1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 8 #ifdef CONFIG_BLOCK 9 10 #include <linux/major.h> 11 #include <linux/genhd.h> 12 #include <linux/list.h> 13 #include <linux/llist.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev-defs.h> 18 #include <linux/wait.h> 19 #include <linux/mempool.h> 20 #include <linux/pfn.h> 21 #include <linux/bio.h> 22 #include <linux/stringify.h> 23 #include <linux/gfp.h> 24 #include <linux/bsg.h> 25 #include <linux/smp.h> 26 #include <linux/rcupdate.h> 27 #include <linux/percpu-refcount.h> 28 #include <linux/scatterlist.h> 29 #include <linux/blkzoned.h> 30 31 struct module; 32 struct scsi_ioctl_command; 33 34 struct request_queue; 35 struct elevator_queue; 36 struct blk_trace; 37 struct request; 38 struct sg_io_hdr; 39 struct bsg_job; 40 struct blkcg_gq; 41 struct blk_flush_queue; 42 struct pr_ops; 43 struct rq_qos; 44 struct blk_queue_stats; 45 struct blk_stat_callback; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* elevator knows about this request */ 69 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70 /* drive already may have started this one */ 71 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72 /* may not be passed by ioscheduler */ 73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74 /* request for flush sequence */ 75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76 /* merge of different types, fail separately */ 77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78 /* track inflight for MQ */ 79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80 /* don't call prep for this one */ 81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82 /* set for "ide_preempt" requests and also for requests for which the SCSI 83 "quiesce" state must be ignored. */ 84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 85 /* vaguely specified driver internal error. Ignored by the block layer */ 86 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 87 /* don't warn about errors */ 88 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 89 /* elevator private data attached */ 90 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 91 /* account into disk and partition IO statistics */ 92 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 93 /* request came from our alloc pool */ 94 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 95 /* runtime pm request */ 96 #define RQF_PM ((__force req_flags_t)(1 << 15)) 97 /* on IO scheduler merge hash */ 98 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 99 /* track IO completion time */ 100 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 101 /* Look at ->special_vec for the actual data payload instead of the 102 bio chain. */ 103 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 104 /* The per-zone write lock is held for this request */ 105 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 106 /* already slept for hybrid poll */ 107 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 108 /* ->timeout has been called, don't expire again */ 109 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 110 111 /* flags that prevent us from merging requests: */ 112 #define RQF_NOMERGE_FLAGS \ 113 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 114 115 /* 116 * Request state for blk-mq. 117 */ 118 enum mq_rq_state { 119 MQ_RQ_IDLE = 0, 120 MQ_RQ_IN_FLIGHT = 1, 121 MQ_RQ_COMPLETE = 2, 122 }; 123 124 /* 125 * Try to put the fields that are referenced together in the same cacheline. 126 * 127 * If you modify this structure, make sure to update blk_rq_init() and 128 * especially blk_mq_rq_ctx_init() to take care of the added fields. 129 */ 130 struct request { 131 struct request_queue *q; 132 struct blk_mq_ctx *mq_ctx; 133 struct blk_mq_hw_ctx *mq_hctx; 134 135 unsigned int cmd_flags; /* op and common flags */ 136 req_flags_t rq_flags; 137 138 int tag; 139 int internal_tag; 140 141 /* the following two fields are internal, NEVER access directly */ 142 unsigned int __data_len; /* total data len */ 143 sector_t __sector; /* sector cursor */ 144 145 struct bio *bio; 146 struct bio *biotail; 147 148 struct list_head queuelist; 149 150 /* 151 * The hash is used inside the scheduler, and killed once the 152 * request reaches the dispatch list. The ipi_list is only used 153 * to queue the request for softirq completion, which is long 154 * after the request has been unhashed (and even removed from 155 * the dispatch list). 156 */ 157 union { 158 struct hlist_node hash; /* merge hash */ 159 struct list_head ipi_list; 160 }; 161 162 /* 163 * The rb_node is only used inside the io scheduler, requests 164 * are pruned when moved to the dispatch queue. So let the 165 * completion_data share space with the rb_node. 166 */ 167 union { 168 struct rb_node rb_node; /* sort/lookup */ 169 struct bio_vec special_vec; 170 void *completion_data; 171 int error_count; /* for legacy drivers, don't use */ 172 }; 173 174 /* 175 * Three pointers are available for the IO schedulers, if they need 176 * more they have to dynamically allocate it. Flush requests are 177 * never put on the IO scheduler. So let the flush fields share 178 * space with the elevator data. 179 */ 180 union { 181 struct { 182 struct io_cq *icq; 183 void *priv[2]; 184 } elv; 185 186 struct { 187 unsigned int seq; 188 struct list_head list; 189 rq_end_io_fn *saved_end_io; 190 } flush; 191 }; 192 193 struct gendisk *rq_disk; 194 struct hd_struct *part; 195 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 196 /* Time that the first bio started allocating this request. */ 197 u64 alloc_time_ns; 198 #endif 199 /* Time that this request was allocated for this IO. */ 200 u64 start_time_ns; 201 /* Time that I/O was submitted to the device. */ 202 u64 io_start_time_ns; 203 204 #ifdef CONFIG_BLK_WBT 205 unsigned short wbt_flags; 206 #endif 207 /* 208 * rq sectors used for blk stats. It has the same value 209 * with blk_rq_sectors(rq), except that it never be zeroed 210 * by completion. 211 */ 212 unsigned short stats_sectors; 213 214 /* 215 * Number of scatter-gather DMA addr+len pairs after 216 * physical address coalescing is performed. 217 */ 218 unsigned short nr_phys_segments; 219 220 #if defined(CONFIG_BLK_DEV_INTEGRITY) 221 unsigned short nr_integrity_segments; 222 #endif 223 224 unsigned short write_hint; 225 unsigned short ioprio; 226 227 enum mq_rq_state state; 228 refcount_t ref; 229 230 unsigned int timeout; 231 unsigned long deadline; 232 233 union { 234 struct __call_single_data csd; 235 u64 fifo_time; 236 }; 237 238 /* 239 * completion callback. 240 */ 241 rq_end_io_fn *end_io; 242 void *end_io_data; 243 }; 244 245 static inline bool blk_op_is_scsi(unsigned int op) 246 { 247 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 248 } 249 250 static inline bool blk_op_is_private(unsigned int op) 251 { 252 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 253 } 254 255 static inline bool blk_rq_is_scsi(struct request *rq) 256 { 257 return blk_op_is_scsi(req_op(rq)); 258 } 259 260 static inline bool blk_rq_is_private(struct request *rq) 261 { 262 return blk_op_is_private(req_op(rq)); 263 } 264 265 static inline bool blk_rq_is_passthrough(struct request *rq) 266 { 267 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 268 } 269 270 static inline bool bio_is_passthrough(struct bio *bio) 271 { 272 unsigned op = bio_op(bio); 273 274 return blk_op_is_scsi(op) || blk_op_is_private(op); 275 } 276 277 static inline unsigned short req_get_ioprio(struct request *req) 278 { 279 return req->ioprio; 280 } 281 282 #include <linux/elevator.h> 283 284 struct blk_queue_ctx; 285 286 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 287 288 struct bio_vec; 289 290 enum blk_eh_timer_return { 291 BLK_EH_DONE, /* drivers has completed the command */ 292 BLK_EH_RESET_TIMER, /* reset timer and try again */ 293 }; 294 295 enum blk_queue_state { 296 Queue_down, 297 Queue_up, 298 }; 299 300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 302 303 #define BLK_SCSI_MAX_CMDS (256) 304 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 305 306 /* 307 * Zoned block device models (zoned limit). 308 */ 309 enum blk_zoned_model { 310 BLK_ZONED_NONE, /* Regular block device */ 311 BLK_ZONED_HA, /* Host-aware zoned block device */ 312 BLK_ZONED_HM, /* Host-managed zoned block device */ 313 }; 314 315 struct queue_limits { 316 unsigned long bounce_pfn; 317 unsigned long seg_boundary_mask; 318 unsigned long virt_boundary_mask; 319 320 unsigned int max_hw_sectors; 321 unsigned int max_dev_sectors; 322 unsigned int chunk_sectors; 323 unsigned int max_sectors; 324 unsigned int max_segment_size; 325 unsigned int physical_block_size; 326 unsigned int logical_block_size; 327 unsigned int alignment_offset; 328 unsigned int io_min; 329 unsigned int io_opt; 330 unsigned int max_discard_sectors; 331 unsigned int max_hw_discard_sectors; 332 unsigned int max_write_same_sectors; 333 unsigned int max_write_zeroes_sectors; 334 unsigned int discard_granularity; 335 unsigned int discard_alignment; 336 337 unsigned short max_segments; 338 unsigned short max_integrity_segments; 339 unsigned short max_discard_segments; 340 341 unsigned char misaligned; 342 unsigned char discard_misaligned; 343 unsigned char raid_partial_stripes_expensive; 344 enum blk_zoned_model zoned; 345 }; 346 347 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 348 void *data); 349 350 #ifdef CONFIG_BLK_DEV_ZONED 351 352 #define BLK_ALL_ZONES ((unsigned int)-1) 353 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 354 unsigned int nr_zones, report_zones_cb cb, void *data); 355 unsigned int blkdev_nr_zones(struct gendisk *disk); 356 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 357 sector_t sectors, sector_t nr_sectors, 358 gfp_t gfp_mask); 359 extern int blk_revalidate_disk_zones(struct gendisk *disk); 360 361 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 362 unsigned int cmd, unsigned long arg); 363 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 364 unsigned int cmd, unsigned long arg); 365 366 #else /* CONFIG_BLK_DEV_ZONED */ 367 368 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 369 { 370 return 0; 371 } 372 373 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 374 fmode_t mode, unsigned int cmd, 375 unsigned long arg) 376 { 377 return -ENOTTY; 378 } 379 380 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 381 fmode_t mode, unsigned int cmd, 382 unsigned long arg) 383 { 384 return -ENOTTY; 385 } 386 387 #endif /* CONFIG_BLK_DEV_ZONED */ 388 389 struct request_queue { 390 struct request *last_merge; 391 struct elevator_queue *elevator; 392 393 struct blk_queue_stats *stats; 394 struct rq_qos *rq_qos; 395 396 make_request_fn *make_request_fn; 397 398 const struct blk_mq_ops *mq_ops; 399 400 /* sw queues */ 401 struct blk_mq_ctx __percpu *queue_ctx; 402 403 unsigned int queue_depth; 404 405 /* hw dispatch queues */ 406 struct blk_mq_hw_ctx **queue_hw_ctx; 407 unsigned int nr_hw_queues; 408 409 struct backing_dev_info *backing_dev_info; 410 411 /* 412 * The queue owner gets to use this for whatever they like. 413 * ll_rw_blk doesn't touch it. 414 */ 415 void *queuedata; 416 417 /* 418 * various queue flags, see QUEUE_* below 419 */ 420 unsigned long queue_flags; 421 /* 422 * Number of contexts that have called blk_set_pm_only(). If this 423 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 424 * processed. 425 */ 426 atomic_t pm_only; 427 428 /* 429 * ida allocated id for this queue. Used to index queues from 430 * ioctx. 431 */ 432 int id; 433 434 /* 435 * queue needs bounce pages for pages above this limit 436 */ 437 gfp_t bounce_gfp; 438 439 spinlock_t queue_lock; 440 441 /* 442 * queue kobject 443 */ 444 struct kobject kobj; 445 446 /* 447 * mq queue kobject 448 */ 449 struct kobject *mq_kobj; 450 451 #ifdef CONFIG_BLK_DEV_INTEGRITY 452 struct blk_integrity integrity; 453 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 454 455 #ifdef CONFIG_PM 456 struct device *dev; 457 int rpm_status; 458 unsigned int nr_pending; 459 #endif 460 461 /* 462 * queue settings 463 */ 464 unsigned long nr_requests; /* Max # of requests */ 465 466 unsigned int dma_pad_mask; 467 unsigned int dma_alignment; 468 469 unsigned int rq_timeout; 470 int poll_nsec; 471 472 struct blk_stat_callback *poll_cb; 473 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 474 475 struct timer_list timeout; 476 struct work_struct timeout_work; 477 478 struct list_head icq_list; 479 #ifdef CONFIG_BLK_CGROUP 480 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 481 struct blkcg_gq *root_blkg; 482 struct list_head blkg_list; 483 #endif 484 485 struct queue_limits limits; 486 487 unsigned int required_elevator_features; 488 489 #ifdef CONFIG_BLK_DEV_ZONED 490 /* 491 * Zoned block device information for request dispatch control. 492 * nr_zones is the total number of zones of the device. This is always 493 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 494 * bits which indicates if a zone is conventional (bit set) or 495 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 496 * bits which indicates if a zone is write locked, that is, if a write 497 * request targeting the zone was dispatched. All three fields are 498 * initialized by the low level device driver (e.g. scsi/sd.c). 499 * Stacking drivers (device mappers) may or may not initialize 500 * these fields. 501 * 502 * Reads of this information must be protected with blk_queue_enter() / 503 * blk_queue_exit(). Modifying this information is only allowed while 504 * no requests are being processed. See also blk_mq_freeze_queue() and 505 * blk_mq_unfreeze_queue(). 506 */ 507 unsigned int nr_zones; 508 unsigned long *conv_zones_bitmap; 509 unsigned long *seq_zones_wlock; 510 #endif /* CONFIG_BLK_DEV_ZONED */ 511 512 /* 513 * sg stuff 514 */ 515 unsigned int sg_timeout; 516 unsigned int sg_reserved_size; 517 int node; 518 #ifdef CONFIG_BLK_DEV_IO_TRACE 519 struct blk_trace __rcu *blk_trace; 520 struct mutex blk_trace_mutex; 521 #endif 522 /* 523 * for flush operations 524 */ 525 struct blk_flush_queue *fq; 526 527 struct list_head requeue_list; 528 spinlock_t requeue_lock; 529 struct delayed_work requeue_work; 530 531 struct mutex sysfs_lock; 532 struct mutex sysfs_dir_lock; 533 534 /* 535 * for reusing dead hctx instance in case of updating 536 * nr_hw_queues 537 */ 538 struct list_head unused_hctx_list; 539 spinlock_t unused_hctx_lock; 540 541 int mq_freeze_depth; 542 543 #if defined(CONFIG_BLK_DEV_BSG) 544 struct bsg_class_device bsg_dev; 545 #endif 546 547 #ifdef CONFIG_BLK_DEV_THROTTLING 548 /* Throttle data */ 549 struct throtl_data *td; 550 #endif 551 struct rcu_head rcu_head; 552 wait_queue_head_t mq_freeze_wq; 553 /* 554 * Protect concurrent access to q_usage_counter by 555 * percpu_ref_kill() and percpu_ref_reinit(). 556 */ 557 struct mutex mq_freeze_lock; 558 struct percpu_ref q_usage_counter; 559 560 struct blk_mq_tag_set *tag_set; 561 struct list_head tag_set_list; 562 struct bio_set bio_split; 563 564 #ifdef CONFIG_BLK_DEBUG_FS 565 struct dentry *debugfs_dir; 566 struct dentry *sched_debugfs_dir; 567 struct dentry *rqos_debugfs_dir; 568 #endif 569 570 bool mq_sysfs_init_done; 571 572 size_t cmd_size; 573 574 struct work_struct release_work; 575 576 #define BLK_MAX_WRITE_HINTS 5 577 u64 write_hints[BLK_MAX_WRITE_HINTS]; 578 }; 579 580 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 581 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 582 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 583 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 584 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 585 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 586 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 587 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 588 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 589 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 590 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 591 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 592 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 593 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 594 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 595 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 596 #define QUEUE_FLAG_WC 17 /* Write back caching */ 597 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 598 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 599 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 600 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 601 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 602 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 603 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 604 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 605 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 606 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 607 608 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 609 (1 << QUEUE_FLAG_SAME_COMP)) 610 611 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 612 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 613 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 614 615 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 616 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 617 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 618 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 619 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 620 #define blk_queue_noxmerges(q) \ 621 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 622 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 623 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 624 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 625 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 626 #define blk_queue_zone_resetall(q) \ 627 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 628 #define blk_queue_secure_erase(q) \ 629 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 630 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 631 #define blk_queue_scsi_passthrough(q) \ 632 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 633 #define blk_queue_pci_p2pdma(q) \ 634 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 635 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 636 #define blk_queue_rq_alloc_time(q) \ 637 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 638 #else 639 #define blk_queue_rq_alloc_time(q) false 640 #endif 641 642 #define blk_noretry_request(rq) \ 643 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 644 REQ_FAILFAST_DRIVER)) 645 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 646 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 647 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 648 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 649 650 extern void blk_set_pm_only(struct request_queue *q); 651 extern void blk_clear_pm_only(struct request_queue *q); 652 653 static inline bool blk_account_rq(struct request *rq) 654 { 655 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 656 } 657 658 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 659 660 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 661 662 #define rq_dma_dir(rq) \ 663 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 664 665 #define dma_map_bvec(dev, bv, dir, attrs) \ 666 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 667 (dir), (attrs)) 668 669 static inline bool queue_is_mq(struct request_queue *q) 670 { 671 return q->mq_ops; 672 } 673 674 static inline enum blk_zoned_model 675 blk_queue_zoned_model(struct request_queue *q) 676 { 677 return q->limits.zoned; 678 } 679 680 static inline bool blk_queue_is_zoned(struct request_queue *q) 681 { 682 switch (blk_queue_zoned_model(q)) { 683 case BLK_ZONED_HA: 684 case BLK_ZONED_HM: 685 return true; 686 default: 687 return false; 688 } 689 } 690 691 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 692 { 693 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 694 } 695 696 #ifdef CONFIG_BLK_DEV_ZONED 697 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 698 { 699 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 700 } 701 702 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 703 sector_t sector) 704 { 705 if (!blk_queue_is_zoned(q)) 706 return 0; 707 return sector >> ilog2(q->limits.chunk_sectors); 708 } 709 710 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 711 sector_t sector) 712 { 713 if (!blk_queue_is_zoned(q)) 714 return false; 715 if (!q->conv_zones_bitmap) 716 return true; 717 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 718 } 719 #else /* CONFIG_BLK_DEV_ZONED */ 720 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 721 { 722 return 0; 723 } 724 #endif /* CONFIG_BLK_DEV_ZONED */ 725 726 static inline bool rq_is_sync(struct request *rq) 727 { 728 return op_is_sync(rq->cmd_flags); 729 } 730 731 static inline bool rq_mergeable(struct request *rq) 732 { 733 if (blk_rq_is_passthrough(rq)) 734 return false; 735 736 if (req_op(rq) == REQ_OP_FLUSH) 737 return false; 738 739 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 740 return false; 741 742 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 743 return false; 744 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 745 return false; 746 747 return true; 748 } 749 750 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 751 { 752 if (bio_page(a) == bio_page(b) && 753 bio_offset(a) == bio_offset(b)) 754 return true; 755 756 return false; 757 } 758 759 static inline unsigned int blk_queue_depth(struct request_queue *q) 760 { 761 if (q->queue_depth) 762 return q->queue_depth; 763 764 return q->nr_requests; 765 } 766 767 extern unsigned long blk_max_low_pfn, blk_max_pfn; 768 769 /* 770 * standard bounce addresses: 771 * 772 * BLK_BOUNCE_HIGH : bounce all highmem pages 773 * BLK_BOUNCE_ANY : don't bounce anything 774 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 775 */ 776 777 #if BITS_PER_LONG == 32 778 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 779 #else 780 #define BLK_BOUNCE_HIGH -1ULL 781 #endif 782 #define BLK_BOUNCE_ANY (-1ULL) 783 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 784 785 /* 786 * default timeout for SG_IO if none specified 787 */ 788 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 789 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 790 791 struct rq_map_data { 792 struct page **pages; 793 int page_order; 794 int nr_entries; 795 unsigned long offset; 796 int null_mapped; 797 int from_user; 798 }; 799 800 struct req_iterator { 801 struct bvec_iter iter; 802 struct bio *bio; 803 }; 804 805 /* This should not be used directly - use rq_for_each_segment */ 806 #define for_each_bio(_bio) \ 807 for (; _bio; _bio = _bio->bi_next) 808 #define __rq_for_each_bio(_bio, rq) \ 809 if ((rq->bio)) \ 810 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 811 812 #define rq_for_each_segment(bvl, _rq, _iter) \ 813 __rq_for_each_bio(_iter.bio, _rq) \ 814 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 815 816 #define rq_for_each_bvec(bvl, _rq, _iter) \ 817 __rq_for_each_bio(_iter.bio, _rq) \ 818 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 819 820 #define rq_iter_last(bvec, _iter) \ 821 (_iter.bio->bi_next == NULL && \ 822 bio_iter_last(bvec, _iter.iter)) 823 824 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 825 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 826 #endif 827 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 828 extern void rq_flush_dcache_pages(struct request *rq); 829 #else 830 static inline void rq_flush_dcache_pages(struct request *rq) 831 { 832 } 833 #endif 834 835 extern int blk_register_queue(struct gendisk *disk); 836 extern void blk_unregister_queue(struct gendisk *disk); 837 extern blk_qc_t generic_make_request(struct bio *bio); 838 extern blk_qc_t direct_make_request(struct bio *bio); 839 extern void blk_rq_init(struct request_queue *q, struct request *rq); 840 extern void blk_put_request(struct request *); 841 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 842 blk_mq_req_flags_t flags); 843 extern int blk_lld_busy(struct request_queue *q); 844 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 845 struct bio_set *bs, gfp_t gfp_mask, 846 int (*bio_ctr)(struct bio *, struct bio *, void *), 847 void *data); 848 extern void blk_rq_unprep_clone(struct request *rq); 849 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 850 struct request *rq); 851 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 852 extern void blk_queue_split(struct request_queue *, struct bio **); 853 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 854 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 855 unsigned int, void __user *); 856 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 857 unsigned int, void __user *); 858 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 859 struct scsi_ioctl_command __user *); 860 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 861 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 862 863 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 864 extern void blk_queue_exit(struct request_queue *q); 865 extern void blk_sync_queue(struct request_queue *q); 866 extern int blk_rq_map_user(struct request_queue *, struct request *, 867 struct rq_map_data *, void __user *, unsigned long, 868 gfp_t); 869 extern int blk_rq_unmap_user(struct bio *); 870 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 871 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 872 struct rq_map_data *, const struct iov_iter *, 873 gfp_t); 874 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 875 struct request *, int); 876 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 877 struct request *, int, rq_end_io_fn *); 878 879 /* Helper to convert REQ_OP_XXX to its string format XXX */ 880 extern const char *blk_op_str(unsigned int op); 881 882 int blk_status_to_errno(blk_status_t status); 883 blk_status_t errno_to_blk_status(int errno); 884 885 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 886 887 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 888 { 889 return bdev->bd_disk->queue; /* this is never NULL */ 890 } 891 892 /* 893 * The basic unit of block I/O is a sector. It is used in a number of contexts 894 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 895 * bytes. Variables of type sector_t represent an offset or size that is a 896 * multiple of 512 bytes. Hence these two constants. 897 */ 898 #ifndef SECTOR_SHIFT 899 #define SECTOR_SHIFT 9 900 #endif 901 #ifndef SECTOR_SIZE 902 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 903 #endif 904 905 /* 906 * blk_rq_pos() : the current sector 907 * blk_rq_bytes() : bytes left in the entire request 908 * blk_rq_cur_bytes() : bytes left in the current segment 909 * blk_rq_err_bytes() : bytes left till the next error boundary 910 * blk_rq_sectors() : sectors left in the entire request 911 * blk_rq_cur_sectors() : sectors left in the current segment 912 * blk_rq_stats_sectors() : sectors of the entire request used for stats 913 */ 914 static inline sector_t blk_rq_pos(const struct request *rq) 915 { 916 return rq->__sector; 917 } 918 919 static inline unsigned int blk_rq_bytes(const struct request *rq) 920 { 921 return rq->__data_len; 922 } 923 924 static inline int blk_rq_cur_bytes(const struct request *rq) 925 { 926 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 927 } 928 929 extern unsigned int blk_rq_err_bytes(const struct request *rq); 930 931 static inline unsigned int blk_rq_sectors(const struct request *rq) 932 { 933 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 934 } 935 936 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 937 { 938 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 939 } 940 941 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 942 { 943 return rq->stats_sectors; 944 } 945 946 #ifdef CONFIG_BLK_DEV_ZONED 947 948 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 949 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 950 951 static inline unsigned int blk_rq_zone_no(struct request *rq) 952 { 953 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 954 } 955 956 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 957 { 958 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 959 } 960 #endif /* CONFIG_BLK_DEV_ZONED */ 961 962 /* 963 * Some commands like WRITE SAME have a payload or data transfer size which 964 * is different from the size of the request. Any driver that supports such 965 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 966 * calculate the data transfer size. 967 */ 968 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 969 { 970 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 971 return rq->special_vec.bv_len; 972 return blk_rq_bytes(rq); 973 } 974 975 /* 976 * Return the first full biovec in the request. The caller needs to check that 977 * there are any bvecs before calling this helper. 978 */ 979 static inline struct bio_vec req_bvec(struct request *rq) 980 { 981 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 982 return rq->special_vec; 983 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 984 } 985 986 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 987 int op) 988 { 989 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 990 return min(q->limits.max_discard_sectors, 991 UINT_MAX >> SECTOR_SHIFT); 992 993 if (unlikely(op == REQ_OP_WRITE_SAME)) 994 return q->limits.max_write_same_sectors; 995 996 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 997 return q->limits.max_write_zeroes_sectors; 998 999 return q->limits.max_sectors; 1000 } 1001 1002 /* 1003 * Return maximum size of a request at given offset. Only valid for 1004 * file system requests. 1005 */ 1006 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1007 sector_t offset) 1008 { 1009 if (!q->limits.chunk_sectors) 1010 return q->limits.max_sectors; 1011 1012 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1013 (offset & (q->limits.chunk_sectors - 1)))); 1014 } 1015 1016 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1017 sector_t offset) 1018 { 1019 struct request_queue *q = rq->q; 1020 1021 if (blk_rq_is_passthrough(rq)) 1022 return q->limits.max_hw_sectors; 1023 1024 if (!q->limits.chunk_sectors || 1025 req_op(rq) == REQ_OP_DISCARD || 1026 req_op(rq) == REQ_OP_SECURE_ERASE) 1027 return blk_queue_get_max_sectors(q, req_op(rq)); 1028 1029 return min(blk_max_size_offset(q, offset), 1030 blk_queue_get_max_sectors(q, req_op(rq))); 1031 } 1032 1033 static inline unsigned int blk_rq_count_bios(struct request *rq) 1034 { 1035 unsigned int nr_bios = 0; 1036 struct bio *bio; 1037 1038 __rq_for_each_bio(bio, rq) 1039 nr_bios++; 1040 1041 return nr_bios; 1042 } 1043 1044 void blk_steal_bios(struct bio_list *list, struct request *rq); 1045 1046 /* 1047 * Request completion related functions. 1048 * 1049 * blk_update_request() completes given number of bytes and updates 1050 * the request without completing it. 1051 */ 1052 extern bool blk_update_request(struct request *rq, blk_status_t error, 1053 unsigned int nr_bytes); 1054 1055 extern void __blk_complete_request(struct request *); 1056 extern void blk_abort_request(struct request *); 1057 1058 /* 1059 * Access functions for manipulating queue properties 1060 */ 1061 extern void blk_cleanup_queue(struct request_queue *); 1062 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1063 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1064 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1065 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1066 extern void blk_queue_max_discard_segments(struct request_queue *, 1067 unsigned short); 1068 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1069 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1070 unsigned int max_discard_sectors); 1071 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1072 unsigned int max_write_same_sectors); 1073 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1074 unsigned int max_write_same_sectors); 1075 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1076 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1077 extern void blk_queue_alignment_offset(struct request_queue *q, 1078 unsigned int alignment); 1079 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1080 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1081 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1082 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1083 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1084 extern void blk_set_default_limits(struct queue_limits *lim); 1085 extern void blk_set_stacking_limits(struct queue_limits *lim); 1086 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1087 sector_t offset); 1088 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1089 sector_t offset); 1090 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1091 sector_t offset); 1092 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1093 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1094 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1095 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1096 extern void blk_queue_dma_alignment(struct request_queue *, int); 1097 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1098 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1099 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1100 extern void blk_queue_required_elevator_features(struct request_queue *q, 1101 unsigned int features); 1102 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1103 struct device *dev); 1104 1105 /* 1106 * Number of physical segments as sent to the device. 1107 * 1108 * Normally this is the number of discontiguous data segments sent by the 1109 * submitter. But for data-less command like discard we might have no 1110 * actual data segments submitted, but the driver might have to add it's 1111 * own special payload. In that case we still return 1 here so that this 1112 * special payload will be mapped. 1113 */ 1114 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1115 { 1116 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1117 return 1; 1118 return rq->nr_phys_segments; 1119 } 1120 1121 /* 1122 * Number of discard segments (or ranges) the driver needs to fill in. 1123 * Each discard bio merged into a request is counted as one segment. 1124 */ 1125 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1126 { 1127 return max_t(unsigned short, rq->nr_phys_segments, 1); 1128 } 1129 1130 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1131 struct scatterlist *sglist, struct scatterlist **last_sg); 1132 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1133 struct scatterlist *sglist) 1134 { 1135 struct scatterlist *last_sg = NULL; 1136 1137 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1138 } 1139 extern void blk_dump_rq_flags(struct request *, char *); 1140 extern long nr_blockdev_pages(void); 1141 1142 bool __must_check blk_get_queue(struct request_queue *); 1143 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id); 1144 extern void blk_put_queue(struct request_queue *); 1145 extern void blk_set_queue_dying(struct request_queue *); 1146 1147 /* 1148 * blk_plug permits building a queue of related requests by holding the I/O 1149 * fragments for a short period. This allows merging of sequential requests 1150 * into single larger request. As the requests are moved from a per-task list to 1151 * the device's request_queue in a batch, this results in improved scalability 1152 * as the lock contention for request_queue lock is reduced. 1153 * 1154 * It is ok not to disable preemption when adding the request to the plug list 1155 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1156 * the plug list when the task sleeps by itself. For details, please see 1157 * schedule() where blk_schedule_flush_plug() is called. 1158 */ 1159 struct blk_plug { 1160 struct list_head mq_list; /* blk-mq requests */ 1161 struct list_head cb_list; /* md requires an unplug callback */ 1162 unsigned short rq_count; 1163 bool multiple_queues; 1164 }; 1165 #define BLK_MAX_REQUEST_COUNT 16 1166 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1167 1168 struct blk_plug_cb; 1169 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1170 struct blk_plug_cb { 1171 struct list_head list; 1172 blk_plug_cb_fn callback; 1173 void *data; 1174 }; 1175 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1176 void *data, int size); 1177 extern void blk_start_plug(struct blk_plug *); 1178 extern void blk_finish_plug(struct blk_plug *); 1179 extern void blk_flush_plug_list(struct blk_plug *, bool); 1180 1181 static inline void blk_flush_plug(struct task_struct *tsk) 1182 { 1183 struct blk_plug *plug = tsk->plug; 1184 1185 if (plug) 1186 blk_flush_plug_list(plug, false); 1187 } 1188 1189 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1190 { 1191 struct blk_plug *plug = tsk->plug; 1192 1193 if (plug) 1194 blk_flush_plug_list(plug, true); 1195 } 1196 1197 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1198 { 1199 struct blk_plug *plug = tsk->plug; 1200 1201 return plug && 1202 (!list_empty(&plug->mq_list) || 1203 !list_empty(&plug->cb_list)); 1204 } 1205 1206 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1207 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1208 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1209 1210 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1211 1212 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1213 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1214 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1215 sector_t nr_sects, gfp_t gfp_mask, int flags, 1216 struct bio **biop); 1217 1218 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1219 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1220 1221 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1222 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1223 unsigned flags); 1224 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1225 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1226 1227 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1228 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1229 { 1230 return blkdev_issue_discard(sb->s_bdev, 1231 block << (sb->s_blocksize_bits - 1232 SECTOR_SHIFT), 1233 nr_blocks << (sb->s_blocksize_bits - 1234 SECTOR_SHIFT), 1235 gfp_mask, flags); 1236 } 1237 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1238 sector_t nr_blocks, gfp_t gfp_mask) 1239 { 1240 return blkdev_issue_zeroout(sb->s_bdev, 1241 block << (sb->s_blocksize_bits - 1242 SECTOR_SHIFT), 1243 nr_blocks << (sb->s_blocksize_bits - 1244 SECTOR_SHIFT), 1245 gfp_mask, 0); 1246 } 1247 1248 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1249 1250 enum blk_default_limits { 1251 BLK_MAX_SEGMENTS = 128, 1252 BLK_SAFE_MAX_SECTORS = 255, 1253 BLK_DEF_MAX_SECTORS = 2560, 1254 BLK_MAX_SEGMENT_SIZE = 65536, 1255 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1256 }; 1257 1258 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1259 { 1260 return q->limits.seg_boundary_mask; 1261 } 1262 1263 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1264 { 1265 return q->limits.virt_boundary_mask; 1266 } 1267 1268 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1269 { 1270 return q->limits.max_sectors; 1271 } 1272 1273 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1274 { 1275 return q->limits.max_hw_sectors; 1276 } 1277 1278 static inline unsigned short queue_max_segments(const struct request_queue *q) 1279 { 1280 return q->limits.max_segments; 1281 } 1282 1283 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1284 { 1285 return q->limits.max_discard_segments; 1286 } 1287 1288 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1289 { 1290 return q->limits.max_segment_size; 1291 } 1292 1293 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1294 { 1295 int retval = 512; 1296 1297 if (q && q->limits.logical_block_size) 1298 retval = q->limits.logical_block_size; 1299 1300 return retval; 1301 } 1302 1303 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1304 { 1305 return queue_logical_block_size(bdev_get_queue(bdev)); 1306 } 1307 1308 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1309 { 1310 return q->limits.physical_block_size; 1311 } 1312 1313 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1314 { 1315 return queue_physical_block_size(bdev_get_queue(bdev)); 1316 } 1317 1318 static inline unsigned int queue_io_min(const struct request_queue *q) 1319 { 1320 return q->limits.io_min; 1321 } 1322 1323 static inline int bdev_io_min(struct block_device *bdev) 1324 { 1325 return queue_io_min(bdev_get_queue(bdev)); 1326 } 1327 1328 static inline unsigned int queue_io_opt(const struct request_queue *q) 1329 { 1330 return q->limits.io_opt; 1331 } 1332 1333 static inline int bdev_io_opt(struct block_device *bdev) 1334 { 1335 return queue_io_opt(bdev_get_queue(bdev)); 1336 } 1337 1338 static inline int queue_alignment_offset(const struct request_queue *q) 1339 { 1340 if (q->limits.misaligned) 1341 return -1; 1342 1343 return q->limits.alignment_offset; 1344 } 1345 1346 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1347 { 1348 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1349 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1350 << SECTOR_SHIFT; 1351 1352 return (granularity + lim->alignment_offset - alignment) % granularity; 1353 } 1354 1355 static inline int bdev_alignment_offset(struct block_device *bdev) 1356 { 1357 struct request_queue *q = bdev_get_queue(bdev); 1358 1359 if (q->limits.misaligned) 1360 return -1; 1361 1362 if (bdev != bdev->bd_contains) 1363 return bdev->bd_part->alignment_offset; 1364 1365 return q->limits.alignment_offset; 1366 } 1367 1368 static inline int queue_discard_alignment(const struct request_queue *q) 1369 { 1370 if (q->limits.discard_misaligned) 1371 return -1; 1372 1373 return q->limits.discard_alignment; 1374 } 1375 1376 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1377 { 1378 unsigned int alignment, granularity, offset; 1379 1380 if (!lim->max_discard_sectors) 1381 return 0; 1382 1383 /* Why are these in bytes, not sectors? */ 1384 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1385 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1386 if (!granularity) 1387 return 0; 1388 1389 /* Offset of the partition start in 'granularity' sectors */ 1390 offset = sector_div(sector, granularity); 1391 1392 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1393 offset = (granularity + alignment - offset) % granularity; 1394 1395 /* Turn it back into bytes, gaah */ 1396 return offset << SECTOR_SHIFT; 1397 } 1398 1399 static inline int bdev_discard_alignment(struct block_device *bdev) 1400 { 1401 struct request_queue *q = bdev_get_queue(bdev); 1402 1403 if (bdev != bdev->bd_contains) 1404 return bdev->bd_part->discard_alignment; 1405 1406 return q->limits.discard_alignment; 1407 } 1408 1409 static inline unsigned int bdev_write_same(struct block_device *bdev) 1410 { 1411 struct request_queue *q = bdev_get_queue(bdev); 1412 1413 if (q) 1414 return q->limits.max_write_same_sectors; 1415 1416 return 0; 1417 } 1418 1419 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1420 { 1421 struct request_queue *q = bdev_get_queue(bdev); 1422 1423 if (q) 1424 return q->limits.max_write_zeroes_sectors; 1425 1426 return 0; 1427 } 1428 1429 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1430 { 1431 struct request_queue *q = bdev_get_queue(bdev); 1432 1433 if (q) 1434 return blk_queue_zoned_model(q); 1435 1436 return BLK_ZONED_NONE; 1437 } 1438 1439 static inline bool bdev_is_zoned(struct block_device *bdev) 1440 { 1441 struct request_queue *q = bdev_get_queue(bdev); 1442 1443 if (q) 1444 return blk_queue_is_zoned(q); 1445 1446 return false; 1447 } 1448 1449 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1450 { 1451 struct request_queue *q = bdev_get_queue(bdev); 1452 1453 if (q) 1454 return blk_queue_zone_sectors(q); 1455 return 0; 1456 } 1457 1458 static inline int queue_dma_alignment(const struct request_queue *q) 1459 { 1460 return q ? q->dma_alignment : 511; 1461 } 1462 1463 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1464 unsigned int len) 1465 { 1466 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1467 return !(addr & alignment) && !(len & alignment); 1468 } 1469 1470 /* assumes size > 256 */ 1471 static inline unsigned int blksize_bits(unsigned int size) 1472 { 1473 unsigned int bits = 8; 1474 do { 1475 bits++; 1476 size >>= 1; 1477 } while (size > 256); 1478 return bits; 1479 } 1480 1481 static inline unsigned int block_size(struct block_device *bdev) 1482 { 1483 return bdev->bd_block_size; 1484 } 1485 1486 int kblockd_schedule_work(struct work_struct *work); 1487 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1488 1489 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1490 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1491 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1492 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1493 1494 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1495 1496 enum blk_integrity_flags { 1497 BLK_INTEGRITY_VERIFY = 1 << 0, 1498 BLK_INTEGRITY_GENERATE = 1 << 1, 1499 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1500 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1501 }; 1502 1503 struct blk_integrity_iter { 1504 void *prot_buf; 1505 void *data_buf; 1506 sector_t seed; 1507 unsigned int data_size; 1508 unsigned short interval; 1509 const char *disk_name; 1510 }; 1511 1512 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1513 typedef void (integrity_prepare_fn) (struct request *); 1514 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1515 1516 struct blk_integrity_profile { 1517 integrity_processing_fn *generate_fn; 1518 integrity_processing_fn *verify_fn; 1519 integrity_prepare_fn *prepare_fn; 1520 integrity_complete_fn *complete_fn; 1521 const char *name; 1522 }; 1523 1524 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1525 extern void blk_integrity_unregister(struct gendisk *); 1526 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1527 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1528 struct scatterlist *); 1529 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1530 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1531 struct request *); 1532 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1533 struct bio *); 1534 1535 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1536 { 1537 struct blk_integrity *bi = &disk->queue->integrity; 1538 1539 if (!bi->profile) 1540 return NULL; 1541 1542 return bi; 1543 } 1544 1545 static inline 1546 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1547 { 1548 return blk_get_integrity(bdev->bd_disk); 1549 } 1550 1551 static inline bool blk_integrity_rq(struct request *rq) 1552 { 1553 return rq->cmd_flags & REQ_INTEGRITY; 1554 } 1555 1556 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1557 unsigned int segs) 1558 { 1559 q->limits.max_integrity_segments = segs; 1560 } 1561 1562 static inline unsigned short 1563 queue_max_integrity_segments(const struct request_queue *q) 1564 { 1565 return q->limits.max_integrity_segments; 1566 } 1567 1568 /** 1569 * bio_integrity_intervals - Return number of integrity intervals for a bio 1570 * @bi: blk_integrity profile for device 1571 * @sectors: Size of the bio in 512-byte sectors 1572 * 1573 * Description: The block layer calculates everything in 512 byte 1574 * sectors but integrity metadata is done in terms of the data integrity 1575 * interval size of the storage device. Convert the block layer sectors 1576 * to the appropriate number of integrity intervals. 1577 */ 1578 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1579 unsigned int sectors) 1580 { 1581 return sectors >> (bi->interval_exp - 9); 1582 } 1583 1584 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1585 unsigned int sectors) 1586 { 1587 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1588 } 1589 1590 /* 1591 * Return the first bvec that contains integrity data. Only drivers that are 1592 * limited to a single integrity segment should use this helper. 1593 */ 1594 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1595 { 1596 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1597 return NULL; 1598 return rq->bio->bi_integrity->bip_vec; 1599 } 1600 1601 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1602 1603 struct bio; 1604 struct block_device; 1605 struct gendisk; 1606 struct blk_integrity; 1607 1608 static inline int blk_integrity_rq(struct request *rq) 1609 { 1610 return 0; 1611 } 1612 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1613 struct bio *b) 1614 { 1615 return 0; 1616 } 1617 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1618 struct bio *b, 1619 struct scatterlist *s) 1620 { 1621 return 0; 1622 } 1623 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1624 { 1625 return NULL; 1626 } 1627 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1628 { 1629 return NULL; 1630 } 1631 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1632 { 1633 return 0; 1634 } 1635 static inline void blk_integrity_register(struct gendisk *d, 1636 struct blk_integrity *b) 1637 { 1638 } 1639 static inline void blk_integrity_unregister(struct gendisk *d) 1640 { 1641 } 1642 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1643 unsigned int segs) 1644 { 1645 } 1646 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1647 { 1648 return 0; 1649 } 1650 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1651 struct request *r1, 1652 struct request *r2) 1653 { 1654 return true; 1655 } 1656 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1657 struct request *r, 1658 struct bio *b) 1659 { 1660 return true; 1661 } 1662 1663 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1664 unsigned int sectors) 1665 { 1666 return 0; 1667 } 1668 1669 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1670 unsigned int sectors) 1671 { 1672 return 0; 1673 } 1674 1675 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1676 { 1677 return NULL; 1678 } 1679 1680 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1681 1682 struct block_device_operations { 1683 int (*open) (struct block_device *, fmode_t); 1684 void (*release) (struct gendisk *, fmode_t); 1685 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1686 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1687 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1688 unsigned int (*check_events) (struct gendisk *disk, 1689 unsigned int clearing); 1690 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1691 int (*media_changed) (struct gendisk *); 1692 void (*unlock_native_capacity) (struct gendisk *); 1693 int (*revalidate_disk) (struct gendisk *); 1694 int (*getgeo)(struct block_device *, struct hd_geometry *); 1695 /* this callback is with swap_lock and sometimes page table lock held */ 1696 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1697 int (*report_zones)(struct gendisk *, sector_t sector, 1698 unsigned int nr_zones, report_zones_cb cb, void *data); 1699 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1700 struct module *owner; 1701 const struct pr_ops *pr_ops; 1702 }; 1703 1704 #ifdef CONFIG_COMPAT 1705 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1706 unsigned int, unsigned long); 1707 #else 1708 #define blkdev_compat_ptr_ioctl NULL 1709 #endif 1710 1711 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1712 unsigned long); 1713 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1714 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1715 struct writeback_control *); 1716 1717 #ifdef CONFIG_BLK_DEV_ZONED 1718 bool blk_req_needs_zone_write_lock(struct request *rq); 1719 void __blk_req_zone_write_lock(struct request *rq); 1720 void __blk_req_zone_write_unlock(struct request *rq); 1721 1722 static inline void blk_req_zone_write_lock(struct request *rq) 1723 { 1724 if (blk_req_needs_zone_write_lock(rq)) 1725 __blk_req_zone_write_lock(rq); 1726 } 1727 1728 static inline void blk_req_zone_write_unlock(struct request *rq) 1729 { 1730 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1731 __blk_req_zone_write_unlock(rq); 1732 } 1733 1734 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1735 { 1736 return rq->q->seq_zones_wlock && 1737 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1738 } 1739 1740 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1741 { 1742 if (!blk_req_needs_zone_write_lock(rq)) 1743 return true; 1744 return !blk_req_zone_is_write_locked(rq); 1745 } 1746 #else 1747 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1748 { 1749 return false; 1750 } 1751 1752 static inline void blk_req_zone_write_lock(struct request *rq) 1753 { 1754 } 1755 1756 static inline void blk_req_zone_write_unlock(struct request *rq) 1757 { 1758 } 1759 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1760 { 1761 return false; 1762 } 1763 1764 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1765 { 1766 return true; 1767 } 1768 #endif /* CONFIG_BLK_DEV_ZONED */ 1769 1770 #else /* CONFIG_BLOCK */ 1771 1772 struct block_device; 1773 1774 /* 1775 * stubs for when the block layer is configured out 1776 */ 1777 #define buffer_heads_over_limit 0 1778 1779 static inline long nr_blockdev_pages(void) 1780 { 1781 return 0; 1782 } 1783 1784 struct blk_plug { 1785 }; 1786 1787 static inline void blk_start_plug(struct blk_plug *plug) 1788 { 1789 } 1790 1791 static inline void blk_finish_plug(struct blk_plug *plug) 1792 { 1793 } 1794 1795 static inline void blk_flush_plug(struct task_struct *task) 1796 { 1797 } 1798 1799 static inline void blk_schedule_flush_plug(struct task_struct *task) 1800 { 1801 } 1802 1803 1804 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1805 { 1806 return false; 1807 } 1808 1809 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 1810 sector_t *error_sector) 1811 { 1812 return 0; 1813 } 1814 1815 #endif /* CONFIG_BLOCK */ 1816 1817 static inline void blk_wake_io_task(struct task_struct *waiter) 1818 { 1819 /* 1820 * If we're polling, the task itself is doing the completions. For 1821 * that case, we don't need to signal a wakeup, it's enough to just 1822 * mark us as RUNNING. 1823 */ 1824 if (waiter == current) 1825 __set_current_state(TASK_RUNNING); 1826 else 1827 wake_up_process(waiter); 1828 } 1829 1830 #endif 1831