xref: /linux-6.15/include/linux/blkdev.h (revision f4fe3ea6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83    "quiesce" state must be ignored. */
84 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
85 /* vaguely specified driver internal error.  Ignored by the block layer */
86 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
87 /* don't warn about errors */
88 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
89 /* elevator private data attached */
90 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
91 /* account into disk and partition IO statistics */
92 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
93 /* request came from our alloc pool */
94 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
95 /* runtime pm request */
96 #define RQF_PM			((__force req_flags_t)(1 << 15))
97 /* on IO scheduler merge hash */
98 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
99 /* track IO completion time */
100 #define RQF_STATS		((__force req_flags_t)(1 << 17))
101 /* Look at ->special_vec for the actual data payload instead of the
102    bio chain. */
103 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
104 /* The per-zone write lock is held for this request */
105 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
106 /* already slept for hybrid poll */
107 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
108 /* ->timeout has been called, don't expire again */
109 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
110 
111 /* flags that prevent us from merging requests: */
112 #define RQF_NOMERGE_FLAGS \
113 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
114 
115 /*
116  * Request state for blk-mq.
117  */
118 enum mq_rq_state {
119 	MQ_RQ_IDLE		= 0,
120 	MQ_RQ_IN_FLIGHT		= 1,
121 	MQ_RQ_COMPLETE		= 2,
122 };
123 
124 /*
125  * Try to put the fields that are referenced together in the same cacheline.
126  *
127  * If you modify this structure, make sure to update blk_rq_init() and
128  * especially blk_mq_rq_ctx_init() to take care of the added fields.
129  */
130 struct request {
131 	struct request_queue *q;
132 	struct blk_mq_ctx *mq_ctx;
133 	struct blk_mq_hw_ctx *mq_hctx;
134 
135 	unsigned int cmd_flags;		/* op and common flags */
136 	req_flags_t rq_flags;
137 
138 	int tag;
139 	int internal_tag;
140 
141 	/* the following two fields are internal, NEVER access directly */
142 	unsigned int __data_len;	/* total data len */
143 	sector_t __sector;		/* sector cursor */
144 
145 	struct bio *bio;
146 	struct bio *biotail;
147 
148 	struct list_head queuelist;
149 
150 	/*
151 	 * The hash is used inside the scheduler, and killed once the
152 	 * request reaches the dispatch list. The ipi_list is only used
153 	 * to queue the request for softirq completion, which is long
154 	 * after the request has been unhashed (and even removed from
155 	 * the dispatch list).
156 	 */
157 	union {
158 		struct hlist_node hash;	/* merge hash */
159 		struct list_head ipi_list;
160 	};
161 
162 	/*
163 	 * The rb_node is only used inside the io scheduler, requests
164 	 * are pruned when moved to the dispatch queue. So let the
165 	 * completion_data share space with the rb_node.
166 	 */
167 	union {
168 		struct rb_node rb_node;	/* sort/lookup */
169 		struct bio_vec special_vec;
170 		void *completion_data;
171 		int error_count; /* for legacy drivers, don't use */
172 	};
173 
174 	/*
175 	 * Three pointers are available for the IO schedulers, if they need
176 	 * more they have to dynamically allocate it.  Flush requests are
177 	 * never put on the IO scheduler. So let the flush fields share
178 	 * space with the elevator data.
179 	 */
180 	union {
181 		struct {
182 			struct io_cq		*icq;
183 			void			*priv[2];
184 		} elv;
185 
186 		struct {
187 			unsigned int		seq;
188 			struct list_head	list;
189 			rq_end_io_fn		*saved_end_io;
190 		} flush;
191 	};
192 
193 	struct gendisk *rq_disk;
194 	struct hd_struct *part;
195 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
196 	/* Time that the first bio started allocating this request. */
197 	u64 alloc_time_ns;
198 #endif
199 	/* Time that this request was allocated for this IO. */
200 	u64 start_time_ns;
201 	/* Time that I/O was submitted to the device. */
202 	u64 io_start_time_ns;
203 
204 #ifdef CONFIG_BLK_WBT
205 	unsigned short wbt_flags;
206 #endif
207 	/*
208 	 * rq sectors used for blk stats. It has the same value
209 	 * with blk_rq_sectors(rq), except that it never be zeroed
210 	 * by completion.
211 	 */
212 	unsigned short stats_sectors;
213 
214 	/*
215 	 * Number of scatter-gather DMA addr+len pairs after
216 	 * physical address coalescing is performed.
217 	 */
218 	unsigned short nr_phys_segments;
219 
220 #if defined(CONFIG_BLK_DEV_INTEGRITY)
221 	unsigned short nr_integrity_segments;
222 #endif
223 
224 	unsigned short write_hint;
225 	unsigned short ioprio;
226 
227 	enum mq_rq_state state;
228 	refcount_t ref;
229 
230 	unsigned int timeout;
231 	unsigned long deadline;
232 
233 	union {
234 		struct __call_single_data csd;
235 		u64 fifo_time;
236 	};
237 
238 	/*
239 	 * completion callback.
240 	 */
241 	rq_end_io_fn *end_io;
242 	void *end_io_data;
243 };
244 
245 static inline bool blk_op_is_scsi(unsigned int op)
246 {
247 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
248 }
249 
250 static inline bool blk_op_is_private(unsigned int op)
251 {
252 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
253 }
254 
255 static inline bool blk_rq_is_scsi(struct request *rq)
256 {
257 	return blk_op_is_scsi(req_op(rq));
258 }
259 
260 static inline bool blk_rq_is_private(struct request *rq)
261 {
262 	return blk_op_is_private(req_op(rq));
263 }
264 
265 static inline bool blk_rq_is_passthrough(struct request *rq)
266 {
267 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
268 }
269 
270 static inline bool bio_is_passthrough(struct bio *bio)
271 {
272 	unsigned op = bio_op(bio);
273 
274 	return blk_op_is_scsi(op) || blk_op_is_private(op);
275 }
276 
277 static inline unsigned short req_get_ioprio(struct request *req)
278 {
279 	return req->ioprio;
280 }
281 
282 #include <linux/elevator.h>
283 
284 struct blk_queue_ctx;
285 
286 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
287 
288 struct bio_vec;
289 
290 enum blk_eh_timer_return {
291 	BLK_EH_DONE,		/* drivers has completed the command */
292 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
293 };
294 
295 enum blk_queue_state {
296 	Queue_down,
297 	Queue_up,
298 };
299 
300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
302 
303 #define BLK_SCSI_MAX_CMDS	(256)
304 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
305 
306 /*
307  * Zoned block device models (zoned limit).
308  */
309 enum blk_zoned_model {
310 	BLK_ZONED_NONE,	/* Regular block device */
311 	BLK_ZONED_HA,	/* Host-aware zoned block device */
312 	BLK_ZONED_HM,	/* Host-managed zoned block device */
313 };
314 
315 struct queue_limits {
316 	unsigned long		bounce_pfn;
317 	unsigned long		seg_boundary_mask;
318 	unsigned long		virt_boundary_mask;
319 
320 	unsigned int		max_hw_sectors;
321 	unsigned int		max_dev_sectors;
322 	unsigned int		chunk_sectors;
323 	unsigned int		max_sectors;
324 	unsigned int		max_segment_size;
325 	unsigned int		physical_block_size;
326 	unsigned int		logical_block_size;
327 	unsigned int		alignment_offset;
328 	unsigned int		io_min;
329 	unsigned int		io_opt;
330 	unsigned int		max_discard_sectors;
331 	unsigned int		max_hw_discard_sectors;
332 	unsigned int		max_write_same_sectors;
333 	unsigned int		max_write_zeroes_sectors;
334 	unsigned int		discard_granularity;
335 	unsigned int		discard_alignment;
336 
337 	unsigned short		max_segments;
338 	unsigned short		max_integrity_segments;
339 	unsigned short		max_discard_segments;
340 
341 	unsigned char		misaligned;
342 	unsigned char		discard_misaligned;
343 	unsigned char		raid_partial_stripes_expensive;
344 	enum blk_zoned_model	zoned;
345 };
346 
347 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
348 			       void *data);
349 
350 #ifdef CONFIG_BLK_DEV_ZONED
351 
352 #define BLK_ALL_ZONES  ((unsigned int)-1)
353 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
354 			unsigned int nr_zones, report_zones_cb cb, void *data);
355 unsigned int blkdev_nr_zones(struct gendisk *disk);
356 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
357 			    sector_t sectors, sector_t nr_sectors,
358 			    gfp_t gfp_mask);
359 extern int blk_revalidate_disk_zones(struct gendisk *disk);
360 
361 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
362 				     unsigned int cmd, unsigned long arg);
363 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
364 				  unsigned int cmd, unsigned long arg);
365 
366 #else /* CONFIG_BLK_DEV_ZONED */
367 
368 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
369 {
370 	return 0;
371 }
372 
373 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
374 					    fmode_t mode, unsigned int cmd,
375 					    unsigned long arg)
376 {
377 	return -ENOTTY;
378 }
379 
380 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
381 					 fmode_t mode, unsigned int cmd,
382 					 unsigned long arg)
383 {
384 	return -ENOTTY;
385 }
386 
387 #endif /* CONFIG_BLK_DEV_ZONED */
388 
389 struct request_queue {
390 	struct request		*last_merge;
391 	struct elevator_queue	*elevator;
392 
393 	struct blk_queue_stats	*stats;
394 	struct rq_qos		*rq_qos;
395 
396 	make_request_fn		*make_request_fn;
397 
398 	const struct blk_mq_ops	*mq_ops;
399 
400 	/* sw queues */
401 	struct blk_mq_ctx __percpu	*queue_ctx;
402 
403 	unsigned int		queue_depth;
404 
405 	/* hw dispatch queues */
406 	struct blk_mq_hw_ctx	**queue_hw_ctx;
407 	unsigned int		nr_hw_queues;
408 
409 	struct backing_dev_info	*backing_dev_info;
410 
411 	/*
412 	 * The queue owner gets to use this for whatever they like.
413 	 * ll_rw_blk doesn't touch it.
414 	 */
415 	void			*queuedata;
416 
417 	/*
418 	 * various queue flags, see QUEUE_* below
419 	 */
420 	unsigned long		queue_flags;
421 	/*
422 	 * Number of contexts that have called blk_set_pm_only(). If this
423 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
424 	 * processed.
425 	 */
426 	atomic_t		pm_only;
427 
428 	/*
429 	 * ida allocated id for this queue.  Used to index queues from
430 	 * ioctx.
431 	 */
432 	int			id;
433 
434 	/*
435 	 * queue needs bounce pages for pages above this limit
436 	 */
437 	gfp_t			bounce_gfp;
438 
439 	spinlock_t		queue_lock;
440 
441 	/*
442 	 * queue kobject
443 	 */
444 	struct kobject kobj;
445 
446 	/*
447 	 * mq queue kobject
448 	 */
449 	struct kobject *mq_kobj;
450 
451 #ifdef  CONFIG_BLK_DEV_INTEGRITY
452 	struct blk_integrity integrity;
453 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
454 
455 #ifdef CONFIG_PM
456 	struct device		*dev;
457 	int			rpm_status;
458 	unsigned int		nr_pending;
459 #endif
460 
461 	/*
462 	 * queue settings
463 	 */
464 	unsigned long		nr_requests;	/* Max # of requests */
465 
466 	unsigned int		dma_pad_mask;
467 	unsigned int		dma_alignment;
468 
469 	unsigned int		rq_timeout;
470 	int			poll_nsec;
471 
472 	struct blk_stat_callback	*poll_cb;
473 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
474 
475 	struct timer_list	timeout;
476 	struct work_struct	timeout_work;
477 
478 	struct list_head	icq_list;
479 #ifdef CONFIG_BLK_CGROUP
480 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
481 	struct blkcg_gq		*root_blkg;
482 	struct list_head	blkg_list;
483 #endif
484 
485 	struct queue_limits	limits;
486 
487 	unsigned int		required_elevator_features;
488 
489 #ifdef CONFIG_BLK_DEV_ZONED
490 	/*
491 	 * Zoned block device information for request dispatch control.
492 	 * nr_zones is the total number of zones of the device. This is always
493 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
494 	 * bits which indicates if a zone is conventional (bit set) or
495 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
496 	 * bits which indicates if a zone is write locked, that is, if a write
497 	 * request targeting the zone was dispatched. All three fields are
498 	 * initialized by the low level device driver (e.g. scsi/sd.c).
499 	 * Stacking drivers (device mappers) may or may not initialize
500 	 * these fields.
501 	 *
502 	 * Reads of this information must be protected with blk_queue_enter() /
503 	 * blk_queue_exit(). Modifying this information is only allowed while
504 	 * no requests are being processed. See also blk_mq_freeze_queue() and
505 	 * blk_mq_unfreeze_queue().
506 	 */
507 	unsigned int		nr_zones;
508 	unsigned long		*conv_zones_bitmap;
509 	unsigned long		*seq_zones_wlock;
510 #endif /* CONFIG_BLK_DEV_ZONED */
511 
512 	/*
513 	 * sg stuff
514 	 */
515 	unsigned int		sg_timeout;
516 	unsigned int		sg_reserved_size;
517 	int			node;
518 #ifdef CONFIG_BLK_DEV_IO_TRACE
519 	struct blk_trace __rcu	*blk_trace;
520 	struct mutex		blk_trace_mutex;
521 #endif
522 	/*
523 	 * for flush operations
524 	 */
525 	struct blk_flush_queue	*fq;
526 
527 	struct list_head	requeue_list;
528 	spinlock_t		requeue_lock;
529 	struct delayed_work	requeue_work;
530 
531 	struct mutex		sysfs_lock;
532 	struct mutex		sysfs_dir_lock;
533 
534 	/*
535 	 * for reusing dead hctx instance in case of updating
536 	 * nr_hw_queues
537 	 */
538 	struct list_head	unused_hctx_list;
539 	spinlock_t		unused_hctx_lock;
540 
541 	int			mq_freeze_depth;
542 
543 #if defined(CONFIG_BLK_DEV_BSG)
544 	struct bsg_class_device bsg_dev;
545 #endif
546 
547 #ifdef CONFIG_BLK_DEV_THROTTLING
548 	/* Throttle data */
549 	struct throtl_data *td;
550 #endif
551 	struct rcu_head		rcu_head;
552 	wait_queue_head_t	mq_freeze_wq;
553 	/*
554 	 * Protect concurrent access to q_usage_counter by
555 	 * percpu_ref_kill() and percpu_ref_reinit().
556 	 */
557 	struct mutex		mq_freeze_lock;
558 	struct percpu_ref	q_usage_counter;
559 
560 	struct blk_mq_tag_set	*tag_set;
561 	struct list_head	tag_set_list;
562 	struct bio_set		bio_split;
563 
564 #ifdef CONFIG_BLK_DEBUG_FS
565 	struct dentry		*debugfs_dir;
566 	struct dentry		*sched_debugfs_dir;
567 	struct dentry		*rqos_debugfs_dir;
568 #endif
569 
570 	bool			mq_sysfs_init_done;
571 
572 	size_t			cmd_size;
573 
574 	struct work_struct	release_work;
575 
576 #define BLK_MAX_WRITE_HINTS	5
577 	u64			write_hints[BLK_MAX_WRITE_HINTS];
578 };
579 
580 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
581 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
582 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
583 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
584 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
585 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
586 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
587 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
588 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
589 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
590 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
591 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
592 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
593 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
594 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
595 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
596 #define QUEUE_FLAG_WC		17	/* Write back caching */
597 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
598 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
599 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
600 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
601 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
602 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
603 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
604 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
605 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
606 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
607 
608 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
609 				 (1 << QUEUE_FLAG_SAME_COMP))
610 
611 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
612 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
613 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
614 
615 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
616 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
617 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
618 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
619 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
620 #define blk_queue_noxmerges(q)	\
621 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
622 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
623 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
624 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
625 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
626 #define blk_queue_zone_resetall(q)	\
627 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
628 #define blk_queue_secure_erase(q) \
629 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
630 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
631 #define blk_queue_scsi_passthrough(q)	\
632 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
633 #define blk_queue_pci_p2pdma(q)	\
634 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
635 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
636 #define blk_queue_rq_alloc_time(q)	\
637 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
638 #else
639 #define blk_queue_rq_alloc_time(q)	false
640 #endif
641 
642 #define blk_noretry_request(rq) \
643 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
644 			     REQ_FAILFAST_DRIVER))
645 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
646 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
647 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
648 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
649 
650 extern void blk_set_pm_only(struct request_queue *q);
651 extern void blk_clear_pm_only(struct request_queue *q);
652 
653 static inline bool blk_account_rq(struct request *rq)
654 {
655 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
656 }
657 
658 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
659 
660 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
661 
662 #define rq_dma_dir(rq) \
663 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
664 
665 #define dma_map_bvec(dev, bv, dir, attrs) \
666 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
667 	(dir), (attrs))
668 
669 static inline bool queue_is_mq(struct request_queue *q)
670 {
671 	return q->mq_ops;
672 }
673 
674 static inline enum blk_zoned_model
675 blk_queue_zoned_model(struct request_queue *q)
676 {
677 	return q->limits.zoned;
678 }
679 
680 static inline bool blk_queue_is_zoned(struct request_queue *q)
681 {
682 	switch (blk_queue_zoned_model(q)) {
683 	case BLK_ZONED_HA:
684 	case BLK_ZONED_HM:
685 		return true;
686 	default:
687 		return false;
688 	}
689 }
690 
691 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
692 {
693 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
694 }
695 
696 #ifdef CONFIG_BLK_DEV_ZONED
697 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
698 {
699 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
700 }
701 
702 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
703 					     sector_t sector)
704 {
705 	if (!blk_queue_is_zoned(q))
706 		return 0;
707 	return sector >> ilog2(q->limits.chunk_sectors);
708 }
709 
710 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
711 					 sector_t sector)
712 {
713 	if (!blk_queue_is_zoned(q))
714 		return false;
715 	if (!q->conv_zones_bitmap)
716 		return true;
717 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
718 }
719 #else /* CONFIG_BLK_DEV_ZONED */
720 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
721 {
722 	return 0;
723 }
724 #endif /* CONFIG_BLK_DEV_ZONED */
725 
726 static inline bool rq_is_sync(struct request *rq)
727 {
728 	return op_is_sync(rq->cmd_flags);
729 }
730 
731 static inline bool rq_mergeable(struct request *rq)
732 {
733 	if (blk_rq_is_passthrough(rq))
734 		return false;
735 
736 	if (req_op(rq) == REQ_OP_FLUSH)
737 		return false;
738 
739 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
740 		return false;
741 
742 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
743 		return false;
744 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
745 		return false;
746 
747 	return true;
748 }
749 
750 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
751 {
752 	if (bio_page(a) == bio_page(b) &&
753 	    bio_offset(a) == bio_offset(b))
754 		return true;
755 
756 	return false;
757 }
758 
759 static inline unsigned int blk_queue_depth(struct request_queue *q)
760 {
761 	if (q->queue_depth)
762 		return q->queue_depth;
763 
764 	return q->nr_requests;
765 }
766 
767 extern unsigned long blk_max_low_pfn, blk_max_pfn;
768 
769 /*
770  * standard bounce addresses:
771  *
772  * BLK_BOUNCE_HIGH	: bounce all highmem pages
773  * BLK_BOUNCE_ANY	: don't bounce anything
774  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
775  */
776 
777 #if BITS_PER_LONG == 32
778 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
779 #else
780 #define BLK_BOUNCE_HIGH		-1ULL
781 #endif
782 #define BLK_BOUNCE_ANY		(-1ULL)
783 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
784 
785 /*
786  * default timeout for SG_IO if none specified
787  */
788 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
789 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
790 
791 struct rq_map_data {
792 	struct page **pages;
793 	int page_order;
794 	int nr_entries;
795 	unsigned long offset;
796 	int null_mapped;
797 	int from_user;
798 };
799 
800 struct req_iterator {
801 	struct bvec_iter iter;
802 	struct bio *bio;
803 };
804 
805 /* This should not be used directly - use rq_for_each_segment */
806 #define for_each_bio(_bio)		\
807 	for (; _bio; _bio = _bio->bi_next)
808 #define __rq_for_each_bio(_bio, rq)	\
809 	if ((rq->bio))			\
810 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
811 
812 #define rq_for_each_segment(bvl, _rq, _iter)			\
813 	__rq_for_each_bio(_iter.bio, _rq)			\
814 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
815 
816 #define rq_for_each_bvec(bvl, _rq, _iter)			\
817 	__rq_for_each_bio(_iter.bio, _rq)			\
818 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
819 
820 #define rq_iter_last(bvec, _iter)				\
821 		(_iter.bio->bi_next == NULL &&			\
822 		 bio_iter_last(bvec, _iter.iter))
823 
824 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
825 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
826 #endif
827 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
828 extern void rq_flush_dcache_pages(struct request *rq);
829 #else
830 static inline void rq_flush_dcache_pages(struct request *rq)
831 {
832 }
833 #endif
834 
835 extern int blk_register_queue(struct gendisk *disk);
836 extern void blk_unregister_queue(struct gendisk *disk);
837 extern blk_qc_t generic_make_request(struct bio *bio);
838 extern blk_qc_t direct_make_request(struct bio *bio);
839 extern void blk_rq_init(struct request_queue *q, struct request *rq);
840 extern void blk_put_request(struct request *);
841 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
842 				       blk_mq_req_flags_t flags);
843 extern int blk_lld_busy(struct request_queue *q);
844 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
845 			     struct bio_set *bs, gfp_t gfp_mask,
846 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
847 			     void *data);
848 extern void blk_rq_unprep_clone(struct request *rq);
849 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
850 				     struct request *rq);
851 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
852 extern void blk_queue_split(struct request_queue *, struct bio **);
853 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
854 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
855 			      unsigned int, void __user *);
856 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
857 			  unsigned int, void __user *);
858 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
859 			 struct scsi_ioctl_command __user *);
860 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
861 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
862 
863 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
864 extern void blk_queue_exit(struct request_queue *q);
865 extern void blk_sync_queue(struct request_queue *q);
866 extern int blk_rq_map_user(struct request_queue *, struct request *,
867 			   struct rq_map_data *, void __user *, unsigned long,
868 			   gfp_t);
869 extern int blk_rq_unmap_user(struct bio *);
870 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
871 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
872 			       struct rq_map_data *, const struct iov_iter *,
873 			       gfp_t);
874 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
875 			  struct request *, int);
876 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
877 				  struct request *, int, rq_end_io_fn *);
878 
879 /* Helper to convert REQ_OP_XXX to its string format XXX */
880 extern const char *blk_op_str(unsigned int op);
881 
882 int blk_status_to_errno(blk_status_t status);
883 blk_status_t errno_to_blk_status(int errno);
884 
885 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
886 
887 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
888 {
889 	return bdev->bd_disk->queue;	/* this is never NULL */
890 }
891 
892 /*
893  * The basic unit of block I/O is a sector. It is used in a number of contexts
894  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
895  * bytes. Variables of type sector_t represent an offset or size that is a
896  * multiple of 512 bytes. Hence these two constants.
897  */
898 #ifndef SECTOR_SHIFT
899 #define SECTOR_SHIFT 9
900 #endif
901 #ifndef SECTOR_SIZE
902 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
903 #endif
904 
905 /*
906  * blk_rq_pos()			: the current sector
907  * blk_rq_bytes()		: bytes left in the entire request
908  * blk_rq_cur_bytes()		: bytes left in the current segment
909  * blk_rq_err_bytes()		: bytes left till the next error boundary
910  * blk_rq_sectors()		: sectors left in the entire request
911  * blk_rq_cur_sectors()		: sectors left in the current segment
912  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
913  */
914 static inline sector_t blk_rq_pos(const struct request *rq)
915 {
916 	return rq->__sector;
917 }
918 
919 static inline unsigned int blk_rq_bytes(const struct request *rq)
920 {
921 	return rq->__data_len;
922 }
923 
924 static inline int blk_rq_cur_bytes(const struct request *rq)
925 {
926 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
927 }
928 
929 extern unsigned int blk_rq_err_bytes(const struct request *rq);
930 
931 static inline unsigned int blk_rq_sectors(const struct request *rq)
932 {
933 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
934 }
935 
936 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
937 {
938 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
939 }
940 
941 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
942 {
943 	return rq->stats_sectors;
944 }
945 
946 #ifdef CONFIG_BLK_DEV_ZONED
947 
948 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
949 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
950 
951 static inline unsigned int blk_rq_zone_no(struct request *rq)
952 {
953 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
954 }
955 
956 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
957 {
958 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
959 }
960 #endif /* CONFIG_BLK_DEV_ZONED */
961 
962 /*
963  * Some commands like WRITE SAME have a payload or data transfer size which
964  * is different from the size of the request.  Any driver that supports such
965  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
966  * calculate the data transfer size.
967  */
968 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
969 {
970 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
971 		return rq->special_vec.bv_len;
972 	return blk_rq_bytes(rq);
973 }
974 
975 /*
976  * Return the first full biovec in the request.  The caller needs to check that
977  * there are any bvecs before calling this helper.
978  */
979 static inline struct bio_vec req_bvec(struct request *rq)
980 {
981 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
982 		return rq->special_vec;
983 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
984 }
985 
986 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
987 						     int op)
988 {
989 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
990 		return min(q->limits.max_discard_sectors,
991 			   UINT_MAX >> SECTOR_SHIFT);
992 
993 	if (unlikely(op == REQ_OP_WRITE_SAME))
994 		return q->limits.max_write_same_sectors;
995 
996 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
997 		return q->limits.max_write_zeroes_sectors;
998 
999 	return q->limits.max_sectors;
1000 }
1001 
1002 /*
1003  * Return maximum size of a request at given offset. Only valid for
1004  * file system requests.
1005  */
1006 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1007 					       sector_t offset)
1008 {
1009 	if (!q->limits.chunk_sectors)
1010 		return q->limits.max_sectors;
1011 
1012 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1013 			(offset & (q->limits.chunk_sectors - 1))));
1014 }
1015 
1016 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1017 						  sector_t offset)
1018 {
1019 	struct request_queue *q = rq->q;
1020 
1021 	if (blk_rq_is_passthrough(rq))
1022 		return q->limits.max_hw_sectors;
1023 
1024 	if (!q->limits.chunk_sectors ||
1025 	    req_op(rq) == REQ_OP_DISCARD ||
1026 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1027 		return blk_queue_get_max_sectors(q, req_op(rq));
1028 
1029 	return min(blk_max_size_offset(q, offset),
1030 			blk_queue_get_max_sectors(q, req_op(rq)));
1031 }
1032 
1033 static inline unsigned int blk_rq_count_bios(struct request *rq)
1034 {
1035 	unsigned int nr_bios = 0;
1036 	struct bio *bio;
1037 
1038 	__rq_for_each_bio(bio, rq)
1039 		nr_bios++;
1040 
1041 	return nr_bios;
1042 }
1043 
1044 void blk_steal_bios(struct bio_list *list, struct request *rq);
1045 
1046 /*
1047  * Request completion related functions.
1048  *
1049  * blk_update_request() completes given number of bytes and updates
1050  * the request without completing it.
1051  */
1052 extern bool blk_update_request(struct request *rq, blk_status_t error,
1053 			       unsigned int nr_bytes);
1054 
1055 extern void __blk_complete_request(struct request *);
1056 extern void blk_abort_request(struct request *);
1057 
1058 /*
1059  * Access functions for manipulating queue properties
1060  */
1061 extern void blk_cleanup_queue(struct request_queue *);
1062 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1063 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1064 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1065 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1066 extern void blk_queue_max_discard_segments(struct request_queue *,
1067 		unsigned short);
1068 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1069 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1070 		unsigned int max_discard_sectors);
1071 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1072 		unsigned int max_write_same_sectors);
1073 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1074 		unsigned int max_write_same_sectors);
1075 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1076 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1077 extern void blk_queue_alignment_offset(struct request_queue *q,
1078 				       unsigned int alignment);
1079 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1080 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1081 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1082 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1083 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1084 extern void blk_set_default_limits(struct queue_limits *lim);
1085 extern void blk_set_stacking_limits(struct queue_limits *lim);
1086 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1087 			    sector_t offset);
1088 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1089 			    sector_t offset);
1090 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1091 			      sector_t offset);
1092 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1093 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1094 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1095 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1096 extern void blk_queue_dma_alignment(struct request_queue *, int);
1097 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1098 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1099 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1100 extern void blk_queue_required_elevator_features(struct request_queue *q,
1101 						 unsigned int features);
1102 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1103 					      struct device *dev);
1104 
1105 /*
1106  * Number of physical segments as sent to the device.
1107  *
1108  * Normally this is the number of discontiguous data segments sent by the
1109  * submitter.  But for data-less command like discard we might have no
1110  * actual data segments submitted, but the driver might have to add it's
1111  * own special payload.  In that case we still return 1 here so that this
1112  * special payload will be mapped.
1113  */
1114 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1115 {
1116 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1117 		return 1;
1118 	return rq->nr_phys_segments;
1119 }
1120 
1121 /*
1122  * Number of discard segments (or ranges) the driver needs to fill in.
1123  * Each discard bio merged into a request is counted as one segment.
1124  */
1125 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1126 {
1127 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1128 }
1129 
1130 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1131 		struct scatterlist *sglist, struct scatterlist **last_sg);
1132 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1133 		struct scatterlist *sglist)
1134 {
1135 	struct scatterlist *last_sg = NULL;
1136 
1137 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1138 }
1139 extern void blk_dump_rq_flags(struct request *, char *);
1140 extern long nr_blockdev_pages(void);
1141 
1142 bool __must_check blk_get_queue(struct request_queue *);
1143 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id);
1144 extern void blk_put_queue(struct request_queue *);
1145 extern void blk_set_queue_dying(struct request_queue *);
1146 
1147 /*
1148  * blk_plug permits building a queue of related requests by holding the I/O
1149  * fragments for a short period. This allows merging of sequential requests
1150  * into single larger request. As the requests are moved from a per-task list to
1151  * the device's request_queue in a batch, this results in improved scalability
1152  * as the lock contention for request_queue lock is reduced.
1153  *
1154  * It is ok not to disable preemption when adding the request to the plug list
1155  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1156  * the plug list when the task sleeps by itself. For details, please see
1157  * schedule() where blk_schedule_flush_plug() is called.
1158  */
1159 struct blk_plug {
1160 	struct list_head mq_list; /* blk-mq requests */
1161 	struct list_head cb_list; /* md requires an unplug callback */
1162 	unsigned short rq_count;
1163 	bool multiple_queues;
1164 };
1165 #define BLK_MAX_REQUEST_COUNT 16
1166 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1167 
1168 struct blk_plug_cb;
1169 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1170 struct blk_plug_cb {
1171 	struct list_head list;
1172 	blk_plug_cb_fn callback;
1173 	void *data;
1174 };
1175 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1176 					     void *data, int size);
1177 extern void blk_start_plug(struct blk_plug *);
1178 extern void blk_finish_plug(struct blk_plug *);
1179 extern void blk_flush_plug_list(struct blk_plug *, bool);
1180 
1181 static inline void blk_flush_plug(struct task_struct *tsk)
1182 {
1183 	struct blk_plug *plug = tsk->plug;
1184 
1185 	if (plug)
1186 		blk_flush_plug_list(plug, false);
1187 }
1188 
1189 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1190 {
1191 	struct blk_plug *plug = tsk->plug;
1192 
1193 	if (plug)
1194 		blk_flush_plug_list(plug, true);
1195 }
1196 
1197 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1198 {
1199 	struct blk_plug *plug = tsk->plug;
1200 
1201 	return plug &&
1202 		 (!list_empty(&plug->mq_list) ||
1203 		 !list_empty(&plug->cb_list));
1204 }
1205 
1206 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1207 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1208 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1209 
1210 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1211 
1212 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1213 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1214 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1215 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1216 		struct bio **biop);
1217 
1218 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1219 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1220 
1221 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1222 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1223 		unsigned flags);
1224 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1225 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1226 
1227 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1228 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1229 {
1230 	return blkdev_issue_discard(sb->s_bdev,
1231 				    block << (sb->s_blocksize_bits -
1232 					      SECTOR_SHIFT),
1233 				    nr_blocks << (sb->s_blocksize_bits -
1234 						  SECTOR_SHIFT),
1235 				    gfp_mask, flags);
1236 }
1237 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1238 		sector_t nr_blocks, gfp_t gfp_mask)
1239 {
1240 	return blkdev_issue_zeroout(sb->s_bdev,
1241 				    block << (sb->s_blocksize_bits -
1242 					      SECTOR_SHIFT),
1243 				    nr_blocks << (sb->s_blocksize_bits -
1244 						  SECTOR_SHIFT),
1245 				    gfp_mask, 0);
1246 }
1247 
1248 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1249 
1250 enum blk_default_limits {
1251 	BLK_MAX_SEGMENTS	= 128,
1252 	BLK_SAFE_MAX_SECTORS	= 255,
1253 	BLK_DEF_MAX_SECTORS	= 2560,
1254 	BLK_MAX_SEGMENT_SIZE	= 65536,
1255 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1256 };
1257 
1258 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1259 {
1260 	return q->limits.seg_boundary_mask;
1261 }
1262 
1263 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1264 {
1265 	return q->limits.virt_boundary_mask;
1266 }
1267 
1268 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1269 {
1270 	return q->limits.max_sectors;
1271 }
1272 
1273 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1274 {
1275 	return q->limits.max_hw_sectors;
1276 }
1277 
1278 static inline unsigned short queue_max_segments(const struct request_queue *q)
1279 {
1280 	return q->limits.max_segments;
1281 }
1282 
1283 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1284 {
1285 	return q->limits.max_discard_segments;
1286 }
1287 
1288 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1289 {
1290 	return q->limits.max_segment_size;
1291 }
1292 
1293 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1294 {
1295 	int retval = 512;
1296 
1297 	if (q && q->limits.logical_block_size)
1298 		retval = q->limits.logical_block_size;
1299 
1300 	return retval;
1301 }
1302 
1303 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1304 {
1305 	return queue_logical_block_size(bdev_get_queue(bdev));
1306 }
1307 
1308 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1309 {
1310 	return q->limits.physical_block_size;
1311 }
1312 
1313 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1314 {
1315 	return queue_physical_block_size(bdev_get_queue(bdev));
1316 }
1317 
1318 static inline unsigned int queue_io_min(const struct request_queue *q)
1319 {
1320 	return q->limits.io_min;
1321 }
1322 
1323 static inline int bdev_io_min(struct block_device *bdev)
1324 {
1325 	return queue_io_min(bdev_get_queue(bdev));
1326 }
1327 
1328 static inline unsigned int queue_io_opt(const struct request_queue *q)
1329 {
1330 	return q->limits.io_opt;
1331 }
1332 
1333 static inline int bdev_io_opt(struct block_device *bdev)
1334 {
1335 	return queue_io_opt(bdev_get_queue(bdev));
1336 }
1337 
1338 static inline int queue_alignment_offset(const struct request_queue *q)
1339 {
1340 	if (q->limits.misaligned)
1341 		return -1;
1342 
1343 	return q->limits.alignment_offset;
1344 }
1345 
1346 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1347 {
1348 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1349 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1350 		<< SECTOR_SHIFT;
1351 
1352 	return (granularity + lim->alignment_offset - alignment) % granularity;
1353 }
1354 
1355 static inline int bdev_alignment_offset(struct block_device *bdev)
1356 {
1357 	struct request_queue *q = bdev_get_queue(bdev);
1358 
1359 	if (q->limits.misaligned)
1360 		return -1;
1361 
1362 	if (bdev != bdev->bd_contains)
1363 		return bdev->bd_part->alignment_offset;
1364 
1365 	return q->limits.alignment_offset;
1366 }
1367 
1368 static inline int queue_discard_alignment(const struct request_queue *q)
1369 {
1370 	if (q->limits.discard_misaligned)
1371 		return -1;
1372 
1373 	return q->limits.discard_alignment;
1374 }
1375 
1376 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1377 {
1378 	unsigned int alignment, granularity, offset;
1379 
1380 	if (!lim->max_discard_sectors)
1381 		return 0;
1382 
1383 	/* Why are these in bytes, not sectors? */
1384 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1385 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1386 	if (!granularity)
1387 		return 0;
1388 
1389 	/* Offset of the partition start in 'granularity' sectors */
1390 	offset = sector_div(sector, granularity);
1391 
1392 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1393 	offset = (granularity + alignment - offset) % granularity;
1394 
1395 	/* Turn it back into bytes, gaah */
1396 	return offset << SECTOR_SHIFT;
1397 }
1398 
1399 static inline int bdev_discard_alignment(struct block_device *bdev)
1400 {
1401 	struct request_queue *q = bdev_get_queue(bdev);
1402 
1403 	if (bdev != bdev->bd_contains)
1404 		return bdev->bd_part->discard_alignment;
1405 
1406 	return q->limits.discard_alignment;
1407 }
1408 
1409 static inline unsigned int bdev_write_same(struct block_device *bdev)
1410 {
1411 	struct request_queue *q = bdev_get_queue(bdev);
1412 
1413 	if (q)
1414 		return q->limits.max_write_same_sectors;
1415 
1416 	return 0;
1417 }
1418 
1419 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1420 {
1421 	struct request_queue *q = bdev_get_queue(bdev);
1422 
1423 	if (q)
1424 		return q->limits.max_write_zeroes_sectors;
1425 
1426 	return 0;
1427 }
1428 
1429 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1430 {
1431 	struct request_queue *q = bdev_get_queue(bdev);
1432 
1433 	if (q)
1434 		return blk_queue_zoned_model(q);
1435 
1436 	return BLK_ZONED_NONE;
1437 }
1438 
1439 static inline bool bdev_is_zoned(struct block_device *bdev)
1440 {
1441 	struct request_queue *q = bdev_get_queue(bdev);
1442 
1443 	if (q)
1444 		return blk_queue_is_zoned(q);
1445 
1446 	return false;
1447 }
1448 
1449 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1450 {
1451 	struct request_queue *q = bdev_get_queue(bdev);
1452 
1453 	if (q)
1454 		return blk_queue_zone_sectors(q);
1455 	return 0;
1456 }
1457 
1458 static inline int queue_dma_alignment(const struct request_queue *q)
1459 {
1460 	return q ? q->dma_alignment : 511;
1461 }
1462 
1463 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1464 				 unsigned int len)
1465 {
1466 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1467 	return !(addr & alignment) && !(len & alignment);
1468 }
1469 
1470 /* assumes size > 256 */
1471 static inline unsigned int blksize_bits(unsigned int size)
1472 {
1473 	unsigned int bits = 8;
1474 	do {
1475 		bits++;
1476 		size >>= 1;
1477 	} while (size > 256);
1478 	return bits;
1479 }
1480 
1481 static inline unsigned int block_size(struct block_device *bdev)
1482 {
1483 	return bdev->bd_block_size;
1484 }
1485 
1486 int kblockd_schedule_work(struct work_struct *work);
1487 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1488 
1489 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1490 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1491 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1492 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1493 
1494 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1495 
1496 enum blk_integrity_flags {
1497 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1498 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1499 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1500 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1501 };
1502 
1503 struct blk_integrity_iter {
1504 	void			*prot_buf;
1505 	void			*data_buf;
1506 	sector_t		seed;
1507 	unsigned int		data_size;
1508 	unsigned short		interval;
1509 	const char		*disk_name;
1510 };
1511 
1512 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1513 typedef void (integrity_prepare_fn) (struct request *);
1514 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1515 
1516 struct blk_integrity_profile {
1517 	integrity_processing_fn		*generate_fn;
1518 	integrity_processing_fn		*verify_fn;
1519 	integrity_prepare_fn		*prepare_fn;
1520 	integrity_complete_fn		*complete_fn;
1521 	const char			*name;
1522 };
1523 
1524 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1525 extern void blk_integrity_unregister(struct gendisk *);
1526 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1527 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1528 				   struct scatterlist *);
1529 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1530 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1531 				   struct request *);
1532 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1533 				    struct bio *);
1534 
1535 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1536 {
1537 	struct blk_integrity *bi = &disk->queue->integrity;
1538 
1539 	if (!bi->profile)
1540 		return NULL;
1541 
1542 	return bi;
1543 }
1544 
1545 static inline
1546 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1547 {
1548 	return blk_get_integrity(bdev->bd_disk);
1549 }
1550 
1551 static inline bool blk_integrity_rq(struct request *rq)
1552 {
1553 	return rq->cmd_flags & REQ_INTEGRITY;
1554 }
1555 
1556 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1557 						    unsigned int segs)
1558 {
1559 	q->limits.max_integrity_segments = segs;
1560 }
1561 
1562 static inline unsigned short
1563 queue_max_integrity_segments(const struct request_queue *q)
1564 {
1565 	return q->limits.max_integrity_segments;
1566 }
1567 
1568 /**
1569  * bio_integrity_intervals - Return number of integrity intervals for a bio
1570  * @bi:		blk_integrity profile for device
1571  * @sectors:	Size of the bio in 512-byte sectors
1572  *
1573  * Description: The block layer calculates everything in 512 byte
1574  * sectors but integrity metadata is done in terms of the data integrity
1575  * interval size of the storage device.  Convert the block layer sectors
1576  * to the appropriate number of integrity intervals.
1577  */
1578 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1579 						   unsigned int sectors)
1580 {
1581 	return sectors >> (bi->interval_exp - 9);
1582 }
1583 
1584 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1585 					       unsigned int sectors)
1586 {
1587 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1588 }
1589 
1590 /*
1591  * Return the first bvec that contains integrity data.  Only drivers that are
1592  * limited to a single integrity segment should use this helper.
1593  */
1594 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1595 {
1596 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1597 		return NULL;
1598 	return rq->bio->bi_integrity->bip_vec;
1599 }
1600 
1601 #else /* CONFIG_BLK_DEV_INTEGRITY */
1602 
1603 struct bio;
1604 struct block_device;
1605 struct gendisk;
1606 struct blk_integrity;
1607 
1608 static inline int blk_integrity_rq(struct request *rq)
1609 {
1610 	return 0;
1611 }
1612 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1613 					    struct bio *b)
1614 {
1615 	return 0;
1616 }
1617 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1618 					  struct bio *b,
1619 					  struct scatterlist *s)
1620 {
1621 	return 0;
1622 }
1623 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1624 {
1625 	return NULL;
1626 }
1627 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1628 {
1629 	return NULL;
1630 }
1631 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1632 {
1633 	return 0;
1634 }
1635 static inline void blk_integrity_register(struct gendisk *d,
1636 					 struct blk_integrity *b)
1637 {
1638 }
1639 static inline void blk_integrity_unregister(struct gendisk *d)
1640 {
1641 }
1642 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1643 						    unsigned int segs)
1644 {
1645 }
1646 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1647 {
1648 	return 0;
1649 }
1650 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1651 					  struct request *r1,
1652 					  struct request *r2)
1653 {
1654 	return true;
1655 }
1656 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1657 					   struct request *r,
1658 					   struct bio *b)
1659 {
1660 	return true;
1661 }
1662 
1663 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1664 						   unsigned int sectors)
1665 {
1666 	return 0;
1667 }
1668 
1669 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1670 					       unsigned int sectors)
1671 {
1672 	return 0;
1673 }
1674 
1675 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1676 {
1677 	return NULL;
1678 }
1679 
1680 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1681 
1682 struct block_device_operations {
1683 	int (*open) (struct block_device *, fmode_t);
1684 	void (*release) (struct gendisk *, fmode_t);
1685 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1686 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1687 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1688 	unsigned int (*check_events) (struct gendisk *disk,
1689 				      unsigned int clearing);
1690 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1691 	int (*media_changed) (struct gendisk *);
1692 	void (*unlock_native_capacity) (struct gendisk *);
1693 	int (*revalidate_disk) (struct gendisk *);
1694 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1695 	/* this callback is with swap_lock and sometimes page table lock held */
1696 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1697 	int (*report_zones)(struct gendisk *, sector_t sector,
1698 			unsigned int nr_zones, report_zones_cb cb, void *data);
1699 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1700 	struct module *owner;
1701 	const struct pr_ops *pr_ops;
1702 };
1703 
1704 #ifdef CONFIG_COMPAT
1705 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1706 				      unsigned int, unsigned long);
1707 #else
1708 #define blkdev_compat_ptr_ioctl NULL
1709 #endif
1710 
1711 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1712 				 unsigned long);
1713 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1714 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1715 						struct writeback_control *);
1716 
1717 #ifdef CONFIG_BLK_DEV_ZONED
1718 bool blk_req_needs_zone_write_lock(struct request *rq);
1719 void __blk_req_zone_write_lock(struct request *rq);
1720 void __blk_req_zone_write_unlock(struct request *rq);
1721 
1722 static inline void blk_req_zone_write_lock(struct request *rq)
1723 {
1724 	if (blk_req_needs_zone_write_lock(rq))
1725 		__blk_req_zone_write_lock(rq);
1726 }
1727 
1728 static inline void blk_req_zone_write_unlock(struct request *rq)
1729 {
1730 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1731 		__blk_req_zone_write_unlock(rq);
1732 }
1733 
1734 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1735 {
1736 	return rq->q->seq_zones_wlock &&
1737 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1738 }
1739 
1740 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1741 {
1742 	if (!blk_req_needs_zone_write_lock(rq))
1743 		return true;
1744 	return !blk_req_zone_is_write_locked(rq);
1745 }
1746 #else
1747 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1748 {
1749 	return false;
1750 }
1751 
1752 static inline void blk_req_zone_write_lock(struct request *rq)
1753 {
1754 }
1755 
1756 static inline void blk_req_zone_write_unlock(struct request *rq)
1757 {
1758 }
1759 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1760 {
1761 	return false;
1762 }
1763 
1764 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1765 {
1766 	return true;
1767 }
1768 #endif /* CONFIG_BLK_DEV_ZONED */
1769 
1770 #else /* CONFIG_BLOCK */
1771 
1772 struct block_device;
1773 
1774 /*
1775  * stubs for when the block layer is configured out
1776  */
1777 #define buffer_heads_over_limit 0
1778 
1779 static inline long nr_blockdev_pages(void)
1780 {
1781 	return 0;
1782 }
1783 
1784 struct blk_plug {
1785 };
1786 
1787 static inline void blk_start_plug(struct blk_plug *plug)
1788 {
1789 }
1790 
1791 static inline void blk_finish_plug(struct blk_plug *plug)
1792 {
1793 }
1794 
1795 static inline void blk_flush_plug(struct task_struct *task)
1796 {
1797 }
1798 
1799 static inline void blk_schedule_flush_plug(struct task_struct *task)
1800 {
1801 }
1802 
1803 
1804 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1805 {
1806 	return false;
1807 }
1808 
1809 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1810 				     sector_t *error_sector)
1811 {
1812 	return 0;
1813 }
1814 
1815 #endif /* CONFIG_BLOCK */
1816 
1817 static inline void blk_wake_io_task(struct task_struct *waiter)
1818 {
1819 	/*
1820 	 * If we're polling, the task itself is doing the completions. For
1821 	 * that case, we don't need to signal a wakeup, it's enough to just
1822 	 * mark us as RUNNING.
1823 	 */
1824 	if (waiter == current)
1825 		__set_current_state(TASK_RUNNING);
1826 	else
1827 		wake_up_process(waiter);
1828 }
1829 
1830 #endif
1831