xref: /linux-6.15/include/linux/blkdev.h (revision ef700f2e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 #include <linux/pm.h>
29 
30 struct module;
31 struct scsi_ioctl_command;
32 
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_keyslot_manager;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* drive already may have started this one */
69 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
70 /* may not be passed by ioscheduler */
71 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
72 /* request for flush sequence */
73 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
74 /* merge of different types, fail separately */
75 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
76 /* track inflight for MQ */
77 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
78 /* don't call prep for this one */
79 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
80 /* vaguely specified driver internal error.  Ignored by the block layer */
81 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
82 /* don't warn about errors */
83 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
84 /* elevator private data attached */
85 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
86 /* account into disk and partition IO statistics */
87 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
88 /* request came from our alloc pool */
89 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
90 /* runtime pm request */
91 #define RQF_PM			((__force req_flags_t)(1 << 15))
92 /* on IO scheduler merge hash */
93 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
94 /* track IO completion time */
95 #define RQF_STATS		((__force req_flags_t)(1 << 17))
96 /* Look at ->special_vec for the actual data payload instead of the
97    bio chain. */
98 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
99 /* The per-zone write lock is held for this request */
100 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
101 /* already slept for hybrid poll */
102 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
103 /* ->timeout has been called, don't expire again */
104 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
105 
106 /* flags that prevent us from merging requests: */
107 #define RQF_NOMERGE_FLAGS \
108 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
109 
110 /*
111  * Request state for blk-mq.
112  */
113 enum mq_rq_state {
114 	MQ_RQ_IDLE		= 0,
115 	MQ_RQ_IN_FLIGHT		= 1,
116 	MQ_RQ_COMPLETE		= 2,
117 };
118 
119 /*
120  * Try to put the fields that are referenced together in the same cacheline.
121  *
122  * If you modify this structure, make sure to update blk_rq_init() and
123  * especially blk_mq_rq_ctx_init() to take care of the added fields.
124  */
125 struct request {
126 	struct request_queue *q;
127 	struct blk_mq_ctx *mq_ctx;
128 	struct blk_mq_hw_ctx *mq_hctx;
129 
130 	unsigned int cmd_flags;		/* op and common flags */
131 	req_flags_t rq_flags;
132 
133 	int tag;
134 	int internal_tag;
135 
136 	/* the following two fields are internal, NEVER access directly */
137 	unsigned int __data_len;	/* total data len */
138 	sector_t __sector;		/* sector cursor */
139 
140 	struct bio *bio;
141 	struct bio *biotail;
142 
143 	struct list_head queuelist;
144 
145 	/*
146 	 * The hash is used inside the scheduler, and killed once the
147 	 * request reaches the dispatch list. The ipi_list is only used
148 	 * to queue the request for softirq completion, which is long
149 	 * after the request has been unhashed (and even removed from
150 	 * the dispatch list).
151 	 */
152 	union {
153 		struct hlist_node hash;	/* merge hash */
154 		struct llist_node ipi_list;
155 	};
156 
157 	/*
158 	 * The rb_node is only used inside the io scheduler, requests
159 	 * are pruned when moved to the dispatch queue. So let the
160 	 * completion_data share space with the rb_node.
161 	 */
162 	union {
163 		struct rb_node rb_node;	/* sort/lookup */
164 		struct bio_vec special_vec;
165 		void *completion_data;
166 		int error_count; /* for legacy drivers, don't use */
167 	};
168 
169 	/*
170 	 * Three pointers are available for the IO schedulers, if they need
171 	 * more they have to dynamically allocate it.  Flush requests are
172 	 * never put on the IO scheduler. So let the flush fields share
173 	 * space with the elevator data.
174 	 */
175 	union {
176 		struct {
177 			struct io_cq		*icq;
178 			void			*priv[2];
179 		} elv;
180 
181 		struct {
182 			unsigned int		seq;
183 			struct list_head	list;
184 			rq_end_io_fn		*saved_end_io;
185 		} flush;
186 	};
187 
188 	struct gendisk *rq_disk;
189 	struct block_device *part;
190 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
191 	/* Time that the first bio started allocating this request. */
192 	u64 alloc_time_ns;
193 #endif
194 	/* Time that this request was allocated for this IO. */
195 	u64 start_time_ns;
196 	/* Time that I/O was submitted to the device. */
197 	u64 io_start_time_ns;
198 
199 #ifdef CONFIG_BLK_WBT
200 	unsigned short wbt_flags;
201 #endif
202 	/*
203 	 * rq sectors used for blk stats. It has the same value
204 	 * with blk_rq_sectors(rq), except that it never be zeroed
205 	 * by completion.
206 	 */
207 	unsigned short stats_sectors;
208 
209 	/*
210 	 * Number of scatter-gather DMA addr+len pairs after
211 	 * physical address coalescing is performed.
212 	 */
213 	unsigned short nr_phys_segments;
214 
215 #if defined(CONFIG_BLK_DEV_INTEGRITY)
216 	unsigned short nr_integrity_segments;
217 #endif
218 
219 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
220 	struct bio_crypt_ctx *crypt_ctx;
221 	struct blk_ksm_keyslot *crypt_keyslot;
222 #endif
223 
224 	unsigned short write_hint;
225 	unsigned short ioprio;
226 
227 	enum mq_rq_state state;
228 	refcount_t ref;
229 
230 	unsigned int timeout;
231 	unsigned long deadline;
232 
233 	union {
234 		struct __call_single_data csd;
235 		u64 fifo_time;
236 	};
237 
238 	/*
239 	 * completion callback.
240 	 */
241 	rq_end_io_fn *end_io;
242 	void *end_io_data;
243 };
244 
245 static inline bool blk_op_is_scsi(unsigned int op)
246 {
247 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
248 }
249 
250 static inline bool blk_op_is_private(unsigned int op)
251 {
252 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
253 }
254 
255 static inline bool blk_rq_is_scsi(struct request *rq)
256 {
257 	return blk_op_is_scsi(req_op(rq));
258 }
259 
260 static inline bool blk_rq_is_private(struct request *rq)
261 {
262 	return blk_op_is_private(req_op(rq));
263 }
264 
265 static inline bool blk_rq_is_passthrough(struct request *rq)
266 {
267 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
268 }
269 
270 static inline bool bio_is_passthrough(struct bio *bio)
271 {
272 	unsigned op = bio_op(bio);
273 
274 	return blk_op_is_scsi(op) || blk_op_is_private(op);
275 }
276 
277 static inline unsigned short req_get_ioprio(struct request *req)
278 {
279 	return req->ioprio;
280 }
281 
282 #include <linux/elevator.h>
283 
284 struct blk_queue_ctx;
285 
286 struct bio_vec;
287 
288 enum blk_eh_timer_return {
289 	BLK_EH_DONE,		/* drivers has completed the command */
290 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
291 };
292 
293 enum blk_queue_state {
294 	Queue_down,
295 	Queue_up,
296 };
297 
298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
300 
301 #define BLK_SCSI_MAX_CMDS	(256)
302 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
303 
304 /*
305  * Zoned block device models (zoned limit).
306  *
307  * Note: This needs to be ordered from the least to the most severe
308  * restrictions for the inheritance in blk_stack_limits() to work.
309  */
310 enum blk_zoned_model {
311 	BLK_ZONED_NONE = 0,	/* Regular block device */
312 	BLK_ZONED_HA,		/* Host-aware zoned block device */
313 	BLK_ZONED_HM,		/* Host-managed zoned block device */
314 };
315 
316 struct queue_limits {
317 	unsigned long		bounce_pfn;
318 	unsigned long		seg_boundary_mask;
319 	unsigned long		virt_boundary_mask;
320 
321 	unsigned int		max_hw_sectors;
322 	unsigned int		max_dev_sectors;
323 	unsigned int		chunk_sectors;
324 	unsigned int		max_sectors;
325 	unsigned int		max_segment_size;
326 	unsigned int		physical_block_size;
327 	unsigned int		logical_block_size;
328 	unsigned int		alignment_offset;
329 	unsigned int		io_min;
330 	unsigned int		io_opt;
331 	unsigned int		max_discard_sectors;
332 	unsigned int		max_hw_discard_sectors;
333 	unsigned int		max_write_same_sectors;
334 	unsigned int		max_write_zeroes_sectors;
335 	unsigned int		max_zone_append_sectors;
336 	unsigned int		discard_granularity;
337 	unsigned int		discard_alignment;
338 	unsigned int		zone_write_granularity;
339 
340 	unsigned short		max_segments;
341 	unsigned short		max_integrity_segments;
342 	unsigned short		max_discard_segments;
343 
344 	unsigned char		misaligned;
345 	unsigned char		discard_misaligned;
346 	unsigned char		raid_partial_stripes_expensive;
347 	enum blk_zoned_model	zoned;
348 };
349 
350 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
351 			       void *data);
352 
353 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
354 
355 #ifdef CONFIG_BLK_DEV_ZONED
356 
357 #define BLK_ALL_ZONES  ((unsigned int)-1)
358 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
359 			unsigned int nr_zones, report_zones_cb cb, void *data);
360 unsigned int blkdev_nr_zones(struct gendisk *disk);
361 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
362 			    sector_t sectors, sector_t nr_sectors,
363 			    gfp_t gfp_mask);
364 int blk_revalidate_disk_zones(struct gendisk *disk,
365 			      void (*update_driver_data)(struct gendisk *disk));
366 
367 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
368 				     unsigned int cmd, unsigned long arg);
369 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
370 				  unsigned int cmd, unsigned long arg);
371 
372 #else /* CONFIG_BLK_DEV_ZONED */
373 
374 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
375 {
376 	return 0;
377 }
378 
379 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
380 					    fmode_t mode, unsigned int cmd,
381 					    unsigned long arg)
382 {
383 	return -ENOTTY;
384 }
385 
386 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
387 					 fmode_t mode, unsigned int cmd,
388 					 unsigned long arg)
389 {
390 	return -ENOTTY;
391 }
392 
393 #endif /* CONFIG_BLK_DEV_ZONED */
394 
395 struct request_queue {
396 	struct request		*last_merge;
397 	struct elevator_queue	*elevator;
398 
399 	struct percpu_ref	q_usage_counter;
400 
401 	struct blk_queue_stats	*stats;
402 	struct rq_qos		*rq_qos;
403 
404 	const struct blk_mq_ops	*mq_ops;
405 
406 	/* sw queues */
407 	struct blk_mq_ctx __percpu	*queue_ctx;
408 
409 	unsigned int		queue_depth;
410 
411 	/* hw dispatch queues */
412 	struct blk_mq_hw_ctx	**queue_hw_ctx;
413 	unsigned int		nr_hw_queues;
414 
415 	struct backing_dev_info	*backing_dev_info;
416 
417 	/*
418 	 * The queue owner gets to use this for whatever they like.
419 	 * ll_rw_blk doesn't touch it.
420 	 */
421 	void			*queuedata;
422 
423 	/*
424 	 * various queue flags, see QUEUE_* below
425 	 */
426 	unsigned long		queue_flags;
427 	/*
428 	 * Number of contexts that have called blk_set_pm_only(). If this
429 	 * counter is above zero then only RQF_PM requests are processed.
430 	 */
431 	atomic_t		pm_only;
432 
433 	/*
434 	 * ida allocated id for this queue.  Used to index queues from
435 	 * ioctx.
436 	 */
437 	int			id;
438 
439 	/*
440 	 * queue needs bounce pages for pages above this limit
441 	 */
442 	gfp_t			bounce_gfp;
443 
444 	spinlock_t		queue_lock;
445 
446 	/*
447 	 * queue kobject
448 	 */
449 	struct kobject kobj;
450 
451 	/*
452 	 * mq queue kobject
453 	 */
454 	struct kobject *mq_kobj;
455 
456 #ifdef  CONFIG_BLK_DEV_INTEGRITY
457 	struct blk_integrity integrity;
458 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
459 
460 #ifdef CONFIG_PM
461 	struct device		*dev;
462 	enum rpm_status		rpm_status;
463 #endif
464 
465 	/*
466 	 * queue settings
467 	 */
468 	unsigned long		nr_requests;	/* Max # of requests */
469 
470 	unsigned int		dma_pad_mask;
471 	unsigned int		dma_alignment;
472 
473 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
474 	/* Inline crypto capabilities */
475 	struct blk_keyslot_manager *ksm;
476 #endif
477 
478 	unsigned int		rq_timeout;
479 	int			poll_nsec;
480 
481 	struct blk_stat_callback	*poll_cb;
482 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
483 
484 	struct timer_list	timeout;
485 	struct work_struct	timeout_work;
486 
487 	atomic_t		nr_active_requests_shared_sbitmap;
488 
489 	struct list_head	icq_list;
490 #ifdef CONFIG_BLK_CGROUP
491 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
492 	struct blkcg_gq		*root_blkg;
493 	struct list_head	blkg_list;
494 #endif
495 
496 	struct queue_limits	limits;
497 
498 	unsigned int		required_elevator_features;
499 
500 #ifdef CONFIG_BLK_DEV_ZONED
501 	/*
502 	 * Zoned block device information for request dispatch control.
503 	 * nr_zones is the total number of zones of the device. This is always
504 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
505 	 * bits which indicates if a zone is conventional (bit set) or
506 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
507 	 * bits which indicates if a zone is write locked, that is, if a write
508 	 * request targeting the zone was dispatched. All three fields are
509 	 * initialized by the low level device driver (e.g. scsi/sd.c).
510 	 * Stacking drivers (device mappers) may or may not initialize
511 	 * these fields.
512 	 *
513 	 * Reads of this information must be protected with blk_queue_enter() /
514 	 * blk_queue_exit(). Modifying this information is only allowed while
515 	 * no requests are being processed. See also blk_mq_freeze_queue() and
516 	 * blk_mq_unfreeze_queue().
517 	 */
518 	unsigned int		nr_zones;
519 	unsigned long		*conv_zones_bitmap;
520 	unsigned long		*seq_zones_wlock;
521 	unsigned int		max_open_zones;
522 	unsigned int		max_active_zones;
523 #endif /* CONFIG_BLK_DEV_ZONED */
524 
525 	/*
526 	 * sg stuff
527 	 */
528 	unsigned int		sg_timeout;
529 	unsigned int		sg_reserved_size;
530 	int			node;
531 	struct mutex		debugfs_mutex;
532 #ifdef CONFIG_BLK_DEV_IO_TRACE
533 	struct blk_trace __rcu	*blk_trace;
534 #endif
535 	/*
536 	 * for flush operations
537 	 */
538 	struct blk_flush_queue	*fq;
539 
540 	struct list_head	requeue_list;
541 	spinlock_t		requeue_lock;
542 	struct delayed_work	requeue_work;
543 
544 	struct mutex		sysfs_lock;
545 	struct mutex		sysfs_dir_lock;
546 
547 	/*
548 	 * for reusing dead hctx instance in case of updating
549 	 * nr_hw_queues
550 	 */
551 	struct list_head	unused_hctx_list;
552 	spinlock_t		unused_hctx_lock;
553 
554 	int			mq_freeze_depth;
555 
556 #if defined(CONFIG_BLK_DEV_BSG)
557 	struct bsg_class_device bsg_dev;
558 #endif
559 
560 #ifdef CONFIG_BLK_DEV_THROTTLING
561 	/* Throttle data */
562 	struct throtl_data *td;
563 #endif
564 	struct rcu_head		rcu_head;
565 	wait_queue_head_t	mq_freeze_wq;
566 	/*
567 	 * Protect concurrent access to q_usage_counter by
568 	 * percpu_ref_kill() and percpu_ref_reinit().
569 	 */
570 	struct mutex		mq_freeze_lock;
571 
572 	struct blk_mq_tag_set	*tag_set;
573 	struct list_head	tag_set_list;
574 	struct bio_set		bio_split;
575 
576 	struct dentry		*debugfs_dir;
577 
578 #ifdef CONFIG_BLK_DEBUG_FS
579 	struct dentry		*sched_debugfs_dir;
580 	struct dentry		*rqos_debugfs_dir;
581 #endif
582 
583 	bool			mq_sysfs_init_done;
584 
585 	size_t			cmd_size;
586 
587 #define BLK_MAX_WRITE_HINTS	5
588 	u64			write_hints[BLK_MAX_WRITE_HINTS];
589 };
590 
591 /* Keep blk_queue_flag_name[] in sync with the definitions below */
592 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
593 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
594 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
595 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
596 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
597 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
598 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
599 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
600 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
601 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
602 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
603 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
604 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
605 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
606 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
607 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
608 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
609 #define QUEUE_FLAG_WC		17	/* Write back caching */
610 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
611 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
612 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
613 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
614 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
615 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
616 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
617 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
618 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
619 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
620 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
621 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
622 
623 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
624 				 (1 << QUEUE_FLAG_SAME_COMP) |		\
625 				 (1 << QUEUE_FLAG_NOWAIT))
626 
627 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
628 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
629 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
630 
631 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
632 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
633 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
634 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
635 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
636 #define blk_queue_noxmerges(q)	\
637 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
638 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
639 #define blk_queue_stable_writes(q) \
640 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
641 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
642 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
643 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
644 #define blk_queue_zone_resetall(q)	\
645 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
646 #define blk_queue_secure_erase(q) \
647 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
648 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
649 #define blk_queue_scsi_passthrough(q)	\
650 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
651 #define blk_queue_pci_p2pdma(q)	\
652 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
653 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
654 #define blk_queue_rq_alloc_time(q)	\
655 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
656 #else
657 #define blk_queue_rq_alloc_time(q)	false
658 #endif
659 
660 #define blk_noretry_request(rq) \
661 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
662 			     REQ_FAILFAST_DRIVER))
663 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
664 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
665 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
666 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
667 #define blk_queue_nowait(q)	test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
668 
669 extern void blk_set_pm_only(struct request_queue *q);
670 extern void blk_clear_pm_only(struct request_queue *q);
671 
672 static inline bool blk_account_rq(struct request *rq)
673 {
674 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
675 }
676 
677 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
678 
679 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
680 
681 #define rq_dma_dir(rq) \
682 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
683 
684 #define dma_map_bvec(dev, bv, dir, attrs) \
685 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
686 	(dir), (attrs))
687 
688 static inline bool queue_is_mq(struct request_queue *q)
689 {
690 	return q->mq_ops;
691 }
692 
693 #ifdef CONFIG_PM
694 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
695 {
696 	return q->rpm_status;
697 }
698 #else
699 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
700 {
701 	return RPM_ACTIVE;
702 }
703 #endif
704 
705 static inline enum blk_zoned_model
706 blk_queue_zoned_model(struct request_queue *q)
707 {
708 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
709 		return q->limits.zoned;
710 	return BLK_ZONED_NONE;
711 }
712 
713 static inline bool blk_queue_is_zoned(struct request_queue *q)
714 {
715 	switch (blk_queue_zoned_model(q)) {
716 	case BLK_ZONED_HA:
717 	case BLK_ZONED_HM:
718 		return true;
719 	default:
720 		return false;
721 	}
722 }
723 
724 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
725 {
726 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
727 }
728 
729 #ifdef CONFIG_BLK_DEV_ZONED
730 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
731 {
732 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
733 }
734 
735 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
736 					     sector_t sector)
737 {
738 	if (!blk_queue_is_zoned(q))
739 		return 0;
740 	return sector >> ilog2(q->limits.chunk_sectors);
741 }
742 
743 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
744 					 sector_t sector)
745 {
746 	if (!blk_queue_is_zoned(q))
747 		return false;
748 	if (!q->conv_zones_bitmap)
749 		return true;
750 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
751 }
752 
753 static inline void blk_queue_max_open_zones(struct request_queue *q,
754 		unsigned int max_open_zones)
755 {
756 	q->max_open_zones = max_open_zones;
757 }
758 
759 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
760 {
761 	return q->max_open_zones;
762 }
763 
764 static inline void blk_queue_max_active_zones(struct request_queue *q,
765 		unsigned int max_active_zones)
766 {
767 	q->max_active_zones = max_active_zones;
768 }
769 
770 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
771 {
772 	return q->max_active_zones;
773 }
774 #else /* CONFIG_BLK_DEV_ZONED */
775 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
776 {
777 	return 0;
778 }
779 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
780 					 sector_t sector)
781 {
782 	return false;
783 }
784 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
785 					     sector_t sector)
786 {
787 	return 0;
788 }
789 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
790 {
791 	return 0;
792 }
793 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
794 {
795 	return 0;
796 }
797 #endif /* CONFIG_BLK_DEV_ZONED */
798 
799 static inline bool rq_is_sync(struct request *rq)
800 {
801 	return op_is_sync(rq->cmd_flags);
802 }
803 
804 static inline bool rq_mergeable(struct request *rq)
805 {
806 	if (blk_rq_is_passthrough(rq))
807 		return false;
808 
809 	if (req_op(rq) == REQ_OP_FLUSH)
810 		return false;
811 
812 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
813 		return false;
814 
815 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
816 		return false;
817 
818 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
819 		return false;
820 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
821 		return false;
822 
823 	return true;
824 }
825 
826 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
827 {
828 	if (bio_page(a) == bio_page(b) &&
829 	    bio_offset(a) == bio_offset(b))
830 		return true;
831 
832 	return false;
833 }
834 
835 static inline unsigned int blk_queue_depth(struct request_queue *q)
836 {
837 	if (q->queue_depth)
838 		return q->queue_depth;
839 
840 	return q->nr_requests;
841 }
842 
843 extern unsigned long blk_max_low_pfn, blk_max_pfn;
844 
845 /*
846  * standard bounce addresses:
847  *
848  * BLK_BOUNCE_HIGH	: bounce all highmem pages
849  * BLK_BOUNCE_ANY	: don't bounce anything
850  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
851  */
852 
853 #if BITS_PER_LONG == 32
854 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
855 #else
856 #define BLK_BOUNCE_HIGH		-1ULL
857 #endif
858 #define BLK_BOUNCE_ANY		(-1ULL)
859 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
860 
861 /*
862  * default timeout for SG_IO if none specified
863  */
864 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
865 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
866 
867 struct rq_map_data {
868 	struct page **pages;
869 	int page_order;
870 	int nr_entries;
871 	unsigned long offset;
872 	int null_mapped;
873 	int from_user;
874 };
875 
876 struct req_iterator {
877 	struct bvec_iter iter;
878 	struct bio *bio;
879 };
880 
881 /* This should not be used directly - use rq_for_each_segment */
882 #define for_each_bio(_bio)		\
883 	for (; _bio; _bio = _bio->bi_next)
884 #define __rq_for_each_bio(_bio, rq)	\
885 	if ((rq->bio))			\
886 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
887 
888 #define rq_for_each_segment(bvl, _rq, _iter)			\
889 	__rq_for_each_bio(_iter.bio, _rq)			\
890 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
891 
892 #define rq_for_each_bvec(bvl, _rq, _iter)			\
893 	__rq_for_each_bio(_iter.bio, _rq)			\
894 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
895 
896 #define rq_iter_last(bvec, _iter)				\
897 		(_iter.bio->bi_next == NULL &&			\
898 		 bio_iter_last(bvec, _iter.iter))
899 
900 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
901 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
902 #endif
903 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
904 extern void rq_flush_dcache_pages(struct request *rq);
905 #else
906 static inline void rq_flush_dcache_pages(struct request *rq)
907 {
908 }
909 #endif
910 
911 extern int blk_register_queue(struct gendisk *disk);
912 extern void blk_unregister_queue(struct gendisk *disk);
913 blk_qc_t submit_bio_noacct(struct bio *bio);
914 extern void blk_rq_init(struct request_queue *q, struct request *rq);
915 extern void blk_put_request(struct request *);
916 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
917 				       blk_mq_req_flags_t flags);
918 extern int blk_lld_busy(struct request_queue *q);
919 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
920 			     struct bio_set *bs, gfp_t gfp_mask,
921 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
922 			     void *data);
923 extern void blk_rq_unprep_clone(struct request *rq);
924 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
925 				     struct request *rq);
926 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
927 extern void blk_queue_split(struct bio **);
928 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
929 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
930 			      unsigned int, void __user *);
931 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
932 			  unsigned int, void __user *);
933 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
934 			 struct scsi_ioctl_command __user *);
935 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
936 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
937 
938 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
939 extern void blk_queue_exit(struct request_queue *q);
940 extern void blk_sync_queue(struct request_queue *q);
941 extern int blk_rq_map_user(struct request_queue *, struct request *,
942 			   struct rq_map_data *, void __user *, unsigned long,
943 			   gfp_t);
944 extern int blk_rq_unmap_user(struct bio *);
945 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
946 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
947 			       struct rq_map_data *, const struct iov_iter *,
948 			       gfp_t);
949 extern void blk_execute_rq(struct gendisk *, struct request *, int);
950 extern void blk_execute_rq_nowait(struct gendisk *,
951 				  struct request *, int, rq_end_io_fn *);
952 
953 /* Helper to convert REQ_OP_XXX to its string format XXX */
954 extern const char *blk_op_str(unsigned int op);
955 
956 int blk_status_to_errno(blk_status_t status);
957 blk_status_t errno_to_blk_status(int errno);
958 
959 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
960 
961 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
962 {
963 	return bdev->bd_disk->queue;	/* this is never NULL */
964 }
965 
966 /*
967  * The basic unit of block I/O is a sector. It is used in a number of contexts
968  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
969  * bytes. Variables of type sector_t represent an offset or size that is a
970  * multiple of 512 bytes. Hence these two constants.
971  */
972 #ifndef SECTOR_SHIFT
973 #define SECTOR_SHIFT 9
974 #endif
975 #ifndef SECTOR_SIZE
976 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
977 #endif
978 
979 /*
980  * blk_rq_pos()			: the current sector
981  * blk_rq_bytes()		: bytes left in the entire request
982  * blk_rq_cur_bytes()		: bytes left in the current segment
983  * blk_rq_err_bytes()		: bytes left till the next error boundary
984  * blk_rq_sectors()		: sectors left in the entire request
985  * blk_rq_cur_sectors()		: sectors left in the current segment
986  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
987  */
988 static inline sector_t blk_rq_pos(const struct request *rq)
989 {
990 	return rq->__sector;
991 }
992 
993 static inline unsigned int blk_rq_bytes(const struct request *rq)
994 {
995 	return rq->__data_len;
996 }
997 
998 static inline int blk_rq_cur_bytes(const struct request *rq)
999 {
1000 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1001 }
1002 
1003 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1004 
1005 static inline unsigned int blk_rq_sectors(const struct request *rq)
1006 {
1007 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1008 }
1009 
1010 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1011 {
1012 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1013 }
1014 
1015 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1016 {
1017 	return rq->stats_sectors;
1018 }
1019 
1020 #ifdef CONFIG_BLK_DEV_ZONED
1021 
1022 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1023 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1024 
1025 static inline unsigned int blk_rq_zone_no(struct request *rq)
1026 {
1027 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1028 }
1029 
1030 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1031 {
1032 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1033 }
1034 #endif /* CONFIG_BLK_DEV_ZONED */
1035 
1036 /*
1037  * Some commands like WRITE SAME have a payload or data transfer size which
1038  * is different from the size of the request.  Any driver that supports such
1039  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1040  * calculate the data transfer size.
1041  */
1042 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1043 {
1044 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1045 		return rq->special_vec.bv_len;
1046 	return blk_rq_bytes(rq);
1047 }
1048 
1049 /*
1050  * Return the first full biovec in the request.  The caller needs to check that
1051  * there are any bvecs before calling this helper.
1052  */
1053 static inline struct bio_vec req_bvec(struct request *rq)
1054 {
1055 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1056 		return rq->special_vec;
1057 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1058 }
1059 
1060 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1061 						     int op)
1062 {
1063 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1064 		return min(q->limits.max_discard_sectors,
1065 			   UINT_MAX >> SECTOR_SHIFT);
1066 
1067 	if (unlikely(op == REQ_OP_WRITE_SAME))
1068 		return q->limits.max_write_same_sectors;
1069 
1070 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1071 		return q->limits.max_write_zeroes_sectors;
1072 
1073 	return q->limits.max_sectors;
1074 }
1075 
1076 /*
1077  * Return maximum size of a request at given offset. Only valid for
1078  * file system requests.
1079  */
1080 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1081 					       sector_t offset,
1082 					       unsigned int chunk_sectors)
1083 {
1084 	if (!chunk_sectors) {
1085 		if (q->limits.chunk_sectors)
1086 			chunk_sectors = q->limits.chunk_sectors;
1087 		else
1088 			return q->limits.max_sectors;
1089 	}
1090 
1091 	if (likely(is_power_of_2(chunk_sectors)))
1092 		chunk_sectors -= offset & (chunk_sectors - 1);
1093 	else
1094 		chunk_sectors -= sector_div(offset, chunk_sectors);
1095 
1096 	return min(q->limits.max_sectors, chunk_sectors);
1097 }
1098 
1099 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1100 						  sector_t offset)
1101 {
1102 	struct request_queue *q = rq->q;
1103 
1104 	if (blk_rq_is_passthrough(rq))
1105 		return q->limits.max_hw_sectors;
1106 
1107 	if (!q->limits.chunk_sectors ||
1108 	    req_op(rq) == REQ_OP_DISCARD ||
1109 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1110 		return blk_queue_get_max_sectors(q, req_op(rq));
1111 
1112 	return min(blk_max_size_offset(q, offset, 0),
1113 			blk_queue_get_max_sectors(q, req_op(rq)));
1114 }
1115 
1116 static inline unsigned int blk_rq_count_bios(struct request *rq)
1117 {
1118 	unsigned int nr_bios = 0;
1119 	struct bio *bio;
1120 
1121 	__rq_for_each_bio(bio, rq)
1122 		nr_bios++;
1123 
1124 	return nr_bios;
1125 }
1126 
1127 void blk_steal_bios(struct bio_list *list, struct request *rq);
1128 
1129 /*
1130  * Request completion related functions.
1131  *
1132  * blk_update_request() completes given number of bytes and updates
1133  * the request without completing it.
1134  */
1135 extern bool blk_update_request(struct request *rq, blk_status_t error,
1136 			       unsigned int nr_bytes);
1137 
1138 extern void blk_abort_request(struct request *);
1139 
1140 /*
1141  * Access functions for manipulating queue properties
1142  */
1143 extern void blk_cleanup_queue(struct request_queue *);
1144 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1145 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1146 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1147 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1148 extern void blk_queue_max_discard_segments(struct request_queue *,
1149 		unsigned short);
1150 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1151 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1152 		unsigned int max_discard_sectors);
1153 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1154 		unsigned int max_write_same_sectors);
1155 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1156 		unsigned int max_write_same_sectors);
1157 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1158 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1159 		unsigned int max_zone_append_sectors);
1160 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1161 void blk_queue_zone_write_granularity(struct request_queue *q,
1162 				      unsigned int size);
1163 extern void blk_queue_alignment_offset(struct request_queue *q,
1164 				       unsigned int alignment);
1165 void blk_queue_update_readahead(struct request_queue *q);
1166 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1167 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1168 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1169 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1170 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1171 extern void blk_set_default_limits(struct queue_limits *lim);
1172 extern void blk_set_stacking_limits(struct queue_limits *lim);
1173 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1174 			    sector_t offset);
1175 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1176 			      sector_t offset);
1177 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1178 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1179 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1180 extern void blk_queue_dma_alignment(struct request_queue *, int);
1181 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1182 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1183 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1184 extern void blk_queue_required_elevator_features(struct request_queue *q,
1185 						 unsigned int features);
1186 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1187 					      struct device *dev);
1188 
1189 /*
1190  * Number of physical segments as sent to the device.
1191  *
1192  * Normally this is the number of discontiguous data segments sent by the
1193  * submitter.  But for data-less command like discard we might have no
1194  * actual data segments submitted, but the driver might have to add it's
1195  * own special payload.  In that case we still return 1 here so that this
1196  * special payload will be mapped.
1197  */
1198 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1199 {
1200 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1201 		return 1;
1202 	return rq->nr_phys_segments;
1203 }
1204 
1205 /*
1206  * Number of discard segments (or ranges) the driver needs to fill in.
1207  * Each discard bio merged into a request is counted as one segment.
1208  */
1209 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1210 {
1211 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1212 }
1213 
1214 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1215 		struct scatterlist *sglist, struct scatterlist **last_sg);
1216 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1217 		struct scatterlist *sglist)
1218 {
1219 	struct scatterlist *last_sg = NULL;
1220 
1221 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1222 }
1223 extern void blk_dump_rq_flags(struct request *, char *);
1224 
1225 bool __must_check blk_get_queue(struct request_queue *);
1226 struct request_queue *blk_alloc_queue(int node_id);
1227 extern void blk_put_queue(struct request_queue *);
1228 extern void blk_set_queue_dying(struct request_queue *);
1229 
1230 #ifdef CONFIG_BLOCK
1231 /*
1232  * blk_plug permits building a queue of related requests by holding the I/O
1233  * fragments for a short period. This allows merging of sequential requests
1234  * into single larger request. As the requests are moved from a per-task list to
1235  * the device's request_queue in a batch, this results in improved scalability
1236  * as the lock contention for request_queue lock is reduced.
1237  *
1238  * It is ok not to disable preemption when adding the request to the plug list
1239  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1240  * the plug list when the task sleeps by itself. For details, please see
1241  * schedule() where blk_schedule_flush_plug() is called.
1242  */
1243 struct blk_plug {
1244 	struct list_head mq_list; /* blk-mq requests */
1245 	struct list_head cb_list; /* md requires an unplug callback */
1246 	unsigned short rq_count;
1247 	bool multiple_queues;
1248 	bool nowait;
1249 };
1250 #define BLK_MAX_REQUEST_COUNT 16
1251 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1252 
1253 struct blk_plug_cb;
1254 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1255 struct blk_plug_cb {
1256 	struct list_head list;
1257 	blk_plug_cb_fn callback;
1258 	void *data;
1259 };
1260 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1261 					     void *data, int size);
1262 extern void blk_start_plug(struct blk_plug *);
1263 extern void blk_finish_plug(struct blk_plug *);
1264 extern void blk_flush_plug_list(struct blk_plug *, bool);
1265 
1266 static inline void blk_flush_plug(struct task_struct *tsk)
1267 {
1268 	struct blk_plug *plug = tsk->plug;
1269 
1270 	if (plug)
1271 		blk_flush_plug_list(plug, false);
1272 }
1273 
1274 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1275 {
1276 	struct blk_plug *plug = tsk->plug;
1277 
1278 	if (plug)
1279 		blk_flush_plug_list(plug, true);
1280 }
1281 
1282 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1283 {
1284 	struct blk_plug *plug = tsk->plug;
1285 
1286 	return plug &&
1287 		 (!list_empty(&plug->mq_list) ||
1288 		 !list_empty(&plug->cb_list));
1289 }
1290 
1291 int blkdev_issue_flush(struct block_device *bdev);
1292 long nr_blockdev_pages(void);
1293 #else /* CONFIG_BLOCK */
1294 struct blk_plug {
1295 };
1296 
1297 static inline void blk_start_plug(struct blk_plug *plug)
1298 {
1299 }
1300 
1301 static inline void blk_finish_plug(struct blk_plug *plug)
1302 {
1303 }
1304 
1305 static inline void blk_flush_plug(struct task_struct *task)
1306 {
1307 }
1308 
1309 static inline void blk_schedule_flush_plug(struct task_struct *task)
1310 {
1311 }
1312 
1313 
1314 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1315 {
1316 	return false;
1317 }
1318 
1319 static inline int blkdev_issue_flush(struct block_device *bdev)
1320 {
1321 	return 0;
1322 }
1323 
1324 static inline long nr_blockdev_pages(void)
1325 {
1326 	return 0;
1327 }
1328 #endif /* CONFIG_BLOCK */
1329 
1330 extern void blk_io_schedule(void);
1331 
1332 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1333 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1334 
1335 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1336 
1337 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1338 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1339 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1340 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1341 		struct bio **biop);
1342 
1343 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1344 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1345 
1346 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1347 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1348 		unsigned flags);
1349 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1350 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1351 
1352 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1353 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1354 {
1355 	return blkdev_issue_discard(sb->s_bdev,
1356 				    block << (sb->s_blocksize_bits -
1357 					      SECTOR_SHIFT),
1358 				    nr_blocks << (sb->s_blocksize_bits -
1359 						  SECTOR_SHIFT),
1360 				    gfp_mask, flags);
1361 }
1362 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1363 		sector_t nr_blocks, gfp_t gfp_mask)
1364 {
1365 	return blkdev_issue_zeroout(sb->s_bdev,
1366 				    block << (sb->s_blocksize_bits -
1367 					      SECTOR_SHIFT),
1368 				    nr_blocks << (sb->s_blocksize_bits -
1369 						  SECTOR_SHIFT),
1370 				    gfp_mask, 0);
1371 }
1372 
1373 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1374 
1375 static inline bool bdev_is_partition(struct block_device *bdev)
1376 {
1377 	return bdev->bd_partno;
1378 }
1379 
1380 enum blk_default_limits {
1381 	BLK_MAX_SEGMENTS	= 128,
1382 	BLK_SAFE_MAX_SECTORS	= 255,
1383 	BLK_DEF_MAX_SECTORS	= 2560,
1384 	BLK_MAX_SEGMENT_SIZE	= 65536,
1385 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1386 };
1387 
1388 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1389 {
1390 	return q->limits.seg_boundary_mask;
1391 }
1392 
1393 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1394 {
1395 	return q->limits.virt_boundary_mask;
1396 }
1397 
1398 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1399 {
1400 	return q->limits.max_sectors;
1401 }
1402 
1403 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1404 {
1405 	return q->limits.max_hw_sectors;
1406 }
1407 
1408 static inline unsigned short queue_max_segments(const struct request_queue *q)
1409 {
1410 	return q->limits.max_segments;
1411 }
1412 
1413 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1414 {
1415 	return q->limits.max_discard_segments;
1416 }
1417 
1418 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1419 {
1420 	return q->limits.max_segment_size;
1421 }
1422 
1423 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1424 {
1425 
1426 	const struct queue_limits *l = &q->limits;
1427 
1428 	return min(l->max_zone_append_sectors, l->max_sectors);
1429 }
1430 
1431 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1432 {
1433 	int retval = 512;
1434 
1435 	if (q && q->limits.logical_block_size)
1436 		retval = q->limits.logical_block_size;
1437 
1438 	return retval;
1439 }
1440 
1441 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1442 {
1443 	return queue_logical_block_size(bdev_get_queue(bdev));
1444 }
1445 
1446 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1447 {
1448 	return q->limits.physical_block_size;
1449 }
1450 
1451 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1452 {
1453 	return queue_physical_block_size(bdev_get_queue(bdev));
1454 }
1455 
1456 static inline unsigned int queue_io_min(const struct request_queue *q)
1457 {
1458 	return q->limits.io_min;
1459 }
1460 
1461 static inline int bdev_io_min(struct block_device *bdev)
1462 {
1463 	return queue_io_min(bdev_get_queue(bdev));
1464 }
1465 
1466 static inline unsigned int queue_io_opt(const struct request_queue *q)
1467 {
1468 	return q->limits.io_opt;
1469 }
1470 
1471 static inline int bdev_io_opt(struct block_device *bdev)
1472 {
1473 	return queue_io_opt(bdev_get_queue(bdev));
1474 }
1475 
1476 static inline unsigned int
1477 queue_zone_write_granularity(const struct request_queue *q)
1478 {
1479 	return q->limits.zone_write_granularity;
1480 }
1481 
1482 static inline unsigned int
1483 bdev_zone_write_granularity(struct block_device *bdev)
1484 {
1485 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1486 }
1487 
1488 static inline int queue_alignment_offset(const struct request_queue *q)
1489 {
1490 	if (q->limits.misaligned)
1491 		return -1;
1492 
1493 	return q->limits.alignment_offset;
1494 }
1495 
1496 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1497 {
1498 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1499 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1500 		<< SECTOR_SHIFT;
1501 
1502 	return (granularity + lim->alignment_offset - alignment) % granularity;
1503 }
1504 
1505 static inline int bdev_alignment_offset(struct block_device *bdev)
1506 {
1507 	struct request_queue *q = bdev_get_queue(bdev);
1508 
1509 	if (q->limits.misaligned)
1510 		return -1;
1511 	if (bdev_is_partition(bdev))
1512 		return queue_limit_alignment_offset(&q->limits,
1513 				bdev->bd_start_sect);
1514 	return q->limits.alignment_offset;
1515 }
1516 
1517 static inline int queue_discard_alignment(const struct request_queue *q)
1518 {
1519 	if (q->limits.discard_misaligned)
1520 		return -1;
1521 
1522 	return q->limits.discard_alignment;
1523 }
1524 
1525 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1526 {
1527 	unsigned int alignment, granularity, offset;
1528 
1529 	if (!lim->max_discard_sectors)
1530 		return 0;
1531 
1532 	/* Why are these in bytes, not sectors? */
1533 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1534 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1535 	if (!granularity)
1536 		return 0;
1537 
1538 	/* Offset of the partition start in 'granularity' sectors */
1539 	offset = sector_div(sector, granularity);
1540 
1541 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1542 	offset = (granularity + alignment - offset) % granularity;
1543 
1544 	/* Turn it back into bytes, gaah */
1545 	return offset << SECTOR_SHIFT;
1546 }
1547 
1548 static inline int bdev_discard_alignment(struct block_device *bdev)
1549 {
1550 	struct request_queue *q = bdev_get_queue(bdev);
1551 
1552 	if (bdev_is_partition(bdev))
1553 		return queue_limit_discard_alignment(&q->limits,
1554 				bdev->bd_start_sect);
1555 	return q->limits.discard_alignment;
1556 }
1557 
1558 static inline unsigned int bdev_write_same(struct block_device *bdev)
1559 {
1560 	struct request_queue *q = bdev_get_queue(bdev);
1561 
1562 	if (q)
1563 		return q->limits.max_write_same_sectors;
1564 
1565 	return 0;
1566 }
1567 
1568 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1569 {
1570 	struct request_queue *q = bdev_get_queue(bdev);
1571 
1572 	if (q)
1573 		return q->limits.max_write_zeroes_sectors;
1574 
1575 	return 0;
1576 }
1577 
1578 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1579 {
1580 	struct request_queue *q = bdev_get_queue(bdev);
1581 
1582 	if (q)
1583 		return blk_queue_zoned_model(q);
1584 
1585 	return BLK_ZONED_NONE;
1586 }
1587 
1588 static inline bool bdev_is_zoned(struct block_device *bdev)
1589 {
1590 	struct request_queue *q = bdev_get_queue(bdev);
1591 
1592 	if (q)
1593 		return blk_queue_is_zoned(q);
1594 
1595 	return false;
1596 }
1597 
1598 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1599 {
1600 	struct request_queue *q = bdev_get_queue(bdev);
1601 
1602 	if (q)
1603 		return blk_queue_zone_sectors(q);
1604 	return 0;
1605 }
1606 
1607 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1608 {
1609 	struct request_queue *q = bdev_get_queue(bdev);
1610 
1611 	if (q)
1612 		return queue_max_open_zones(q);
1613 	return 0;
1614 }
1615 
1616 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1617 {
1618 	struct request_queue *q = bdev_get_queue(bdev);
1619 
1620 	if (q)
1621 		return queue_max_active_zones(q);
1622 	return 0;
1623 }
1624 
1625 static inline int queue_dma_alignment(const struct request_queue *q)
1626 {
1627 	return q ? q->dma_alignment : 511;
1628 }
1629 
1630 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1631 				 unsigned int len)
1632 {
1633 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1634 	return !(addr & alignment) && !(len & alignment);
1635 }
1636 
1637 /* assumes size > 256 */
1638 static inline unsigned int blksize_bits(unsigned int size)
1639 {
1640 	unsigned int bits = 8;
1641 	do {
1642 		bits++;
1643 		size >>= 1;
1644 	} while (size > 256);
1645 	return bits;
1646 }
1647 
1648 static inline unsigned int block_size(struct block_device *bdev)
1649 {
1650 	return 1 << bdev->bd_inode->i_blkbits;
1651 }
1652 
1653 int kblockd_schedule_work(struct work_struct *work);
1654 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1655 
1656 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1657 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1658 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1659 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1660 
1661 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1662 
1663 enum blk_integrity_flags {
1664 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1665 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1666 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1667 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1668 };
1669 
1670 struct blk_integrity_iter {
1671 	void			*prot_buf;
1672 	void			*data_buf;
1673 	sector_t		seed;
1674 	unsigned int		data_size;
1675 	unsigned short		interval;
1676 	const char		*disk_name;
1677 };
1678 
1679 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1680 typedef void (integrity_prepare_fn) (struct request *);
1681 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1682 
1683 struct blk_integrity_profile {
1684 	integrity_processing_fn		*generate_fn;
1685 	integrity_processing_fn		*verify_fn;
1686 	integrity_prepare_fn		*prepare_fn;
1687 	integrity_complete_fn		*complete_fn;
1688 	const char			*name;
1689 };
1690 
1691 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1692 extern void blk_integrity_unregister(struct gendisk *);
1693 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1694 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1695 				   struct scatterlist *);
1696 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1697 
1698 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1699 {
1700 	struct blk_integrity *bi = &disk->queue->integrity;
1701 
1702 	if (!bi->profile)
1703 		return NULL;
1704 
1705 	return bi;
1706 }
1707 
1708 static inline
1709 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1710 {
1711 	return blk_get_integrity(bdev->bd_disk);
1712 }
1713 
1714 static inline bool
1715 blk_integrity_queue_supports_integrity(struct request_queue *q)
1716 {
1717 	return q->integrity.profile;
1718 }
1719 
1720 static inline bool blk_integrity_rq(struct request *rq)
1721 {
1722 	return rq->cmd_flags & REQ_INTEGRITY;
1723 }
1724 
1725 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1726 						    unsigned int segs)
1727 {
1728 	q->limits.max_integrity_segments = segs;
1729 }
1730 
1731 static inline unsigned short
1732 queue_max_integrity_segments(const struct request_queue *q)
1733 {
1734 	return q->limits.max_integrity_segments;
1735 }
1736 
1737 /**
1738  * bio_integrity_intervals - Return number of integrity intervals for a bio
1739  * @bi:		blk_integrity profile for device
1740  * @sectors:	Size of the bio in 512-byte sectors
1741  *
1742  * Description: The block layer calculates everything in 512 byte
1743  * sectors but integrity metadata is done in terms of the data integrity
1744  * interval size of the storage device.  Convert the block layer sectors
1745  * to the appropriate number of integrity intervals.
1746  */
1747 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1748 						   unsigned int sectors)
1749 {
1750 	return sectors >> (bi->interval_exp - 9);
1751 }
1752 
1753 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1754 					       unsigned int sectors)
1755 {
1756 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1757 }
1758 
1759 /*
1760  * Return the first bvec that contains integrity data.  Only drivers that are
1761  * limited to a single integrity segment should use this helper.
1762  */
1763 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1764 {
1765 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1766 		return NULL;
1767 	return rq->bio->bi_integrity->bip_vec;
1768 }
1769 
1770 #else /* CONFIG_BLK_DEV_INTEGRITY */
1771 
1772 struct bio;
1773 struct block_device;
1774 struct gendisk;
1775 struct blk_integrity;
1776 
1777 static inline int blk_integrity_rq(struct request *rq)
1778 {
1779 	return 0;
1780 }
1781 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1782 					    struct bio *b)
1783 {
1784 	return 0;
1785 }
1786 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1787 					  struct bio *b,
1788 					  struct scatterlist *s)
1789 {
1790 	return 0;
1791 }
1792 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1793 {
1794 	return NULL;
1795 }
1796 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1797 {
1798 	return NULL;
1799 }
1800 static inline bool
1801 blk_integrity_queue_supports_integrity(struct request_queue *q)
1802 {
1803 	return false;
1804 }
1805 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1806 {
1807 	return 0;
1808 }
1809 static inline void blk_integrity_register(struct gendisk *d,
1810 					 struct blk_integrity *b)
1811 {
1812 }
1813 static inline void blk_integrity_unregister(struct gendisk *d)
1814 {
1815 }
1816 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1817 						    unsigned int segs)
1818 {
1819 }
1820 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1821 {
1822 	return 0;
1823 }
1824 
1825 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1826 						   unsigned int sectors)
1827 {
1828 	return 0;
1829 }
1830 
1831 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1832 					       unsigned int sectors)
1833 {
1834 	return 0;
1835 }
1836 
1837 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1838 {
1839 	return NULL;
1840 }
1841 
1842 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1843 
1844 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1845 
1846 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1847 
1848 void blk_ksm_unregister(struct request_queue *q);
1849 
1850 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1851 
1852 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1853 				    struct request_queue *q)
1854 {
1855 	return true;
1856 }
1857 
1858 static inline void blk_ksm_unregister(struct request_queue *q) { }
1859 
1860 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1861 
1862 
1863 struct block_device_operations {
1864 	blk_qc_t (*submit_bio) (struct bio *bio);
1865 	int (*open) (struct block_device *, fmode_t);
1866 	void (*release) (struct gendisk *, fmode_t);
1867 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1868 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1869 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1870 	unsigned int (*check_events) (struct gendisk *disk,
1871 				      unsigned int clearing);
1872 	void (*unlock_native_capacity) (struct gendisk *);
1873 	int (*revalidate_disk) (struct gendisk *);
1874 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1875 	int (*set_read_only)(struct block_device *bdev, bool ro);
1876 	/* this callback is with swap_lock and sometimes page table lock held */
1877 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1878 	int (*report_zones)(struct gendisk *, sector_t sector,
1879 			unsigned int nr_zones, report_zones_cb cb, void *data);
1880 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1881 	struct module *owner;
1882 	const struct pr_ops *pr_ops;
1883 };
1884 
1885 #ifdef CONFIG_COMPAT
1886 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1887 				      unsigned int, unsigned long);
1888 #else
1889 #define blkdev_compat_ptr_ioctl NULL
1890 #endif
1891 
1892 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1893 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1894 						struct writeback_control *);
1895 
1896 #ifdef CONFIG_BLK_DEV_ZONED
1897 bool blk_req_needs_zone_write_lock(struct request *rq);
1898 bool blk_req_zone_write_trylock(struct request *rq);
1899 void __blk_req_zone_write_lock(struct request *rq);
1900 void __blk_req_zone_write_unlock(struct request *rq);
1901 
1902 static inline void blk_req_zone_write_lock(struct request *rq)
1903 {
1904 	if (blk_req_needs_zone_write_lock(rq))
1905 		__blk_req_zone_write_lock(rq);
1906 }
1907 
1908 static inline void blk_req_zone_write_unlock(struct request *rq)
1909 {
1910 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1911 		__blk_req_zone_write_unlock(rq);
1912 }
1913 
1914 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1915 {
1916 	return rq->q->seq_zones_wlock &&
1917 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1918 }
1919 
1920 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1921 {
1922 	if (!blk_req_needs_zone_write_lock(rq))
1923 		return true;
1924 	return !blk_req_zone_is_write_locked(rq);
1925 }
1926 #else
1927 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1928 {
1929 	return false;
1930 }
1931 
1932 static inline void blk_req_zone_write_lock(struct request *rq)
1933 {
1934 }
1935 
1936 static inline void blk_req_zone_write_unlock(struct request *rq)
1937 {
1938 }
1939 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1940 {
1941 	return false;
1942 }
1943 
1944 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1945 {
1946 	return true;
1947 }
1948 #endif /* CONFIG_BLK_DEV_ZONED */
1949 
1950 static inline void blk_wake_io_task(struct task_struct *waiter)
1951 {
1952 	/*
1953 	 * If we're polling, the task itself is doing the completions. For
1954 	 * that case, we don't need to signal a wakeup, it's enough to just
1955 	 * mark us as RUNNING.
1956 	 */
1957 	if (waiter == current)
1958 		__set_current_state(TASK_RUNNING);
1959 	else
1960 		wake_up_process(waiter);
1961 }
1962 
1963 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1964 		unsigned int op);
1965 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1966 		unsigned long start_time);
1967 
1968 unsigned long bio_start_io_acct(struct bio *bio);
1969 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1970 		struct block_device *orig_bdev);
1971 
1972 /**
1973  * bio_end_io_acct - end I/O accounting for bio based drivers
1974  * @bio:	bio to end account for
1975  * @start:	start time returned by bio_start_io_acct()
1976  */
1977 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1978 {
1979 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1980 }
1981 
1982 int bdev_read_only(struct block_device *bdev);
1983 int set_blocksize(struct block_device *bdev, int size);
1984 
1985 const char *bdevname(struct block_device *bdev, char *buffer);
1986 int lookup_bdev(const char *pathname, dev_t *dev);
1987 
1988 void blkdev_show(struct seq_file *seqf, off_t offset);
1989 
1990 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1991 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1992 #ifdef CONFIG_BLOCK
1993 #define BLKDEV_MAJOR_MAX	512
1994 #else
1995 #define BLKDEV_MAJOR_MAX	0
1996 #endif
1997 
1998 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1999 		void *holder);
2000 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2001 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
2002 void bd_abort_claiming(struct block_device *bdev, void *holder);
2003 void blkdev_put(struct block_device *bdev, fmode_t mode);
2004 
2005 /* just for blk-cgroup, don't use elsewhere */
2006 struct block_device *blkdev_get_no_open(dev_t dev);
2007 void blkdev_put_no_open(struct block_device *bdev);
2008 
2009 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
2010 void bdev_add(struct block_device *bdev, dev_t dev);
2011 struct block_device *I_BDEV(struct inode *inode);
2012 struct block_device *bdgrab(struct block_device *bdev);
2013 void bdput(struct block_device *);
2014 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2015 		loff_t lend);
2016 
2017 #ifdef CONFIG_BLOCK
2018 void invalidate_bdev(struct block_device *bdev);
2019 int sync_blockdev(struct block_device *bdev);
2020 #else
2021 static inline void invalidate_bdev(struct block_device *bdev)
2022 {
2023 }
2024 static inline int sync_blockdev(struct block_device *bdev)
2025 {
2026 	return 0;
2027 }
2028 #endif
2029 int fsync_bdev(struct block_device *bdev);
2030 
2031 int freeze_bdev(struct block_device *bdev);
2032 int thaw_bdev(struct block_device *bdev);
2033 
2034 #endif /* _LINUX_BLKDEV_H */
2035