1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/srcu.h> 26 #include <linux/uuid.h> 27 #include <linux/xarray.h> 28 29 struct module; 30 struct request_queue; 31 struct elevator_queue; 32 struct blk_trace; 33 struct request; 34 struct sg_io_hdr; 35 struct blkcg_gq; 36 struct blk_flush_queue; 37 struct kiocb; 38 struct pr_ops; 39 struct rq_qos; 40 struct blk_queue_stats; 41 struct blk_stat_callback; 42 struct blk_crypto_profile; 43 44 extern const struct device_type disk_type; 45 extern struct device_type part_type; 46 extern struct class block_class; 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 6 59 60 #define DISK_MAX_PARTS 256 61 #define DISK_NAME_LEN 32 62 63 #define PARTITION_META_INFO_VOLNAMELTH 64 64 /* 65 * Enough for the string representation of any kind of UUID plus NULL. 66 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 67 */ 68 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 69 70 struct partition_meta_info { 71 char uuid[PARTITION_META_INFO_UUIDLTH]; 72 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 73 }; 74 75 /** 76 * DOC: genhd capability flags 77 * 78 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 79 * removable media. When set, the device remains present even when media is not 80 * inserted. Shall not be set for devices which are removed entirely when the 81 * media is removed. 82 * 83 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 84 * doesn't appear in sysfs, and can't be opened from userspace or using 85 * blkdev_get*. Used for the underlying components of multipath devices. 86 * 87 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 88 * scan for partitions from add_disk, and users can't add partitions manually. 89 * 90 */ 91 enum { 92 GENHD_FL_REMOVABLE = 1 << 0, 93 GENHD_FL_HIDDEN = 1 << 1, 94 GENHD_FL_NO_PART = 1 << 2, 95 }; 96 97 enum { 98 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 99 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 100 }; 101 102 enum { 103 /* Poll even if events_poll_msecs is unset */ 104 DISK_EVENT_FLAG_POLL = 1 << 0, 105 /* Forward events to udev */ 106 DISK_EVENT_FLAG_UEVENT = 1 << 1, 107 /* Block event polling when open for exclusive write */ 108 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 109 }; 110 111 struct disk_events; 112 struct badblocks; 113 114 struct blk_integrity { 115 const struct blk_integrity_profile *profile; 116 unsigned char flags; 117 unsigned char tuple_size; 118 unsigned char interval_exp; 119 unsigned char tag_size; 120 }; 121 122 struct gendisk { 123 /* 124 * major/first_minor/minors should not be set by any new driver, the 125 * block core will take care of allocating them automatically. 126 */ 127 int major; 128 int first_minor; 129 int minors; 130 131 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 132 133 unsigned short events; /* supported events */ 134 unsigned short event_flags; /* flags related to event processing */ 135 136 struct xarray part_tbl; 137 struct block_device *part0; 138 139 const struct block_device_operations *fops; 140 struct request_queue *queue; 141 void *private_data; 142 143 int flags; 144 unsigned long state; 145 #define GD_NEED_PART_SCAN 0 146 #define GD_READ_ONLY 1 147 #define GD_DEAD 2 148 #define GD_NATIVE_CAPACITY 3 149 #define GD_ADDED 4 150 #define GD_SUPPRESS_PART_SCAN 5 151 #define GD_OWNS_QUEUE 6 152 153 struct mutex open_mutex; /* open/close mutex */ 154 unsigned open_partitions; /* number of open partitions */ 155 156 struct backing_dev_info *bdi; 157 struct kobject *slave_dir; 158 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 159 struct list_head slave_bdevs; 160 #endif 161 struct timer_rand_state *random; 162 atomic_t sync_io; /* RAID */ 163 struct disk_events *ev; 164 #ifdef CONFIG_BLK_DEV_INTEGRITY 165 struct kobject integrity_kobj; 166 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 167 168 #ifdef CONFIG_BLK_DEV_ZONED 169 /* 170 * Zoned block device information for request dispatch control. 171 * nr_zones is the total number of zones of the device. This is always 172 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 173 * bits which indicates if a zone is conventional (bit set) or 174 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 175 * bits which indicates if a zone is write locked, that is, if a write 176 * request targeting the zone was dispatched. 177 * 178 * Reads of this information must be protected with blk_queue_enter() / 179 * blk_queue_exit(). Modifying this information is only allowed while 180 * no requests are being processed. See also blk_mq_freeze_queue() and 181 * blk_mq_unfreeze_queue(). 182 */ 183 unsigned int nr_zones; 184 unsigned int max_open_zones; 185 unsigned int max_active_zones; 186 unsigned long *conv_zones_bitmap; 187 unsigned long *seq_zones_wlock; 188 #endif /* CONFIG_BLK_DEV_ZONED */ 189 190 #if IS_ENABLED(CONFIG_CDROM) 191 struct cdrom_device_info *cdi; 192 #endif 193 int node_id; 194 struct badblocks *bb; 195 struct lockdep_map lockdep_map; 196 u64 diskseq; 197 198 /* 199 * Independent sector access ranges. This is always NULL for 200 * devices that do not have multiple independent access ranges. 201 */ 202 struct blk_independent_access_ranges *ia_ranges; 203 }; 204 205 static inline bool disk_live(struct gendisk *disk) 206 { 207 return !inode_unhashed(disk->part0->bd_inode); 208 } 209 210 /** 211 * disk_openers - returns how many openers are there for a disk 212 * @disk: disk to check 213 * 214 * This returns the number of openers for a disk. Note that this value is only 215 * stable if disk->open_mutex is held. 216 * 217 * Note: Due to a quirk in the block layer open code, each open partition is 218 * only counted once even if there are multiple openers. 219 */ 220 static inline unsigned int disk_openers(struct gendisk *disk) 221 { 222 return atomic_read(&disk->part0->bd_openers); 223 } 224 225 /* 226 * The gendisk is refcounted by the part0 block_device, and the bd_device 227 * therein is also used for device model presentation in sysfs. 228 */ 229 #define dev_to_disk(device) \ 230 (dev_to_bdev(device)->bd_disk) 231 #define disk_to_dev(disk) \ 232 (&((disk)->part0->bd_device)) 233 234 #if IS_REACHABLE(CONFIG_CDROM) 235 #define disk_to_cdi(disk) ((disk)->cdi) 236 #else 237 #define disk_to_cdi(disk) NULL 238 #endif 239 240 static inline dev_t disk_devt(struct gendisk *disk) 241 { 242 return MKDEV(disk->major, disk->first_minor); 243 } 244 245 static inline int blk_validate_block_size(unsigned long bsize) 246 { 247 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 248 return -EINVAL; 249 250 return 0; 251 } 252 253 static inline bool blk_op_is_passthrough(blk_opf_t op) 254 { 255 op &= REQ_OP_MASK; 256 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 257 } 258 259 /* 260 * Zoned block device models (zoned limit). 261 * 262 * Note: This needs to be ordered from the least to the most severe 263 * restrictions for the inheritance in blk_stack_limits() to work. 264 */ 265 enum blk_zoned_model { 266 BLK_ZONED_NONE = 0, /* Regular block device */ 267 BLK_ZONED_HA, /* Host-aware zoned block device */ 268 BLK_ZONED_HM, /* Host-managed zoned block device */ 269 }; 270 271 /* 272 * BLK_BOUNCE_NONE: never bounce (default) 273 * BLK_BOUNCE_HIGH: bounce all highmem pages 274 */ 275 enum blk_bounce { 276 BLK_BOUNCE_NONE, 277 BLK_BOUNCE_HIGH, 278 }; 279 280 struct queue_limits { 281 enum blk_bounce bounce; 282 unsigned long seg_boundary_mask; 283 unsigned long virt_boundary_mask; 284 285 unsigned int max_hw_sectors; 286 unsigned int max_dev_sectors; 287 unsigned int chunk_sectors; 288 unsigned int max_sectors; 289 unsigned int max_segment_size; 290 unsigned int physical_block_size; 291 unsigned int logical_block_size; 292 unsigned int alignment_offset; 293 unsigned int io_min; 294 unsigned int io_opt; 295 unsigned int max_discard_sectors; 296 unsigned int max_hw_discard_sectors; 297 unsigned int max_secure_erase_sectors; 298 unsigned int max_write_zeroes_sectors; 299 unsigned int max_zone_append_sectors; 300 unsigned int discard_granularity; 301 unsigned int discard_alignment; 302 unsigned int zone_write_granularity; 303 304 unsigned short max_segments; 305 unsigned short max_integrity_segments; 306 unsigned short max_discard_segments; 307 308 unsigned char misaligned; 309 unsigned char discard_misaligned; 310 unsigned char raid_partial_stripes_expensive; 311 enum blk_zoned_model zoned; 312 }; 313 314 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 315 void *data); 316 317 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 318 319 #ifdef CONFIG_BLK_DEV_ZONED 320 321 #define BLK_ALL_ZONES ((unsigned int)-1) 322 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 323 unsigned int nr_zones, report_zones_cb cb, void *data); 324 unsigned int bdev_nr_zones(struct block_device *bdev); 325 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 326 sector_t sectors, sector_t nr_sectors, 327 gfp_t gfp_mask); 328 int blk_revalidate_disk_zones(struct gendisk *disk, 329 void (*update_driver_data)(struct gendisk *disk)); 330 331 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 332 unsigned int cmd, unsigned long arg); 333 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 334 unsigned int cmd, unsigned long arg); 335 336 #else /* CONFIG_BLK_DEV_ZONED */ 337 338 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 339 { 340 return 0; 341 } 342 343 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 344 fmode_t mode, unsigned int cmd, 345 unsigned long arg) 346 { 347 return -ENOTTY; 348 } 349 350 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 351 fmode_t mode, unsigned int cmd, 352 unsigned long arg) 353 { 354 return -ENOTTY; 355 } 356 357 #endif /* CONFIG_BLK_DEV_ZONED */ 358 359 /* 360 * Independent access ranges: struct blk_independent_access_range describes 361 * a range of contiguous sectors that can be accessed using device command 362 * execution resources that are independent from the resources used for 363 * other access ranges. This is typically found with single-LUN multi-actuator 364 * HDDs where each access range is served by a different set of heads. 365 * The set of independent ranges supported by the device is defined using 366 * struct blk_independent_access_ranges. The independent ranges must not overlap 367 * and must include all sectors within the disk capacity (no sector holes 368 * allowed). 369 * For a device with multiple ranges, requests targeting sectors in different 370 * ranges can be executed in parallel. A request can straddle an access range 371 * boundary. 372 */ 373 struct blk_independent_access_range { 374 struct kobject kobj; 375 sector_t sector; 376 sector_t nr_sectors; 377 }; 378 379 struct blk_independent_access_ranges { 380 struct kobject kobj; 381 bool sysfs_registered; 382 unsigned int nr_ia_ranges; 383 struct blk_independent_access_range ia_range[]; 384 }; 385 386 struct request_queue { 387 struct request *last_merge; 388 struct elevator_queue *elevator; 389 390 struct percpu_ref q_usage_counter; 391 392 struct blk_queue_stats *stats; 393 struct rq_qos *rq_qos; 394 395 const struct blk_mq_ops *mq_ops; 396 397 /* sw queues */ 398 struct blk_mq_ctx __percpu *queue_ctx; 399 400 unsigned int queue_depth; 401 402 /* hw dispatch queues */ 403 struct xarray hctx_table; 404 unsigned int nr_hw_queues; 405 406 /* 407 * The queue owner gets to use this for whatever they like. 408 * ll_rw_blk doesn't touch it. 409 */ 410 void *queuedata; 411 412 /* 413 * various queue flags, see QUEUE_* below 414 */ 415 unsigned long queue_flags; 416 /* 417 * Number of contexts that have called blk_set_pm_only(). If this 418 * counter is above zero then only RQF_PM requests are processed. 419 */ 420 atomic_t pm_only; 421 422 /* 423 * ida allocated id for this queue. Used to index queues from 424 * ioctx. 425 */ 426 int id; 427 428 spinlock_t queue_lock; 429 430 struct gendisk *disk; 431 432 /* 433 * queue kobject 434 */ 435 struct kobject kobj; 436 437 /* 438 * mq queue kobject 439 */ 440 struct kobject *mq_kobj; 441 442 #ifdef CONFIG_BLK_DEV_INTEGRITY 443 struct blk_integrity integrity; 444 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 445 446 #ifdef CONFIG_PM 447 struct device *dev; 448 enum rpm_status rpm_status; 449 #endif 450 451 /* 452 * queue settings 453 */ 454 unsigned long nr_requests; /* Max # of requests */ 455 456 unsigned int dma_pad_mask; 457 /* 458 * Drivers that set dma_alignment to less than 511 must be prepared to 459 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 460 * due to possible offsets. 461 */ 462 unsigned int dma_alignment; 463 464 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 465 struct blk_crypto_profile *crypto_profile; 466 struct kobject *crypto_kobject; 467 #endif 468 469 unsigned int rq_timeout; 470 int poll_nsec; 471 472 struct blk_stat_callback *poll_cb; 473 struct blk_rq_stat *poll_stat; 474 475 struct timer_list timeout; 476 struct work_struct timeout_work; 477 478 atomic_t nr_active_requests_shared_tags; 479 480 struct blk_mq_tags *sched_shared_tags; 481 482 struct list_head icq_list; 483 #ifdef CONFIG_BLK_CGROUP 484 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 485 struct blkcg_gq *root_blkg; 486 struct list_head blkg_list; 487 #endif 488 489 struct queue_limits limits; 490 491 unsigned int required_elevator_features; 492 493 int node; 494 #ifdef CONFIG_BLK_DEV_IO_TRACE 495 struct blk_trace __rcu *blk_trace; 496 #endif 497 /* 498 * for flush operations 499 */ 500 struct blk_flush_queue *fq; 501 502 struct list_head requeue_list; 503 spinlock_t requeue_lock; 504 struct delayed_work requeue_work; 505 506 struct mutex sysfs_lock; 507 struct mutex sysfs_dir_lock; 508 509 /* 510 * for reusing dead hctx instance in case of updating 511 * nr_hw_queues 512 */ 513 struct list_head unused_hctx_list; 514 spinlock_t unused_hctx_lock; 515 516 int mq_freeze_depth; 517 518 #ifdef CONFIG_BLK_DEV_THROTTLING 519 /* Throttle data */ 520 struct throtl_data *td; 521 #endif 522 struct rcu_head rcu_head; 523 wait_queue_head_t mq_freeze_wq; 524 /* 525 * Protect concurrent access to q_usage_counter by 526 * percpu_ref_kill() and percpu_ref_reinit(). 527 */ 528 struct mutex mq_freeze_lock; 529 530 int quiesce_depth; 531 532 struct blk_mq_tag_set *tag_set; 533 struct list_head tag_set_list; 534 struct bio_set bio_split; 535 536 struct dentry *debugfs_dir; 537 struct dentry *sched_debugfs_dir; 538 struct dentry *rqos_debugfs_dir; 539 /* 540 * Serializes all debugfs metadata operations using the above dentries. 541 */ 542 struct mutex debugfs_mutex; 543 544 bool mq_sysfs_init_done; 545 546 /** 547 * @srcu: Sleepable RCU. Use as lock when type of the request queue 548 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member 549 */ 550 struct srcu_struct srcu[]; 551 }; 552 553 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 554 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 555 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 556 #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */ 557 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 558 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 559 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 560 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 561 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 562 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 563 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 564 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 565 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 566 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 567 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 568 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 569 #define QUEUE_FLAG_WC 17 /* Write back caching */ 570 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 571 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 572 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 573 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 574 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 575 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 576 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 577 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 578 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 579 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 580 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 581 582 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 583 (1 << QUEUE_FLAG_SAME_COMP) | \ 584 (1 << QUEUE_FLAG_NOWAIT)) 585 586 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 587 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 588 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 589 590 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 591 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 592 #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags) 593 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 594 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 595 #define blk_queue_noxmerges(q) \ 596 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 597 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 598 #define blk_queue_stable_writes(q) \ 599 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 600 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 601 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 602 #define blk_queue_zone_resetall(q) \ 603 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 604 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 605 #define blk_queue_pci_p2pdma(q) \ 606 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 607 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 608 #define blk_queue_rq_alloc_time(q) \ 609 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 610 #else 611 #define blk_queue_rq_alloc_time(q) false 612 #endif 613 614 #define blk_noretry_request(rq) \ 615 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 616 REQ_FAILFAST_DRIVER)) 617 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 618 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 619 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 620 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 621 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 622 623 extern void blk_set_pm_only(struct request_queue *q); 624 extern void blk_clear_pm_only(struct request_queue *q); 625 626 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 627 628 #define dma_map_bvec(dev, bv, dir, attrs) \ 629 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 630 (dir), (attrs)) 631 632 static inline bool queue_is_mq(struct request_queue *q) 633 { 634 return q->mq_ops; 635 } 636 637 #ifdef CONFIG_PM 638 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 639 { 640 return q->rpm_status; 641 } 642 #else 643 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 644 { 645 return RPM_ACTIVE; 646 } 647 #endif 648 649 static inline enum blk_zoned_model 650 blk_queue_zoned_model(struct request_queue *q) 651 { 652 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 653 return q->limits.zoned; 654 return BLK_ZONED_NONE; 655 } 656 657 static inline bool blk_queue_is_zoned(struct request_queue *q) 658 { 659 switch (blk_queue_zoned_model(q)) { 660 case BLK_ZONED_HA: 661 case BLK_ZONED_HM: 662 return true; 663 default: 664 return false; 665 } 666 } 667 668 #ifdef CONFIG_BLK_DEV_ZONED 669 static inline unsigned int disk_nr_zones(struct gendisk *disk) 670 { 671 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; 672 } 673 674 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 675 { 676 if (!blk_queue_is_zoned(disk->queue)) 677 return 0; 678 return sector >> ilog2(disk->queue->limits.chunk_sectors); 679 } 680 681 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 682 { 683 if (!blk_queue_is_zoned(disk->queue)) 684 return false; 685 if (!disk->conv_zones_bitmap) 686 return true; 687 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 688 } 689 690 static inline void disk_set_max_open_zones(struct gendisk *disk, 691 unsigned int max_open_zones) 692 { 693 disk->max_open_zones = max_open_zones; 694 } 695 696 static inline void disk_set_max_active_zones(struct gendisk *disk, 697 unsigned int max_active_zones) 698 { 699 disk->max_active_zones = max_active_zones; 700 } 701 702 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 703 { 704 return bdev->bd_disk->max_open_zones; 705 } 706 707 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 708 { 709 return bdev->bd_disk->max_active_zones; 710 } 711 712 #else /* CONFIG_BLK_DEV_ZONED */ 713 static inline unsigned int disk_nr_zones(struct gendisk *disk) 714 { 715 return 0; 716 } 717 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 718 { 719 return false; 720 } 721 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 722 { 723 return 0; 724 } 725 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 726 { 727 return 0; 728 } 729 730 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 731 { 732 return 0; 733 } 734 #endif /* CONFIG_BLK_DEV_ZONED */ 735 736 static inline unsigned int blk_queue_depth(struct request_queue *q) 737 { 738 if (q->queue_depth) 739 return q->queue_depth; 740 741 return q->nr_requests; 742 } 743 744 /* 745 * default timeout for SG_IO if none specified 746 */ 747 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 748 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 749 750 /* This should not be used directly - use rq_for_each_segment */ 751 #define for_each_bio(_bio) \ 752 for (; _bio; _bio = _bio->bi_next) 753 754 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 755 const struct attribute_group **groups); 756 static inline int __must_check add_disk(struct gendisk *disk) 757 { 758 return device_add_disk(NULL, disk, NULL); 759 } 760 void del_gendisk(struct gendisk *gp); 761 void invalidate_disk(struct gendisk *disk); 762 void set_disk_ro(struct gendisk *disk, bool read_only); 763 void disk_uevent(struct gendisk *disk, enum kobject_action action); 764 765 static inline int get_disk_ro(struct gendisk *disk) 766 { 767 return disk->part0->bd_read_only || 768 test_bit(GD_READ_ONLY, &disk->state); 769 } 770 771 static inline int bdev_read_only(struct block_device *bdev) 772 { 773 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 774 } 775 776 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 777 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 778 779 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 780 void rand_initialize_disk(struct gendisk *disk); 781 782 static inline sector_t get_start_sect(struct block_device *bdev) 783 { 784 return bdev->bd_start_sect; 785 } 786 787 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 788 { 789 return bdev->bd_nr_sectors; 790 } 791 792 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 793 { 794 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 795 } 796 797 static inline sector_t get_capacity(struct gendisk *disk) 798 { 799 return bdev_nr_sectors(disk->part0); 800 } 801 802 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 803 { 804 return bdev_nr_sectors(sb->s_bdev) >> 805 (sb->s_blocksize_bits - SECTOR_SHIFT); 806 } 807 808 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 809 810 void put_disk(struct gendisk *disk); 811 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 812 813 /** 814 * blk_alloc_disk - allocate a gendisk structure 815 * @node_id: numa node to allocate on 816 * 817 * Allocate and pre-initialize a gendisk structure for use with BIO based 818 * drivers. 819 * 820 * Context: can sleep 821 */ 822 #define blk_alloc_disk(node_id) \ 823 ({ \ 824 static struct lock_class_key __key; \ 825 \ 826 __blk_alloc_disk(node_id, &__key); \ 827 }) 828 829 int __register_blkdev(unsigned int major, const char *name, 830 void (*probe)(dev_t devt)); 831 #define register_blkdev(major, name) \ 832 __register_blkdev(major, name, NULL) 833 void unregister_blkdev(unsigned int major, const char *name); 834 835 bool bdev_check_media_change(struct block_device *bdev); 836 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 837 void set_capacity(struct gendisk *disk, sector_t size); 838 839 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 840 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 841 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 842 int bd_register_pending_holders(struct gendisk *disk); 843 #else 844 static inline int bd_link_disk_holder(struct block_device *bdev, 845 struct gendisk *disk) 846 { 847 return 0; 848 } 849 static inline void bd_unlink_disk_holder(struct block_device *bdev, 850 struct gendisk *disk) 851 { 852 } 853 static inline int bd_register_pending_holders(struct gendisk *disk) 854 { 855 return 0; 856 } 857 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 858 859 dev_t part_devt(struct gendisk *disk, u8 partno); 860 void inc_diskseq(struct gendisk *disk); 861 dev_t blk_lookup_devt(const char *name, int partno); 862 void blk_request_module(dev_t devt); 863 864 extern int blk_register_queue(struct gendisk *disk); 865 extern void blk_unregister_queue(struct gendisk *disk); 866 void submit_bio_noacct(struct bio *bio); 867 868 extern int blk_lld_busy(struct request_queue *q); 869 extern void blk_queue_split(struct bio **); 870 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 871 extern void blk_queue_exit(struct request_queue *q); 872 extern void blk_sync_queue(struct request_queue *q); 873 874 /* Helper to convert REQ_OP_XXX to its string format XXX */ 875 extern const char *blk_op_str(enum req_op op); 876 877 int blk_status_to_errno(blk_status_t status); 878 blk_status_t errno_to_blk_status(int errno); 879 880 /* only poll the hardware once, don't continue until a completion was found */ 881 #define BLK_POLL_ONESHOT (1 << 0) 882 /* do not sleep to wait for the expected completion time */ 883 #define BLK_POLL_NOSLEEP (1 << 1) 884 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 885 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 886 unsigned int flags); 887 888 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 889 { 890 return bdev->bd_queue; /* this is never NULL */ 891 } 892 893 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 894 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 895 896 static inline unsigned int bio_zone_no(struct bio *bio) 897 { 898 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 899 } 900 901 static inline unsigned int bio_zone_is_seq(struct bio *bio) 902 { 903 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 904 } 905 906 /* 907 * Return how much of the chunk is left to be used for I/O at a given offset. 908 */ 909 static inline unsigned int blk_chunk_sectors_left(sector_t offset, 910 unsigned int chunk_sectors) 911 { 912 if (unlikely(!is_power_of_2(chunk_sectors))) 913 return chunk_sectors - sector_div(offset, chunk_sectors); 914 return chunk_sectors - (offset & (chunk_sectors - 1)); 915 } 916 917 /* 918 * Access functions for manipulating queue properties 919 */ 920 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 921 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 922 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 923 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 924 extern void blk_queue_max_discard_segments(struct request_queue *, 925 unsigned short); 926 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 927 unsigned int max_sectors); 928 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 929 extern void blk_queue_max_discard_sectors(struct request_queue *q, 930 unsigned int max_discard_sectors); 931 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 932 unsigned int max_write_same_sectors); 933 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 934 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 935 unsigned int max_zone_append_sectors); 936 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 937 void blk_queue_zone_write_granularity(struct request_queue *q, 938 unsigned int size); 939 extern void blk_queue_alignment_offset(struct request_queue *q, 940 unsigned int alignment); 941 void disk_update_readahead(struct gendisk *disk); 942 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 943 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 944 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 945 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 946 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 947 extern void blk_set_default_limits(struct queue_limits *lim); 948 extern void blk_set_stacking_limits(struct queue_limits *lim); 949 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 950 sector_t offset); 951 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 952 sector_t offset); 953 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 954 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 955 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 956 extern void blk_queue_dma_alignment(struct request_queue *, int); 957 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 958 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 959 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 960 961 struct blk_independent_access_ranges * 962 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 963 void disk_set_independent_access_ranges(struct gendisk *disk, 964 struct blk_independent_access_ranges *iars); 965 966 /* 967 * Elevator features for blk_queue_required_elevator_features: 968 */ 969 /* Supports zoned block devices sequential write constraint */ 970 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 971 972 extern void blk_queue_required_elevator_features(struct request_queue *q, 973 unsigned int features); 974 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 975 struct device *dev); 976 977 bool __must_check blk_get_queue(struct request_queue *); 978 extern void blk_put_queue(struct request_queue *); 979 980 void blk_mark_disk_dead(struct gendisk *disk); 981 982 #ifdef CONFIG_BLOCK 983 /* 984 * blk_plug permits building a queue of related requests by holding the I/O 985 * fragments for a short period. This allows merging of sequential requests 986 * into single larger request. As the requests are moved from a per-task list to 987 * the device's request_queue in a batch, this results in improved scalability 988 * as the lock contention for request_queue lock is reduced. 989 * 990 * It is ok not to disable preemption when adding the request to the plug list 991 * or when attempting a merge. For details, please see schedule() where 992 * blk_flush_plug() is called. 993 */ 994 struct blk_plug { 995 struct request *mq_list; /* blk-mq requests */ 996 997 /* if ios_left is > 1, we can batch tag/rq allocations */ 998 struct request *cached_rq; 999 unsigned short nr_ios; 1000 1001 unsigned short rq_count; 1002 1003 bool multiple_queues; 1004 bool has_elevator; 1005 bool nowait; 1006 1007 struct list_head cb_list; /* md requires an unplug callback */ 1008 }; 1009 1010 struct blk_plug_cb; 1011 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1012 struct blk_plug_cb { 1013 struct list_head list; 1014 blk_plug_cb_fn callback; 1015 void *data; 1016 }; 1017 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1018 void *data, int size); 1019 extern void blk_start_plug(struct blk_plug *); 1020 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1021 extern void blk_finish_plug(struct blk_plug *); 1022 1023 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1024 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1025 { 1026 if (plug) 1027 __blk_flush_plug(plug, async); 1028 } 1029 1030 int blkdev_issue_flush(struct block_device *bdev); 1031 long nr_blockdev_pages(void); 1032 #else /* CONFIG_BLOCK */ 1033 struct blk_plug { 1034 }; 1035 1036 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1037 unsigned short nr_ios) 1038 { 1039 } 1040 1041 static inline void blk_start_plug(struct blk_plug *plug) 1042 { 1043 } 1044 1045 static inline void blk_finish_plug(struct blk_plug *plug) 1046 { 1047 } 1048 1049 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1050 { 1051 } 1052 1053 static inline int blkdev_issue_flush(struct block_device *bdev) 1054 { 1055 return 0; 1056 } 1057 1058 static inline long nr_blockdev_pages(void) 1059 { 1060 return 0; 1061 } 1062 #endif /* CONFIG_BLOCK */ 1063 1064 extern void blk_io_schedule(void); 1065 1066 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1067 sector_t nr_sects, gfp_t gfp_mask); 1068 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1069 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1070 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1071 sector_t nr_sects, gfp_t gfp); 1072 1073 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1074 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1075 1076 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1077 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1078 unsigned flags); 1079 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1080 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1081 1082 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1083 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1084 { 1085 return blkdev_issue_discard(sb->s_bdev, 1086 block << (sb->s_blocksize_bits - 1087 SECTOR_SHIFT), 1088 nr_blocks << (sb->s_blocksize_bits - 1089 SECTOR_SHIFT), 1090 gfp_mask); 1091 } 1092 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1093 sector_t nr_blocks, gfp_t gfp_mask) 1094 { 1095 return blkdev_issue_zeroout(sb->s_bdev, 1096 block << (sb->s_blocksize_bits - 1097 SECTOR_SHIFT), 1098 nr_blocks << (sb->s_blocksize_bits - 1099 SECTOR_SHIFT), 1100 gfp_mask, 0); 1101 } 1102 1103 static inline bool bdev_is_partition(struct block_device *bdev) 1104 { 1105 return bdev->bd_partno; 1106 } 1107 1108 enum blk_default_limits { 1109 BLK_MAX_SEGMENTS = 128, 1110 BLK_SAFE_MAX_SECTORS = 255, 1111 BLK_DEF_MAX_SECTORS = 2560, 1112 BLK_MAX_SEGMENT_SIZE = 65536, 1113 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1114 }; 1115 1116 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1117 { 1118 return q->limits.seg_boundary_mask; 1119 } 1120 1121 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1122 { 1123 return q->limits.virt_boundary_mask; 1124 } 1125 1126 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1127 { 1128 return q->limits.max_sectors; 1129 } 1130 1131 static inline unsigned int queue_max_bytes(struct request_queue *q) 1132 { 1133 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1134 } 1135 1136 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1137 { 1138 return q->limits.max_hw_sectors; 1139 } 1140 1141 static inline unsigned short queue_max_segments(const struct request_queue *q) 1142 { 1143 return q->limits.max_segments; 1144 } 1145 1146 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1147 { 1148 return q->limits.max_discard_segments; 1149 } 1150 1151 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1152 { 1153 return q->limits.max_segment_size; 1154 } 1155 1156 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1157 { 1158 1159 const struct queue_limits *l = &q->limits; 1160 1161 return min(l->max_zone_append_sectors, l->max_sectors); 1162 } 1163 1164 static inline unsigned int 1165 bdev_max_zone_append_sectors(struct block_device *bdev) 1166 { 1167 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1168 } 1169 1170 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1171 { 1172 int retval = 512; 1173 1174 if (q && q->limits.logical_block_size) 1175 retval = q->limits.logical_block_size; 1176 1177 return retval; 1178 } 1179 1180 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1181 { 1182 return queue_logical_block_size(bdev_get_queue(bdev)); 1183 } 1184 1185 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1186 { 1187 return q->limits.physical_block_size; 1188 } 1189 1190 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1191 { 1192 return queue_physical_block_size(bdev_get_queue(bdev)); 1193 } 1194 1195 static inline unsigned int queue_io_min(const struct request_queue *q) 1196 { 1197 return q->limits.io_min; 1198 } 1199 1200 static inline int bdev_io_min(struct block_device *bdev) 1201 { 1202 return queue_io_min(bdev_get_queue(bdev)); 1203 } 1204 1205 static inline unsigned int queue_io_opt(const struct request_queue *q) 1206 { 1207 return q->limits.io_opt; 1208 } 1209 1210 static inline int bdev_io_opt(struct block_device *bdev) 1211 { 1212 return queue_io_opt(bdev_get_queue(bdev)); 1213 } 1214 1215 static inline unsigned int 1216 queue_zone_write_granularity(const struct request_queue *q) 1217 { 1218 return q->limits.zone_write_granularity; 1219 } 1220 1221 static inline unsigned int 1222 bdev_zone_write_granularity(struct block_device *bdev) 1223 { 1224 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1225 } 1226 1227 int bdev_alignment_offset(struct block_device *bdev); 1228 unsigned int bdev_discard_alignment(struct block_device *bdev); 1229 1230 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1231 { 1232 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1233 } 1234 1235 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1236 { 1237 return bdev_get_queue(bdev)->limits.discard_granularity; 1238 } 1239 1240 static inline unsigned int 1241 bdev_max_secure_erase_sectors(struct block_device *bdev) 1242 { 1243 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1244 } 1245 1246 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1247 { 1248 struct request_queue *q = bdev_get_queue(bdev); 1249 1250 if (q) 1251 return q->limits.max_write_zeroes_sectors; 1252 1253 return 0; 1254 } 1255 1256 static inline bool bdev_nonrot(struct block_device *bdev) 1257 { 1258 return blk_queue_nonrot(bdev_get_queue(bdev)); 1259 } 1260 1261 static inline bool bdev_stable_writes(struct block_device *bdev) 1262 { 1263 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1264 &bdev_get_queue(bdev)->queue_flags); 1265 } 1266 1267 static inline bool bdev_write_cache(struct block_device *bdev) 1268 { 1269 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1270 } 1271 1272 static inline bool bdev_fua(struct block_device *bdev) 1273 { 1274 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1275 } 1276 1277 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1278 { 1279 struct request_queue *q = bdev_get_queue(bdev); 1280 1281 if (q) 1282 return blk_queue_zoned_model(q); 1283 1284 return BLK_ZONED_NONE; 1285 } 1286 1287 static inline bool bdev_is_zoned(struct block_device *bdev) 1288 { 1289 struct request_queue *q = bdev_get_queue(bdev); 1290 1291 if (q) 1292 return blk_queue_is_zoned(q); 1293 1294 return false; 1295 } 1296 1297 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1298 { 1299 struct request_queue *q = bdev_get_queue(bdev); 1300 1301 if (!blk_queue_is_zoned(q)) 1302 return 0; 1303 return q->limits.chunk_sectors; 1304 } 1305 1306 static inline int queue_dma_alignment(const struct request_queue *q) 1307 { 1308 return q ? q->dma_alignment : 511; 1309 } 1310 1311 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1312 { 1313 return queue_dma_alignment(bdev_get_queue(bdev)); 1314 } 1315 1316 static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1317 struct iov_iter *iter) 1318 { 1319 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1320 bdev_logical_block_size(bdev) - 1); 1321 } 1322 1323 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1324 unsigned int len) 1325 { 1326 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1327 return !(addr & alignment) && !(len & alignment); 1328 } 1329 1330 /* assumes size > 256 */ 1331 static inline unsigned int blksize_bits(unsigned int size) 1332 { 1333 unsigned int bits = 8; 1334 do { 1335 bits++; 1336 size >>= 1; 1337 } while (size > 256); 1338 return bits; 1339 } 1340 1341 static inline unsigned int block_size(struct block_device *bdev) 1342 { 1343 return 1 << bdev->bd_inode->i_blkbits; 1344 } 1345 1346 int kblockd_schedule_work(struct work_struct *work); 1347 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1348 1349 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1350 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1351 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1352 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1353 1354 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1355 1356 bool blk_crypto_register(struct blk_crypto_profile *profile, 1357 struct request_queue *q); 1358 1359 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1360 1361 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1362 struct request_queue *q) 1363 { 1364 return true; 1365 } 1366 1367 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1368 1369 enum blk_unique_id { 1370 /* these match the Designator Types specified in SPC */ 1371 BLK_UID_T10 = 1, 1372 BLK_UID_EUI64 = 2, 1373 BLK_UID_NAA = 3, 1374 }; 1375 1376 #define NFL4_UFLG_MASK 0x0000003F 1377 1378 struct block_device_operations { 1379 void (*submit_bio)(struct bio *bio); 1380 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1381 unsigned int flags); 1382 int (*open) (struct block_device *, fmode_t); 1383 void (*release) (struct gendisk *, fmode_t); 1384 int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op); 1385 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1386 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1387 unsigned int (*check_events) (struct gendisk *disk, 1388 unsigned int clearing); 1389 void (*unlock_native_capacity) (struct gendisk *); 1390 int (*getgeo)(struct block_device *, struct hd_geometry *); 1391 int (*set_read_only)(struct block_device *bdev, bool ro); 1392 void (*free_disk)(struct gendisk *disk); 1393 /* this callback is with swap_lock and sometimes page table lock held */ 1394 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1395 int (*report_zones)(struct gendisk *, sector_t sector, 1396 unsigned int nr_zones, report_zones_cb cb, void *data); 1397 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1398 /* returns the length of the identifier or a negative errno: */ 1399 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1400 enum blk_unique_id id_type); 1401 struct module *owner; 1402 const struct pr_ops *pr_ops; 1403 1404 /* 1405 * Special callback for probing GPT entry at a given sector. 1406 * Needed by Android devices, used by GPT scanner and MMC blk 1407 * driver. 1408 */ 1409 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1410 }; 1411 1412 #ifdef CONFIG_COMPAT 1413 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1414 unsigned int, unsigned long); 1415 #else 1416 #define blkdev_compat_ptr_ioctl NULL 1417 #endif 1418 1419 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1420 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1421 struct writeback_control *); 1422 1423 static inline void blk_wake_io_task(struct task_struct *waiter) 1424 { 1425 /* 1426 * If we're polling, the task itself is doing the completions. For 1427 * that case, we don't need to signal a wakeup, it's enough to just 1428 * mark us as RUNNING. 1429 */ 1430 if (waiter == current) 1431 __set_current_state(TASK_RUNNING); 1432 else 1433 wake_up_process(waiter); 1434 } 1435 1436 unsigned long bdev_start_io_acct(struct block_device *bdev, 1437 unsigned int sectors, enum req_op op, 1438 unsigned long start_time); 1439 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1440 unsigned long start_time); 1441 1442 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time); 1443 unsigned long bio_start_io_acct(struct bio *bio); 1444 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1445 struct block_device *orig_bdev); 1446 1447 /** 1448 * bio_end_io_acct - end I/O accounting for bio based drivers 1449 * @bio: bio to end account for 1450 * @start_time: start time returned by bio_start_io_acct() 1451 */ 1452 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1453 { 1454 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1455 } 1456 1457 int bdev_read_only(struct block_device *bdev); 1458 int set_blocksize(struct block_device *bdev, int size); 1459 1460 int lookup_bdev(const char *pathname, dev_t *dev); 1461 1462 void blkdev_show(struct seq_file *seqf, off_t offset); 1463 1464 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1465 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1466 #ifdef CONFIG_BLOCK 1467 #define BLKDEV_MAJOR_MAX 512 1468 #else 1469 #define BLKDEV_MAJOR_MAX 0 1470 #endif 1471 1472 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1473 void *holder); 1474 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1475 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1476 void bd_abort_claiming(struct block_device *bdev, void *holder); 1477 void blkdev_put(struct block_device *bdev, fmode_t mode); 1478 1479 /* just for blk-cgroup, don't use elsewhere */ 1480 struct block_device *blkdev_get_no_open(dev_t dev); 1481 void blkdev_put_no_open(struct block_device *bdev); 1482 1483 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1484 void bdev_add(struct block_device *bdev, dev_t dev); 1485 struct block_device *I_BDEV(struct inode *inode); 1486 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1487 loff_t lend); 1488 1489 #ifdef CONFIG_BLOCK 1490 void invalidate_bdev(struct block_device *bdev); 1491 int sync_blockdev(struct block_device *bdev); 1492 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1493 int sync_blockdev_nowait(struct block_device *bdev); 1494 void sync_bdevs(bool wait); 1495 void printk_all_partitions(void); 1496 #else 1497 static inline void invalidate_bdev(struct block_device *bdev) 1498 { 1499 } 1500 static inline int sync_blockdev(struct block_device *bdev) 1501 { 1502 return 0; 1503 } 1504 static inline int sync_blockdev_nowait(struct block_device *bdev) 1505 { 1506 return 0; 1507 } 1508 static inline void sync_bdevs(bool wait) 1509 { 1510 } 1511 static inline void printk_all_partitions(void) 1512 { 1513 } 1514 #endif /* CONFIG_BLOCK */ 1515 1516 int fsync_bdev(struct block_device *bdev); 1517 1518 int freeze_bdev(struct block_device *bdev); 1519 int thaw_bdev(struct block_device *bdev); 1520 1521 struct io_comp_batch { 1522 struct request *req_list; 1523 bool need_ts; 1524 void (*complete)(struct io_comp_batch *); 1525 }; 1526 1527 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1528 1529 #endif /* _LINUX_BLKDEV_H */ 1530