xref: /linux-6.15/include/linux/blkdev.h (revision ef753d66)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29 
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44 
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48 
49 /*
50  * Maximum number of blkcg policies allowed to be registered concurrently.
51  * Defined here to simplify include dependency.
52  */
53 #define BLKCG_MAX_POLS		6
54 
55 #define DISK_MAX_PARTS			256
56 #define DISK_NAME_LEN			32
57 
58 #define PARTITION_META_INFO_VOLNAMELTH	64
59 /*
60  * Enough for the string representation of any kind of UUID plus NULL.
61  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62  */
63 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
64 
65 struct partition_meta_info {
66 	char uuid[PARTITION_META_INFO_UUIDLTH];
67 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69 
70 /**
71  * DOC: genhd capability flags
72  *
73  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74  * removable media.  When set, the device remains present even when media is not
75  * inserted.  Shall not be set for devices which are removed entirely when the
76  * media is removed.
77  *
78  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79  * doesn't appear in sysfs, and can't be opened from userspace or using
80  * blkdev_get*. Used for the underlying components of multipath devices.
81  *
82  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
83  * scan for partitions from add_disk, and users can't add partitions manually.
84  *
85  */
86 enum {
87 	GENHD_FL_REMOVABLE			= 1 << 0,
88 	GENHD_FL_HIDDEN				= 1 << 1,
89 	GENHD_FL_NO_PART			= 1 << 2,
90 };
91 
92 enum {
93 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
94 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
95 };
96 
97 enum {
98 	/* Poll even if events_poll_msecs is unset */
99 	DISK_EVENT_FLAG_POLL			= 1 << 0,
100 	/* Forward events to udev */
101 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
102 	/* Block event polling when open for exclusive write */
103 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
104 };
105 
106 struct disk_events;
107 struct badblocks;
108 
109 enum blk_integrity_checksum {
110 	BLK_INTEGRITY_CSUM_NONE		= 0,
111 	BLK_INTEGRITY_CSUM_IP		= 1,
112 	BLK_INTEGRITY_CSUM_CRC		= 2,
113 	BLK_INTEGRITY_CSUM_CRC64	= 3,
114 } __packed ;
115 
116 struct blk_integrity {
117 	unsigned char				flags;
118 	enum blk_integrity_checksum		csum_type;
119 	unsigned char				tuple_size;
120 	unsigned char				pi_offset;
121 	unsigned char				interval_exp;
122 	unsigned char				tag_size;
123 };
124 
125 typedef unsigned int __bitwise blk_mode_t;
126 
127 /* open for reading */
128 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
141 
142 struct gendisk {
143 	/*
144 	 * major/first_minor/minors should not be set by any new driver, the
145 	 * block core will take care of allocating them automatically.
146 	 */
147 	int major;
148 	int first_minor;
149 	int minors;
150 
151 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
152 
153 	unsigned short events;		/* supported events */
154 	unsigned short event_flags;	/* flags related to event processing */
155 
156 	struct xarray part_tbl;
157 	struct block_device *part0;
158 
159 	const struct block_device_operations *fops;
160 	struct request_queue *queue;
161 	void *private_data;
162 
163 	struct bio_set bio_split;
164 
165 	int flags;
166 	unsigned long state;
167 #define GD_NEED_PART_SCAN		0
168 #define GD_READ_ONLY			1
169 #define GD_DEAD				2
170 #define GD_NATIVE_CAPACITY		3
171 #define GD_ADDED			4
172 #define GD_SUPPRESS_PART_SCAN		5
173 #define GD_OWNS_QUEUE			6
174 
175 	struct mutex open_mutex;	/* open/close mutex */
176 	unsigned open_partitions;	/* number of open partitions */
177 
178 	struct backing_dev_info	*bdi;
179 	struct kobject queue_kobj;	/* the queue/ directory */
180 	struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 	struct list_head slave_bdevs;
183 #endif
184 	struct timer_rand_state *random;
185 	atomic_t sync_io;		/* RAID */
186 	struct disk_events *ev;
187 
188 #ifdef CONFIG_BLK_DEV_ZONED
189 	/*
190 	 * Zoned block device information. Reads of this information must be
191 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
192 	 * information is only allowed while no requests are being processed.
193 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
194 	 */
195 	unsigned int		nr_zones;
196 	unsigned int		zone_capacity;
197 	unsigned int		last_zone_capacity;
198 	unsigned long __rcu	*conv_zones_bitmap;
199 	unsigned int		zone_wplugs_hash_bits;
200 	atomic_t		nr_zone_wplugs;
201 	spinlock_t		zone_wplugs_lock;
202 	struct mempool_s	*zone_wplugs_pool;
203 	struct hlist_head	*zone_wplugs_hash;
204 	struct workqueue_struct *zone_wplugs_wq;
205 #endif /* CONFIG_BLK_DEV_ZONED */
206 
207 #if IS_ENABLED(CONFIG_CDROM)
208 	struct cdrom_device_info *cdi;
209 #endif
210 	int node_id;
211 	struct badblocks *bb;
212 	struct lockdep_map lockdep_map;
213 	u64 diskseq;
214 	blk_mode_t open_mode;
215 
216 	/*
217 	 * Independent sector access ranges. This is always NULL for
218 	 * devices that do not have multiple independent access ranges.
219 	 */
220 	struct blk_independent_access_ranges *ia_ranges;
221 };
222 
223 /**
224  * disk_openers - returns how many openers are there for a disk
225  * @disk: disk to check
226  *
227  * This returns the number of openers for a disk.  Note that this value is only
228  * stable if disk->open_mutex is held.
229  *
230  * Note: Due to a quirk in the block layer open code, each open partition is
231  * only counted once even if there are multiple openers.
232  */
233 static inline unsigned int disk_openers(struct gendisk *disk)
234 {
235 	return atomic_read(&disk->part0->bd_openers);
236 }
237 
238 /**
239  * disk_has_partscan - return %true if partition scanning is enabled on a disk
240  * @disk: disk to check
241  *
242  * Returns %true if partitions scanning is enabled for @disk, or %false if
243  * partition scanning is disabled either permanently or temporarily.
244  */
245 static inline bool disk_has_partscan(struct gendisk *disk)
246 {
247 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
248 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
249 }
250 
251 /*
252  * The gendisk is refcounted by the part0 block_device, and the bd_device
253  * therein is also used for device model presentation in sysfs.
254  */
255 #define dev_to_disk(device) \
256 	(dev_to_bdev(device)->bd_disk)
257 #define disk_to_dev(disk) \
258 	(&((disk)->part0->bd_device))
259 
260 #if IS_REACHABLE(CONFIG_CDROM)
261 #define disk_to_cdi(disk)	((disk)->cdi)
262 #else
263 #define disk_to_cdi(disk)	NULL
264 #endif
265 
266 static inline dev_t disk_devt(struct gendisk *disk)
267 {
268 	return MKDEV(disk->major, disk->first_minor);
269 }
270 
271 /*
272  * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER)
273  * however we constrain this to what we can validate and test.
274  */
275 #define BLK_MAX_BLOCK_SIZE      SZ_64K
276 
277 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
278 static inline int blk_validate_block_size(unsigned long bsize)
279 {
280 	if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize))
281 		return -EINVAL;
282 
283 	return 0;
284 }
285 
286 static inline bool blk_op_is_passthrough(blk_opf_t op)
287 {
288 	op &= REQ_OP_MASK;
289 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
290 }
291 
292 /* flags set by the driver in queue_limits.features */
293 typedef unsigned int __bitwise blk_features_t;
294 
295 /* supports a volatile write cache */
296 #define BLK_FEAT_WRITE_CACHE		((__force blk_features_t)(1u << 0))
297 
298 /* supports passing on the FUA bit */
299 #define BLK_FEAT_FUA			((__force blk_features_t)(1u << 1))
300 
301 /* rotational device (hard drive or floppy) */
302 #define BLK_FEAT_ROTATIONAL		((__force blk_features_t)(1u << 2))
303 
304 /* contributes to the random number pool */
305 #define BLK_FEAT_ADD_RANDOM		((__force blk_features_t)(1u << 3))
306 
307 /* do disk/partitions IO accounting */
308 #define BLK_FEAT_IO_STAT		((__force blk_features_t)(1u << 4))
309 
310 /* don't modify data until writeback is done */
311 #define BLK_FEAT_STABLE_WRITES		((__force blk_features_t)(1u << 5))
312 
313 /* always completes in submit context */
314 #define BLK_FEAT_SYNCHRONOUS		((__force blk_features_t)(1u << 6))
315 
316 /* supports REQ_NOWAIT */
317 #define BLK_FEAT_NOWAIT			((__force blk_features_t)(1u << 7))
318 
319 /* supports DAX */
320 #define BLK_FEAT_DAX			((__force blk_features_t)(1u << 8))
321 
322 /* supports I/O polling */
323 #define BLK_FEAT_POLL			((__force blk_features_t)(1u << 9))
324 
325 /* is a zoned device */
326 #define BLK_FEAT_ZONED			((__force blk_features_t)(1u << 10))
327 
328 /* supports PCI(e) p2p requests */
329 #define BLK_FEAT_PCI_P2PDMA		((__force blk_features_t)(1u << 12))
330 
331 /* skip this queue in blk_mq_(un)quiesce_tagset */
332 #define BLK_FEAT_SKIP_TAGSET_QUIESCE	((__force blk_features_t)(1u << 13))
333 
334 /* bounce all highmem pages */
335 #define BLK_FEAT_BOUNCE_HIGH		((__force blk_features_t)(1u << 14))
336 
337 /* undocumented magic for bcache */
338 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
339 	((__force blk_features_t)(1u << 15))
340 
341 /* atomic writes enabled */
342 #define BLK_FEAT_ATOMIC_WRITES \
343 	((__force blk_features_t)(1u << 16))
344 
345 /*
346  * Flags automatically inherited when stacking limits.
347  */
348 #define BLK_FEAT_INHERIT_MASK \
349 	(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
350 	 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
351 	 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
352 
353 /* internal flags in queue_limits.flags */
354 typedef unsigned int __bitwise blk_flags_t;
355 
356 /* do not send FLUSH/FUA commands despite advertising a write cache */
357 #define BLK_FLAG_WRITE_CACHE_DISABLED	((__force blk_flags_t)(1u << 0))
358 
359 /* I/O topology is misaligned */
360 #define BLK_FLAG_MISALIGNED		((__force blk_flags_t)(1u << 1))
361 
362 /* passthrough command IO accounting */
363 #define BLK_FLAG_IOSTATS_PASSTHROUGH	((__force blk_flags_t)(1u << 2))
364 
365 struct queue_limits {
366 	blk_features_t		features;
367 	blk_flags_t		flags;
368 	unsigned long		seg_boundary_mask;
369 	unsigned long		virt_boundary_mask;
370 
371 	unsigned int		max_hw_sectors;
372 	unsigned int		max_dev_sectors;
373 	unsigned int		chunk_sectors;
374 	unsigned int		max_sectors;
375 	unsigned int		max_user_sectors;
376 	unsigned int		max_segment_size;
377 	unsigned int		min_segment_size;
378 	unsigned int		physical_block_size;
379 	unsigned int		logical_block_size;
380 	unsigned int		alignment_offset;
381 	unsigned int		io_min;
382 	unsigned int		io_opt;
383 	unsigned int		max_discard_sectors;
384 	unsigned int		max_hw_discard_sectors;
385 	unsigned int		max_user_discard_sectors;
386 	unsigned int		max_secure_erase_sectors;
387 	unsigned int		max_write_zeroes_sectors;
388 	unsigned int		max_hw_zone_append_sectors;
389 	unsigned int		max_zone_append_sectors;
390 	unsigned int		discard_granularity;
391 	unsigned int		discard_alignment;
392 	unsigned int		zone_write_granularity;
393 
394 	/* atomic write limits */
395 	unsigned int		atomic_write_hw_max;
396 	unsigned int		atomic_write_max_sectors;
397 	unsigned int		atomic_write_hw_boundary;
398 	unsigned int		atomic_write_boundary_sectors;
399 	unsigned int		atomic_write_hw_unit_min;
400 	unsigned int		atomic_write_unit_min;
401 	unsigned int		atomic_write_hw_unit_max;
402 	unsigned int		atomic_write_unit_max;
403 
404 	unsigned short		max_segments;
405 	unsigned short		max_integrity_segments;
406 	unsigned short		max_discard_segments;
407 
408 	unsigned int		max_open_zones;
409 	unsigned int		max_active_zones;
410 
411 	/*
412 	 * Drivers that set dma_alignment to less than 511 must be prepared to
413 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
414 	 * due to possible offsets.
415 	 */
416 	unsigned int		dma_alignment;
417 	unsigned int		dma_pad_mask;
418 
419 	struct blk_integrity	integrity;
420 };
421 
422 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
423 			       void *data);
424 
425 #define BLK_ALL_ZONES  ((unsigned int)-1)
426 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
427 		unsigned int nr_zones, report_zones_cb cb, void *data);
428 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
429 		sector_t sectors, sector_t nr_sectors);
430 int blk_revalidate_disk_zones(struct gendisk *disk);
431 
432 /*
433  * Independent access ranges: struct blk_independent_access_range describes
434  * a range of contiguous sectors that can be accessed using device command
435  * execution resources that are independent from the resources used for
436  * other access ranges. This is typically found with single-LUN multi-actuator
437  * HDDs where each access range is served by a different set of heads.
438  * The set of independent ranges supported by the device is defined using
439  * struct blk_independent_access_ranges. The independent ranges must not overlap
440  * and must include all sectors within the disk capacity (no sector holes
441  * allowed).
442  * For a device with multiple ranges, requests targeting sectors in different
443  * ranges can be executed in parallel. A request can straddle an access range
444  * boundary.
445  */
446 struct blk_independent_access_range {
447 	struct kobject		kobj;
448 	sector_t		sector;
449 	sector_t		nr_sectors;
450 };
451 
452 struct blk_independent_access_ranges {
453 	struct kobject				kobj;
454 	bool					sysfs_registered;
455 	unsigned int				nr_ia_ranges;
456 	struct blk_independent_access_range	ia_range[];
457 };
458 
459 struct request_queue {
460 	/*
461 	 * The queue owner gets to use this for whatever they like.
462 	 * ll_rw_blk doesn't touch it.
463 	 */
464 	void			*queuedata;
465 
466 	struct elevator_queue	*elevator;
467 
468 	const struct blk_mq_ops	*mq_ops;
469 
470 	/* sw queues */
471 	struct blk_mq_ctx __percpu	*queue_ctx;
472 
473 	/*
474 	 * various queue flags, see QUEUE_* below
475 	 */
476 	unsigned long		queue_flags;
477 
478 	unsigned int		rq_timeout;
479 
480 	unsigned int		queue_depth;
481 
482 	refcount_t		refs;
483 
484 	/* hw dispatch queues */
485 	unsigned int		nr_hw_queues;
486 	struct xarray		hctx_table;
487 
488 	struct percpu_ref	q_usage_counter;
489 	struct lock_class_key	io_lock_cls_key;
490 	struct lockdep_map	io_lockdep_map;
491 
492 	struct lock_class_key	q_lock_cls_key;
493 	struct lockdep_map	q_lockdep_map;
494 
495 	struct request		*last_merge;
496 
497 	spinlock_t		queue_lock;
498 
499 	int			quiesce_depth;
500 
501 	struct gendisk		*disk;
502 
503 	/*
504 	 * mq queue kobject
505 	 */
506 	struct kobject *mq_kobj;
507 
508 	struct queue_limits	limits;
509 
510 #ifdef CONFIG_PM
511 	struct device		*dev;
512 	enum rpm_status		rpm_status;
513 #endif
514 
515 	/*
516 	 * Number of contexts that have called blk_set_pm_only(). If this
517 	 * counter is above zero then only RQF_PM requests are processed.
518 	 */
519 	atomic_t		pm_only;
520 
521 	struct blk_queue_stats	*stats;
522 	struct rq_qos		*rq_qos;
523 	struct mutex		rq_qos_mutex;
524 
525 	/*
526 	 * ida allocated id for this queue.  Used to index queues from
527 	 * ioctx.
528 	 */
529 	int			id;
530 
531 	/*
532 	 * queue settings
533 	 */
534 	unsigned long		nr_requests;	/* Max # of requests */
535 
536 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
537 	struct blk_crypto_profile *crypto_profile;
538 	struct kobject *crypto_kobject;
539 #endif
540 
541 	struct timer_list	timeout;
542 	struct work_struct	timeout_work;
543 
544 	atomic_t		nr_active_requests_shared_tags;
545 
546 	struct blk_mq_tags	*sched_shared_tags;
547 
548 	struct list_head	icq_list;
549 #ifdef CONFIG_BLK_CGROUP
550 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
551 	struct blkcg_gq		*root_blkg;
552 	struct list_head	blkg_list;
553 	struct mutex		blkcg_mutex;
554 #endif
555 
556 	int			node;
557 
558 	spinlock_t		requeue_lock;
559 	struct list_head	requeue_list;
560 	struct delayed_work	requeue_work;
561 
562 #ifdef CONFIG_BLK_DEV_IO_TRACE
563 	struct blk_trace __rcu	*blk_trace;
564 #endif
565 	/*
566 	 * for flush operations
567 	 */
568 	struct blk_flush_queue	*fq;
569 	struct list_head	flush_list;
570 
571 	struct mutex		sysfs_lock;
572 	struct mutex		limits_lock;
573 
574 	/*
575 	 * for reusing dead hctx instance in case of updating
576 	 * nr_hw_queues
577 	 */
578 	struct list_head	unused_hctx_list;
579 	spinlock_t		unused_hctx_lock;
580 
581 	int			mq_freeze_depth;
582 
583 #ifdef CONFIG_BLK_DEV_THROTTLING
584 	/* Throttle data */
585 	struct throtl_data *td;
586 #endif
587 	struct rcu_head		rcu_head;
588 #ifdef CONFIG_LOCKDEP
589 	struct task_struct	*mq_freeze_owner;
590 	int			mq_freeze_owner_depth;
591 	/*
592 	 * Records disk & queue state in current context, used in unfreeze
593 	 * queue
594 	 */
595 	bool			mq_freeze_disk_dead;
596 	bool			mq_freeze_queue_dying;
597 #endif
598 	wait_queue_head_t	mq_freeze_wq;
599 	/*
600 	 * Protect concurrent access to q_usage_counter by
601 	 * percpu_ref_kill() and percpu_ref_reinit().
602 	 */
603 	struct mutex		mq_freeze_lock;
604 
605 	struct blk_mq_tag_set	*tag_set;
606 	struct list_head	tag_set_list;
607 
608 	struct dentry		*debugfs_dir;
609 	struct dentry		*sched_debugfs_dir;
610 	struct dentry		*rqos_debugfs_dir;
611 	/*
612 	 * Serializes all debugfs metadata operations using the above dentries.
613 	 */
614 	struct mutex		debugfs_mutex;
615 };
616 
617 /* Keep blk_queue_flag_name[] in sync with the definitions below */
618 enum {
619 	QUEUE_FLAG_DYING,		/* queue being torn down */
620 	QUEUE_FLAG_NOMERGES,		/* disable merge attempts */
621 	QUEUE_FLAG_SAME_COMP,		/* complete on same CPU-group */
622 	QUEUE_FLAG_FAIL_IO,		/* fake timeout */
623 	QUEUE_FLAG_NOXMERGES,		/* No extended merges */
624 	QUEUE_FLAG_SAME_FORCE,		/* force complete on same CPU */
625 	QUEUE_FLAG_INIT_DONE,		/* queue is initialized */
626 	QUEUE_FLAG_STATS,		/* track IO start and completion times */
627 	QUEUE_FLAG_REGISTERED,		/* queue has been registered to a disk */
628 	QUEUE_FLAG_QUIESCED,		/* queue has been quiesced */
629 	QUEUE_FLAG_RQ_ALLOC_TIME,	/* record rq->alloc_time_ns */
630 	QUEUE_FLAG_HCTX_ACTIVE,		/* at least one blk-mq hctx is active */
631 	QUEUE_FLAG_SQ_SCHED,		/* single queue style io dispatch */
632 	QUEUE_FLAG_MAX
633 };
634 
635 #define QUEUE_FLAG_MQ_DEFAULT	(1UL << QUEUE_FLAG_SAME_COMP)
636 
637 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
638 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
639 
640 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
641 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
642 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
643 #define blk_queue_noxmerges(q)	\
644 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
645 #define blk_queue_nonrot(q)	(!((q)->limits.features & BLK_FEAT_ROTATIONAL))
646 #define blk_queue_io_stat(q)	((q)->limits.features & BLK_FEAT_IO_STAT)
647 #define blk_queue_passthrough_stat(q)	\
648 	((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
649 #define blk_queue_dax(q)	((q)->limits.features & BLK_FEAT_DAX)
650 #define blk_queue_pci_p2pdma(q)	((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
651 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
652 #define blk_queue_rq_alloc_time(q)	\
653 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
654 #else
655 #define blk_queue_rq_alloc_time(q)	false
656 #endif
657 
658 #define blk_noretry_request(rq) \
659 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
660 			     REQ_FAILFAST_DRIVER))
661 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
662 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
663 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
664 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
665 #define blk_queue_skip_tagset_quiesce(q) \
666 	((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
667 
668 extern void blk_set_pm_only(struct request_queue *q);
669 extern void blk_clear_pm_only(struct request_queue *q);
670 
671 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
672 
673 #define dma_map_bvec(dev, bv, dir, attrs) \
674 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
675 	(dir), (attrs))
676 
677 static inline bool queue_is_mq(struct request_queue *q)
678 {
679 	return q->mq_ops;
680 }
681 
682 #ifdef CONFIG_PM
683 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
684 {
685 	return q->rpm_status;
686 }
687 #else
688 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
689 {
690 	return RPM_ACTIVE;
691 }
692 #endif
693 
694 static inline bool blk_queue_is_zoned(struct request_queue *q)
695 {
696 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
697 		(q->limits.features & BLK_FEAT_ZONED);
698 }
699 
700 #ifdef CONFIG_BLK_DEV_ZONED
701 static inline unsigned int disk_nr_zones(struct gendisk *disk)
702 {
703 	return disk->nr_zones;
704 }
705 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
706 #else /* CONFIG_BLK_DEV_ZONED */
707 static inline unsigned int disk_nr_zones(struct gendisk *disk)
708 {
709 	return 0;
710 }
711 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
712 {
713 	return false;
714 }
715 #endif /* CONFIG_BLK_DEV_ZONED */
716 
717 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
718 {
719 	if (!blk_queue_is_zoned(disk->queue))
720 		return 0;
721 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
722 }
723 
724 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
725 {
726 	return disk_nr_zones(bdev->bd_disk);
727 }
728 
729 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
730 {
731 	return bdev->bd_disk->queue->limits.max_open_zones;
732 }
733 
734 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
735 {
736 	return bdev->bd_disk->queue->limits.max_active_zones;
737 }
738 
739 static inline unsigned int blk_queue_depth(struct request_queue *q)
740 {
741 	if (q->queue_depth)
742 		return q->queue_depth;
743 
744 	return q->nr_requests;
745 }
746 
747 /*
748  * default timeout for SG_IO if none specified
749  */
750 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
751 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
752 
753 /* This should not be used directly - use rq_for_each_segment */
754 #define for_each_bio(_bio)		\
755 	for (; _bio; _bio = _bio->bi_next)
756 
757 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
758 				 const struct attribute_group **groups,
759 				 struct fwnode_handle *fwnode);
760 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
761 				 const struct attribute_group **groups);
762 static inline int __must_check add_disk(struct gendisk *disk)
763 {
764 	return device_add_disk(NULL, disk, NULL);
765 }
766 void del_gendisk(struct gendisk *gp);
767 void invalidate_disk(struct gendisk *disk);
768 void set_disk_ro(struct gendisk *disk, bool read_only);
769 void disk_uevent(struct gendisk *disk, enum kobject_action action);
770 
771 static inline u8 bdev_partno(const struct block_device *bdev)
772 {
773 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
774 }
775 
776 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
777 {
778 	return atomic_read(&bdev->__bd_flags) & flag;
779 }
780 
781 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
782 {
783 	atomic_or(flag, &bdev->__bd_flags);
784 }
785 
786 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
787 {
788 	atomic_andnot(flag, &bdev->__bd_flags);
789 }
790 
791 static inline bool get_disk_ro(struct gendisk *disk)
792 {
793 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
794 		test_bit(GD_READ_ONLY, &disk->state);
795 }
796 
797 static inline bool bdev_read_only(struct block_device *bdev)
798 {
799 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
800 }
801 
802 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
803 void disk_force_media_change(struct gendisk *disk);
804 void bdev_mark_dead(struct block_device *bdev, bool surprise);
805 
806 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
807 void rand_initialize_disk(struct gendisk *disk);
808 
809 static inline sector_t get_start_sect(struct block_device *bdev)
810 {
811 	return bdev->bd_start_sect;
812 }
813 
814 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
815 {
816 	return bdev->bd_nr_sectors;
817 }
818 
819 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
820 {
821 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
822 }
823 
824 static inline sector_t get_capacity(struct gendisk *disk)
825 {
826 	return bdev_nr_sectors(disk->part0);
827 }
828 
829 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
830 {
831 	return bdev_nr_sectors(sb->s_bdev) >>
832 		(sb->s_blocksize_bits - SECTOR_SHIFT);
833 }
834 
835 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
836 
837 void put_disk(struct gendisk *disk);
838 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
839 		struct lock_class_key *lkclass);
840 
841 /**
842  * blk_alloc_disk - allocate a gendisk structure
843  * @lim: queue limits to be used for this disk.
844  * @node_id: numa node to allocate on
845  *
846  * Allocate and pre-initialize a gendisk structure for use with BIO based
847  * drivers.
848  *
849  * Returns an ERR_PTR on error, else the allocated disk.
850  *
851  * Context: can sleep
852  */
853 #define blk_alloc_disk(lim, node_id)					\
854 ({									\
855 	static struct lock_class_key __key;				\
856 									\
857 	__blk_alloc_disk(lim, node_id, &__key);				\
858 })
859 
860 int __register_blkdev(unsigned int major, const char *name,
861 		void (*probe)(dev_t devt));
862 #define register_blkdev(major, name) \
863 	__register_blkdev(major, name, NULL)
864 void unregister_blkdev(unsigned int major, const char *name);
865 
866 bool disk_check_media_change(struct gendisk *disk);
867 void set_capacity(struct gendisk *disk, sector_t size);
868 
869 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
870 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
871 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
872 #else
873 static inline int bd_link_disk_holder(struct block_device *bdev,
874 				      struct gendisk *disk)
875 {
876 	return 0;
877 }
878 static inline void bd_unlink_disk_holder(struct block_device *bdev,
879 					 struct gendisk *disk)
880 {
881 }
882 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
883 
884 dev_t part_devt(struct gendisk *disk, u8 partno);
885 void inc_diskseq(struct gendisk *disk);
886 void blk_request_module(dev_t devt);
887 
888 extern int blk_register_queue(struct gendisk *disk);
889 extern void blk_unregister_queue(struct gendisk *disk);
890 void submit_bio_noacct(struct bio *bio);
891 struct bio *bio_split_to_limits(struct bio *bio);
892 
893 extern int blk_lld_busy(struct request_queue *q);
894 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
895 extern void blk_queue_exit(struct request_queue *q);
896 extern void blk_sync_queue(struct request_queue *q);
897 
898 /* Helper to convert REQ_OP_XXX to its string format XXX */
899 extern const char *blk_op_str(enum req_op op);
900 
901 int blk_status_to_errno(blk_status_t status);
902 blk_status_t errno_to_blk_status(int errno);
903 const char *blk_status_to_str(blk_status_t status);
904 
905 /* only poll the hardware once, don't continue until a completion was found */
906 #define BLK_POLL_ONESHOT		(1 << 0)
907 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
908 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
909 			unsigned int flags);
910 
911 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
912 {
913 	return bdev->bd_queue;	/* this is never NULL */
914 }
915 
916 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
917 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
918 
919 static inline unsigned int bio_zone_no(struct bio *bio)
920 {
921 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
922 }
923 
924 static inline bool bio_straddles_zones(struct bio *bio)
925 {
926 	return bio_sectors(bio) &&
927 		bio_zone_no(bio) !=
928 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
929 }
930 
931 /*
932  * Return how much within the boundary is left to be used for I/O at a given
933  * offset.
934  */
935 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
936 		unsigned int boundary_sectors)
937 {
938 	if (unlikely(!is_power_of_2(boundary_sectors)))
939 		return boundary_sectors - sector_div(offset, boundary_sectors);
940 	return boundary_sectors - (offset & (boundary_sectors - 1));
941 }
942 
943 /**
944  * queue_limits_start_update - start an atomic update of queue limits
945  * @q:		queue to update
946  *
947  * This functions starts an atomic update of the queue limits.  It takes a lock
948  * to prevent other updates and returns a snapshot of the current limits that
949  * the caller can modify.  The caller must call queue_limits_commit_update()
950  * to finish the update.
951  *
952  * Context: process context.
953  */
954 static inline struct queue_limits
955 queue_limits_start_update(struct request_queue *q)
956 {
957 	mutex_lock(&q->limits_lock);
958 	return q->limits;
959 }
960 int queue_limits_commit_update_frozen(struct request_queue *q,
961 		struct queue_limits *lim);
962 int queue_limits_commit_update(struct request_queue *q,
963 		struct queue_limits *lim);
964 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
965 int blk_validate_limits(struct queue_limits *lim);
966 
967 /**
968  * queue_limits_cancel_update - cancel an atomic update of queue limits
969  * @q:		queue to update
970  *
971  * This functions cancels an atomic update of the queue limits started by
972  * queue_limits_start_update() and should be used when an error occurs after
973  * starting update.
974  */
975 static inline void queue_limits_cancel_update(struct request_queue *q)
976 {
977 	mutex_unlock(&q->limits_lock);
978 }
979 
980 /*
981  * These helpers are for drivers that have sloppy feature negotiation and might
982  * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
983  * completion handler when the device returned an indicator that the respective
984  * feature is not actually supported.  They are racy and the driver needs to
985  * cope with that.  Try to avoid this scheme if you can.
986  */
987 static inline void blk_queue_disable_discard(struct request_queue *q)
988 {
989 	q->limits.max_discard_sectors = 0;
990 }
991 
992 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
993 {
994 	q->limits.max_secure_erase_sectors = 0;
995 }
996 
997 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
998 {
999 	q->limits.max_write_zeroes_sectors = 0;
1000 }
1001 
1002 /*
1003  * Access functions for manipulating queue properties
1004  */
1005 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1006 extern void blk_set_stacking_limits(struct queue_limits *lim);
1007 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1008 			    sector_t offset);
1009 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1010 		sector_t offset, const char *pfx);
1011 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1012 
1013 struct blk_independent_access_ranges *
1014 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1015 void disk_set_independent_access_ranges(struct gendisk *disk,
1016 				struct blk_independent_access_ranges *iars);
1017 
1018 bool __must_check blk_get_queue(struct request_queue *);
1019 extern void blk_put_queue(struct request_queue *);
1020 
1021 void blk_mark_disk_dead(struct gendisk *disk);
1022 
1023 struct rq_list {
1024 	struct request *head;
1025 	struct request *tail;
1026 };
1027 
1028 #ifdef CONFIG_BLOCK
1029 /*
1030  * blk_plug permits building a queue of related requests by holding the I/O
1031  * fragments for a short period. This allows merging of sequential requests
1032  * into single larger request. As the requests are moved from a per-task list to
1033  * the device's request_queue in a batch, this results in improved scalability
1034  * as the lock contention for request_queue lock is reduced.
1035  *
1036  * It is ok not to disable preemption when adding the request to the plug list
1037  * or when attempting a merge. For details, please see schedule() where
1038  * blk_flush_plug() is called.
1039  */
1040 struct blk_plug {
1041 	struct rq_list mq_list; /* blk-mq requests */
1042 
1043 	/* if ios_left is > 1, we can batch tag/rq allocations */
1044 	struct rq_list cached_rqs;
1045 	u64 cur_ktime;
1046 	unsigned short nr_ios;
1047 
1048 	unsigned short rq_count;
1049 
1050 	bool multiple_queues;
1051 	bool has_elevator;
1052 
1053 	struct list_head cb_list; /* md requires an unplug callback */
1054 };
1055 
1056 struct blk_plug_cb;
1057 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1058 struct blk_plug_cb {
1059 	struct list_head list;
1060 	blk_plug_cb_fn callback;
1061 	void *data;
1062 };
1063 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1064 					     void *data, int size);
1065 extern void blk_start_plug(struct blk_plug *);
1066 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1067 extern void blk_finish_plug(struct blk_plug *);
1068 
1069 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1070 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1071 {
1072 	if (plug)
1073 		__blk_flush_plug(plug, async);
1074 }
1075 
1076 /*
1077  * tsk == current here
1078  */
1079 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1080 {
1081 	struct blk_plug *plug = tsk->plug;
1082 
1083 	if (plug)
1084 		plug->cur_ktime = 0;
1085 	current->flags &= ~PF_BLOCK_TS;
1086 }
1087 
1088 int blkdev_issue_flush(struct block_device *bdev);
1089 long nr_blockdev_pages(void);
1090 #else /* CONFIG_BLOCK */
1091 struct blk_plug {
1092 };
1093 
1094 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1095 					 unsigned short nr_ios)
1096 {
1097 }
1098 
1099 static inline void blk_start_plug(struct blk_plug *plug)
1100 {
1101 }
1102 
1103 static inline void blk_finish_plug(struct blk_plug *plug)
1104 {
1105 }
1106 
1107 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1108 {
1109 }
1110 
1111 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1112 {
1113 }
1114 
1115 static inline int blkdev_issue_flush(struct block_device *bdev)
1116 {
1117 	return 0;
1118 }
1119 
1120 static inline long nr_blockdev_pages(void)
1121 {
1122 	return 0;
1123 }
1124 #endif /* CONFIG_BLOCK */
1125 
1126 extern void blk_io_schedule(void);
1127 
1128 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1129 		sector_t nr_sects, gfp_t gfp_mask);
1130 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1131 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1132 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1133 		sector_t nr_sects, gfp_t gfp);
1134 
1135 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1136 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1137 #define BLKDEV_ZERO_KILLABLE	(1 << 2)  /* interruptible by fatal signals */
1138 
1139 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1140 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1141 		unsigned flags);
1142 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1143 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1144 
1145 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1146 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1147 {
1148 	return blkdev_issue_discard(sb->s_bdev,
1149 				    block << (sb->s_blocksize_bits -
1150 					      SECTOR_SHIFT),
1151 				    nr_blocks << (sb->s_blocksize_bits -
1152 						  SECTOR_SHIFT),
1153 				    gfp_mask);
1154 }
1155 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1156 		sector_t nr_blocks, gfp_t gfp_mask)
1157 {
1158 	return blkdev_issue_zeroout(sb->s_bdev,
1159 				    block << (sb->s_blocksize_bits -
1160 					      SECTOR_SHIFT),
1161 				    nr_blocks << (sb->s_blocksize_bits -
1162 						  SECTOR_SHIFT),
1163 				    gfp_mask, 0);
1164 }
1165 
1166 static inline bool bdev_is_partition(struct block_device *bdev)
1167 {
1168 	return bdev_partno(bdev) != 0;
1169 }
1170 
1171 enum blk_default_limits {
1172 	BLK_MAX_SEGMENTS	= 128,
1173 	BLK_SAFE_MAX_SECTORS	= 255,
1174 	BLK_MAX_SEGMENT_SIZE	= 65536,
1175 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1176 };
1177 
1178 /*
1179  * Default upper limit for the software max_sectors limit used for
1180  * regular file system I/O.  This can be increased through sysfs.
1181  *
1182  * Not to be confused with the max_hw_sector limit that is entirely
1183  * controlled by the driver, usually based on hardware limits.
1184  */
1185 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1186 
1187 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1188 {
1189 	return &bdev_get_queue(bdev)->limits;
1190 }
1191 
1192 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1193 {
1194 	return q->limits.seg_boundary_mask;
1195 }
1196 
1197 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1198 {
1199 	return q->limits.virt_boundary_mask;
1200 }
1201 
1202 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1203 {
1204 	return q->limits.max_sectors;
1205 }
1206 
1207 static inline unsigned int queue_max_bytes(struct request_queue *q)
1208 {
1209 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1210 }
1211 
1212 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1213 {
1214 	return q->limits.max_hw_sectors;
1215 }
1216 
1217 static inline unsigned short queue_max_segments(const struct request_queue *q)
1218 {
1219 	return q->limits.max_segments;
1220 }
1221 
1222 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1223 {
1224 	return q->limits.max_discard_segments;
1225 }
1226 
1227 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1228 {
1229 	return q->limits.max_segment_size;
1230 }
1231 
1232 static inline bool queue_emulates_zone_append(struct request_queue *q)
1233 {
1234 	return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1235 }
1236 
1237 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1238 {
1239 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1240 }
1241 
1242 static inline unsigned int
1243 bdev_max_zone_append_sectors(struct block_device *bdev)
1244 {
1245 	return bdev_limits(bdev)->max_zone_append_sectors;
1246 }
1247 
1248 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1249 {
1250 	return queue_max_segments(bdev_get_queue(bdev));
1251 }
1252 
1253 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1254 {
1255 	return q->limits.logical_block_size;
1256 }
1257 
1258 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1259 {
1260 	return queue_logical_block_size(bdev_get_queue(bdev));
1261 }
1262 
1263 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1264 {
1265 	return q->limits.physical_block_size;
1266 }
1267 
1268 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1269 {
1270 	return queue_physical_block_size(bdev_get_queue(bdev));
1271 }
1272 
1273 static inline unsigned int queue_io_min(const struct request_queue *q)
1274 {
1275 	return q->limits.io_min;
1276 }
1277 
1278 static inline unsigned int bdev_io_min(struct block_device *bdev)
1279 {
1280 	return queue_io_min(bdev_get_queue(bdev));
1281 }
1282 
1283 static inline unsigned int queue_io_opt(const struct request_queue *q)
1284 {
1285 	return q->limits.io_opt;
1286 }
1287 
1288 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1289 {
1290 	return queue_io_opt(bdev_get_queue(bdev));
1291 }
1292 
1293 static inline unsigned int
1294 queue_zone_write_granularity(const struct request_queue *q)
1295 {
1296 	return q->limits.zone_write_granularity;
1297 }
1298 
1299 static inline unsigned int
1300 bdev_zone_write_granularity(struct block_device *bdev)
1301 {
1302 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1303 }
1304 
1305 int bdev_alignment_offset(struct block_device *bdev);
1306 unsigned int bdev_discard_alignment(struct block_device *bdev);
1307 
1308 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1309 {
1310 	return bdev_limits(bdev)->max_discard_sectors;
1311 }
1312 
1313 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1314 {
1315 	return bdev_limits(bdev)->discard_granularity;
1316 }
1317 
1318 static inline unsigned int
1319 bdev_max_secure_erase_sectors(struct block_device *bdev)
1320 {
1321 	return bdev_limits(bdev)->max_secure_erase_sectors;
1322 }
1323 
1324 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1325 {
1326 	return bdev_limits(bdev)->max_write_zeroes_sectors;
1327 }
1328 
1329 static inline bool bdev_nonrot(struct block_device *bdev)
1330 {
1331 	return blk_queue_nonrot(bdev_get_queue(bdev));
1332 }
1333 
1334 static inline bool bdev_synchronous(struct block_device *bdev)
1335 {
1336 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1337 }
1338 
1339 static inline bool bdev_stable_writes(struct block_device *bdev)
1340 {
1341 	struct request_queue *q = bdev_get_queue(bdev);
1342 
1343 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1344 	    q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1345 		return true;
1346 	return q->limits.features & BLK_FEAT_STABLE_WRITES;
1347 }
1348 
1349 static inline bool blk_queue_write_cache(struct request_queue *q)
1350 {
1351 	return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1352 		!(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1353 }
1354 
1355 static inline bool bdev_write_cache(struct block_device *bdev)
1356 {
1357 	return blk_queue_write_cache(bdev_get_queue(bdev));
1358 }
1359 
1360 static inline bool bdev_fua(struct block_device *bdev)
1361 {
1362 	return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1363 }
1364 
1365 static inline bool bdev_nowait(struct block_device *bdev)
1366 {
1367 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1368 }
1369 
1370 static inline bool bdev_is_zoned(struct block_device *bdev)
1371 {
1372 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1373 }
1374 
1375 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1376 {
1377 	return disk_zone_no(bdev->bd_disk, sec);
1378 }
1379 
1380 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1381 {
1382 	struct request_queue *q = bdev_get_queue(bdev);
1383 
1384 	if (!blk_queue_is_zoned(q))
1385 		return 0;
1386 	return q->limits.chunk_sectors;
1387 }
1388 
1389 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1390 						   sector_t sector)
1391 {
1392 	return sector & (bdev_zone_sectors(bdev) - 1);
1393 }
1394 
1395 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1396 {
1397 	return bdev_offset_from_zone_start(bio->bi_bdev,
1398 					   bio->bi_iter.bi_sector);
1399 }
1400 
1401 static inline bool bdev_is_zone_start(struct block_device *bdev,
1402 				      sector_t sector)
1403 {
1404 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1405 }
1406 
1407 /**
1408  * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1409  * @bdev:	block device to check
1410  * @sector:	sector number
1411  *
1412  * Check if @sector on @bdev is contained in a sequential write required zone.
1413  */
1414 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1415 {
1416 	bool is_seq = false;
1417 
1418 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1419 	if (bdev_is_zoned(bdev)) {
1420 		struct gendisk *disk = bdev->bd_disk;
1421 		unsigned long *bitmap;
1422 
1423 		rcu_read_lock();
1424 		bitmap = rcu_dereference(disk->conv_zones_bitmap);
1425 		is_seq = !bitmap ||
1426 			!test_bit(disk_zone_no(disk, sector), bitmap);
1427 		rcu_read_unlock();
1428 	}
1429 #endif
1430 
1431 	return is_seq;
1432 }
1433 
1434 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1435 			   sector_t nr_sects, gfp_t gfp_mask);
1436 
1437 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1438 {
1439 	return q->limits.dma_alignment;
1440 }
1441 
1442 static inline unsigned int
1443 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1444 {
1445 	return q->limits.atomic_write_unit_max;
1446 }
1447 
1448 static inline unsigned int
1449 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1450 {
1451 	return q->limits.atomic_write_unit_min;
1452 }
1453 
1454 static inline unsigned int
1455 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1456 {
1457 	return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1458 }
1459 
1460 static inline unsigned int
1461 queue_atomic_write_max_bytes(const struct request_queue *q)
1462 {
1463 	return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1464 }
1465 
1466 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1467 {
1468 	return queue_dma_alignment(bdev_get_queue(bdev));
1469 }
1470 
1471 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1472 					struct iov_iter *iter)
1473 {
1474 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1475 				   bdev_logical_block_size(bdev) - 1);
1476 }
1477 
1478 static inline unsigned int
1479 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1480 {
1481 	return lim->dma_alignment | lim->dma_pad_mask;
1482 }
1483 
1484 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1485 				 unsigned int len)
1486 {
1487 	unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1488 
1489 	return !(addr & alignment) && !(len & alignment);
1490 }
1491 
1492 /* assumes size > 256 */
1493 static inline unsigned int blksize_bits(unsigned int size)
1494 {
1495 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1496 }
1497 
1498 int kblockd_schedule_work(struct work_struct *work);
1499 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1500 
1501 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1502 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1503 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1504 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1505 
1506 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1507 
1508 bool blk_crypto_register(struct blk_crypto_profile *profile,
1509 			 struct request_queue *q);
1510 
1511 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1512 
1513 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1514 				       struct request_queue *q)
1515 {
1516 	return true;
1517 }
1518 
1519 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1520 
1521 enum blk_unique_id {
1522 	/* these match the Designator Types specified in SPC */
1523 	BLK_UID_T10	= 1,
1524 	BLK_UID_EUI64	= 2,
1525 	BLK_UID_NAA	= 3,
1526 };
1527 
1528 struct block_device_operations {
1529 	void (*submit_bio)(struct bio *bio);
1530 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1531 			unsigned int flags);
1532 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1533 	void (*release)(struct gendisk *disk);
1534 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1535 			unsigned cmd, unsigned long arg);
1536 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1537 			unsigned cmd, unsigned long arg);
1538 	unsigned int (*check_events) (struct gendisk *disk,
1539 				      unsigned int clearing);
1540 	void (*unlock_native_capacity) (struct gendisk *);
1541 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1542 	int (*set_read_only)(struct block_device *bdev, bool ro);
1543 	void (*free_disk)(struct gendisk *disk);
1544 	/* this callback is with swap_lock and sometimes page table lock held */
1545 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1546 	int (*report_zones)(struct gendisk *, sector_t sector,
1547 			unsigned int nr_zones, report_zones_cb cb, void *data);
1548 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1549 	/* returns the length of the identifier or a negative errno: */
1550 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1551 			enum blk_unique_id id_type);
1552 	struct module *owner;
1553 	const struct pr_ops *pr_ops;
1554 
1555 	/*
1556 	 * Special callback for probing GPT entry at a given sector.
1557 	 * Needed by Android devices, used by GPT scanner and MMC blk
1558 	 * driver.
1559 	 */
1560 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1561 };
1562 
1563 #ifdef CONFIG_COMPAT
1564 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1565 				      unsigned int, unsigned long);
1566 #else
1567 #define blkdev_compat_ptr_ioctl NULL
1568 #endif
1569 
1570 static inline void blk_wake_io_task(struct task_struct *waiter)
1571 {
1572 	/*
1573 	 * If we're polling, the task itself is doing the completions. For
1574 	 * that case, we don't need to signal a wakeup, it's enough to just
1575 	 * mark us as RUNNING.
1576 	 */
1577 	if (waiter == current)
1578 		__set_current_state(TASK_RUNNING);
1579 	else
1580 		wake_up_process(waiter);
1581 }
1582 
1583 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1584 				 unsigned long start_time);
1585 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1586 		      unsigned int sectors, unsigned long start_time);
1587 
1588 unsigned long bio_start_io_acct(struct bio *bio);
1589 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1590 		struct block_device *orig_bdev);
1591 
1592 /**
1593  * bio_end_io_acct - end I/O accounting for bio based drivers
1594  * @bio:	bio to end account for
1595  * @start_time:	start time returned by bio_start_io_acct()
1596  */
1597 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1598 {
1599 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1600 }
1601 
1602 int set_blocksize(struct file *file, int size);
1603 
1604 int lookup_bdev(const char *pathname, dev_t *dev);
1605 
1606 void blkdev_show(struct seq_file *seqf, off_t offset);
1607 
1608 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1609 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1610 #ifdef CONFIG_BLOCK
1611 #define BLKDEV_MAJOR_MAX	512
1612 #else
1613 #define BLKDEV_MAJOR_MAX	0
1614 #endif
1615 
1616 struct blk_holder_ops {
1617 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1618 
1619 	/*
1620 	 * Sync the file system mounted on the block device.
1621 	 */
1622 	void (*sync)(struct block_device *bdev);
1623 
1624 	/*
1625 	 * Freeze the file system mounted on the block device.
1626 	 */
1627 	int (*freeze)(struct block_device *bdev);
1628 
1629 	/*
1630 	 * Thaw the file system mounted on the block device.
1631 	 */
1632 	int (*thaw)(struct block_device *bdev);
1633 };
1634 
1635 /*
1636  * For filesystems using @fs_holder_ops, the @holder argument passed to
1637  * helpers used to open and claim block devices via
1638  * bd_prepare_to_claim() must point to a superblock.
1639  */
1640 extern const struct blk_holder_ops fs_holder_ops;
1641 
1642 /*
1643  * Return the correct open flags for blkdev_get_by_* for super block flags
1644  * as stored in sb->s_flags.
1645  */
1646 #define sb_open_mode(flags) \
1647 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1648 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1649 
1650 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1651 		const struct blk_holder_ops *hops);
1652 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1653 		void *holder, const struct blk_holder_ops *hops);
1654 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1655 		const struct blk_holder_ops *hops);
1656 void bd_abort_claiming(struct block_device *bdev, void *holder);
1657 
1658 /* just for blk-cgroup, don't use elsewhere */
1659 struct block_device *blkdev_get_no_open(dev_t dev);
1660 void blkdev_put_no_open(struct block_device *bdev);
1661 
1662 struct block_device *I_BDEV(struct inode *inode);
1663 struct block_device *file_bdev(struct file *bdev_file);
1664 bool disk_live(struct gendisk *disk);
1665 unsigned int block_size(struct block_device *bdev);
1666 
1667 #ifdef CONFIG_BLOCK
1668 void invalidate_bdev(struct block_device *bdev);
1669 int sync_blockdev(struct block_device *bdev);
1670 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1671 int sync_blockdev_nowait(struct block_device *bdev);
1672 void sync_bdevs(bool wait);
1673 void bdev_statx(struct path *, struct kstat *, u32);
1674 void printk_all_partitions(void);
1675 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1676 #else
1677 static inline void invalidate_bdev(struct block_device *bdev)
1678 {
1679 }
1680 static inline int sync_blockdev(struct block_device *bdev)
1681 {
1682 	return 0;
1683 }
1684 static inline int sync_blockdev_nowait(struct block_device *bdev)
1685 {
1686 	return 0;
1687 }
1688 static inline void sync_bdevs(bool wait)
1689 {
1690 }
1691 static inline void bdev_statx(struct path *path, struct kstat *stat,
1692 				u32 request_mask)
1693 {
1694 }
1695 static inline void printk_all_partitions(void)
1696 {
1697 }
1698 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1699 {
1700 	return -EINVAL;
1701 }
1702 #endif /* CONFIG_BLOCK */
1703 
1704 int bdev_freeze(struct block_device *bdev);
1705 int bdev_thaw(struct block_device *bdev);
1706 void bdev_fput(struct file *bdev_file);
1707 
1708 struct io_comp_batch {
1709 	struct rq_list req_list;
1710 	bool need_ts;
1711 	void (*complete)(struct io_comp_batch *);
1712 };
1713 
1714 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1715 						struct queue_limits *limits)
1716 {
1717 	unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1718 				limits->atomic_write_hw_boundary);
1719 
1720 	return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1721 }
1722 
1723 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1724 {
1725 	struct request_queue *bd_queue = bdev->bd_queue;
1726 	struct queue_limits *limits = &bd_queue->limits;
1727 
1728 	if (!limits->atomic_write_unit_min)
1729 		return false;
1730 
1731 	if (bdev_is_partition(bdev))
1732 		return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1733 							limits);
1734 
1735 	return true;
1736 }
1737 
1738 static inline unsigned int
1739 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1740 {
1741 	if (!bdev_can_atomic_write(bdev))
1742 		return 0;
1743 	return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1744 }
1745 
1746 static inline unsigned int
1747 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1748 {
1749 	if (!bdev_can_atomic_write(bdev))
1750 		return 0;
1751 	return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1752 }
1753 
1754 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1755 
1756 #endif /* _LINUX_BLKDEV_H */
1757