1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 #include <linux/seqlock.h> 31 #include <linux/u64_stats_sync.h> 32 33 struct module; 34 struct scsi_ioctl_command; 35 36 struct request_queue; 37 struct elevator_queue; 38 struct blk_trace; 39 struct request; 40 struct sg_io_hdr; 41 struct bsg_job; 42 struct blkcg_gq; 43 struct blk_flush_queue; 44 struct pr_ops; 45 struct rq_wb; 46 struct blk_queue_stats; 47 struct blk_stat_callback; 48 49 #define BLKDEV_MIN_RQ 4 50 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 51 52 /* Must be consistent with blk_mq_poll_stats_bkt() */ 53 #define BLK_MQ_POLL_STATS_BKTS 16 54 55 /* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59 #define BLKCG_MAX_POLS 3 60 61 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63 #define BLK_RL_SYNCFULL (1U << 0) 64 #define BLK_RL_ASYNCFULL (1U << 1) 65 66 struct request_list { 67 struct request_queue *q; /* the queue this rl belongs to */ 68 #ifdef CONFIG_BLK_CGROUP 69 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 70 #endif 71 /* 72 * count[], starved[], and wait[] are indexed by 73 * BLK_RW_SYNC/BLK_RW_ASYNC 74 */ 75 int count[2]; 76 int starved[2]; 77 mempool_t *rq_pool; 78 wait_queue_head_t wait[2]; 79 unsigned int flags; 80 }; 81 82 /* 83 * request flags */ 84 typedef __u32 __bitwise req_flags_t; 85 86 /* elevator knows about this request */ 87 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 88 /* drive already may have started this one */ 89 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 90 /* uses tagged queueing */ 91 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 92 /* may not be passed by ioscheduler */ 93 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 94 /* request for flush sequence */ 95 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 96 /* merge of different types, fail separately */ 97 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 98 /* track inflight for MQ */ 99 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 100 /* don't call prep for this one */ 101 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 102 /* set for "ide_preempt" requests and also for requests for which the SCSI 103 "quiesce" state must be ignored. */ 104 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 105 /* contains copies of user pages */ 106 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 107 /* vaguely specified driver internal error. Ignored by the block layer */ 108 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 109 /* don't warn about errors */ 110 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 111 /* elevator private data attached */ 112 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 113 /* account I/O stat */ 114 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 115 /* request came from our alloc pool */ 116 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 117 /* runtime pm request */ 118 #define RQF_PM ((__force req_flags_t)(1 << 15)) 119 /* on IO scheduler merge hash */ 120 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 121 /* IO stats tracking on */ 122 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 123 /* Look at ->special_vec for the actual data payload instead of the 124 bio chain. */ 125 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 126 /* The per-zone write lock is held for this request */ 127 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 128 /* timeout is expired */ 129 #define RQF_MQ_TIMEOUT_EXPIRED ((__force req_flags_t)(1 << 20)) 130 /* already slept for hybrid poll */ 131 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 21)) 132 133 /* flags that prevent us from merging requests: */ 134 #define RQF_NOMERGE_FLAGS \ 135 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 136 137 /* 138 * Try to put the fields that are referenced together in the same cacheline. 139 * 140 * If you modify this structure, make sure to update blk_rq_init() and 141 * especially blk_mq_rq_ctx_init() to take care of the added fields. 142 */ 143 struct request { 144 struct request_queue *q; 145 struct blk_mq_ctx *mq_ctx; 146 147 int cpu; 148 unsigned int cmd_flags; /* op and common flags */ 149 req_flags_t rq_flags; 150 151 int internal_tag; 152 153 /* the following two fields are internal, NEVER access directly */ 154 unsigned int __data_len; /* total data len */ 155 int tag; 156 sector_t __sector; /* sector cursor */ 157 158 struct bio *bio; 159 struct bio *biotail; 160 161 struct list_head queuelist; 162 163 /* 164 * The hash is used inside the scheduler, and killed once the 165 * request reaches the dispatch list. The ipi_list is only used 166 * to queue the request for softirq completion, which is long 167 * after the request has been unhashed (and even removed from 168 * the dispatch list). 169 */ 170 union { 171 struct hlist_node hash; /* merge hash */ 172 struct list_head ipi_list; 173 }; 174 175 /* 176 * The rb_node is only used inside the io scheduler, requests 177 * are pruned when moved to the dispatch queue. So let the 178 * completion_data share space with the rb_node. 179 */ 180 union { 181 struct rb_node rb_node; /* sort/lookup */ 182 struct bio_vec special_vec; 183 void *completion_data; 184 int error_count; /* for legacy drivers, don't use */ 185 }; 186 187 /* 188 * Three pointers are available for the IO schedulers, if they need 189 * more they have to dynamically allocate it. Flush requests are 190 * never put on the IO scheduler. So let the flush fields share 191 * space with the elevator data. 192 */ 193 union { 194 struct { 195 struct io_cq *icq; 196 void *priv[2]; 197 } elv; 198 199 struct { 200 unsigned int seq; 201 struct list_head list; 202 rq_end_io_fn *saved_end_io; 203 } flush; 204 }; 205 206 struct gendisk *rq_disk; 207 struct hd_struct *part; 208 unsigned long start_time; 209 struct blk_issue_stat issue_stat; 210 /* Number of scatter-gather DMA addr+len pairs after 211 * physical address coalescing is performed. 212 */ 213 unsigned short nr_phys_segments; 214 215 #if defined(CONFIG_BLK_DEV_INTEGRITY) 216 unsigned short nr_integrity_segments; 217 #endif 218 219 unsigned short write_hint; 220 unsigned short ioprio; 221 222 unsigned int timeout; 223 224 void *special; /* opaque pointer available for LLD use */ 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 /* 229 * On blk-mq, the lower bits of ->gstate (generation number and 230 * state) carry the MQ_RQ_* state value and the upper bits the 231 * generation number which is monotonically incremented and used to 232 * distinguish the reuse instances. 233 * 234 * ->gstate_seq allows updates to ->gstate and other fields 235 * (currently ->deadline) during request start to be read 236 * atomically from the timeout path, so that it can operate on a 237 * coherent set of information. 238 */ 239 seqcount_t gstate_seq; 240 u64 gstate; 241 242 /* 243 * ->aborted_gstate is used by the timeout to claim a specific 244 * recycle instance of this request. See blk_mq_timeout_work(). 245 */ 246 struct u64_stats_sync aborted_gstate_sync; 247 u64 aborted_gstate; 248 249 /* access through blk_rq_set_deadline, blk_rq_deadline */ 250 unsigned long __deadline; 251 252 struct list_head timeout_list; 253 254 union { 255 struct __call_single_data csd; 256 u64 fifo_time; 257 }; 258 259 /* 260 * completion callback. 261 */ 262 rq_end_io_fn *end_io; 263 void *end_io_data; 264 265 /* for bidi */ 266 struct request *next_rq; 267 268 #ifdef CONFIG_BLK_CGROUP 269 struct request_list *rl; /* rl this rq is alloced from */ 270 unsigned long long start_time_ns; 271 unsigned long long io_start_time_ns; /* when passed to hardware */ 272 #endif 273 }; 274 275 static inline bool blk_op_is_scsi(unsigned int op) 276 { 277 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 278 } 279 280 static inline bool blk_op_is_private(unsigned int op) 281 { 282 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 283 } 284 285 static inline bool blk_rq_is_scsi(struct request *rq) 286 { 287 return blk_op_is_scsi(req_op(rq)); 288 } 289 290 static inline bool blk_rq_is_private(struct request *rq) 291 { 292 return blk_op_is_private(req_op(rq)); 293 } 294 295 static inline bool blk_rq_is_passthrough(struct request *rq) 296 { 297 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 298 } 299 300 static inline bool bio_is_passthrough(struct bio *bio) 301 { 302 unsigned op = bio_op(bio); 303 304 return blk_op_is_scsi(op) || blk_op_is_private(op); 305 } 306 307 static inline unsigned short req_get_ioprio(struct request *req) 308 { 309 return req->ioprio; 310 } 311 312 #include <linux/elevator.h> 313 314 struct blk_queue_ctx; 315 316 typedef void (request_fn_proc) (struct request_queue *q); 317 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 318 typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t); 319 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 320 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 321 322 struct bio_vec; 323 typedef void (softirq_done_fn)(struct request *); 324 typedef int (dma_drain_needed_fn)(struct request *); 325 typedef int (lld_busy_fn) (struct request_queue *q); 326 typedef int (bsg_job_fn) (struct bsg_job *); 327 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 328 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 329 330 enum blk_eh_timer_return { 331 BLK_EH_NOT_HANDLED, 332 BLK_EH_HANDLED, 333 BLK_EH_RESET_TIMER, 334 }; 335 336 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 337 338 enum blk_queue_state { 339 Queue_down, 340 Queue_up, 341 }; 342 343 struct blk_queue_tag { 344 struct request **tag_index; /* map of busy tags */ 345 unsigned long *tag_map; /* bit map of free/busy tags */ 346 int max_depth; /* what we will send to device */ 347 int real_max_depth; /* what the array can hold */ 348 atomic_t refcnt; /* map can be shared */ 349 int alloc_policy; /* tag allocation policy */ 350 int next_tag; /* next tag */ 351 }; 352 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 353 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 354 355 #define BLK_SCSI_MAX_CMDS (256) 356 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 357 358 /* 359 * Zoned block device models (zoned limit). 360 */ 361 enum blk_zoned_model { 362 BLK_ZONED_NONE, /* Regular block device */ 363 BLK_ZONED_HA, /* Host-aware zoned block device */ 364 BLK_ZONED_HM, /* Host-managed zoned block device */ 365 }; 366 367 struct queue_limits { 368 unsigned long bounce_pfn; 369 unsigned long seg_boundary_mask; 370 unsigned long virt_boundary_mask; 371 372 unsigned int max_hw_sectors; 373 unsigned int max_dev_sectors; 374 unsigned int chunk_sectors; 375 unsigned int max_sectors; 376 unsigned int max_segment_size; 377 unsigned int physical_block_size; 378 unsigned int alignment_offset; 379 unsigned int io_min; 380 unsigned int io_opt; 381 unsigned int max_discard_sectors; 382 unsigned int max_hw_discard_sectors; 383 unsigned int max_write_same_sectors; 384 unsigned int max_write_zeroes_sectors; 385 unsigned int discard_granularity; 386 unsigned int discard_alignment; 387 388 unsigned short logical_block_size; 389 unsigned short max_segments; 390 unsigned short max_integrity_segments; 391 unsigned short max_discard_segments; 392 393 unsigned char misaligned; 394 unsigned char discard_misaligned; 395 unsigned char cluster; 396 unsigned char raid_partial_stripes_expensive; 397 enum blk_zoned_model zoned; 398 }; 399 400 #ifdef CONFIG_BLK_DEV_ZONED 401 402 struct blk_zone_report_hdr { 403 unsigned int nr_zones; 404 u8 padding[60]; 405 }; 406 407 extern int blkdev_report_zones(struct block_device *bdev, 408 sector_t sector, struct blk_zone *zones, 409 unsigned int *nr_zones, gfp_t gfp_mask); 410 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 411 sector_t nr_sectors, gfp_t gfp_mask); 412 413 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 414 unsigned int cmd, unsigned long arg); 415 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 416 unsigned int cmd, unsigned long arg); 417 418 #else /* CONFIG_BLK_DEV_ZONED */ 419 420 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 421 fmode_t mode, unsigned int cmd, 422 unsigned long arg) 423 { 424 return -ENOTTY; 425 } 426 427 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 428 fmode_t mode, unsigned int cmd, 429 unsigned long arg) 430 { 431 return -ENOTTY; 432 } 433 434 #endif /* CONFIG_BLK_DEV_ZONED */ 435 436 struct request_queue { 437 /* 438 * Together with queue_head for cacheline sharing 439 */ 440 struct list_head queue_head; 441 struct request *last_merge; 442 struct elevator_queue *elevator; 443 int nr_rqs[2]; /* # allocated [a]sync rqs */ 444 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 445 446 atomic_t shared_hctx_restart; 447 448 struct blk_queue_stats *stats; 449 struct rq_wb *rq_wb; 450 451 /* 452 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 453 * is used, root blkg allocates from @q->root_rl and all other 454 * blkgs from their own blkg->rl. Which one to use should be 455 * determined using bio_request_list(). 456 */ 457 struct request_list root_rl; 458 459 request_fn_proc *request_fn; 460 make_request_fn *make_request_fn; 461 poll_q_fn *poll_fn; 462 prep_rq_fn *prep_rq_fn; 463 unprep_rq_fn *unprep_rq_fn; 464 softirq_done_fn *softirq_done_fn; 465 rq_timed_out_fn *rq_timed_out_fn; 466 dma_drain_needed_fn *dma_drain_needed; 467 lld_busy_fn *lld_busy_fn; 468 /* Called just after a request is allocated */ 469 init_rq_fn *init_rq_fn; 470 /* Called just before a request is freed */ 471 exit_rq_fn *exit_rq_fn; 472 /* Called from inside blk_get_request() */ 473 void (*initialize_rq_fn)(struct request *rq); 474 475 const struct blk_mq_ops *mq_ops; 476 477 unsigned int *mq_map; 478 479 /* sw queues */ 480 struct blk_mq_ctx __percpu *queue_ctx; 481 unsigned int nr_queues; 482 483 unsigned int queue_depth; 484 485 /* hw dispatch queues */ 486 struct blk_mq_hw_ctx **queue_hw_ctx; 487 unsigned int nr_hw_queues; 488 489 /* 490 * Dispatch queue sorting 491 */ 492 sector_t end_sector; 493 struct request *boundary_rq; 494 495 /* 496 * Delayed queue handling 497 */ 498 struct delayed_work delay_work; 499 500 struct backing_dev_info *backing_dev_info; 501 502 /* 503 * The queue owner gets to use this for whatever they like. 504 * ll_rw_blk doesn't touch it. 505 */ 506 void *queuedata; 507 508 /* 509 * various queue flags, see QUEUE_* below 510 */ 511 unsigned long queue_flags; 512 513 /* 514 * ida allocated id for this queue. Used to index queues from 515 * ioctx. 516 */ 517 int id; 518 519 /* 520 * queue needs bounce pages for pages above this limit 521 */ 522 gfp_t bounce_gfp; 523 524 /* 525 * protects queue structures from reentrancy. ->__queue_lock should 526 * _never_ be used directly, it is queue private. always use 527 * ->queue_lock. 528 */ 529 spinlock_t __queue_lock; 530 spinlock_t *queue_lock; 531 532 /* 533 * queue kobject 534 */ 535 struct kobject kobj; 536 537 /* 538 * mq queue kobject 539 */ 540 struct kobject mq_kobj; 541 542 #ifdef CONFIG_BLK_DEV_INTEGRITY 543 struct blk_integrity integrity; 544 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 545 546 #ifdef CONFIG_PM 547 struct device *dev; 548 int rpm_status; 549 unsigned int nr_pending; 550 #endif 551 552 /* 553 * queue settings 554 */ 555 unsigned long nr_requests; /* Max # of requests */ 556 unsigned int nr_congestion_on; 557 unsigned int nr_congestion_off; 558 unsigned int nr_batching; 559 560 unsigned int dma_drain_size; 561 void *dma_drain_buffer; 562 unsigned int dma_pad_mask; 563 unsigned int dma_alignment; 564 565 struct blk_queue_tag *queue_tags; 566 struct list_head tag_busy_list; 567 568 unsigned int nr_sorted; 569 unsigned int in_flight[2]; 570 571 /* 572 * Number of active block driver functions for which blk_drain_queue() 573 * must wait. Must be incremented around functions that unlock the 574 * queue_lock internally, e.g. scsi_request_fn(). 575 */ 576 unsigned int request_fn_active; 577 578 unsigned int rq_timeout; 579 int poll_nsec; 580 581 struct blk_stat_callback *poll_cb; 582 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 583 584 struct timer_list timeout; 585 struct work_struct timeout_work; 586 struct list_head timeout_list; 587 588 struct list_head icq_list; 589 #ifdef CONFIG_BLK_CGROUP 590 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 591 struct blkcg_gq *root_blkg; 592 struct list_head blkg_list; 593 #endif 594 595 struct queue_limits limits; 596 597 /* 598 * Zoned block device information for request dispatch control. 599 * nr_zones is the total number of zones of the device. This is always 600 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones 601 * bits which indicates if a zone is conventional (bit clear) or 602 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones 603 * bits which indicates if a zone is write locked, that is, if a write 604 * request targeting the zone was dispatched. All three fields are 605 * initialized by the low level device driver (e.g. scsi/sd.c). 606 * Stacking drivers (device mappers) may or may not initialize 607 * these fields. 608 */ 609 unsigned int nr_zones; 610 unsigned long *seq_zones_bitmap; 611 unsigned long *seq_zones_wlock; 612 613 /* 614 * sg stuff 615 */ 616 unsigned int sg_timeout; 617 unsigned int sg_reserved_size; 618 int node; 619 #ifdef CONFIG_BLK_DEV_IO_TRACE 620 struct blk_trace *blk_trace; 621 struct mutex blk_trace_mutex; 622 #endif 623 /* 624 * for flush operations 625 */ 626 struct blk_flush_queue *fq; 627 628 struct list_head requeue_list; 629 spinlock_t requeue_lock; 630 struct delayed_work requeue_work; 631 632 struct mutex sysfs_lock; 633 634 int bypass_depth; 635 atomic_t mq_freeze_depth; 636 637 #if defined(CONFIG_BLK_DEV_BSG) 638 bsg_job_fn *bsg_job_fn; 639 struct bsg_class_device bsg_dev; 640 #endif 641 642 #ifdef CONFIG_BLK_DEV_THROTTLING 643 /* Throttle data */ 644 struct throtl_data *td; 645 #endif 646 struct rcu_head rcu_head; 647 wait_queue_head_t mq_freeze_wq; 648 struct percpu_ref q_usage_counter; 649 struct list_head all_q_node; 650 651 struct blk_mq_tag_set *tag_set; 652 struct list_head tag_set_list; 653 struct bio_set *bio_split; 654 655 #ifdef CONFIG_BLK_DEBUG_FS 656 struct dentry *debugfs_dir; 657 struct dentry *sched_debugfs_dir; 658 #endif 659 660 bool mq_sysfs_init_done; 661 662 size_t cmd_size; 663 void *rq_alloc_data; 664 665 struct work_struct release_work; 666 667 #define BLK_MAX_WRITE_HINTS 5 668 u64 write_hints[BLK_MAX_WRITE_HINTS]; 669 }; 670 671 #define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */ 672 #define QUEUE_FLAG_STOPPED 1 /* queue is stopped */ 673 #define QUEUE_FLAG_DYING 2 /* queue being torn down */ 674 #define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */ 675 #define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */ 676 #define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */ 677 #define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */ 678 #define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */ 679 #define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */ 680 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 681 #define QUEUE_FLAG_IO_STAT 10 /* do IO stats */ 682 #define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */ 683 #define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */ 684 #define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */ 685 #define QUEUE_FLAG_SECERASE 14 /* supports secure erase */ 686 #define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */ 687 #define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */ 688 #define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */ 689 #define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/ 690 #define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */ 691 #define QUEUE_FLAG_WC 20 /* Write back caching */ 692 #define QUEUE_FLAG_FUA 21 /* device supports FUA writes */ 693 #define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */ 694 #define QUEUE_FLAG_DAX 23 /* device supports DAX */ 695 #define QUEUE_FLAG_STATS 24 /* track rq completion times */ 696 #define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */ 697 #define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */ 698 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */ 699 #define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */ 700 #define QUEUE_FLAG_PREEMPT_ONLY 29 /* only process REQ_PREEMPT requests */ 701 702 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 703 (1 << QUEUE_FLAG_SAME_COMP) | \ 704 (1 << QUEUE_FLAG_ADD_RANDOM)) 705 706 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 707 (1 << QUEUE_FLAG_SAME_COMP) | \ 708 (1 << QUEUE_FLAG_POLL)) 709 710 /* 711 * @q->queue_lock is set while a queue is being initialized. Since we know 712 * that no other threads access the queue object before @q->queue_lock has 713 * been set, it is safe to manipulate queue flags without holding the 714 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and 715 * blk_init_allocated_queue(). 716 */ 717 static inline void queue_lockdep_assert_held(struct request_queue *q) 718 { 719 if (q->queue_lock) 720 lockdep_assert_held(q->queue_lock); 721 } 722 723 static inline void queue_flag_set_unlocked(unsigned int flag, 724 struct request_queue *q) 725 { 726 __set_bit(flag, &q->queue_flags); 727 } 728 729 static inline int queue_flag_test_and_clear(unsigned int flag, 730 struct request_queue *q) 731 { 732 queue_lockdep_assert_held(q); 733 734 if (test_bit(flag, &q->queue_flags)) { 735 __clear_bit(flag, &q->queue_flags); 736 return 1; 737 } 738 739 return 0; 740 } 741 742 static inline int queue_flag_test_and_set(unsigned int flag, 743 struct request_queue *q) 744 { 745 queue_lockdep_assert_held(q); 746 747 if (!test_bit(flag, &q->queue_flags)) { 748 __set_bit(flag, &q->queue_flags); 749 return 0; 750 } 751 752 return 1; 753 } 754 755 static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 756 { 757 queue_lockdep_assert_held(q); 758 __set_bit(flag, &q->queue_flags); 759 } 760 761 static inline void queue_flag_clear_unlocked(unsigned int flag, 762 struct request_queue *q) 763 { 764 __clear_bit(flag, &q->queue_flags); 765 } 766 767 static inline int queue_in_flight(struct request_queue *q) 768 { 769 return q->in_flight[0] + q->in_flight[1]; 770 } 771 772 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 773 { 774 queue_lockdep_assert_held(q); 775 __clear_bit(flag, &q->queue_flags); 776 } 777 778 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 779 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 780 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 781 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 782 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 783 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 784 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 785 #define blk_queue_noxmerges(q) \ 786 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 787 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 788 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 789 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 790 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 791 #define blk_queue_secure_erase(q) \ 792 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 793 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 794 #define blk_queue_scsi_passthrough(q) \ 795 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 796 797 #define blk_noretry_request(rq) \ 798 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 799 REQ_FAILFAST_DRIVER)) 800 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 801 #define blk_queue_preempt_only(q) \ 802 test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags) 803 804 extern int blk_set_preempt_only(struct request_queue *q); 805 extern void blk_clear_preempt_only(struct request_queue *q); 806 807 static inline bool blk_account_rq(struct request *rq) 808 { 809 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 810 } 811 812 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 813 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 814 /* rq->queuelist of dequeued request must be list_empty() */ 815 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 816 817 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 818 819 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 820 821 /* 822 * Driver can handle struct request, if it either has an old style 823 * request_fn defined, or is blk-mq based. 824 */ 825 static inline bool queue_is_rq_based(struct request_queue *q) 826 { 827 return q->request_fn || q->mq_ops; 828 } 829 830 static inline unsigned int blk_queue_cluster(struct request_queue *q) 831 { 832 return q->limits.cluster; 833 } 834 835 static inline enum blk_zoned_model 836 blk_queue_zoned_model(struct request_queue *q) 837 { 838 return q->limits.zoned; 839 } 840 841 static inline bool blk_queue_is_zoned(struct request_queue *q) 842 { 843 switch (blk_queue_zoned_model(q)) { 844 case BLK_ZONED_HA: 845 case BLK_ZONED_HM: 846 return true; 847 default: 848 return false; 849 } 850 } 851 852 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 853 { 854 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 855 } 856 857 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 858 { 859 return q->nr_zones; 860 } 861 862 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 863 sector_t sector) 864 { 865 if (!blk_queue_is_zoned(q)) 866 return 0; 867 return sector >> ilog2(q->limits.chunk_sectors); 868 } 869 870 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 871 sector_t sector) 872 { 873 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap) 874 return false; 875 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap); 876 } 877 878 static inline bool rq_is_sync(struct request *rq) 879 { 880 return op_is_sync(rq->cmd_flags); 881 } 882 883 static inline bool blk_rl_full(struct request_list *rl, bool sync) 884 { 885 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 886 887 return rl->flags & flag; 888 } 889 890 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 891 { 892 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 893 894 rl->flags |= flag; 895 } 896 897 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 898 { 899 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 900 901 rl->flags &= ~flag; 902 } 903 904 static inline bool rq_mergeable(struct request *rq) 905 { 906 if (blk_rq_is_passthrough(rq)) 907 return false; 908 909 if (req_op(rq) == REQ_OP_FLUSH) 910 return false; 911 912 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 913 return false; 914 915 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 916 return false; 917 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 918 return false; 919 920 return true; 921 } 922 923 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 924 { 925 if (bio_page(a) == bio_page(b) && 926 bio_offset(a) == bio_offset(b)) 927 return true; 928 929 return false; 930 } 931 932 static inline unsigned int blk_queue_depth(struct request_queue *q) 933 { 934 if (q->queue_depth) 935 return q->queue_depth; 936 937 return q->nr_requests; 938 } 939 940 /* 941 * q->prep_rq_fn return values 942 */ 943 enum { 944 BLKPREP_OK, /* serve it */ 945 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 946 BLKPREP_DEFER, /* leave on queue */ 947 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 948 }; 949 950 extern unsigned long blk_max_low_pfn, blk_max_pfn; 951 952 /* 953 * standard bounce addresses: 954 * 955 * BLK_BOUNCE_HIGH : bounce all highmem pages 956 * BLK_BOUNCE_ANY : don't bounce anything 957 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 958 */ 959 960 #if BITS_PER_LONG == 32 961 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 962 #else 963 #define BLK_BOUNCE_HIGH -1ULL 964 #endif 965 #define BLK_BOUNCE_ANY (-1ULL) 966 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 967 968 /* 969 * default timeout for SG_IO if none specified 970 */ 971 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 972 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 973 974 struct rq_map_data { 975 struct page **pages; 976 int page_order; 977 int nr_entries; 978 unsigned long offset; 979 int null_mapped; 980 int from_user; 981 }; 982 983 struct req_iterator { 984 struct bvec_iter iter; 985 struct bio *bio; 986 }; 987 988 /* This should not be used directly - use rq_for_each_segment */ 989 #define for_each_bio(_bio) \ 990 for (; _bio; _bio = _bio->bi_next) 991 #define __rq_for_each_bio(_bio, rq) \ 992 if ((rq->bio)) \ 993 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 994 995 #define rq_for_each_segment(bvl, _rq, _iter) \ 996 __rq_for_each_bio(_iter.bio, _rq) \ 997 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 998 999 #define rq_iter_last(bvec, _iter) \ 1000 (_iter.bio->bi_next == NULL && \ 1001 bio_iter_last(bvec, _iter.iter)) 1002 1003 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1004 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 1005 #endif 1006 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1007 extern void rq_flush_dcache_pages(struct request *rq); 1008 #else 1009 static inline void rq_flush_dcache_pages(struct request *rq) 1010 { 1011 } 1012 #endif 1013 1014 extern int blk_register_queue(struct gendisk *disk); 1015 extern void blk_unregister_queue(struct gendisk *disk); 1016 extern blk_qc_t generic_make_request(struct bio *bio); 1017 extern blk_qc_t direct_make_request(struct bio *bio); 1018 extern void blk_rq_init(struct request_queue *q, struct request *rq); 1019 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 1020 extern void blk_put_request(struct request *); 1021 extern void __blk_put_request(struct request_queue *, struct request *); 1022 extern struct request *blk_get_request_flags(struct request_queue *, 1023 unsigned int op, 1024 blk_mq_req_flags_t flags); 1025 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 1026 gfp_t gfp_mask); 1027 extern void blk_requeue_request(struct request_queue *, struct request *); 1028 extern int blk_lld_busy(struct request_queue *q); 1029 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1030 struct bio_set *bs, gfp_t gfp_mask, 1031 int (*bio_ctr)(struct bio *, struct bio *, void *), 1032 void *data); 1033 extern void blk_rq_unprep_clone(struct request *rq); 1034 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 1035 struct request *rq); 1036 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 1037 extern void blk_delay_queue(struct request_queue *, unsigned long); 1038 extern void blk_queue_split(struct request_queue *, struct bio **); 1039 extern void blk_recount_segments(struct request_queue *, struct bio *); 1040 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 1041 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 1042 unsigned int, void __user *); 1043 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 1044 unsigned int, void __user *); 1045 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 1046 struct scsi_ioctl_command __user *); 1047 1048 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 1049 extern void blk_queue_exit(struct request_queue *q); 1050 extern void blk_start_queue(struct request_queue *q); 1051 extern void blk_start_queue_async(struct request_queue *q); 1052 extern void blk_stop_queue(struct request_queue *q); 1053 extern void blk_sync_queue(struct request_queue *q); 1054 extern void __blk_stop_queue(struct request_queue *q); 1055 extern void __blk_run_queue(struct request_queue *q); 1056 extern void __blk_run_queue_uncond(struct request_queue *q); 1057 extern void blk_run_queue(struct request_queue *); 1058 extern void blk_run_queue_async(struct request_queue *q); 1059 extern int blk_rq_map_user(struct request_queue *, struct request *, 1060 struct rq_map_data *, void __user *, unsigned long, 1061 gfp_t); 1062 extern int blk_rq_unmap_user(struct bio *); 1063 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 1064 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 1065 struct rq_map_data *, const struct iov_iter *, 1066 gfp_t); 1067 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 1068 struct request *, int); 1069 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 1070 struct request *, int, rq_end_io_fn *); 1071 1072 int blk_status_to_errno(blk_status_t status); 1073 blk_status_t errno_to_blk_status(int errno); 1074 1075 bool blk_poll(struct request_queue *q, blk_qc_t cookie); 1076 1077 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 1078 { 1079 return bdev->bd_disk->queue; /* this is never NULL */ 1080 } 1081 1082 /* 1083 * blk_rq_pos() : the current sector 1084 * blk_rq_bytes() : bytes left in the entire request 1085 * blk_rq_cur_bytes() : bytes left in the current segment 1086 * blk_rq_err_bytes() : bytes left till the next error boundary 1087 * blk_rq_sectors() : sectors left in the entire request 1088 * blk_rq_cur_sectors() : sectors left in the current segment 1089 */ 1090 static inline sector_t blk_rq_pos(const struct request *rq) 1091 { 1092 return rq->__sector; 1093 } 1094 1095 static inline unsigned int blk_rq_bytes(const struct request *rq) 1096 { 1097 return rq->__data_len; 1098 } 1099 1100 static inline int blk_rq_cur_bytes(const struct request *rq) 1101 { 1102 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1103 } 1104 1105 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1106 1107 static inline unsigned int blk_rq_sectors(const struct request *rq) 1108 { 1109 return blk_rq_bytes(rq) >> 9; 1110 } 1111 1112 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1113 { 1114 return blk_rq_cur_bytes(rq) >> 9; 1115 } 1116 1117 static inline unsigned int blk_rq_zone_no(struct request *rq) 1118 { 1119 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1120 } 1121 1122 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1123 { 1124 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1125 } 1126 1127 /* 1128 * Some commands like WRITE SAME have a payload or data transfer size which 1129 * is different from the size of the request. Any driver that supports such 1130 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1131 * calculate the data transfer size. 1132 */ 1133 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1134 { 1135 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1136 return rq->special_vec.bv_len; 1137 return blk_rq_bytes(rq); 1138 } 1139 1140 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1141 int op) 1142 { 1143 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1144 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1145 1146 if (unlikely(op == REQ_OP_WRITE_SAME)) 1147 return q->limits.max_write_same_sectors; 1148 1149 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1150 return q->limits.max_write_zeroes_sectors; 1151 1152 return q->limits.max_sectors; 1153 } 1154 1155 /* 1156 * Return maximum size of a request at given offset. Only valid for 1157 * file system requests. 1158 */ 1159 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1160 sector_t offset) 1161 { 1162 if (!q->limits.chunk_sectors) 1163 return q->limits.max_sectors; 1164 1165 return q->limits.chunk_sectors - 1166 (offset & (q->limits.chunk_sectors - 1)); 1167 } 1168 1169 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1170 sector_t offset) 1171 { 1172 struct request_queue *q = rq->q; 1173 1174 if (blk_rq_is_passthrough(rq)) 1175 return q->limits.max_hw_sectors; 1176 1177 if (!q->limits.chunk_sectors || 1178 req_op(rq) == REQ_OP_DISCARD || 1179 req_op(rq) == REQ_OP_SECURE_ERASE) 1180 return blk_queue_get_max_sectors(q, req_op(rq)); 1181 1182 return min(blk_max_size_offset(q, offset), 1183 blk_queue_get_max_sectors(q, req_op(rq))); 1184 } 1185 1186 static inline unsigned int blk_rq_count_bios(struct request *rq) 1187 { 1188 unsigned int nr_bios = 0; 1189 struct bio *bio; 1190 1191 __rq_for_each_bio(bio, rq) 1192 nr_bios++; 1193 1194 return nr_bios; 1195 } 1196 1197 /* 1198 * Request issue related functions. 1199 */ 1200 extern struct request *blk_peek_request(struct request_queue *q); 1201 extern void blk_start_request(struct request *rq); 1202 extern struct request *blk_fetch_request(struct request_queue *q); 1203 1204 void blk_steal_bios(struct bio_list *list, struct request *rq); 1205 1206 /* 1207 * Request completion related functions. 1208 * 1209 * blk_update_request() completes given number of bytes and updates 1210 * the request without completing it. 1211 * 1212 * blk_end_request() and friends. __blk_end_request() must be called 1213 * with the request queue spinlock acquired. 1214 * 1215 * Several drivers define their own end_request and call 1216 * blk_end_request() for parts of the original function. 1217 * This prevents code duplication in drivers. 1218 */ 1219 extern bool blk_update_request(struct request *rq, blk_status_t error, 1220 unsigned int nr_bytes); 1221 extern void blk_finish_request(struct request *rq, blk_status_t error); 1222 extern bool blk_end_request(struct request *rq, blk_status_t error, 1223 unsigned int nr_bytes); 1224 extern void blk_end_request_all(struct request *rq, blk_status_t error); 1225 extern bool __blk_end_request(struct request *rq, blk_status_t error, 1226 unsigned int nr_bytes); 1227 extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1228 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1229 1230 extern void blk_complete_request(struct request *); 1231 extern void __blk_complete_request(struct request *); 1232 extern void blk_abort_request(struct request *); 1233 extern void blk_unprep_request(struct request *); 1234 1235 /* 1236 * Access functions for manipulating queue properties 1237 */ 1238 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1239 spinlock_t *lock, int node_id); 1240 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1241 extern int blk_init_allocated_queue(struct request_queue *); 1242 extern void blk_cleanup_queue(struct request_queue *); 1243 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1244 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1245 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1246 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1247 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1248 extern void blk_queue_max_discard_segments(struct request_queue *, 1249 unsigned short); 1250 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1251 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1252 unsigned int max_discard_sectors); 1253 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1254 unsigned int max_write_same_sectors); 1255 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1256 unsigned int max_write_same_sectors); 1257 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1258 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1259 extern void blk_queue_alignment_offset(struct request_queue *q, 1260 unsigned int alignment); 1261 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1262 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1263 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1264 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1265 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1266 extern void blk_set_default_limits(struct queue_limits *lim); 1267 extern void blk_set_stacking_limits(struct queue_limits *lim); 1268 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1269 sector_t offset); 1270 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1271 sector_t offset); 1272 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1273 sector_t offset); 1274 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1275 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1276 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1277 extern int blk_queue_dma_drain(struct request_queue *q, 1278 dma_drain_needed_fn *dma_drain_needed, 1279 void *buf, unsigned int size); 1280 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1281 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1282 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1283 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1284 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1285 extern void blk_queue_dma_alignment(struct request_queue *, int); 1286 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1287 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1288 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1289 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1290 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1291 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1292 1293 /* 1294 * Number of physical segments as sent to the device. 1295 * 1296 * Normally this is the number of discontiguous data segments sent by the 1297 * submitter. But for data-less command like discard we might have no 1298 * actual data segments submitted, but the driver might have to add it's 1299 * own special payload. In that case we still return 1 here so that this 1300 * special payload will be mapped. 1301 */ 1302 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1303 { 1304 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1305 return 1; 1306 return rq->nr_phys_segments; 1307 } 1308 1309 /* 1310 * Number of discard segments (or ranges) the driver needs to fill in. 1311 * Each discard bio merged into a request is counted as one segment. 1312 */ 1313 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1314 { 1315 return max_t(unsigned short, rq->nr_phys_segments, 1); 1316 } 1317 1318 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1319 extern void blk_dump_rq_flags(struct request *, char *); 1320 extern long nr_blockdev_pages(void); 1321 1322 bool __must_check blk_get_queue(struct request_queue *); 1323 struct request_queue *blk_alloc_queue(gfp_t); 1324 struct request_queue *blk_alloc_queue_node(gfp_t, int); 1325 extern void blk_put_queue(struct request_queue *); 1326 extern void blk_set_queue_dying(struct request_queue *); 1327 1328 /* 1329 * block layer runtime pm functions 1330 */ 1331 #ifdef CONFIG_PM 1332 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1333 extern int blk_pre_runtime_suspend(struct request_queue *q); 1334 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1335 extern void blk_pre_runtime_resume(struct request_queue *q); 1336 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1337 extern void blk_set_runtime_active(struct request_queue *q); 1338 #else 1339 static inline void blk_pm_runtime_init(struct request_queue *q, 1340 struct device *dev) {} 1341 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1342 { 1343 return -ENOSYS; 1344 } 1345 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1346 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1347 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1348 static inline void blk_set_runtime_active(struct request_queue *q) {} 1349 #endif 1350 1351 /* 1352 * blk_plug permits building a queue of related requests by holding the I/O 1353 * fragments for a short period. This allows merging of sequential requests 1354 * into single larger request. As the requests are moved from a per-task list to 1355 * the device's request_queue in a batch, this results in improved scalability 1356 * as the lock contention for request_queue lock is reduced. 1357 * 1358 * It is ok not to disable preemption when adding the request to the plug list 1359 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1360 * the plug list when the task sleeps by itself. For details, please see 1361 * schedule() where blk_schedule_flush_plug() is called. 1362 */ 1363 struct blk_plug { 1364 struct list_head list; /* requests */ 1365 struct list_head mq_list; /* blk-mq requests */ 1366 struct list_head cb_list; /* md requires an unplug callback */ 1367 }; 1368 #define BLK_MAX_REQUEST_COUNT 16 1369 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1370 1371 struct blk_plug_cb; 1372 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1373 struct blk_plug_cb { 1374 struct list_head list; 1375 blk_plug_cb_fn callback; 1376 void *data; 1377 }; 1378 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1379 void *data, int size); 1380 extern void blk_start_plug(struct blk_plug *); 1381 extern void blk_finish_plug(struct blk_plug *); 1382 extern void blk_flush_plug_list(struct blk_plug *, bool); 1383 1384 static inline void blk_flush_plug(struct task_struct *tsk) 1385 { 1386 struct blk_plug *plug = tsk->plug; 1387 1388 if (plug) 1389 blk_flush_plug_list(plug, false); 1390 } 1391 1392 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1393 { 1394 struct blk_plug *plug = tsk->plug; 1395 1396 if (plug) 1397 blk_flush_plug_list(plug, true); 1398 } 1399 1400 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1401 { 1402 struct blk_plug *plug = tsk->plug; 1403 1404 return plug && 1405 (!list_empty(&plug->list) || 1406 !list_empty(&plug->mq_list) || 1407 !list_empty(&plug->cb_list)); 1408 } 1409 1410 /* 1411 * tag stuff 1412 */ 1413 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1414 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1415 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1416 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1417 extern void blk_queue_free_tags(struct request_queue *); 1418 extern int blk_queue_resize_tags(struct request_queue *, int); 1419 extern void blk_queue_invalidate_tags(struct request_queue *); 1420 extern struct blk_queue_tag *blk_init_tags(int, int); 1421 extern void blk_free_tags(struct blk_queue_tag *); 1422 1423 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1424 int tag) 1425 { 1426 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1427 return NULL; 1428 return bqt->tag_index[tag]; 1429 } 1430 1431 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1432 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1433 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1434 1435 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1436 1437 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1438 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1439 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1440 sector_t nr_sects, gfp_t gfp_mask, int flags, 1441 struct bio **biop); 1442 1443 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1444 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1445 1446 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1447 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1448 unsigned flags); 1449 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1450 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1451 1452 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1453 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1454 { 1455 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1456 nr_blocks << (sb->s_blocksize_bits - 9), 1457 gfp_mask, flags); 1458 } 1459 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1460 sector_t nr_blocks, gfp_t gfp_mask) 1461 { 1462 return blkdev_issue_zeroout(sb->s_bdev, 1463 block << (sb->s_blocksize_bits - 9), 1464 nr_blocks << (sb->s_blocksize_bits - 9), 1465 gfp_mask, 0); 1466 } 1467 1468 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1469 1470 enum blk_default_limits { 1471 BLK_MAX_SEGMENTS = 128, 1472 BLK_SAFE_MAX_SECTORS = 255, 1473 BLK_DEF_MAX_SECTORS = 2560, 1474 BLK_MAX_SEGMENT_SIZE = 65536, 1475 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1476 }; 1477 1478 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1479 1480 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1481 { 1482 return q->limits.seg_boundary_mask; 1483 } 1484 1485 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1486 { 1487 return q->limits.virt_boundary_mask; 1488 } 1489 1490 static inline unsigned int queue_max_sectors(struct request_queue *q) 1491 { 1492 return q->limits.max_sectors; 1493 } 1494 1495 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1496 { 1497 return q->limits.max_hw_sectors; 1498 } 1499 1500 static inline unsigned short queue_max_segments(struct request_queue *q) 1501 { 1502 return q->limits.max_segments; 1503 } 1504 1505 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1506 { 1507 return q->limits.max_discard_segments; 1508 } 1509 1510 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1511 { 1512 return q->limits.max_segment_size; 1513 } 1514 1515 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1516 { 1517 int retval = 512; 1518 1519 if (q && q->limits.logical_block_size) 1520 retval = q->limits.logical_block_size; 1521 1522 return retval; 1523 } 1524 1525 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1526 { 1527 return queue_logical_block_size(bdev_get_queue(bdev)); 1528 } 1529 1530 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1531 { 1532 return q->limits.physical_block_size; 1533 } 1534 1535 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1536 { 1537 return queue_physical_block_size(bdev_get_queue(bdev)); 1538 } 1539 1540 static inline unsigned int queue_io_min(struct request_queue *q) 1541 { 1542 return q->limits.io_min; 1543 } 1544 1545 static inline int bdev_io_min(struct block_device *bdev) 1546 { 1547 return queue_io_min(bdev_get_queue(bdev)); 1548 } 1549 1550 static inline unsigned int queue_io_opt(struct request_queue *q) 1551 { 1552 return q->limits.io_opt; 1553 } 1554 1555 static inline int bdev_io_opt(struct block_device *bdev) 1556 { 1557 return queue_io_opt(bdev_get_queue(bdev)); 1558 } 1559 1560 static inline int queue_alignment_offset(struct request_queue *q) 1561 { 1562 if (q->limits.misaligned) 1563 return -1; 1564 1565 return q->limits.alignment_offset; 1566 } 1567 1568 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1569 { 1570 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1571 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1572 1573 return (granularity + lim->alignment_offset - alignment) % granularity; 1574 } 1575 1576 static inline int bdev_alignment_offset(struct block_device *bdev) 1577 { 1578 struct request_queue *q = bdev_get_queue(bdev); 1579 1580 if (q->limits.misaligned) 1581 return -1; 1582 1583 if (bdev != bdev->bd_contains) 1584 return bdev->bd_part->alignment_offset; 1585 1586 return q->limits.alignment_offset; 1587 } 1588 1589 static inline int queue_discard_alignment(struct request_queue *q) 1590 { 1591 if (q->limits.discard_misaligned) 1592 return -1; 1593 1594 return q->limits.discard_alignment; 1595 } 1596 1597 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1598 { 1599 unsigned int alignment, granularity, offset; 1600 1601 if (!lim->max_discard_sectors) 1602 return 0; 1603 1604 /* Why are these in bytes, not sectors? */ 1605 alignment = lim->discard_alignment >> 9; 1606 granularity = lim->discard_granularity >> 9; 1607 if (!granularity) 1608 return 0; 1609 1610 /* Offset of the partition start in 'granularity' sectors */ 1611 offset = sector_div(sector, granularity); 1612 1613 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1614 offset = (granularity + alignment - offset) % granularity; 1615 1616 /* Turn it back into bytes, gaah */ 1617 return offset << 9; 1618 } 1619 1620 static inline int bdev_discard_alignment(struct block_device *bdev) 1621 { 1622 struct request_queue *q = bdev_get_queue(bdev); 1623 1624 if (bdev != bdev->bd_contains) 1625 return bdev->bd_part->discard_alignment; 1626 1627 return q->limits.discard_alignment; 1628 } 1629 1630 static inline unsigned int bdev_write_same(struct block_device *bdev) 1631 { 1632 struct request_queue *q = bdev_get_queue(bdev); 1633 1634 if (q) 1635 return q->limits.max_write_same_sectors; 1636 1637 return 0; 1638 } 1639 1640 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1641 { 1642 struct request_queue *q = bdev_get_queue(bdev); 1643 1644 if (q) 1645 return q->limits.max_write_zeroes_sectors; 1646 1647 return 0; 1648 } 1649 1650 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1651 { 1652 struct request_queue *q = bdev_get_queue(bdev); 1653 1654 if (q) 1655 return blk_queue_zoned_model(q); 1656 1657 return BLK_ZONED_NONE; 1658 } 1659 1660 static inline bool bdev_is_zoned(struct block_device *bdev) 1661 { 1662 struct request_queue *q = bdev_get_queue(bdev); 1663 1664 if (q) 1665 return blk_queue_is_zoned(q); 1666 1667 return false; 1668 } 1669 1670 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1671 { 1672 struct request_queue *q = bdev_get_queue(bdev); 1673 1674 if (q) 1675 return blk_queue_zone_sectors(q); 1676 return 0; 1677 } 1678 1679 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 1680 { 1681 struct request_queue *q = bdev_get_queue(bdev); 1682 1683 if (q) 1684 return blk_queue_nr_zones(q); 1685 return 0; 1686 } 1687 1688 static inline int queue_dma_alignment(struct request_queue *q) 1689 { 1690 return q ? q->dma_alignment : 511; 1691 } 1692 1693 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1694 unsigned int len) 1695 { 1696 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1697 return !(addr & alignment) && !(len & alignment); 1698 } 1699 1700 /* assumes size > 256 */ 1701 static inline unsigned int blksize_bits(unsigned int size) 1702 { 1703 unsigned int bits = 8; 1704 do { 1705 bits++; 1706 size >>= 1; 1707 } while (size > 256); 1708 return bits; 1709 } 1710 1711 static inline unsigned int block_size(struct block_device *bdev) 1712 { 1713 return bdev->bd_block_size; 1714 } 1715 1716 static inline bool queue_flush_queueable(struct request_queue *q) 1717 { 1718 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1719 } 1720 1721 typedef struct {struct page *v;} Sector; 1722 1723 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1724 1725 static inline void put_dev_sector(Sector p) 1726 { 1727 put_page(p.v); 1728 } 1729 1730 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1731 struct bio_vec *bprv, unsigned int offset) 1732 { 1733 return offset || 1734 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1735 } 1736 1737 /* 1738 * Check if adding a bio_vec after bprv with offset would create a gap in 1739 * the SG list. Most drivers don't care about this, but some do. 1740 */ 1741 static inline bool bvec_gap_to_prev(struct request_queue *q, 1742 struct bio_vec *bprv, unsigned int offset) 1743 { 1744 if (!queue_virt_boundary(q)) 1745 return false; 1746 return __bvec_gap_to_prev(q, bprv, offset); 1747 } 1748 1749 /* 1750 * Check if the two bvecs from two bios can be merged to one segment. 1751 * If yes, no need to check gap between the two bios since the 1st bio 1752 * and the 1st bvec in the 2nd bio can be handled in one segment. 1753 */ 1754 static inline bool bios_segs_mergeable(struct request_queue *q, 1755 struct bio *prev, struct bio_vec *prev_last_bv, 1756 struct bio_vec *next_first_bv) 1757 { 1758 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1759 return false; 1760 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1761 return false; 1762 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1763 queue_max_segment_size(q)) 1764 return false; 1765 return true; 1766 } 1767 1768 static inline bool bio_will_gap(struct request_queue *q, 1769 struct request *prev_rq, 1770 struct bio *prev, 1771 struct bio *next) 1772 { 1773 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1774 struct bio_vec pb, nb; 1775 1776 /* 1777 * don't merge if the 1st bio starts with non-zero 1778 * offset, otherwise it is quite difficult to respect 1779 * sg gap limit. We work hard to merge a huge number of small 1780 * single bios in case of mkfs. 1781 */ 1782 if (prev_rq) 1783 bio_get_first_bvec(prev_rq->bio, &pb); 1784 else 1785 bio_get_first_bvec(prev, &pb); 1786 if (pb.bv_offset) 1787 return true; 1788 1789 /* 1790 * We don't need to worry about the situation that the 1791 * merged segment ends in unaligned virt boundary: 1792 * 1793 * - if 'pb' ends aligned, the merged segment ends aligned 1794 * - if 'pb' ends unaligned, the next bio must include 1795 * one single bvec of 'nb', otherwise the 'nb' can't 1796 * merge with 'pb' 1797 */ 1798 bio_get_last_bvec(prev, &pb); 1799 bio_get_first_bvec(next, &nb); 1800 1801 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1802 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1803 } 1804 1805 return false; 1806 } 1807 1808 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1809 { 1810 return bio_will_gap(req->q, req, req->biotail, bio); 1811 } 1812 1813 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1814 { 1815 return bio_will_gap(req->q, NULL, bio, req->bio); 1816 } 1817 1818 int kblockd_schedule_work(struct work_struct *work); 1819 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1820 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1821 1822 #ifdef CONFIG_BLK_CGROUP 1823 /* 1824 * This should not be using sched_clock(). A real patch is in progress 1825 * to fix this up, until that is in place we need to disable preemption 1826 * around sched_clock() in this function and set_io_start_time_ns(). 1827 */ 1828 static inline void set_start_time_ns(struct request *req) 1829 { 1830 preempt_disable(); 1831 req->start_time_ns = sched_clock(); 1832 preempt_enable(); 1833 } 1834 1835 static inline void set_io_start_time_ns(struct request *req) 1836 { 1837 preempt_disable(); 1838 req->io_start_time_ns = sched_clock(); 1839 preempt_enable(); 1840 } 1841 1842 static inline uint64_t rq_start_time_ns(struct request *req) 1843 { 1844 return req->start_time_ns; 1845 } 1846 1847 static inline uint64_t rq_io_start_time_ns(struct request *req) 1848 { 1849 return req->io_start_time_ns; 1850 } 1851 #else 1852 static inline void set_start_time_ns(struct request *req) {} 1853 static inline void set_io_start_time_ns(struct request *req) {} 1854 static inline uint64_t rq_start_time_ns(struct request *req) 1855 { 1856 return 0; 1857 } 1858 static inline uint64_t rq_io_start_time_ns(struct request *req) 1859 { 1860 return 0; 1861 } 1862 #endif 1863 1864 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1865 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1866 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1867 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1868 1869 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1870 1871 enum blk_integrity_flags { 1872 BLK_INTEGRITY_VERIFY = 1 << 0, 1873 BLK_INTEGRITY_GENERATE = 1 << 1, 1874 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1875 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1876 }; 1877 1878 struct blk_integrity_iter { 1879 void *prot_buf; 1880 void *data_buf; 1881 sector_t seed; 1882 unsigned int data_size; 1883 unsigned short interval; 1884 const char *disk_name; 1885 }; 1886 1887 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1888 1889 struct blk_integrity_profile { 1890 integrity_processing_fn *generate_fn; 1891 integrity_processing_fn *verify_fn; 1892 const char *name; 1893 }; 1894 1895 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1896 extern void blk_integrity_unregister(struct gendisk *); 1897 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1898 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1899 struct scatterlist *); 1900 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1901 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1902 struct request *); 1903 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1904 struct bio *); 1905 1906 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1907 { 1908 struct blk_integrity *bi = &disk->queue->integrity; 1909 1910 if (!bi->profile) 1911 return NULL; 1912 1913 return bi; 1914 } 1915 1916 static inline 1917 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1918 { 1919 return blk_get_integrity(bdev->bd_disk); 1920 } 1921 1922 static inline bool blk_integrity_rq(struct request *rq) 1923 { 1924 return rq->cmd_flags & REQ_INTEGRITY; 1925 } 1926 1927 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1928 unsigned int segs) 1929 { 1930 q->limits.max_integrity_segments = segs; 1931 } 1932 1933 static inline unsigned short 1934 queue_max_integrity_segments(struct request_queue *q) 1935 { 1936 return q->limits.max_integrity_segments; 1937 } 1938 1939 static inline bool integrity_req_gap_back_merge(struct request *req, 1940 struct bio *next) 1941 { 1942 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1943 struct bio_integrity_payload *bip_next = bio_integrity(next); 1944 1945 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1946 bip_next->bip_vec[0].bv_offset); 1947 } 1948 1949 static inline bool integrity_req_gap_front_merge(struct request *req, 1950 struct bio *bio) 1951 { 1952 struct bio_integrity_payload *bip = bio_integrity(bio); 1953 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1954 1955 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1956 bip_next->bip_vec[0].bv_offset); 1957 } 1958 1959 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1960 1961 struct bio; 1962 struct block_device; 1963 struct gendisk; 1964 struct blk_integrity; 1965 1966 static inline int blk_integrity_rq(struct request *rq) 1967 { 1968 return 0; 1969 } 1970 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1971 struct bio *b) 1972 { 1973 return 0; 1974 } 1975 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1976 struct bio *b, 1977 struct scatterlist *s) 1978 { 1979 return 0; 1980 } 1981 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1982 { 1983 return NULL; 1984 } 1985 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1986 { 1987 return NULL; 1988 } 1989 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1990 { 1991 return 0; 1992 } 1993 static inline void blk_integrity_register(struct gendisk *d, 1994 struct blk_integrity *b) 1995 { 1996 } 1997 static inline void blk_integrity_unregister(struct gendisk *d) 1998 { 1999 } 2000 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 2001 unsigned int segs) 2002 { 2003 } 2004 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 2005 { 2006 return 0; 2007 } 2008 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 2009 struct request *r1, 2010 struct request *r2) 2011 { 2012 return true; 2013 } 2014 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 2015 struct request *r, 2016 struct bio *b) 2017 { 2018 return true; 2019 } 2020 2021 static inline bool integrity_req_gap_back_merge(struct request *req, 2022 struct bio *next) 2023 { 2024 return false; 2025 } 2026 static inline bool integrity_req_gap_front_merge(struct request *req, 2027 struct bio *bio) 2028 { 2029 return false; 2030 } 2031 2032 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 2033 2034 struct block_device_operations { 2035 int (*open) (struct block_device *, fmode_t); 2036 void (*release) (struct gendisk *, fmode_t); 2037 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 2038 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 2039 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 2040 unsigned int (*check_events) (struct gendisk *disk, 2041 unsigned int clearing); 2042 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 2043 int (*media_changed) (struct gendisk *); 2044 void (*unlock_native_capacity) (struct gendisk *); 2045 int (*revalidate_disk) (struct gendisk *); 2046 int (*getgeo)(struct block_device *, struct hd_geometry *); 2047 /* this callback is with swap_lock and sometimes page table lock held */ 2048 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 2049 struct module *owner; 2050 const struct pr_ops *pr_ops; 2051 }; 2052 2053 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 2054 unsigned long); 2055 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 2056 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 2057 struct writeback_control *); 2058 2059 #ifdef CONFIG_BLK_DEV_ZONED 2060 bool blk_req_needs_zone_write_lock(struct request *rq); 2061 void __blk_req_zone_write_lock(struct request *rq); 2062 void __blk_req_zone_write_unlock(struct request *rq); 2063 2064 static inline void blk_req_zone_write_lock(struct request *rq) 2065 { 2066 if (blk_req_needs_zone_write_lock(rq)) 2067 __blk_req_zone_write_lock(rq); 2068 } 2069 2070 static inline void blk_req_zone_write_unlock(struct request *rq) 2071 { 2072 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 2073 __blk_req_zone_write_unlock(rq); 2074 } 2075 2076 static inline bool blk_req_zone_is_write_locked(struct request *rq) 2077 { 2078 return rq->q->seq_zones_wlock && 2079 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 2080 } 2081 2082 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2083 { 2084 if (!blk_req_needs_zone_write_lock(rq)) 2085 return true; 2086 return !blk_req_zone_is_write_locked(rq); 2087 } 2088 #else 2089 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 2090 { 2091 return false; 2092 } 2093 2094 static inline void blk_req_zone_write_lock(struct request *rq) 2095 { 2096 } 2097 2098 static inline void blk_req_zone_write_unlock(struct request *rq) 2099 { 2100 } 2101 static inline bool blk_req_zone_is_write_locked(struct request *rq) 2102 { 2103 return false; 2104 } 2105 2106 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 2107 { 2108 return true; 2109 } 2110 #endif /* CONFIG_BLK_DEV_ZONED */ 2111 2112 #else /* CONFIG_BLOCK */ 2113 2114 struct block_device; 2115 2116 /* 2117 * stubs for when the block layer is configured out 2118 */ 2119 #define buffer_heads_over_limit 0 2120 2121 static inline long nr_blockdev_pages(void) 2122 { 2123 return 0; 2124 } 2125 2126 struct blk_plug { 2127 }; 2128 2129 static inline void blk_start_plug(struct blk_plug *plug) 2130 { 2131 } 2132 2133 static inline void blk_finish_plug(struct blk_plug *plug) 2134 { 2135 } 2136 2137 static inline void blk_flush_plug(struct task_struct *task) 2138 { 2139 } 2140 2141 static inline void blk_schedule_flush_plug(struct task_struct *task) 2142 { 2143 } 2144 2145 2146 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 2147 { 2148 return false; 2149 } 2150 2151 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 2152 sector_t *error_sector) 2153 { 2154 return 0; 2155 } 2156 2157 #endif /* CONFIG_BLOCK */ 2158 2159 #endif 2160