xref: /linux-6.15/include/linux/blkdev.h (revision eff82a26)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83    "quiesce" state must be ignored. */
84 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error.  Ignored by the block layer */
88 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM			((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS		((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104    bio chain. */
105 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
112 
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116 
117 /*
118  * Request state for blk-mq.
119  */
120 enum mq_rq_state {
121 	MQ_RQ_IDLE		= 0,
122 	MQ_RQ_IN_FLIGHT		= 1,
123 	MQ_RQ_COMPLETE		= 2,
124 };
125 
126 /*
127  * Try to put the fields that are referenced together in the same cacheline.
128  *
129  * If you modify this structure, make sure to update blk_rq_init() and
130  * especially blk_mq_rq_ctx_init() to take care of the added fields.
131  */
132 struct request {
133 	struct request_queue *q;
134 	struct blk_mq_ctx *mq_ctx;
135 	struct blk_mq_hw_ctx *mq_hctx;
136 
137 	unsigned int cmd_flags;		/* op and common flags */
138 	req_flags_t rq_flags;
139 
140 	int internal_tag;
141 
142 	/* the following two fields are internal, NEVER access directly */
143 	unsigned int __data_len;	/* total data len */
144 	int tag;
145 	sector_t __sector;		/* sector cursor */
146 
147 	struct bio *bio;
148 	struct bio *biotail;
149 
150 	struct list_head queuelist;
151 
152 	/*
153 	 * The hash is used inside the scheduler, and killed once the
154 	 * request reaches the dispatch list. The ipi_list is only used
155 	 * to queue the request for softirq completion, which is long
156 	 * after the request has been unhashed (and even removed from
157 	 * the dispatch list).
158 	 */
159 	union {
160 		struct hlist_node hash;	/* merge hash */
161 		struct list_head ipi_list;
162 	};
163 
164 	/*
165 	 * The rb_node is only used inside the io scheduler, requests
166 	 * are pruned when moved to the dispatch queue. So let the
167 	 * completion_data share space with the rb_node.
168 	 */
169 	union {
170 		struct rb_node rb_node;	/* sort/lookup */
171 		struct bio_vec special_vec;
172 		void *completion_data;
173 		int error_count; /* for legacy drivers, don't use */
174 	};
175 
176 	/*
177 	 * Three pointers are available for the IO schedulers, if they need
178 	 * more they have to dynamically allocate it.  Flush requests are
179 	 * never put on the IO scheduler. So let the flush fields share
180 	 * space with the elevator data.
181 	 */
182 	union {
183 		struct {
184 			struct io_cq		*icq;
185 			void			*priv[2];
186 		} elv;
187 
188 		struct {
189 			unsigned int		seq;
190 			struct list_head	list;
191 			rq_end_io_fn		*saved_end_io;
192 		} flush;
193 	};
194 
195 	struct gendisk *rq_disk;
196 	struct hd_struct *part;
197 	/* Time that I/O was submitted to the kernel. */
198 	u64 start_time_ns;
199 	/* Time that I/O was submitted to the device. */
200 	u64 io_start_time_ns;
201 
202 #ifdef CONFIG_BLK_WBT
203 	unsigned short wbt_flags;
204 #endif
205 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
206 	unsigned short throtl_size;
207 #endif
208 
209 	/*
210 	 * Number of scatter-gather DMA addr+len pairs after
211 	 * physical address coalescing is performed.
212 	 */
213 	unsigned short nr_phys_segments;
214 
215 #if defined(CONFIG_BLK_DEV_INTEGRITY)
216 	unsigned short nr_integrity_segments;
217 #endif
218 
219 	unsigned short write_hint;
220 	unsigned short ioprio;
221 
222 	unsigned int extra_len;	/* length of alignment and padding */
223 
224 	enum mq_rq_state state;
225 	refcount_t ref;
226 
227 	unsigned int timeout;
228 	unsigned long deadline;
229 
230 	union {
231 		struct __call_single_data csd;
232 		u64 fifo_time;
233 	};
234 
235 	/*
236 	 * completion callback.
237 	 */
238 	rq_end_io_fn *end_io;
239 	void *end_io_data;
240 };
241 
242 static inline bool blk_op_is_scsi(unsigned int op)
243 {
244 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
245 }
246 
247 static inline bool blk_op_is_private(unsigned int op)
248 {
249 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
250 }
251 
252 static inline bool blk_rq_is_scsi(struct request *rq)
253 {
254 	return blk_op_is_scsi(req_op(rq));
255 }
256 
257 static inline bool blk_rq_is_private(struct request *rq)
258 {
259 	return blk_op_is_private(req_op(rq));
260 }
261 
262 static inline bool blk_rq_is_passthrough(struct request *rq)
263 {
264 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
265 }
266 
267 static inline bool bio_is_passthrough(struct bio *bio)
268 {
269 	unsigned op = bio_op(bio);
270 
271 	return blk_op_is_scsi(op) || blk_op_is_private(op);
272 }
273 
274 static inline unsigned short req_get_ioprio(struct request *req)
275 {
276 	return req->ioprio;
277 }
278 
279 #include <linux/elevator.h>
280 
281 struct blk_queue_ctx;
282 
283 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
284 
285 struct bio_vec;
286 typedef int (dma_drain_needed_fn)(struct request *);
287 
288 enum blk_eh_timer_return {
289 	BLK_EH_DONE,		/* drivers has completed the command */
290 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
291 };
292 
293 enum blk_queue_state {
294 	Queue_down,
295 	Queue_up,
296 };
297 
298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
300 
301 #define BLK_SCSI_MAX_CMDS	(256)
302 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
303 
304 /*
305  * Zoned block device models (zoned limit).
306  */
307 enum blk_zoned_model {
308 	BLK_ZONED_NONE,	/* Regular block device */
309 	BLK_ZONED_HA,	/* Host-aware zoned block device */
310 	BLK_ZONED_HM,	/* Host-managed zoned block device */
311 };
312 
313 struct queue_limits {
314 	unsigned long		bounce_pfn;
315 	unsigned long		seg_boundary_mask;
316 	unsigned long		virt_boundary_mask;
317 
318 	unsigned int		max_hw_sectors;
319 	unsigned int		max_dev_sectors;
320 	unsigned int		chunk_sectors;
321 	unsigned int		max_sectors;
322 	unsigned int		max_segment_size;
323 	unsigned int		physical_block_size;
324 	unsigned int		alignment_offset;
325 	unsigned int		io_min;
326 	unsigned int		io_opt;
327 	unsigned int		max_discard_sectors;
328 	unsigned int		max_hw_discard_sectors;
329 	unsigned int		max_write_same_sectors;
330 	unsigned int		max_write_zeroes_sectors;
331 	unsigned int		discard_granularity;
332 	unsigned int		discard_alignment;
333 
334 	unsigned short		logical_block_size;
335 	unsigned short		max_segments;
336 	unsigned short		max_integrity_segments;
337 	unsigned short		max_discard_segments;
338 
339 	unsigned char		misaligned;
340 	unsigned char		discard_misaligned;
341 	unsigned char		raid_partial_stripes_expensive;
342 	enum blk_zoned_model	zoned;
343 };
344 
345 #ifdef CONFIG_BLK_DEV_ZONED
346 
347 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
348 extern int blkdev_report_zones(struct block_device *bdev,
349 			       sector_t sector, struct blk_zone *zones,
350 			       unsigned int *nr_zones, gfp_t gfp_mask);
351 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
352 			      sector_t nr_sectors, gfp_t gfp_mask);
353 extern int blk_revalidate_disk_zones(struct gendisk *disk);
354 
355 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
356 				     unsigned int cmd, unsigned long arg);
357 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
358 				    unsigned int cmd, unsigned long arg);
359 
360 #else /* CONFIG_BLK_DEV_ZONED */
361 
362 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
363 {
364 	return 0;
365 }
366 
367 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
368 {
369 	return 0;
370 }
371 
372 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
373 					    fmode_t mode, unsigned int cmd,
374 					    unsigned long arg)
375 {
376 	return -ENOTTY;
377 }
378 
379 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
380 					   fmode_t mode, unsigned int cmd,
381 					   unsigned long arg)
382 {
383 	return -ENOTTY;
384 }
385 
386 #endif /* CONFIG_BLK_DEV_ZONED */
387 
388 struct request_queue {
389 	/*
390 	 * Together with queue_head for cacheline sharing
391 	 */
392 	struct list_head	queue_head;
393 	struct request		*last_merge;
394 	struct elevator_queue	*elevator;
395 
396 	struct blk_queue_stats	*stats;
397 	struct rq_qos		*rq_qos;
398 
399 	make_request_fn		*make_request_fn;
400 	dma_drain_needed_fn	*dma_drain_needed;
401 
402 	const struct blk_mq_ops	*mq_ops;
403 
404 	/* sw queues */
405 	struct blk_mq_ctx __percpu	*queue_ctx;
406 	unsigned int		nr_queues;
407 
408 	unsigned int		queue_depth;
409 
410 	/* hw dispatch queues */
411 	struct blk_mq_hw_ctx	**queue_hw_ctx;
412 	unsigned int		nr_hw_queues;
413 
414 	struct backing_dev_info	*backing_dev_info;
415 
416 	/*
417 	 * The queue owner gets to use this for whatever they like.
418 	 * ll_rw_blk doesn't touch it.
419 	 */
420 	void			*queuedata;
421 
422 	/*
423 	 * various queue flags, see QUEUE_* below
424 	 */
425 	unsigned long		queue_flags;
426 	/*
427 	 * Number of contexts that have called blk_set_pm_only(). If this
428 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
429 	 * processed.
430 	 */
431 	atomic_t		pm_only;
432 
433 	/*
434 	 * ida allocated id for this queue.  Used to index queues from
435 	 * ioctx.
436 	 */
437 	int			id;
438 
439 	/*
440 	 * queue needs bounce pages for pages above this limit
441 	 */
442 	gfp_t			bounce_gfp;
443 
444 	spinlock_t		queue_lock;
445 
446 	/*
447 	 * queue kobject
448 	 */
449 	struct kobject kobj;
450 
451 	/*
452 	 * mq queue kobject
453 	 */
454 	struct kobject *mq_kobj;
455 
456 #ifdef  CONFIG_BLK_DEV_INTEGRITY
457 	struct blk_integrity integrity;
458 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
459 
460 #ifdef CONFIG_PM
461 	struct device		*dev;
462 	int			rpm_status;
463 	unsigned int		nr_pending;
464 #endif
465 
466 	/*
467 	 * queue settings
468 	 */
469 	unsigned long		nr_requests;	/* Max # of requests */
470 
471 	unsigned int		dma_drain_size;
472 	void			*dma_drain_buffer;
473 	unsigned int		dma_pad_mask;
474 	unsigned int		dma_alignment;
475 
476 	unsigned int		rq_timeout;
477 	int			poll_nsec;
478 
479 	struct blk_stat_callback	*poll_cb;
480 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
481 
482 	struct timer_list	timeout;
483 	struct work_struct	timeout_work;
484 
485 	struct list_head	icq_list;
486 #ifdef CONFIG_BLK_CGROUP
487 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
488 	struct blkcg_gq		*root_blkg;
489 	struct list_head	blkg_list;
490 #endif
491 
492 	struct queue_limits	limits;
493 
494 #ifdef CONFIG_BLK_DEV_ZONED
495 	/*
496 	 * Zoned block device information for request dispatch control.
497 	 * nr_zones is the total number of zones of the device. This is always
498 	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
499 	 * bits which indicates if a zone is conventional (bit clear) or
500 	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
501 	 * bits which indicates if a zone is write locked, that is, if a write
502 	 * request targeting the zone was dispatched. All three fields are
503 	 * initialized by the low level device driver (e.g. scsi/sd.c).
504 	 * Stacking drivers (device mappers) may or may not initialize
505 	 * these fields.
506 	 *
507 	 * Reads of this information must be protected with blk_queue_enter() /
508 	 * blk_queue_exit(). Modifying this information is only allowed while
509 	 * no requests are being processed. See also blk_mq_freeze_queue() and
510 	 * blk_mq_unfreeze_queue().
511 	 */
512 	unsigned int		nr_zones;
513 	unsigned long		*seq_zones_bitmap;
514 	unsigned long		*seq_zones_wlock;
515 #endif /* CONFIG_BLK_DEV_ZONED */
516 
517 	/*
518 	 * sg stuff
519 	 */
520 	unsigned int		sg_timeout;
521 	unsigned int		sg_reserved_size;
522 	int			node;
523 #ifdef CONFIG_BLK_DEV_IO_TRACE
524 	struct blk_trace	*blk_trace;
525 	struct mutex		blk_trace_mutex;
526 #endif
527 	/*
528 	 * for flush operations
529 	 */
530 	struct blk_flush_queue	*fq;
531 
532 	struct list_head	requeue_list;
533 	spinlock_t		requeue_lock;
534 	struct delayed_work	requeue_work;
535 
536 	struct mutex		sysfs_lock;
537 
538 	/*
539 	 * for reusing dead hctx instance in case of updating
540 	 * nr_hw_queues
541 	 */
542 	struct list_head	unused_hctx_list;
543 	spinlock_t		unused_hctx_lock;
544 
545 	atomic_t		mq_freeze_depth;
546 
547 #if defined(CONFIG_BLK_DEV_BSG)
548 	struct bsg_class_device bsg_dev;
549 #endif
550 
551 #ifdef CONFIG_BLK_DEV_THROTTLING
552 	/* Throttle data */
553 	struct throtl_data *td;
554 #endif
555 	struct rcu_head		rcu_head;
556 	wait_queue_head_t	mq_freeze_wq;
557 	struct percpu_ref	q_usage_counter;
558 
559 	struct blk_mq_tag_set	*tag_set;
560 	struct list_head	tag_set_list;
561 	struct bio_set		bio_split;
562 
563 #ifdef CONFIG_BLK_DEBUG_FS
564 	struct dentry		*debugfs_dir;
565 	struct dentry		*sched_debugfs_dir;
566 	struct dentry		*rqos_debugfs_dir;
567 #endif
568 
569 	bool			mq_sysfs_init_done;
570 
571 	size_t			cmd_size;
572 
573 	struct work_struct	release_work;
574 
575 #define BLK_MAX_WRITE_HINTS	5
576 	u64			write_hints[BLK_MAX_WRITE_HINTS];
577 };
578 
579 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
580 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
581 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
582 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
583 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
584 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
585 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
586 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
587 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
588 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
589 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
590 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
591 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
592 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
593 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
594 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
595 #define QUEUE_FLAG_WC		17	/* Write back caching */
596 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
597 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
598 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
599 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
600 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
601 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
602 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
603 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
604 
605 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
606 				 (1 << QUEUE_FLAG_SAME_COMP))
607 
608 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
609 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
610 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
611 
612 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
613 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
614 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
615 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
616 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
617 #define blk_queue_noxmerges(q)	\
618 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
619 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
620 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
621 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
622 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
623 #define blk_queue_secure_erase(q) \
624 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
625 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
626 #define blk_queue_scsi_passthrough(q)	\
627 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
628 #define blk_queue_pci_p2pdma(q)	\
629 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
630 
631 #define blk_noretry_request(rq) \
632 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
633 			     REQ_FAILFAST_DRIVER))
634 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
635 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
636 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
637 
638 extern void blk_set_pm_only(struct request_queue *q);
639 extern void blk_clear_pm_only(struct request_queue *q);
640 
641 static inline bool blk_account_rq(struct request *rq)
642 {
643 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
644 }
645 
646 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
647 
648 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
649 
650 #define rq_dma_dir(rq) \
651 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
652 
653 #define dma_map_bvec(dev, bv, dir, attrs) \
654 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
655 	(dir), (attrs))
656 
657 static inline bool queue_is_mq(struct request_queue *q)
658 {
659 	return q->mq_ops;
660 }
661 
662 static inline enum blk_zoned_model
663 blk_queue_zoned_model(struct request_queue *q)
664 {
665 	return q->limits.zoned;
666 }
667 
668 static inline bool blk_queue_is_zoned(struct request_queue *q)
669 {
670 	switch (blk_queue_zoned_model(q)) {
671 	case BLK_ZONED_HA:
672 	case BLK_ZONED_HM:
673 		return true;
674 	default:
675 		return false;
676 	}
677 }
678 
679 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
680 {
681 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
682 }
683 
684 #ifdef CONFIG_BLK_DEV_ZONED
685 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
686 {
687 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
688 }
689 
690 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
691 					     sector_t sector)
692 {
693 	if (!blk_queue_is_zoned(q))
694 		return 0;
695 	return sector >> ilog2(q->limits.chunk_sectors);
696 }
697 
698 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
699 					 sector_t sector)
700 {
701 	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
702 		return false;
703 	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
704 }
705 #else /* CONFIG_BLK_DEV_ZONED */
706 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
707 {
708 	return 0;
709 }
710 #endif /* CONFIG_BLK_DEV_ZONED */
711 
712 static inline bool rq_is_sync(struct request *rq)
713 {
714 	return op_is_sync(rq->cmd_flags);
715 }
716 
717 static inline bool rq_mergeable(struct request *rq)
718 {
719 	if (blk_rq_is_passthrough(rq))
720 		return false;
721 
722 	if (req_op(rq) == REQ_OP_FLUSH)
723 		return false;
724 
725 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
726 		return false;
727 
728 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
729 		return false;
730 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
731 		return false;
732 
733 	return true;
734 }
735 
736 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
737 {
738 	if (bio_page(a) == bio_page(b) &&
739 	    bio_offset(a) == bio_offset(b))
740 		return true;
741 
742 	return false;
743 }
744 
745 static inline unsigned int blk_queue_depth(struct request_queue *q)
746 {
747 	if (q->queue_depth)
748 		return q->queue_depth;
749 
750 	return q->nr_requests;
751 }
752 
753 extern unsigned long blk_max_low_pfn, blk_max_pfn;
754 
755 /*
756  * standard bounce addresses:
757  *
758  * BLK_BOUNCE_HIGH	: bounce all highmem pages
759  * BLK_BOUNCE_ANY	: don't bounce anything
760  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
761  */
762 
763 #if BITS_PER_LONG == 32
764 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
765 #else
766 #define BLK_BOUNCE_HIGH		-1ULL
767 #endif
768 #define BLK_BOUNCE_ANY		(-1ULL)
769 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
770 
771 /*
772  * default timeout for SG_IO if none specified
773  */
774 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
775 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
776 
777 struct rq_map_data {
778 	struct page **pages;
779 	int page_order;
780 	int nr_entries;
781 	unsigned long offset;
782 	int null_mapped;
783 	int from_user;
784 };
785 
786 struct req_iterator {
787 	struct bvec_iter iter;
788 	struct bio *bio;
789 };
790 
791 /* This should not be used directly - use rq_for_each_segment */
792 #define for_each_bio(_bio)		\
793 	for (; _bio; _bio = _bio->bi_next)
794 #define __rq_for_each_bio(_bio, rq)	\
795 	if ((rq->bio))			\
796 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
797 
798 #define rq_for_each_segment(bvl, _rq, _iter)			\
799 	__rq_for_each_bio(_iter.bio, _rq)			\
800 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
801 
802 #define rq_for_each_bvec(bvl, _rq, _iter)			\
803 	__rq_for_each_bio(_iter.bio, _rq)			\
804 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
805 
806 #define rq_iter_last(bvec, _iter)				\
807 		(_iter.bio->bi_next == NULL &&			\
808 		 bio_iter_last(bvec, _iter.iter))
809 
810 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
811 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
812 #endif
813 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
814 extern void rq_flush_dcache_pages(struct request *rq);
815 #else
816 static inline void rq_flush_dcache_pages(struct request *rq)
817 {
818 }
819 #endif
820 
821 extern int blk_register_queue(struct gendisk *disk);
822 extern void blk_unregister_queue(struct gendisk *disk);
823 extern blk_qc_t generic_make_request(struct bio *bio);
824 extern blk_qc_t direct_make_request(struct bio *bio);
825 extern void blk_rq_init(struct request_queue *q, struct request *rq);
826 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
827 extern void blk_put_request(struct request *);
828 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
829 				       blk_mq_req_flags_t flags);
830 extern int blk_lld_busy(struct request_queue *q);
831 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
832 			     struct bio_set *bs, gfp_t gfp_mask,
833 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
834 			     void *data);
835 extern void blk_rq_unprep_clone(struct request *rq);
836 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
837 				     struct request *rq);
838 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
839 extern void blk_queue_split(struct request_queue *, struct bio **);
840 extern void blk_recount_segments(struct request_queue *, struct bio *);
841 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
842 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
843 			      unsigned int, void __user *);
844 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
845 			  unsigned int, void __user *);
846 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
847 			 struct scsi_ioctl_command __user *);
848 
849 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
850 extern void blk_queue_exit(struct request_queue *q);
851 extern void blk_sync_queue(struct request_queue *q);
852 extern int blk_rq_map_user(struct request_queue *, struct request *,
853 			   struct rq_map_data *, void __user *, unsigned long,
854 			   gfp_t);
855 extern int blk_rq_unmap_user(struct bio *);
856 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
857 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
858 			       struct rq_map_data *, const struct iov_iter *,
859 			       gfp_t);
860 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
861 			  struct request *, int);
862 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
863 				  struct request *, int, rq_end_io_fn *);
864 
865 int blk_status_to_errno(blk_status_t status);
866 blk_status_t errno_to_blk_status(int errno);
867 
868 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
869 
870 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
871 {
872 	return bdev->bd_disk->queue;	/* this is never NULL */
873 }
874 
875 /*
876  * The basic unit of block I/O is a sector. It is used in a number of contexts
877  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
878  * bytes. Variables of type sector_t represent an offset or size that is a
879  * multiple of 512 bytes. Hence these two constants.
880  */
881 #ifndef SECTOR_SHIFT
882 #define SECTOR_SHIFT 9
883 #endif
884 #ifndef SECTOR_SIZE
885 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
886 #endif
887 
888 /*
889  * blk_rq_pos()			: the current sector
890  * blk_rq_bytes()		: bytes left in the entire request
891  * blk_rq_cur_bytes()		: bytes left in the current segment
892  * blk_rq_err_bytes()		: bytes left till the next error boundary
893  * blk_rq_sectors()		: sectors left in the entire request
894  * blk_rq_cur_sectors()		: sectors left in the current segment
895  */
896 static inline sector_t blk_rq_pos(const struct request *rq)
897 {
898 	return rq->__sector;
899 }
900 
901 static inline unsigned int blk_rq_bytes(const struct request *rq)
902 {
903 	return rq->__data_len;
904 }
905 
906 static inline int blk_rq_cur_bytes(const struct request *rq)
907 {
908 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
909 }
910 
911 extern unsigned int blk_rq_err_bytes(const struct request *rq);
912 
913 static inline unsigned int blk_rq_sectors(const struct request *rq)
914 {
915 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
916 }
917 
918 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
919 {
920 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
921 }
922 
923 #ifdef CONFIG_BLK_DEV_ZONED
924 static inline unsigned int blk_rq_zone_no(struct request *rq)
925 {
926 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
927 }
928 
929 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
930 {
931 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
932 }
933 #endif /* CONFIG_BLK_DEV_ZONED */
934 
935 /*
936  * Some commands like WRITE SAME have a payload or data transfer size which
937  * is different from the size of the request.  Any driver that supports such
938  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
939  * calculate the data transfer size.
940  */
941 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
942 {
943 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
944 		return rq->special_vec.bv_len;
945 	return blk_rq_bytes(rq);
946 }
947 
948 /*
949  * Return the first full biovec in the request.  The caller needs to check that
950  * there are any bvecs before calling this helper.
951  */
952 static inline struct bio_vec req_bvec(struct request *rq)
953 {
954 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
955 		return rq->special_vec;
956 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
957 }
958 
959 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
960 						     int op)
961 {
962 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
963 		return min(q->limits.max_discard_sectors,
964 			   UINT_MAX >> SECTOR_SHIFT);
965 
966 	if (unlikely(op == REQ_OP_WRITE_SAME))
967 		return q->limits.max_write_same_sectors;
968 
969 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
970 		return q->limits.max_write_zeroes_sectors;
971 
972 	return q->limits.max_sectors;
973 }
974 
975 /*
976  * Return maximum size of a request at given offset. Only valid for
977  * file system requests.
978  */
979 static inline unsigned int blk_max_size_offset(struct request_queue *q,
980 					       sector_t offset)
981 {
982 	if (!q->limits.chunk_sectors)
983 		return q->limits.max_sectors;
984 
985 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
986 			(offset & (q->limits.chunk_sectors - 1))));
987 }
988 
989 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
990 						  sector_t offset)
991 {
992 	struct request_queue *q = rq->q;
993 
994 	if (blk_rq_is_passthrough(rq))
995 		return q->limits.max_hw_sectors;
996 
997 	if (!q->limits.chunk_sectors ||
998 	    req_op(rq) == REQ_OP_DISCARD ||
999 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1000 		return blk_queue_get_max_sectors(q, req_op(rq));
1001 
1002 	return min(blk_max_size_offset(q, offset),
1003 			blk_queue_get_max_sectors(q, req_op(rq)));
1004 }
1005 
1006 static inline unsigned int blk_rq_count_bios(struct request *rq)
1007 {
1008 	unsigned int nr_bios = 0;
1009 	struct bio *bio;
1010 
1011 	__rq_for_each_bio(bio, rq)
1012 		nr_bios++;
1013 
1014 	return nr_bios;
1015 }
1016 
1017 void blk_steal_bios(struct bio_list *list, struct request *rq);
1018 
1019 /*
1020  * Request completion related functions.
1021  *
1022  * blk_update_request() completes given number of bytes and updates
1023  * the request without completing it.
1024  *
1025  * blk_end_request() and friends.  __blk_end_request() must be called
1026  * with the request queue spinlock acquired.
1027  *
1028  * Several drivers define their own end_request and call
1029  * blk_end_request() for parts of the original function.
1030  * This prevents code duplication in drivers.
1031  */
1032 extern bool blk_update_request(struct request *rq, blk_status_t error,
1033 			       unsigned int nr_bytes);
1034 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1035 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1036 			      unsigned int nr_bytes);
1037 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1038 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1039 
1040 extern void __blk_complete_request(struct request *);
1041 extern void blk_abort_request(struct request *);
1042 
1043 /*
1044  * Access functions for manipulating queue properties
1045  */
1046 extern void blk_cleanup_queue(struct request_queue *);
1047 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1048 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1049 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1050 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1051 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1052 extern void blk_queue_max_discard_segments(struct request_queue *,
1053 		unsigned short);
1054 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1055 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1056 		unsigned int max_discard_sectors);
1057 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1058 		unsigned int max_write_same_sectors);
1059 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1060 		unsigned int max_write_same_sectors);
1061 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1062 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1063 extern void blk_queue_alignment_offset(struct request_queue *q,
1064 				       unsigned int alignment);
1065 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1066 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1067 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1068 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1069 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1070 extern void blk_set_default_limits(struct queue_limits *lim);
1071 extern void blk_set_stacking_limits(struct queue_limits *lim);
1072 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1073 			    sector_t offset);
1074 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1075 			    sector_t offset);
1076 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1077 			      sector_t offset);
1078 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1079 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1080 extern int blk_queue_dma_drain(struct request_queue *q,
1081 			       dma_drain_needed_fn *dma_drain_needed,
1082 			       void *buf, unsigned int size);
1083 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1084 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1085 extern void blk_queue_dma_alignment(struct request_queue *, int);
1086 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1087 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1088 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1089 
1090 /*
1091  * Number of physical segments as sent to the device.
1092  *
1093  * Normally this is the number of discontiguous data segments sent by the
1094  * submitter.  But for data-less command like discard we might have no
1095  * actual data segments submitted, but the driver might have to add it's
1096  * own special payload.  In that case we still return 1 here so that this
1097  * special payload will be mapped.
1098  */
1099 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1100 {
1101 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1102 		return 1;
1103 	return rq->nr_phys_segments;
1104 }
1105 
1106 /*
1107  * Number of discard segments (or ranges) the driver needs to fill in.
1108  * Each discard bio merged into a request is counted as one segment.
1109  */
1110 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1111 {
1112 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1113 }
1114 
1115 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1116 extern void blk_dump_rq_flags(struct request *, char *);
1117 extern long nr_blockdev_pages(void);
1118 
1119 bool __must_check blk_get_queue(struct request_queue *);
1120 struct request_queue *blk_alloc_queue(gfp_t);
1121 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1122 extern void blk_put_queue(struct request_queue *);
1123 extern void blk_set_queue_dying(struct request_queue *);
1124 
1125 /*
1126  * blk_plug permits building a queue of related requests by holding the I/O
1127  * fragments for a short period. This allows merging of sequential requests
1128  * into single larger request. As the requests are moved from a per-task list to
1129  * the device's request_queue in a batch, this results in improved scalability
1130  * as the lock contention for request_queue lock is reduced.
1131  *
1132  * It is ok not to disable preemption when adding the request to the plug list
1133  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1134  * the plug list when the task sleeps by itself. For details, please see
1135  * schedule() where blk_schedule_flush_plug() is called.
1136  */
1137 struct blk_plug {
1138 	struct list_head mq_list; /* blk-mq requests */
1139 	struct list_head cb_list; /* md requires an unplug callback */
1140 	unsigned short rq_count;
1141 	bool multiple_queues;
1142 };
1143 #define BLK_MAX_REQUEST_COUNT 16
1144 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1145 
1146 struct blk_plug_cb;
1147 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1148 struct blk_plug_cb {
1149 	struct list_head list;
1150 	blk_plug_cb_fn callback;
1151 	void *data;
1152 };
1153 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1154 					     void *data, int size);
1155 extern void blk_start_plug(struct blk_plug *);
1156 extern void blk_finish_plug(struct blk_plug *);
1157 extern void blk_flush_plug_list(struct blk_plug *, bool);
1158 
1159 static inline void blk_flush_plug(struct task_struct *tsk)
1160 {
1161 	struct blk_plug *plug = tsk->plug;
1162 
1163 	if (plug)
1164 		blk_flush_plug_list(plug, false);
1165 }
1166 
1167 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1168 {
1169 	struct blk_plug *plug = tsk->plug;
1170 
1171 	if (plug)
1172 		blk_flush_plug_list(plug, true);
1173 }
1174 
1175 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1176 {
1177 	struct blk_plug *plug = tsk->plug;
1178 
1179 	return plug &&
1180 		 (!list_empty(&plug->mq_list) ||
1181 		 !list_empty(&plug->cb_list));
1182 }
1183 
1184 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1185 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1186 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1187 
1188 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1189 
1190 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1191 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1192 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1193 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1194 		struct bio **biop);
1195 
1196 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1197 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1198 
1199 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1200 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1201 		unsigned flags);
1202 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1203 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1204 
1205 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1206 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1207 {
1208 	return blkdev_issue_discard(sb->s_bdev,
1209 				    block << (sb->s_blocksize_bits -
1210 					      SECTOR_SHIFT),
1211 				    nr_blocks << (sb->s_blocksize_bits -
1212 						  SECTOR_SHIFT),
1213 				    gfp_mask, flags);
1214 }
1215 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1216 		sector_t nr_blocks, gfp_t gfp_mask)
1217 {
1218 	return blkdev_issue_zeroout(sb->s_bdev,
1219 				    block << (sb->s_blocksize_bits -
1220 					      SECTOR_SHIFT),
1221 				    nr_blocks << (sb->s_blocksize_bits -
1222 						  SECTOR_SHIFT),
1223 				    gfp_mask, 0);
1224 }
1225 
1226 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1227 
1228 enum blk_default_limits {
1229 	BLK_MAX_SEGMENTS	= 128,
1230 	BLK_SAFE_MAX_SECTORS	= 255,
1231 	BLK_DEF_MAX_SECTORS	= 2560,
1232 	BLK_MAX_SEGMENT_SIZE	= 65536,
1233 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1234 };
1235 
1236 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1237 {
1238 	return q->limits.seg_boundary_mask;
1239 }
1240 
1241 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1242 {
1243 	return q->limits.virt_boundary_mask;
1244 }
1245 
1246 static inline unsigned int queue_max_sectors(struct request_queue *q)
1247 {
1248 	return q->limits.max_sectors;
1249 }
1250 
1251 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1252 {
1253 	return q->limits.max_hw_sectors;
1254 }
1255 
1256 static inline unsigned short queue_max_segments(struct request_queue *q)
1257 {
1258 	return q->limits.max_segments;
1259 }
1260 
1261 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1262 {
1263 	return q->limits.max_discard_segments;
1264 }
1265 
1266 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1267 {
1268 	return q->limits.max_segment_size;
1269 }
1270 
1271 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1272 {
1273 	int retval = 512;
1274 
1275 	if (q && q->limits.logical_block_size)
1276 		retval = q->limits.logical_block_size;
1277 
1278 	return retval;
1279 }
1280 
1281 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1282 {
1283 	return queue_logical_block_size(bdev_get_queue(bdev));
1284 }
1285 
1286 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1287 {
1288 	return q->limits.physical_block_size;
1289 }
1290 
1291 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1292 {
1293 	return queue_physical_block_size(bdev_get_queue(bdev));
1294 }
1295 
1296 static inline unsigned int queue_io_min(struct request_queue *q)
1297 {
1298 	return q->limits.io_min;
1299 }
1300 
1301 static inline int bdev_io_min(struct block_device *bdev)
1302 {
1303 	return queue_io_min(bdev_get_queue(bdev));
1304 }
1305 
1306 static inline unsigned int queue_io_opt(struct request_queue *q)
1307 {
1308 	return q->limits.io_opt;
1309 }
1310 
1311 static inline int bdev_io_opt(struct block_device *bdev)
1312 {
1313 	return queue_io_opt(bdev_get_queue(bdev));
1314 }
1315 
1316 static inline int queue_alignment_offset(struct request_queue *q)
1317 {
1318 	if (q->limits.misaligned)
1319 		return -1;
1320 
1321 	return q->limits.alignment_offset;
1322 }
1323 
1324 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1325 {
1326 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1327 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1328 		<< SECTOR_SHIFT;
1329 
1330 	return (granularity + lim->alignment_offset - alignment) % granularity;
1331 }
1332 
1333 static inline int bdev_alignment_offset(struct block_device *bdev)
1334 {
1335 	struct request_queue *q = bdev_get_queue(bdev);
1336 
1337 	if (q->limits.misaligned)
1338 		return -1;
1339 
1340 	if (bdev != bdev->bd_contains)
1341 		return bdev->bd_part->alignment_offset;
1342 
1343 	return q->limits.alignment_offset;
1344 }
1345 
1346 static inline int queue_discard_alignment(struct request_queue *q)
1347 {
1348 	if (q->limits.discard_misaligned)
1349 		return -1;
1350 
1351 	return q->limits.discard_alignment;
1352 }
1353 
1354 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1355 {
1356 	unsigned int alignment, granularity, offset;
1357 
1358 	if (!lim->max_discard_sectors)
1359 		return 0;
1360 
1361 	/* Why are these in bytes, not sectors? */
1362 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1363 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1364 	if (!granularity)
1365 		return 0;
1366 
1367 	/* Offset of the partition start in 'granularity' sectors */
1368 	offset = sector_div(sector, granularity);
1369 
1370 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1371 	offset = (granularity + alignment - offset) % granularity;
1372 
1373 	/* Turn it back into bytes, gaah */
1374 	return offset << SECTOR_SHIFT;
1375 }
1376 
1377 static inline int bdev_discard_alignment(struct block_device *bdev)
1378 {
1379 	struct request_queue *q = bdev_get_queue(bdev);
1380 
1381 	if (bdev != bdev->bd_contains)
1382 		return bdev->bd_part->discard_alignment;
1383 
1384 	return q->limits.discard_alignment;
1385 }
1386 
1387 static inline unsigned int bdev_write_same(struct block_device *bdev)
1388 {
1389 	struct request_queue *q = bdev_get_queue(bdev);
1390 
1391 	if (q)
1392 		return q->limits.max_write_same_sectors;
1393 
1394 	return 0;
1395 }
1396 
1397 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1398 {
1399 	struct request_queue *q = bdev_get_queue(bdev);
1400 
1401 	if (q)
1402 		return q->limits.max_write_zeroes_sectors;
1403 
1404 	return 0;
1405 }
1406 
1407 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1408 {
1409 	struct request_queue *q = bdev_get_queue(bdev);
1410 
1411 	if (q)
1412 		return blk_queue_zoned_model(q);
1413 
1414 	return BLK_ZONED_NONE;
1415 }
1416 
1417 static inline bool bdev_is_zoned(struct block_device *bdev)
1418 {
1419 	struct request_queue *q = bdev_get_queue(bdev);
1420 
1421 	if (q)
1422 		return blk_queue_is_zoned(q);
1423 
1424 	return false;
1425 }
1426 
1427 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1428 {
1429 	struct request_queue *q = bdev_get_queue(bdev);
1430 
1431 	if (q)
1432 		return blk_queue_zone_sectors(q);
1433 	return 0;
1434 }
1435 
1436 static inline int queue_dma_alignment(struct request_queue *q)
1437 {
1438 	return q ? q->dma_alignment : 511;
1439 }
1440 
1441 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1442 				 unsigned int len)
1443 {
1444 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1445 	return !(addr & alignment) && !(len & alignment);
1446 }
1447 
1448 /* assumes size > 256 */
1449 static inline unsigned int blksize_bits(unsigned int size)
1450 {
1451 	unsigned int bits = 8;
1452 	do {
1453 		bits++;
1454 		size >>= 1;
1455 	} while (size > 256);
1456 	return bits;
1457 }
1458 
1459 static inline unsigned int block_size(struct block_device *bdev)
1460 {
1461 	return bdev->bd_block_size;
1462 }
1463 
1464 typedef struct {struct page *v;} Sector;
1465 
1466 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1467 
1468 static inline void put_dev_sector(Sector p)
1469 {
1470 	put_page(p.v);
1471 }
1472 
1473 int kblockd_schedule_work(struct work_struct *work);
1474 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1475 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1476 
1477 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1478 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1479 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1480 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1481 
1482 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1483 
1484 enum blk_integrity_flags {
1485 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1486 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1487 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1488 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1489 };
1490 
1491 struct blk_integrity_iter {
1492 	void			*prot_buf;
1493 	void			*data_buf;
1494 	sector_t		seed;
1495 	unsigned int		data_size;
1496 	unsigned short		interval;
1497 	const char		*disk_name;
1498 };
1499 
1500 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1501 
1502 struct blk_integrity_profile {
1503 	integrity_processing_fn		*generate_fn;
1504 	integrity_processing_fn		*verify_fn;
1505 	const char			*name;
1506 };
1507 
1508 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1509 extern void blk_integrity_unregister(struct gendisk *);
1510 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1511 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1512 				   struct scatterlist *);
1513 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1514 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1515 				   struct request *);
1516 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1517 				    struct bio *);
1518 
1519 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1520 {
1521 	struct blk_integrity *bi = &disk->queue->integrity;
1522 
1523 	if (!bi->profile)
1524 		return NULL;
1525 
1526 	return bi;
1527 }
1528 
1529 static inline
1530 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1531 {
1532 	return blk_get_integrity(bdev->bd_disk);
1533 }
1534 
1535 static inline bool blk_integrity_rq(struct request *rq)
1536 {
1537 	return rq->cmd_flags & REQ_INTEGRITY;
1538 }
1539 
1540 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1541 						    unsigned int segs)
1542 {
1543 	q->limits.max_integrity_segments = segs;
1544 }
1545 
1546 static inline unsigned short
1547 queue_max_integrity_segments(struct request_queue *q)
1548 {
1549 	return q->limits.max_integrity_segments;
1550 }
1551 
1552 /**
1553  * bio_integrity_intervals - Return number of integrity intervals for a bio
1554  * @bi:		blk_integrity profile for device
1555  * @sectors:	Size of the bio in 512-byte sectors
1556  *
1557  * Description: The block layer calculates everything in 512 byte
1558  * sectors but integrity metadata is done in terms of the data integrity
1559  * interval size of the storage device.  Convert the block layer sectors
1560  * to the appropriate number of integrity intervals.
1561  */
1562 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1563 						   unsigned int sectors)
1564 {
1565 	return sectors >> (bi->interval_exp - 9);
1566 }
1567 
1568 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1569 					       unsigned int sectors)
1570 {
1571 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1572 }
1573 
1574 /*
1575  * Return the first bvec that contains integrity data.  Only drivers that are
1576  * limited to a single integrity segment should use this helper.
1577  */
1578 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1579 {
1580 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1581 		return NULL;
1582 	return rq->bio->bi_integrity->bip_vec;
1583 }
1584 
1585 #else /* CONFIG_BLK_DEV_INTEGRITY */
1586 
1587 struct bio;
1588 struct block_device;
1589 struct gendisk;
1590 struct blk_integrity;
1591 
1592 static inline int blk_integrity_rq(struct request *rq)
1593 {
1594 	return 0;
1595 }
1596 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1597 					    struct bio *b)
1598 {
1599 	return 0;
1600 }
1601 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1602 					  struct bio *b,
1603 					  struct scatterlist *s)
1604 {
1605 	return 0;
1606 }
1607 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1608 {
1609 	return NULL;
1610 }
1611 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1612 {
1613 	return NULL;
1614 }
1615 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1616 {
1617 	return 0;
1618 }
1619 static inline void blk_integrity_register(struct gendisk *d,
1620 					 struct blk_integrity *b)
1621 {
1622 }
1623 static inline void blk_integrity_unregister(struct gendisk *d)
1624 {
1625 }
1626 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1627 						    unsigned int segs)
1628 {
1629 }
1630 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1631 {
1632 	return 0;
1633 }
1634 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1635 					  struct request *r1,
1636 					  struct request *r2)
1637 {
1638 	return true;
1639 }
1640 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1641 					   struct request *r,
1642 					   struct bio *b)
1643 {
1644 	return true;
1645 }
1646 
1647 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1648 						   unsigned int sectors)
1649 {
1650 	return 0;
1651 }
1652 
1653 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1654 					       unsigned int sectors)
1655 {
1656 	return 0;
1657 }
1658 
1659 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1660 {
1661 	return NULL;
1662 }
1663 
1664 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1665 
1666 struct block_device_operations {
1667 	int (*open) (struct block_device *, fmode_t);
1668 	void (*release) (struct gendisk *, fmode_t);
1669 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1670 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1671 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1672 	unsigned int (*check_events) (struct gendisk *disk,
1673 				      unsigned int clearing);
1674 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1675 	int (*media_changed) (struct gendisk *);
1676 	void (*unlock_native_capacity) (struct gendisk *);
1677 	int (*revalidate_disk) (struct gendisk *);
1678 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1679 	/* this callback is with swap_lock and sometimes page table lock held */
1680 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1681 	int (*report_zones)(struct gendisk *, sector_t sector,
1682 			    struct blk_zone *zones, unsigned int *nr_zones,
1683 			    gfp_t gfp_mask);
1684 	struct module *owner;
1685 	const struct pr_ops *pr_ops;
1686 };
1687 
1688 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1689 				 unsigned long);
1690 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1691 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1692 						struct writeback_control *);
1693 
1694 #ifdef CONFIG_BLK_DEV_ZONED
1695 bool blk_req_needs_zone_write_lock(struct request *rq);
1696 void __blk_req_zone_write_lock(struct request *rq);
1697 void __blk_req_zone_write_unlock(struct request *rq);
1698 
1699 static inline void blk_req_zone_write_lock(struct request *rq)
1700 {
1701 	if (blk_req_needs_zone_write_lock(rq))
1702 		__blk_req_zone_write_lock(rq);
1703 }
1704 
1705 static inline void blk_req_zone_write_unlock(struct request *rq)
1706 {
1707 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1708 		__blk_req_zone_write_unlock(rq);
1709 }
1710 
1711 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1712 {
1713 	return rq->q->seq_zones_wlock &&
1714 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1715 }
1716 
1717 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1718 {
1719 	if (!blk_req_needs_zone_write_lock(rq))
1720 		return true;
1721 	return !blk_req_zone_is_write_locked(rq);
1722 }
1723 #else
1724 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1725 {
1726 	return false;
1727 }
1728 
1729 static inline void blk_req_zone_write_lock(struct request *rq)
1730 {
1731 }
1732 
1733 static inline void blk_req_zone_write_unlock(struct request *rq)
1734 {
1735 }
1736 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1737 {
1738 	return false;
1739 }
1740 
1741 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1742 {
1743 	return true;
1744 }
1745 #endif /* CONFIG_BLK_DEV_ZONED */
1746 
1747 #else /* CONFIG_BLOCK */
1748 
1749 struct block_device;
1750 
1751 /*
1752  * stubs for when the block layer is configured out
1753  */
1754 #define buffer_heads_over_limit 0
1755 
1756 static inline long nr_blockdev_pages(void)
1757 {
1758 	return 0;
1759 }
1760 
1761 struct blk_plug {
1762 };
1763 
1764 static inline void blk_start_plug(struct blk_plug *plug)
1765 {
1766 }
1767 
1768 static inline void blk_finish_plug(struct blk_plug *plug)
1769 {
1770 }
1771 
1772 static inline void blk_flush_plug(struct task_struct *task)
1773 {
1774 }
1775 
1776 static inline void blk_schedule_flush_plug(struct task_struct *task)
1777 {
1778 }
1779 
1780 
1781 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1782 {
1783 	return false;
1784 }
1785 
1786 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1787 				     sector_t *error_sector)
1788 {
1789 	return 0;
1790 }
1791 
1792 #endif /* CONFIG_BLOCK */
1793 
1794 static inline void blk_wake_io_task(struct task_struct *waiter)
1795 {
1796 	/*
1797 	 * If we're polling, the task itself is doing the completions. For
1798 	 * that case, we don't need to signal a wakeup, it's enough to just
1799 	 * mark us as RUNNING.
1800 	 */
1801 	if (waiter == current)
1802 		__set_current_state(TASK_RUNNING);
1803 	else
1804 		wake_up_process(waiter);
1805 }
1806 
1807 #endif
1808