1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/timer.h> 12 #include <linux/workqueue.h> 13 #include <linux/pagemap.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 28 struct module; 29 struct scsi_ioctl_command; 30 31 struct request_queue; 32 struct elevator_queue; 33 struct blk_trace; 34 struct request; 35 struct sg_io_hdr; 36 struct bsg_job; 37 struct blkcg_gq; 38 struct blk_flush_queue; 39 struct pr_ops; 40 struct rq_qos; 41 struct blk_queue_stats; 42 struct blk_stat_callback; 43 struct blk_keyslot_manager; 44 45 #define BLKDEV_MIN_RQ 4 46 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 5 59 60 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 61 62 /* 63 * request flags */ 64 typedef __u32 __bitwise req_flags_t; 65 66 /* elevator knows about this request */ 67 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 68 /* drive already may have started this one */ 69 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 70 /* may not be passed by ioscheduler */ 71 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 72 /* request for flush sequence */ 73 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 74 /* merge of different types, fail separately */ 75 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 76 /* track inflight for MQ */ 77 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 78 /* don't call prep for this one */ 79 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 80 /* set for "ide_preempt" requests and also for requests for which the SCSI 81 "quiesce" state must be ignored. */ 82 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 83 /* vaguely specified driver internal error. Ignored by the block layer */ 84 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 85 /* don't warn about errors */ 86 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 87 /* elevator private data attached */ 88 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 89 /* account into disk and partition IO statistics */ 90 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 91 /* request came from our alloc pool */ 92 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 93 /* runtime pm request */ 94 #define RQF_PM ((__force req_flags_t)(1 << 15)) 95 /* on IO scheduler merge hash */ 96 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 97 /* track IO completion time */ 98 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 99 /* Look at ->special_vec for the actual data payload instead of the 100 bio chain. */ 101 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 102 /* The per-zone write lock is held for this request */ 103 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 104 /* already slept for hybrid poll */ 105 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 106 /* ->timeout has been called, don't expire again */ 107 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 108 109 /* flags that prevent us from merging requests: */ 110 #define RQF_NOMERGE_FLAGS \ 111 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 112 113 /* 114 * Request state for blk-mq. 115 */ 116 enum mq_rq_state { 117 MQ_RQ_IDLE = 0, 118 MQ_RQ_IN_FLIGHT = 1, 119 MQ_RQ_COMPLETE = 2, 120 }; 121 122 /* 123 * Try to put the fields that are referenced together in the same cacheline. 124 * 125 * If you modify this structure, make sure to update blk_rq_init() and 126 * especially blk_mq_rq_ctx_init() to take care of the added fields. 127 */ 128 struct request { 129 struct request_queue *q; 130 struct blk_mq_ctx *mq_ctx; 131 struct blk_mq_hw_ctx *mq_hctx; 132 133 unsigned int cmd_flags; /* op and common flags */ 134 req_flags_t rq_flags; 135 136 int tag; 137 int internal_tag; 138 139 /* the following two fields are internal, NEVER access directly */ 140 unsigned int __data_len; /* total data len */ 141 sector_t __sector; /* sector cursor */ 142 143 struct bio *bio; 144 struct bio *biotail; 145 146 struct list_head queuelist; 147 148 /* 149 * The hash is used inside the scheduler, and killed once the 150 * request reaches the dispatch list. The ipi_list is only used 151 * to queue the request for softirq completion, which is long 152 * after the request has been unhashed (and even removed from 153 * the dispatch list). 154 */ 155 union { 156 struct hlist_node hash; /* merge hash */ 157 struct list_head ipi_list; 158 }; 159 160 /* 161 * The rb_node is only used inside the io scheduler, requests 162 * are pruned when moved to the dispatch queue. So let the 163 * completion_data share space with the rb_node. 164 */ 165 union { 166 struct rb_node rb_node; /* sort/lookup */ 167 struct bio_vec special_vec; 168 void *completion_data; 169 int error_count; /* for legacy drivers, don't use */ 170 }; 171 172 /* 173 * Three pointers are available for the IO schedulers, if they need 174 * more they have to dynamically allocate it. Flush requests are 175 * never put on the IO scheduler. So let the flush fields share 176 * space with the elevator data. 177 */ 178 union { 179 struct { 180 struct io_cq *icq; 181 void *priv[2]; 182 } elv; 183 184 struct { 185 unsigned int seq; 186 struct list_head list; 187 rq_end_io_fn *saved_end_io; 188 } flush; 189 }; 190 191 struct gendisk *rq_disk; 192 struct hd_struct *part; 193 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 194 /* Time that the first bio started allocating this request. */ 195 u64 alloc_time_ns; 196 #endif 197 /* Time that this request was allocated for this IO. */ 198 u64 start_time_ns; 199 /* Time that I/O was submitted to the device. */ 200 u64 io_start_time_ns; 201 202 #ifdef CONFIG_BLK_WBT 203 unsigned short wbt_flags; 204 #endif 205 /* 206 * rq sectors used for blk stats. It has the same value 207 * with blk_rq_sectors(rq), except that it never be zeroed 208 * by completion. 209 */ 210 unsigned short stats_sectors; 211 212 /* 213 * Number of scatter-gather DMA addr+len pairs after 214 * physical address coalescing is performed. 215 */ 216 unsigned short nr_phys_segments; 217 218 #if defined(CONFIG_BLK_DEV_INTEGRITY) 219 unsigned short nr_integrity_segments; 220 #endif 221 222 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 223 struct bio_crypt_ctx *crypt_ctx; 224 struct blk_ksm_keyslot *crypt_keyslot; 225 #endif 226 227 unsigned short write_hint; 228 unsigned short ioprio; 229 230 enum mq_rq_state state; 231 refcount_t ref; 232 233 unsigned int timeout; 234 unsigned long deadline; 235 236 union { 237 struct __call_single_data csd; 238 u64 fifo_time; 239 }; 240 241 /* 242 * completion callback. 243 */ 244 rq_end_io_fn *end_io; 245 void *end_io_data; 246 }; 247 248 static inline bool blk_op_is_scsi(unsigned int op) 249 { 250 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 251 } 252 253 static inline bool blk_op_is_private(unsigned int op) 254 { 255 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 256 } 257 258 static inline bool blk_rq_is_scsi(struct request *rq) 259 { 260 return blk_op_is_scsi(req_op(rq)); 261 } 262 263 static inline bool blk_rq_is_private(struct request *rq) 264 { 265 return blk_op_is_private(req_op(rq)); 266 } 267 268 static inline bool blk_rq_is_passthrough(struct request *rq) 269 { 270 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 271 } 272 273 static inline bool bio_is_passthrough(struct bio *bio) 274 { 275 unsigned op = bio_op(bio); 276 277 return blk_op_is_scsi(op) || blk_op_is_private(op); 278 } 279 280 static inline unsigned short req_get_ioprio(struct request *req) 281 { 282 return req->ioprio; 283 } 284 285 #include <linux/elevator.h> 286 287 struct blk_queue_ctx; 288 289 struct bio_vec; 290 291 enum blk_eh_timer_return { 292 BLK_EH_DONE, /* drivers has completed the command */ 293 BLK_EH_RESET_TIMER, /* reset timer and try again */ 294 }; 295 296 enum blk_queue_state { 297 Queue_down, 298 Queue_up, 299 }; 300 301 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 302 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 303 304 #define BLK_SCSI_MAX_CMDS (256) 305 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 306 307 /* 308 * Zoned block device models (zoned limit). 309 * 310 * Note: This needs to be ordered from the least to the most severe 311 * restrictions for the inheritance in blk_stack_limits() to work. 312 */ 313 enum blk_zoned_model { 314 BLK_ZONED_NONE = 0, /* Regular block device */ 315 BLK_ZONED_HA, /* Host-aware zoned block device */ 316 BLK_ZONED_HM, /* Host-managed zoned block device */ 317 }; 318 319 struct queue_limits { 320 unsigned long bounce_pfn; 321 unsigned long seg_boundary_mask; 322 unsigned long virt_boundary_mask; 323 324 unsigned int max_hw_sectors; 325 unsigned int max_dev_sectors; 326 unsigned int chunk_sectors; 327 unsigned int max_sectors; 328 unsigned int max_segment_size; 329 unsigned int physical_block_size; 330 unsigned int logical_block_size; 331 unsigned int alignment_offset; 332 unsigned int io_min; 333 unsigned int io_opt; 334 unsigned int max_discard_sectors; 335 unsigned int max_hw_discard_sectors; 336 unsigned int max_write_same_sectors; 337 unsigned int max_write_zeroes_sectors; 338 unsigned int max_zone_append_sectors; 339 unsigned int discard_granularity; 340 unsigned int discard_alignment; 341 342 unsigned short max_segments; 343 unsigned short max_integrity_segments; 344 unsigned short max_discard_segments; 345 346 unsigned char misaligned; 347 unsigned char discard_misaligned; 348 unsigned char raid_partial_stripes_expensive; 349 enum blk_zoned_model zoned; 350 }; 351 352 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 353 void *data); 354 355 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 356 357 #ifdef CONFIG_BLK_DEV_ZONED 358 359 #define BLK_ALL_ZONES ((unsigned int)-1) 360 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 361 unsigned int nr_zones, report_zones_cb cb, void *data); 362 unsigned int blkdev_nr_zones(struct gendisk *disk); 363 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 364 sector_t sectors, sector_t nr_sectors, 365 gfp_t gfp_mask); 366 int blk_revalidate_disk_zones(struct gendisk *disk, 367 void (*update_driver_data)(struct gendisk *disk)); 368 369 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 370 unsigned int cmd, unsigned long arg); 371 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 372 unsigned int cmd, unsigned long arg); 373 374 #else /* CONFIG_BLK_DEV_ZONED */ 375 376 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 377 { 378 return 0; 379 } 380 381 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 382 fmode_t mode, unsigned int cmd, 383 unsigned long arg) 384 { 385 return -ENOTTY; 386 } 387 388 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 389 fmode_t mode, unsigned int cmd, 390 unsigned long arg) 391 { 392 return -ENOTTY; 393 } 394 395 #endif /* CONFIG_BLK_DEV_ZONED */ 396 397 struct request_queue { 398 struct request *last_merge; 399 struct elevator_queue *elevator; 400 401 struct blk_queue_stats *stats; 402 struct rq_qos *rq_qos; 403 404 const struct blk_mq_ops *mq_ops; 405 406 /* sw queues */ 407 struct blk_mq_ctx __percpu *queue_ctx; 408 409 unsigned int queue_depth; 410 411 /* hw dispatch queues */ 412 struct blk_mq_hw_ctx **queue_hw_ctx; 413 unsigned int nr_hw_queues; 414 415 struct backing_dev_info *backing_dev_info; 416 417 /* 418 * The queue owner gets to use this for whatever they like. 419 * ll_rw_blk doesn't touch it. 420 */ 421 void *queuedata; 422 423 /* 424 * various queue flags, see QUEUE_* below 425 */ 426 unsigned long queue_flags; 427 /* 428 * Number of contexts that have called blk_set_pm_only(). If this 429 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 430 * processed. 431 */ 432 atomic_t pm_only; 433 434 /* 435 * ida allocated id for this queue. Used to index queues from 436 * ioctx. 437 */ 438 int id; 439 440 /* 441 * queue needs bounce pages for pages above this limit 442 */ 443 gfp_t bounce_gfp; 444 445 spinlock_t queue_lock; 446 447 /* 448 * queue kobject 449 */ 450 struct kobject kobj; 451 452 /* 453 * mq queue kobject 454 */ 455 struct kobject *mq_kobj; 456 457 #ifdef CONFIG_BLK_DEV_INTEGRITY 458 struct blk_integrity integrity; 459 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 460 461 #ifdef CONFIG_PM 462 struct device *dev; 463 int rpm_status; 464 unsigned int nr_pending; 465 #endif 466 467 /* 468 * queue settings 469 */ 470 unsigned long nr_requests; /* Max # of requests */ 471 472 unsigned int dma_pad_mask; 473 unsigned int dma_alignment; 474 475 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 476 /* Inline crypto capabilities */ 477 struct blk_keyslot_manager *ksm; 478 #endif 479 480 unsigned int rq_timeout; 481 int poll_nsec; 482 483 struct blk_stat_callback *poll_cb; 484 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 485 486 struct timer_list timeout; 487 struct work_struct timeout_work; 488 489 struct list_head icq_list; 490 #ifdef CONFIG_BLK_CGROUP 491 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 492 struct blkcg_gq *root_blkg; 493 struct list_head blkg_list; 494 #endif 495 496 struct queue_limits limits; 497 498 unsigned int required_elevator_features; 499 500 #ifdef CONFIG_BLK_DEV_ZONED 501 /* 502 * Zoned block device information for request dispatch control. 503 * nr_zones is the total number of zones of the device. This is always 504 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 505 * bits which indicates if a zone is conventional (bit set) or 506 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 507 * bits which indicates if a zone is write locked, that is, if a write 508 * request targeting the zone was dispatched. All three fields are 509 * initialized by the low level device driver (e.g. scsi/sd.c). 510 * Stacking drivers (device mappers) may or may not initialize 511 * these fields. 512 * 513 * Reads of this information must be protected with blk_queue_enter() / 514 * blk_queue_exit(). Modifying this information is only allowed while 515 * no requests are being processed. See also blk_mq_freeze_queue() and 516 * blk_mq_unfreeze_queue(). 517 */ 518 unsigned int nr_zones; 519 unsigned long *conv_zones_bitmap; 520 unsigned long *seq_zones_wlock; 521 unsigned int max_open_zones; 522 unsigned int max_active_zones; 523 #endif /* CONFIG_BLK_DEV_ZONED */ 524 525 /* 526 * sg stuff 527 */ 528 unsigned int sg_timeout; 529 unsigned int sg_reserved_size; 530 int node; 531 struct mutex debugfs_mutex; 532 #ifdef CONFIG_BLK_DEV_IO_TRACE 533 struct blk_trace __rcu *blk_trace; 534 #endif 535 /* 536 * for flush operations 537 */ 538 struct blk_flush_queue *fq; 539 540 struct list_head requeue_list; 541 spinlock_t requeue_lock; 542 struct delayed_work requeue_work; 543 544 struct mutex sysfs_lock; 545 struct mutex sysfs_dir_lock; 546 547 /* 548 * for reusing dead hctx instance in case of updating 549 * nr_hw_queues 550 */ 551 struct list_head unused_hctx_list; 552 spinlock_t unused_hctx_lock; 553 554 int mq_freeze_depth; 555 556 #if defined(CONFIG_BLK_DEV_BSG) 557 struct bsg_class_device bsg_dev; 558 #endif 559 560 #ifdef CONFIG_BLK_DEV_THROTTLING 561 /* Throttle data */ 562 struct throtl_data *td; 563 #endif 564 struct rcu_head rcu_head; 565 wait_queue_head_t mq_freeze_wq; 566 /* 567 * Protect concurrent access to q_usage_counter by 568 * percpu_ref_kill() and percpu_ref_reinit(). 569 */ 570 struct mutex mq_freeze_lock; 571 struct percpu_ref q_usage_counter; 572 573 struct blk_mq_tag_set *tag_set; 574 struct list_head tag_set_list; 575 struct bio_set bio_split; 576 577 struct dentry *debugfs_dir; 578 579 #ifdef CONFIG_BLK_DEBUG_FS 580 struct dentry *sched_debugfs_dir; 581 struct dentry *rqos_debugfs_dir; 582 #endif 583 584 bool mq_sysfs_init_done; 585 586 size_t cmd_size; 587 588 #define BLK_MAX_WRITE_HINTS 5 589 u64 write_hints[BLK_MAX_WRITE_HINTS]; 590 }; 591 592 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 593 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 594 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 595 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 596 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 597 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 598 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 599 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 600 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 601 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 602 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 603 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 604 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 605 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 606 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 607 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 608 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 609 #define QUEUE_FLAG_WC 17 /* Write back caching */ 610 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 611 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 612 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 613 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 614 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 615 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 616 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 617 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 618 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 619 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 620 621 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 622 (1 << QUEUE_FLAG_SAME_COMP)) 623 624 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 625 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 626 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 627 628 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 629 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 630 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 631 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 632 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 633 #define blk_queue_noxmerges(q) \ 634 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 635 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 636 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 637 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 638 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 639 #define blk_queue_zone_resetall(q) \ 640 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 641 #define blk_queue_secure_erase(q) \ 642 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 643 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 644 #define blk_queue_scsi_passthrough(q) \ 645 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 646 #define blk_queue_pci_p2pdma(q) \ 647 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 648 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 649 #define blk_queue_rq_alloc_time(q) \ 650 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 651 #else 652 #define blk_queue_rq_alloc_time(q) false 653 #endif 654 655 #define blk_noretry_request(rq) \ 656 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 657 REQ_FAILFAST_DRIVER)) 658 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 659 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 660 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 661 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 662 663 extern void blk_set_pm_only(struct request_queue *q); 664 extern void blk_clear_pm_only(struct request_queue *q); 665 666 static inline bool blk_account_rq(struct request *rq) 667 { 668 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 669 } 670 671 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 672 673 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 674 675 #define rq_dma_dir(rq) \ 676 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 677 678 #define dma_map_bvec(dev, bv, dir, attrs) \ 679 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 680 (dir), (attrs)) 681 682 static inline bool queue_is_mq(struct request_queue *q) 683 { 684 return q->mq_ops; 685 } 686 687 static inline enum blk_zoned_model 688 blk_queue_zoned_model(struct request_queue *q) 689 { 690 return q->limits.zoned; 691 } 692 693 static inline bool blk_queue_is_zoned(struct request_queue *q) 694 { 695 switch (blk_queue_zoned_model(q)) { 696 case BLK_ZONED_HA: 697 case BLK_ZONED_HM: 698 return true; 699 default: 700 return false; 701 } 702 } 703 704 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 705 { 706 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 707 } 708 709 #ifdef CONFIG_BLK_DEV_ZONED 710 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 711 { 712 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 713 } 714 715 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 716 sector_t sector) 717 { 718 if (!blk_queue_is_zoned(q)) 719 return 0; 720 return sector >> ilog2(q->limits.chunk_sectors); 721 } 722 723 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 724 sector_t sector) 725 { 726 if (!blk_queue_is_zoned(q)) 727 return false; 728 if (!q->conv_zones_bitmap) 729 return true; 730 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 731 } 732 733 static inline void blk_queue_max_open_zones(struct request_queue *q, 734 unsigned int max_open_zones) 735 { 736 q->max_open_zones = max_open_zones; 737 } 738 739 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 740 { 741 return q->max_open_zones; 742 } 743 744 static inline void blk_queue_max_active_zones(struct request_queue *q, 745 unsigned int max_active_zones) 746 { 747 q->max_active_zones = max_active_zones; 748 } 749 750 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 751 { 752 return q->max_active_zones; 753 } 754 #else /* CONFIG_BLK_DEV_ZONED */ 755 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 756 { 757 return 0; 758 } 759 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 760 sector_t sector) 761 { 762 return false; 763 } 764 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 765 sector_t sector) 766 { 767 return 0; 768 } 769 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 770 { 771 return 0; 772 } 773 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 774 { 775 return 0; 776 } 777 #endif /* CONFIG_BLK_DEV_ZONED */ 778 779 static inline bool rq_is_sync(struct request *rq) 780 { 781 return op_is_sync(rq->cmd_flags); 782 } 783 784 static inline bool rq_mergeable(struct request *rq) 785 { 786 if (blk_rq_is_passthrough(rq)) 787 return false; 788 789 if (req_op(rq) == REQ_OP_FLUSH) 790 return false; 791 792 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 793 return false; 794 795 if (req_op(rq) == REQ_OP_ZONE_APPEND) 796 return false; 797 798 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 799 return false; 800 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 801 return false; 802 803 return true; 804 } 805 806 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 807 { 808 if (bio_page(a) == bio_page(b) && 809 bio_offset(a) == bio_offset(b)) 810 return true; 811 812 return false; 813 } 814 815 static inline unsigned int blk_queue_depth(struct request_queue *q) 816 { 817 if (q->queue_depth) 818 return q->queue_depth; 819 820 return q->nr_requests; 821 } 822 823 extern unsigned long blk_max_low_pfn, blk_max_pfn; 824 825 /* 826 * standard bounce addresses: 827 * 828 * BLK_BOUNCE_HIGH : bounce all highmem pages 829 * BLK_BOUNCE_ANY : don't bounce anything 830 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 831 */ 832 833 #if BITS_PER_LONG == 32 834 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 835 #else 836 #define BLK_BOUNCE_HIGH -1ULL 837 #endif 838 #define BLK_BOUNCE_ANY (-1ULL) 839 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 840 841 /* 842 * default timeout for SG_IO if none specified 843 */ 844 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 845 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 846 847 struct rq_map_data { 848 struct page **pages; 849 int page_order; 850 int nr_entries; 851 unsigned long offset; 852 int null_mapped; 853 int from_user; 854 }; 855 856 struct req_iterator { 857 struct bvec_iter iter; 858 struct bio *bio; 859 }; 860 861 /* This should not be used directly - use rq_for_each_segment */ 862 #define for_each_bio(_bio) \ 863 for (; _bio; _bio = _bio->bi_next) 864 #define __rq_for_each_bio(_bio, rq) \ 865 if ((rq->bio)) \ 866 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 867 868 #define rq_for_each_segment(bvl, _rq, _iter) \ 869 __rq_for_each_bio(_iter.bio, _rq) \ 870 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 871 872 #define rq_for_each_bvec(bvl, _rq, _iter) \ 873 __rq_for_each_bio(_iter.bio, _rq) \ 874 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 875 876 #define rq_iter_last(bvec, _iter) \ 877 (_iter.bio->bi_next == NULL && \ 878 bio_iter_last(bvec, _iter.iter)) 879 880 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 881 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 882 #endif 883 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 884 extern void rq_flush_dcache_pages(struct request *rq); 885 #else 886 static inline void rq_flush_dcache_pages(struct request *rq) 887 { 888 } 889 #endif 890 891 extern int blk_register_queue(struct gendisk *disk); 892 extern void blk_unregister_queue(struct gendisk *disk); 893 blk_qc_t submit_bio_noacct(struct bio *bio); 894 extern void blk_rq_init(struct request_queue *q, struct request *rq); 895 extern void blk_put_request(struct request *); 896 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 897 blk_mq_req_flags_t flags); 898 extern int blk_lld_busy(struct request_queue *q); 899 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 900 struct bio_set *bs, gfp_t gfp_mask, 901 int (*bio_ctr)(struct bio *, struct bio *, void *), 902 void *data); 903 extern void blk_rq_unprep_clone(struct request *rq); 904 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 905 struct request *rq); 906 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 907 extern void blk_queue_split(struct bio **); 908 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 909 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 910 unsigned int, void __user *); 911 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 912 unsigned int, void __user *); 913 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 914 struct scsi_ioctl_command __user *); 915 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 916 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 917 918 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 919 extern void blk_queue_exit(struct request_queue *q); 920 extern void blk_sync_queue(struct request_queue *q); 921 extern int blk_rq_map_user(struct request_queue *, struct request *, 922 struct rq_map_data *, void __user *, unsigned long, 923 gfp_t); 924 extern int blk_rq_unmap_user(struct bio *); 925 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 926 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 927 struct rq_map_data *, const struct iov_iter *, 928 gfp_t); 929 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 930 struct request *, int); 931 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 932 struct request *, int, rq_end_io_fn *); 933 934 /* Helper to convert REQ_OP_XXX to its string format XXX */ 935 extern const char *blk_op_str(unsigned int op); 936 937 int blk_status_to_errno(blk_status_t status); 938 blk_status_t errno_to_blk_status(int errno); 939 940 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 941 942 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 943 { 944 return bdev->bd_disk->queue; /* this is never NULL */ 945 } 946 947 /* 948 * The basic unit of block I/O is a sector. It is used in a number of contexts 949 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 950 * bytes. Variables of type sector_t represent an offset or size that is a 951 * multiple of 512 bytes. Hence these two constants. 952 */ 953 #ifndef SECTOR_SHIFT 954 #define SECTOR_SHIFT 9 955 #endif 956 #ifndef SECTOR_SIZE 957 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 958 #endif 959 960 /* 961 * blk_rq_pos() : the current sector 962 * blk_rq_bytes() : bytes left in the entire request 963 * blk_rq_cur_bytes() : bytes left in the current segment 964 * blk_rq_err_bytes() : bytes left till the next error boundary 965 * blk_rq_sectors() : sectors left in the entire request 966 * blk_rq_cur_sectors() : sectors left in the current segment 967 * blk_rq_stats_sectors() : sectors of the entire request used for stats 968 */ 969 static inline sector_t blk_rq_pos(const struct request *rq) 970 { 971 return rq->__sector; 972 } 973 974 static inline unsigned int blk_rq_bytes(const struct request *rq) 975 { 976 return rq->__data_len; 977 } 978 979 static inline int blk_rq_cur_bytes(const struct request *rq) 980 { 981 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 982 } 983 984 extern unsigned int blk_rq_err_bytes(const struct request *rq); 985 986 static inline unsigned int blk_rq_sectors(const struct request *rq) 987 { 988 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 989 } 990 991 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 992 { 993 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 994 } 995 996 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 997 { 998 return rq->stats_sectors; 999 } 1000 1001 #ifdef CONFIG_BLK_DEV_ZONED 1002 1003 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1004 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1005 1006 static inline unsigned int blk_rq_zone_no(struct request *rq) 1007 { 1008 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1009 } 1010 1011 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1012 { 1013 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1014 } 1015 #endif /* CONFIG_BLK_DEV_ZONED */ 1016 1017 /* 1018 * Some commands like WRITE SAME have a payload or data transfer size which 1019 * is different from the size of the request. Any driver that supports such 1020 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1021 * calculate the data transfer size. 1022 */ 1023 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1024 { 1025 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1026 return rq->special_vec.bv_len; 1027 return blk_rq_bytes(rq); 1028 } 1029 1030 /* 1031 * Return the first full biovec in the request. The caller needs to check that 1032 * there are any bvecs before calling this helper. 1033 */ 1034 static inline struct bio_vec req_bvec(struct request *rq) 1035 { 1036 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1037 return rq->special_vec; 1038 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1039 } 1040 1041 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1042 int op) 1043 { 1044 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1045 return min(q->limits.max_discard_sectors, 1046 UINT_MAX >> SECTOR_SHIFT); 1047 1048 if (unlikely(op == REQ_OP_WRITE_SAME)) 1049 return q->limits.max_write_same_sectors; 1050 1051 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1052 return q->limits.max_write_zeroes_sectors; 1053 1054 return q->limits.max_sectors; 1055 } 1056 1057 /* 1058 * Return maximum size of a request at given offset. Only valid for 1059 * file system requests. 1060 */ 1061 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1062 sector_t offset) 1063 { 1064 if (!q->limits.chunk_sectors) 1065 return q->limits.max_sectors; 1066 1067 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors - 1068 (offset & (q->limits.chunk_sectors - 1)))); 1069 } 1070 1071 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1072 sector_t offset) 1073 { 1074 struct request_queue *q = rq->q; 1075 1076 if (blk_rq_is_passthrough(rq)) 1077 return q->limits.max_hw_sectors; 1078 1079 if (!q->limits.chunk_sectors || 1080 req_op(rq) == REQ_OP_DISCARD || 1081 req_op(rq) == REQ_OP_SECURE_ERASE) 1082 return blk_queue_get_max_sectors(q, req_op(rq)); 1083 1084 return min(blk_max_size_offset(q, offset), 1085 blk_queue_get_max_sectors(q, req_op(rq))); 1086 } 1087 1088 static inline unsigned int blk_rq_count_bios(struct request *rq) 1089 { 1090 unsigned int nr_bios = 0; 1091 struct bio *bio; 1092 1093 __rq_for_each_bio(bio, rq) 1094 nr_bios++; 1095 1096 return nr_bios; 1097 } 1098 1099 void blk_steal_bios(struct bio_list *list, struct request *rq); 1100 1101 /* 1102 * Request completion related functions. 1103 * 1104 * blk_update_request() completes given number of bytes and updates 1105 * the request without completing it. 1106 */ 1107 extern bool blk_update_request(struct request *rq, blk_status_t error, 1108 unsigned int nr_bytes); 1109 1110 extern void blk_abort_request(struct request *); 1111 1112 /* 1113 * Access functions for manipulating queue properties 1114 */ 1115 extern void blk_cleanup_queue(struct request_queue *); 1116 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1117 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1118 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1119 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1120 extern void blk_queue_max_discard_segments(struct request_queue *, 1121 unsigned short); 1122 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1123 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1124 unsigned int max_discard_sectors); 1125 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1126 unsigned int max_write_same_sectors); 1127 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1128 unsigned int max_write_same_sectors); 1129 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1130 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1131 unsigned int max_zone_append_sectors); 1132 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1133 extern void blk_queue_alignment_offset(struct request_queue *q, 1134 unsigned int alignment); 1135 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1136 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1137 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1138 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1139 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1140 extern void blk_set_default_limits(struct queue_limits *lim); 1141 extern void blk_set_stacking_limits(struct queue_limits *lim); 1142 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1143 sector_t offset); 1144 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1145 sector_t offset); 1146 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1147 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1148 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1149 extern void blk_queue_dma_alignment(struct request_queue *, int); 1150 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1151 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1152 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1153 extern void blk_queue_required_elevator_features(struct request_queue *q, 1154 unsigned int features); 1155 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1156 struct device *dev); 1157 1158 /* 1159 * Number of physical segments as sent to the device. 1160 * 1161 * Normally this is the number of discontiguous data segments sent by the 1162 * submitter. But for data-less command like discard we might have no 1163 * actual data segments submitted, but the driver might have to add it's 1164 * own special payload. In that case we still return 1 here so that this 1165 * special payload will be mapped. 1166 */ 1167 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1168 { 1169 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1170 return 1; 1171 return rq->nr_phys_segments; 1172 } 1173 1174 /* 1175 * Number of discard segments (or ranges) the driver needs to fill in. 1176 * Each discard bio merged into a request is counted as one segment. 1177 */ 1178 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1179 { 1180 return max_t(unsigned short, rq->nr_phys_segments, 1); 1181 } 1182 1183 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1184 struct scatterlist *sglist, struct scatterlist **last_sg); 1185 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1186 struct scatterlist *sglist) 1187 { 1188 struct scatterlist *last_sg = NULL; 1189 1190 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1191 } 1192 extern void blk_dump_rq_flags(struct request *, char *); 1193 1194 bool __must_check blk_get_queue(struct request_queue *); 1195 struct request_queue *blk_alloc_queue(int node_id); 1196 extern void blk_put_queue(struct request_queue *); 1197 extern void blk_set_queue_dying(struct request_queue *); 1198 1199 #ifdef CONFIG_BLOCK 1200 /* 1201 * blk_plug permits building a queue of related requests by holding the I/O 1202 * fragments for a short period. This allows merging of sequential requests 1203 * into single larger request. As the requests are moved from a per-task list to 1204 * the device's request_queue in a batch, this results in improved scalability 1205 * as the lock contention for request_queue lock is reduced. 1206 * 1207 * It is ok not to disable preemption when adding the request to the plug list 1208 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1209 * the plug list when the task sleeps by itself. For details, please see 1210 * schedule() where blk_schedule_flush_plug() is called. 1211 */ 1212 struct blk_plug { 1213 struct list_head mq_list; /* blk-mq requests */ 1214 struct list_head cb_list; /* md requires an unplug callback */ 1215 unsigned short rq_count; 1216 bool multiple_queues; 1217 bool nowait; 1218 }; 1219 #define BLK_MAX_REQUEST_COUNT 16 1220 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1221 1222 struct blk_plug_cb; 1223 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1224 struct blk_plug_cb { 1225 struct list_head list; 1226 blk_plug_cb_fn callback; 1227 void *data; 1228 }; 1229 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1230 void *data, int size); 1231 extern void blk_start_plug(struct blk_plug *); 1232 extern void blk_finish_plug(struct blk_plug *); 1233 extern void blk_flush_plug_list(struct blk_plug *, bool); 1234 1235 static inline void blk_flush_plug(struct task_struct *tsk) 1236 { 1237 struct blk_plug *plug = tsk->plug; 1238 1239 if (plug) 1240 blk_flush_plug_list(plug, false); 1241 } 1242 1243 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1244 { 1245 struct blk_plug *plug = tsk->plug; 1246 1247 if (plug) 1248 blk_flush_plug_list(plug, true); 1249 } 1250 1251 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1252 { 1253 struct blk_plug *plug = tsk->plug; 1254 1255 return plug && 1256 (!list_empty(&plug->mq_list) || 1257 !list_empty(&plug->cb_list)); 1258 } 1259 1260 int blkdev_issue_flush(struct block_device *, gfp_t); 1261 long nr_blockdev_pages(void); 1262 #else /* CONFIG_BLOCK */ 1263 struct blk_plug { 1264 }; 1265 1266 static inline void blk_start_plug(struct blk_plug *plug) 1267 { 1268 } 1269 1270 static inline void blk_finish_plug(struct blk_plug *plug) 1271 { 1272 } 1273 1274 static inline void blk_flush_plug(struct task_struct *task) 1275 { 1276 } 1277 1278 static inline void blk_schedule_flush_plug(struct task_struct *task) 1279 { 1280 } 1281 1282 1283 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1284 { 1285 return false; 1286 } 1287 1288 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1289 { 1290 return 0; 1291 } 1292 1293 static inline long nr_blockdev_pages(void) 1294 { 1295 return 0; 1296 } 1297 #endif /* CONFIG_BLOCK */ 1298 1299 extern void blk_io_schedule(void); 1300 1301 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1302 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1303 1304 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1305 1306 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1307 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1308 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1309 sector_t nr_sects, gfp_t gfp_mask, int flags, 1310 struct bio **biop); 1311 1312 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1313 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1314 1315 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1316 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1317 unsigned flags); 1318 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1319 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1320 1321 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1322 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1323 { 1324 return blkdev_issue_discard(sb->s_bdev, 1325 block << (sb->s_blocksize_bits - 1326 SECTOR_SHIFT), 1327 nr_blocks << (sb->s_blocksize_bits - 1328 SECTOR_SHIFT), 1329 gfp_mask, flags); 1330 } 1331 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1332 sector_t nr_blocks, gfp_t gfp_mask) 1333 { 1334 return blkdev_issue_zeroout(sb->s_bdev, 1335 block << (sb->s_blocksize_bits - 1336 SECTOR_SHIFT), 1337 nr_blocks << (sb->s_blocksize_bits - 1338 SECTOR_SHIFT), 1339 gfp_mask, 0); 1340 } 1341 1342 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1343 1344 enum blk_default_limits { 1345 BLK_MAX_SEGMENTS = 128, 1346 BLK_SAFE_MAX_SECTORS = 255, 1347 BLK_DEF_MAX_SECTORS = 2560, 1348 BLK_MAX_SEGMENT_SIZE = 65536, 1349 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1350 }; 1351 1352 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1353 { 1354 return q->limits.seg_boundary_mask; 1355 } 1356 1357 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1358 { 1359 return q->limits.virt_boundary_mask; 1360 } 1361 1362 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1363 { 1364 return q->limits.max_sectors; 1365 } 1366 1367 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1368 { 1369 return q->limits.max_hw_sectors; 1370 } 1371 1372 static inline unsigned short queue_max_segments(const struct request_queue *q) 1373 { 1374 return q->limits.max_segments; 1375 } 1376 1377 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1378 { 1379 return q->limits.max_discard_segments; 1380 } 1381 1382 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1383 { 1384 return q->limits.max_segment_size; 1385 } 1386 1387 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1388 { 1389 return q->limits.max_zone_append_sectors; 1390 } 1391 1392 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1393 { 1394 int retval = 512; 1395 1396 if (q && q->limits.logical_block_size) 1397 retval = q->limits.logical_block_size; 1398 1399 return retval; 1400 } 1401 1402 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1403 { 1404 return queue_logical_block_size(bdev_get_queue(bdev)); 1405 } 1406 1407 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1408 { 1409 return q->limits.physical_block_size; 1410 } 1411 1412 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1413 { 1414 return queue_physical_block_size(bdev_get_queue(bdev)); 1415 } 1416 1417 static inline unsigned int queue_io_min(const struct request_queue *q) 1418 { 1419 return q->limits.io_min; 1420 } 1421 1422 static inline int bdev_io_min(struct block_device *bdev) 1423 { 1424 return queue_io_min(bdev_get_queue(bdev)); 1425 } 1426 1427 static inline unsigned int queue_io_opt(const struct request_queue *q) 1428 { 1429 return q->limits.io_opt; 1430 } 1431 1432 static inline int bdev_io_opt(struct block_device *bdev) 1433 { 1434 return queue_io_opt(bdev_get_queue(bdev)); 1435 } 1436 1437 static inline int queue_alignment_offset(const struct request_queue *q) 1438 { 1439 if (q->limits.misaligned) 1440 return -1; 1441 1442 return q->limits.alignment_offset; 1443 } 1444 1445 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1446 { 1447 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1448 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1449 << SECTOR_SHIFT; 1450 1451 return (granularity + lim->alignment_offset - alignment) % granularity; 1452 } 1453 1454 static inline int bdev_alignment_offset(struct block_device *bdev) 1455 { 1456 struct request_queue *q = bdev_get_queue(bdev); 1457 1458 if (q->limits.misaligned) 1459 return -1; 1460 1461 if (bdev != bdev->bd_contains) 1462 return bdev->bd_part->alignment_offset; 1463 1464 return q->limits.alignment_offset; 1465 } 1466 1467 static inline int queue_discard_alignment(const struct request_queue *q) 1468 { 1469 if (q->limits.discard_misaligned) 1470 return -1; 1471 1472 return q->limits.discard_alignment; 1473 } 1474 1475 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1476 { 1477 unsigned int alignment, granularity, offset; 1478 1479 if (!lim->max_discard_sectors) 1480 return 0; 1481 1482 /* Why are these in bytes, not sectors? */ 1483 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1484 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1485 if (!granularity) 1486 return 0; 1487 1488 /* Offset of the partition start in 'granularity' sectors */ 1489 offset = sector_div(sector, granularity); 1490 1491 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1492 offset = (granularity + alignment - offset) % granularity; 1493 1494 /* Turn it back into bytes, gaah */ 1495 return offset << SECTOR_SHIFT; 1496 } 1497 1498 static inline int bdev_discard_alignment(struct block_device *bdev) 1499 { 1500 struct request_queue *q = bdev_get_queue(bdev); 1501 1502 if (bdev != bdev->bd_contains) 1503 return bdev->bd_part->discard_alignment; 1504 1505 return q->limits.discard_alignment; 1506 } 1507 1508 static inline unsigned int bdev_write_same(struct block_device *bdev) 1509 { 1510 struct request_queue *q = bdev_get_queue(bdev); 1511 1512 if (q) 1513 return q->limits.max_write_same_sectors; 1514 1515 return 0; 1516 } 1517 1518 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1519 { 1520 struct request_queue *q = bdev_get_queue(bdev); 1521 1522 if (q) 1523 return q->limits.max_write_zeroes_sectors; 1524 1525 return 0; 1526 } 1527 1528 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1529 { 1530 struct request_queue *q = bdev_get_queue(bdev); 1531 1532 if (q) 1533 return blk_queue_zoned_model(q); 1534 1535 return BLK_ZONED_NONE; 1536 } 1537 1538 static inline bool bdev_is_zoned(struct block_device *bdev) 1539 { 1540 struct request_queue *q = bdev_get_queue(bdev); 1541 1542 if (q) 1543 return blk_queue_is_zoned(q); 1544 1545 return false; 1546 } 1547 1548 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1549 { 1550 struct request_queue *q = bdev_get_queue(bdev); 1551 1552 if (q) 1553 return blk_queue_zone_sectors(q); 1554 return 0; 1555 } 1556 1557 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1558 { 1559 struct request_queue *q = bdev_get_queue(bdev); 1560 1561 if (q) 1562 return queue_max_open_zones(q); 1563 return 0; 1564 } 1565 1566 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1567 { 1568 struct request_queue *q = bdev_get_queue(bdev); 1569 1570 if (q) 1571 return queue_max_active_zones(q); 1572 return 0; 1573 } 1574 1575 static inline int queue_dma_alignment(const struct request_queue *q) 1576 { 1577 return q ? q->dma_alignment : 511; 1578 } 1579 1580 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1581 unsigned int len) 1582 { 1583 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1584 return !(addr & alignment) && !(len & alignment); 1585 } 1586 1587 /* assumes size > 256 */ 1588 static inline unsigned int blksize_bits(unsigned int size) 1589 { 1590 unsigned int bits = 8; 1591 do { 1592 bits++; 1593 size >>= 1; 1594 } while (size > 256); 1595 return bits; 1596 } 1597 1598 static inline unsigned int block_size(struct block_device *bdev) 1599 { 1600 return 1 << bdev->bd_inode->i_blkbits; 1601 } 1602 1603 int kblockd_schedule_work(struct work_struct *work); 1604 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1605 1606 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1607 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1608 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1609 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1610 1611 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1612 1613 enum blk_integrity_flags { 1614 BLK_INTEGRITY_VERIFY = 1 << 0, 1615 BLK_INTEGRITY_GENERATE = 1 << 1, 1616 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1617 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1618 }; 1619 1620 struct blk_integrity_iter { 1621 void *prot_buf; 1622 void *data_buf; 1623 sector_t seed; 1624 unsigned int data_size; 1625 unsigned short interval; 1626 const char *disk_name; 1627 }; 1628 1629 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1630 typedef void (integrity_prepare_fn) (struct request *); 1631 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1632 1633 struct blk_integrity_profile { 1634 integrity_processing_fn *generate_fn; 1635 integrity_processing_fn *verify_fn; 1636 integrity_prepare_fn *prepare_fn; 1637 integrity_complete_fn *complete_fn; 1638 const char *name; 1639 }; 1640 1641 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1642 extern void blk_integrity_unregister(struct gendisk *); 1643 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1644 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1645 struct scatterlist *); 1646 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1647 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1648 struct request *); 1649 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1650 struct bio *); 1651 1652 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1653 { 1654 struct blk_integrity *bi = &disk->queue->integrity; 1655 1656 if (!bi->profile) 1657 return NULL; 1658 1659 return bi; 1660 } 1661 1662 static inline 1663 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1664 { 1665 return blk_get_integrity(bdev->bd_disk); 1666 } 1667 1668 static inline bool 1669 blk_integrity_queue_supports_integrity(struct request_queue *q) 1670 { 1671 return q->integrity.profile; 1672 } 1673 1674 static inline bool blk_integrity_rq(struct request *rq) 1675 { 1676 return rq->cmd_flags & REQ_INTEGRITY; 1677 } 1678 1679 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1680 unsigned int segs) 1681 { 1682 q->limits.max_integrity_segments = segs; 1683 } 1684 1685 static inline unsigned short 1686 queue_max_integrity_segments(const struct request_queue *q) 1687 { 1688 return q->limits.max_integrity_segments; 1689 } 1690 1691 /** 1692 * bio_integrity_intervals - Return number of integrity intervals for a bio 1693 * @bi: blk_integrity profile for device 1694 * @sectors: Size of the bio in 512-byte sectors 1695 * 1696 * Description: The block layer calculates everything in 512 byte 1697 * sectors but integrity metadata is done in terms of the data integrity 1698 * interval size of the storage device. Convert the block layer sectors 1699 * to the appropriate number of integrity intervals. 1700 */ 1701 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1702 unsigned int sectors) 1703 { 1704 return sectors >> (bi->interval_exp - 9); 1705 } 1706 1707 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1708 unsigned int sectors) 1709 { 1710 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1711 } 1712 1713 /* 1714 * Return the first bvec that contains integrity data. Only drivers that are 1715 * limited to a single integrity segment should use this helper. 1716 */ 1717 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1718 { 1719 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1720 return NULL; 1721 return rq->bio->bi_integrity->bip_vec; 1722 } 1723 1724 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1725 1726 struct bio; 1727 struct block_device; 1728 struct gendisk; 1729 struct blk_integrity; 1730 1731 static inline int blk_integrity_rq(struct request *rq) 1732 { 1733 return 0; 1734 } 1735 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1736 struct bio *b) 1737 { 1738 return 0; 1739 } 1740 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1741 struct bio *b, 1742 struct scatterlist *s) 1743 { 1744 return 0; 1745 } 1746 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1747 { 1748 return NULL; 1749 } 1750 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1751 { 1752 return NULL; 1753 } 1754 static inline bool 1755 blk_integrity_queue_supports_integrity(struct request_queue *q) 1756 { 1757 return false; 1758 } 1759 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1760 { 1761 return 0; 1762 } 1763 static inline void blk_integrity_register(struct gendisk *d, 1764 struct blk_integrity *b) 1765 { 1766 } 1767 static inline void blk_integrity_unregister(struct gendisk *d) 1768 { 1769 } 1770 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1771 unsigned int segs) 1772 { 1773 } 1774 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1775 { 1776 return 0; 1777 } 1778 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1779 struct request *r1, 1780 struct request *r2) 1781 { 1782 return true; 1783 } 1784 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1785 struct request *r, 1786 struct bio *b) 1787 { 1788 return true; 1789 } 1790 1791 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1792 unsigned int sectors) 1793 { 1794 return 0; 1795 } 1796 1797 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1798 unsigned int sectors) 1799 { 1800 return 0; 1801 } 1802 1803 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1804 { 1805 return NULL; 1806 } 1807 1808 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1809 1810 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1811 1812 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1813 1814 void blk_ksm_unregister(struct request_queue *q); 1815 1816 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1817 1818 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1819 struct request_queue *q) 1820 { 1821 return true; 1822 } 1823 1824 static inline void blk_ksm_unregister(struct request_queue *q) { } 1825 1826 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1827 1828 1829 struct block_device_operations { 1830 blk_qc_t (*submit_bio) (struct bio *bio); 1831 int (*open) (struct block_device *, fmode_t); 1832 void (*release) (struct gendisk *, fmode_t); 1833 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1834 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1835 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1836 unsigned int (*check_events) (struct gendisk *disk, 1837 unsigned int clearing); 1838 void (*unlock_native_capacity) (struct gendisk *); 1839 int (*revalidate_disk) (struct gendisk *); 1840 int (*getgeo)(struct block_device *, struct hd_geometry *); 1841 /* this callback is with swap_lock and sometimes page table lock held */ 1842 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1843 int (*report_zones)(struct gendisk *, sector_t sector, 1844 unsigned int nr_zones, report_zones_cb cb, void *data); 1845 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1846 struct module *owner; 1847 const struct pr_ops *pr_ops; 1848 }; 1849 1850 #ifdef CONFIG_COMPAT 1851 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1852 unsigned int, unsigned long); 1853 #else 1854 #define blkdev_compat_ptr_ioctl NULL 1855 #endif 1856 1857 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1858 unsigned long); 1859 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1860 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1861 struct writeback_control *); 1862 1863 #ifdef CONFIG_BLK_DEV_ZONED 1864 bool blk_req_needs_zone_write_lock(struct request *rq); 1865 bool blk_req_zone_write_trylock(struct request *rq); 1866 void __blk_req_zone_write_lock(struct request *rq); 1867 void __blk_req_zone_write_unlock(struct request *rq); 1868 1869 static inline void blk_req_zone_write_lock(struct request *rq) 1870 { 1871 if (blk_req_needs_zone_write_lock(rq)) 1872 __blk_req_zone_write_lock(rq); 1873 } 1874 1875 static inline void blk_req_zone_write_unlock(struct request *rq) 1876 { 1877 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1878 __blk_req_zone_write_unlock(rq); 1879 } 1880 1881 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1882 { 1883 return rq->q->seq_zones_wlock && 1884 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1885 } 1886 1887 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1888 { 1889 if (!blk_req_needs_zone_write_lock(rq)) 1890 return true; 1891 return !blk_req_zone_is_write_locked(rq); 1892 } 1893 #else 1894 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1895 { 1896 return false; 1897 } 1898 1899 static inline void blk_req_zone_write_lock(struct request *rq) 1900 { 1901 } 1902 1903 static inline void blk_req_zone_write_unlock(struct request *rq) 1904 { 1905 } 1906 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1907 { 1908 return false; 1909 } 1910 1911 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1912 { 1913 return true; 1914 } 1915 #endif /* CONFIG_BLK_DEV_ZONED */ 1916 1917 static inline void blk_wake_io_task(struct task_struct *waiter) 1918 { 1919 /* 1920 * If we're polling, the task itself is doing the completions. For 1921 * that case, we don't need to signal a wakeup, it's enough to just 1922 * mark us as RUNNING. 1923 */ 1924 if (waiter == current) 1925 __set_current_state(TASK_RUNNING); 1926 else 1927 wake_up_process(waiter); 1928 } 1929 1930 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1931 unsigned int op); 1932 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1933 unsigned long start_time); 1934 1935 /** 1936 * bio_start_io_acct - start I/O accounting for bio based drivers 1937 * @bio: bio to start account for 1938 * 1939 * Returns the start time that should be passed back to bio_end_io_acct(). 1940 */ 1941 static inline unsigned long bio_start_io_acct(struct bio *bio) 1942 { 1943 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1944 } 1945 1946 /** 1947 * bio_end_io_acct - end I/O accounting for bio based drivers 1948 * @bio: bio to end account for 1949 * @start: start time returned by bio_start_io_acct() 1950 */ 1951 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1952 { 1953 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1954 } 1955 1956 int bdev_read_only(struct block_device *bdev); 1957 int set_blocksize(struct block_device *bdev, int size); 1958 1959 const char *bdevname(struct block_device *bdev, char *buffer); 1960 struct block_device *lookup_bdev(const char *); 1961 1962 void blkdev_show(struct seq_file *seqf, off_t offset); 1963 1964 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1965 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1966 #ifdef CONFIG_BLOCK 1967 #define BLKDEV_MAJOR_MAX 512 1968 #else 1969 #define BLKDEV_MAJOR_MAX 0 1970 #endif 1971 1972 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder); 1973 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1974 void *holder); 1975 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1976 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1977 void *holder); 1978 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1979 void *holder); 1980 void blkdev_put(struct block_device *bdev, fmode_t mode); 1981 1982 struct block_device *I_BDEV(struct inode *inode); 1983 struct block_device *bdget(dev_t); 1984 struct block_device *bdgrab(struct block_device *bdev); 1985 void bdput(struct block_device *); 1986 1987 #ifdef CONFIG_BLOCK 1988 void invalidate_bdev(struct block_device *bdev); 1989 int sync_blockdev(struct block_device *bdev); 1990 #else 1991 static inline void invalidate_bdev(struct block_device *bdev) 1992 { 1993 } 1994 static inline int sync_blockdev(struct block_device *bdev) 1995 { 1996 return 0; 1997 } 1998 #endif 1999 int fsync_bdev(struct block_device *bdev); 2000 2001 struct super_block *freeze_bdev(struct block_device *bdev); 2002 int thaw_bdev(struct block_device *bdev, struct super_block *sb); 2003 2004 #endif /* _LINUX_BLKDEV_H */ 2005