto bpf_set_retval_proto;
3164 extern const struct bpf_func_proto bpf_get_retval_proto;
3165 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3166 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3167 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3168 
3169 const struct bpf_func_proto *tracing_prog_func_proto(
3170   enum bpf_func_id func_id, const struct bpf_prog *prog);
3171 
3172 /* Shared helpers among cBPF and eBPF. */
3173 void bpf_user_rnd_init_once(void);
3174 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3175 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3176 
3177 #if defined(CONFIG_NET)
3178 bool bpf_sock_common_is_valid_access(int off, int size,
3179 				     enum bpf_access_type type,
3180 				     struct bpf_insn_access_aux *info);
3181 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3182 			      struct bpf_insn_access_aux *info);
3183 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3184 				const struct bpf_insn *si,
3185 				struct bpf_insn *insn_buf,
3186 				struct bpf_prog *prog,
3187 				u32 *target_size);
3188 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3189 			       struct bpf_dynptr_kern *ptr);
3190 #else
3191 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3192 						   enum bpf_access_type type,
3193 						   struct bpf_insn_access_aux *info)
3194 {
3195 	return false;
3196 }
3197 static inline bool bpf_sock_is_valid_access(int off, int size,
3198 					    enum bpf_access_type type,
3199 					    struct bpf_insn_access_aux *info)
3200 {
3201 	return false;
3202 }
3203 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3204 					      const struct bpf_insn *si,
3205 					      struct bpf_insn *insn_buf,
3206 					      struct bpf_prog *prog,
3207 					      u32 *target_size)
3208 {
3209 	return 0;
3210 }
3211 static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3212 					     struct bpf_dynptr_kern *ptr)
3213 {
3214 	return -EOPNOTSUPP;
3215 }
3216 #endif
3217 
3218 #ifdef CONFIG_INET
3219 struct sk_reuseport_kern {
3220 	struct sk_buff *skb;
3221 	struct sock *sk;
3222 	struct sock *selected_sk;
3223 	struct sock *migrating_sk;
3224 	void *data_end;
3225 	u32 hash;
3226 	u32 reuseport_id;
3227 	bool bind_inany;
3228 };
3229 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3230 				  struct bpf_insn_access_aux *info);
3231 
3232 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3233 				    const struct bpf_insn *si,
3234 				    struct bpf_insn *insn_buf,
3235 				    struct bpf_prog *prog,
3236 				    u32 *target_size);
3237 
3238 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3239 				  struct bpf_insn_access_aux *info);
3240 
3241 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3242 				    const struct bpf_insn *si,
3243 				    struct bpf_insn *insn_buf,
3244 				    struct bpf_prog *prog,
3245 				    u32 *target_size);
3246 #else
3247 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3248 						enum bpf_access_type type,
3249 						struct bpf_insn_access_aux *info)
3250 {
3251 	return false;
3252 }
3253 
3254 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3255 						  const struct bpf_insn *si,
3256 						  struct bpf_insn *insn_buf,
3257 						  struct bpf_prog *prog,
3258 						  u32 *target_size)
3259 {
3260 	return 0;
3261 }
3262 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3263 						enum bpf_access_type type,
3264 						struct bpf_insn_access_aux *info)
3265 {
3266 	return false;
3267 }
3268 
3269 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3270 						  const struct bpf_insn *si,
3271 						  struct bpf_insn *insn_buf,
3272 						  struct bpf_prog *prog,
3273 						  u32 *target_size)
3274 {
3275 	return 0;
3276 }
3277 #endif /* CONFIG_INET */
3278 
3279 enum bpf_text_poke_type {
3280 	BPF_MOD_CALL,
3281 	BPF_MOD_JUMP,
3282 };
3283 
3284 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3285 		       void *addr1, void *addr2);
3286 
3287 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3288 			       struct bpf_prog *new, struct bpf_prog *old);
3289 
3290 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3291 int bpf_arch_text_invalidate(void *dst, size_t len);
3292 
3293 struct btf_id_set;
3294 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3295 
3296 #define MAX_BPRINTF_VARARGS		12
3297 #define MAX_BPRINTF_BUF			1024
3298 
3299 struct bpf_bprintf_data {
3300 	u32 *bin_args;
3301 	char *buf;
3302 	bool get_bin_args;
3303 	bool get_buf;
3304 };
3305 
3306 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3307 			u32 num_args, struct bpf_bprintf_data *data);
3308 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3309 
3310 #ifdef CONFIG_BPF_LSM
3311 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3312 void bpf_cgroup_atype_put(int cgroup_atype);
3313 #else
3314 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3315 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3316 #endif /* CONFIG_BPF_LSM */
3317 
3318 struct key;
3319 
3320 #ifdef CONFIG_KEYS
3321 struct bpf_key {
3322 	struct key *key;
3323 	bool has_ref;
3324 };
3325 #endif /* CONFIG_KEYS */
3326 
3327 static inline bool type_is_alloc(u32 type)
3328 {
3329 	return type & MEM_ALLOC;
3330 }
3331 
3332 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3333 {
3334 	if (memcg_bpf_enabled())
3335 		return flags | __GFP_ACCOUNT;
3336 	return flags;
3337 }
3338 
3339 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3340 {
3341 	return prog->aux->func_idx != 0;
3342 }
3343 
3344 #endif /* _LINUX_BPF_H */
3345