1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/wait.h> 15 #include <linux/mempool.h> 16 #include <linux/pfn.h> 17 #include <linux/bio.h> 18 #include <linux/stringify.h> 19 #include <linux/gfp.h> 20 #include <linux/bsg.h> 21 #include <linux/smp.h> 22 #include <linux/rcupdate.h> 23 #include <linux/percpu-refcount.h> 24 #include <linux/scatterlist.h> 25 #include <linux/blkzoned.h> 26 #include <linux/pm.h> 27 #include <linux/sbitmap.h> 28 29 struct module; 30 struct scsi_ioctl_command; 31 32 struct request_queue; 33 struct elevator_queue; 34 struct blk_trace; 35 struct request; 36 struct sg_io_hdr; 37 struct bsg_job; 38 struct blkcg_gq; 39 struct blk_flush_queue; 40 struct pr_ops; 41 struct rq_qos; 42 struct blk_queue_stats; 43 struct blk_stat_callback; 44 struct blk_keyslot_manager; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consistent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* Doing classic polling */ 53 #define BLK_MQ_POLL_CLASSIC -1 54 55 /* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59 #define BLKCG_MAX_POLS 6 60 61 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63 /* 64 * request flags */ 65 typedef __u32 __bitwise req_flags_t; 66 67 /* drive already may have started this one */ 68 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 69 /* may not be passed by ioscheduler */ 70 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 71 /* request for flush sequence */ 72 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 73 /* merge of different types, fail separately */ 74 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 75 /* track inflight for MQ */ 76 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 77 /* don't call prep for this one */ 78 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 79 /* vaguely specified driver internal error. Ignored by the block layer */ 80 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 81 /* don't warn about errors */ 82 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 83 /* elevator private data attached */ 84 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 85 /* account into disk and partition IO statistics */ 86 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 87 /* runtime pm request */ 88 #define RQF_PM ((__force req_flags_t)(1 << 15)) 89 /* on IO scheduler merge hash */ 90 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 91 /* track IO completion time */ 92 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 93 /* Look at ->special_vec for the actual data payload instead of the 94 bio chain. */ 95 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 96 /* The per-zone write lock is held for this request */ 97 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 98 /* already slept for hybrid poll */ 99 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 100 /* ->timeout has been called, don't expire again */ 101 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 102 103 /* flags that prevent us from merging requests: */ 104 #define RQF_NOMERGE_FLAGS \ 105 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 106 107 /* 108 * Request state for blk-mq. 109 */ 110 enum mq_rq_state { 111 MQ_RQ_IDLE = 0, 112 MQ_RQ_IN_FLIGHT = 1, 113 MQ_RQ_COMPLETE = 2, 114 }; 115 116 /* 117 * Try to put the fields that are referenced together in the same cacheline. 118 * 119 * If you modify this structure, make sure to update blk_rq_init() and 120 * especially blk_mq_rq_ctx_init() to take care of the added fields. 121 */ 122 struct request { 123 struct request_queue *q; 124 struct blk_mq_ctx *mq_ctx; 125 struct blk_mq_hw_ctx *mq_hctx; 126 127 unsigned int cmd_flags; /* op and common flags */ 128 req_flags_t rq_flags; 129 130 int tag; 131 int internal_tag; 132 133 /* the following two fields are internal, NEVER access directly */ 134 unsigned int __data_len; /* total data len */ 135 sector_t __sector; /* sector cursor */ 136 137 struct bio *bio; 138 struct bio *biotail; 139 140 struct list_head queuelist; 141 142 /* 143 * The hash is used inside the scheduler, and killed once the 144 * request reaches the dispatch list. The ipi_list is only used 145 * to queue the request for softirq completion, which is long 146 * after the request has been unhashed (and even removed from 147 * the dispatch list). 148 */ 149 union { 150 struct hlist_node hash; /* merge hash */ 151 struct llist_node ipi_list; 152 }; 153 154 /* 155 * The rb_node is only used inside the io scheduler, requests 156 * are pruned when moved to the dispatch queue. So let the 157 * completion_data share space with the rb_node. 158 */ 159 union { 160 struct rb_node rb_node; /* sort/lookup */ 161 struct bio_vec special_vec; 162 void *completion_data; 163 int error_count; /* for legacy drivers, don't use */ 164 }; 165 166 /* 167 * Three pointers are available for the IO schedulers, if they need 168 * more they have to dynamically allocate it. Flush requests are 169 * never put on the IO scheduler. So let the flush fields share 170 * space with the elevator data. 171 */ 172 union { 173 struct { 174 struct io_cq *icq; 175 void *priv[2]; 176 } elv; 177 178 struct { 179 unsigned int seq; 180 struct list_head list; 181 rq_end_io_fn *saved_end_io; 182 } flush; 183 }; 184 185 struct gendisk *rq_disk; 186 struct block_device *part; 187 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 188 /* Time that the first bio started allocating this request. */ 189 u64 alloc_time_ns; 190 #endif 191 /* Time that this request was allocated for this IO. */ 192 u64 start_time_ns; 193 /* Time that I/O was submitted to the device. */ 194 u64 io_start_time_ns; 195 196 #ifdef CONFIG_BLK_WBT 197 unsigned short wbt_flags; 198 #endif 199 /* 200 * rq sectors used for blk stats. It has the same value 201 * with blk_rq_sectors(rq), except that it never be zeroed 202 * by completion. 203 */ 204 unsigned short stats_sectors; 205 206 /* 207 * Number of scatter-gather DMA addr+len pairs after 208 * physical address coalescing is performed. 209 */ 210 unsigned short nr_phys_segments; 211 212 #if defined(CONFIG_BLK_DEV_INTEGRITY) 213 unsigned short nr_integrity_segments; 214 #endif 215 216 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 217 struct bio_crypt_ctx *crypt_ctx; 218 struct blk_ksm_keyslot *crypt_keyslot; 219 #endif 220 221 unsigned short write_hint; 222 unsigned short ioprio; 223 224 enum mq_rq_state state; 225 refcount_t ref; 226 227 unsigned int timeout; 228 unsigned long deadline; 229 230 union { 231 struct __call_single_data csd; 232 u64 fifo_time; 233 }; 234 235 /* 236 * completion callback. 237 */ 238 rq_end_io_fn *end_io; 239 void *end_io_data; 240 }; 241 242 static inline bool blk_op_is_passthrough(unsigned int op) 243 { 244 op &= REQ_OP_MASK; 245 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 246 } 247 248 static inline bool blk_rq_is_passthrough(struct request *rq) 249 { 250 return blk_op_is_passthrough(req_op(rq)); 251 } 252 253 static inline unsigned short req_get_ioprio(struct request *req) 254 { 255 return req->ioprio; 256 } 257 258 #include <linux/elevator.h> 259 260 struct blk_queue_ctx; 261 262 struct bio_vec; 263 264 enum blk_eh_timer_return { 265 BLK_EH_DONE, /* drivers has completed the command */ 266 BLK_EH_RESET_TIMER, /* reset timer and try again */ 267 }; 268 269 enum blk_queue_state { 270 Queue_down, 271 Queue_up, 272 }; 273 274 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 275 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 276 277 #define BLK_SCSI_MAX_CMDS (256) 278 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 279 280 /* 281 * Zoned block device models (zoned limit). 282 * 283 * Note: This needs to be ordered from the least to the most severe 284 * restrictions for the inheritance in blk_stack_limits() to work. 285 */ 286 enum blk_zoned_model { 287 BLK_ZONED_NONE = 0, /* Regular block device */ 288 BLK_ZONED_HA, /* Host-aware zoned block device */ 289 BLK_ZONED_HM, /* Host-managed zoned block device */ 290 }; 291 292 /* 293 * BLK_BOUNCE_NONE: never bounce (default) 294 * BLK_BOUNCE_HIGH: bounce all highmem pages 295 */ 296 enum blk_bounce { 297 BLK_BOUNCE_NONE, 298 BLK_BOUNCE_HIGH, 299 }; 300 301 struct queue_limits { 302 enum blk_bounce bounce; 303 unsigned long seg_boundary_mask; 304 unsigned long virt_boundary_mask; 305 306 unsigned int max_hw_sectors; 307 unsigned int max_dev_sectors; 308 unsigned int chunk_sectors; 309 unsigned int max_sectors; 310 unsigned int max_segment_size; 311 unsigned int physical_block_size; 312 unsigned int logical_block_size; 313 unsigned int alignment_offset; 314 unsigned int io_min; 315 unsigned int io_opt; 316 unsigned int max_discard_sectors; 317 unsigned int max_hw_discard_sectors; 318 unsigned int max_write_same_sectors; 319 unsigned int max_write_zeroes_sectors; 320 unsigned int max_zone_append_sectors; 321 unsigned int discard_granularity; 322 unsigned int discard_alignment; 323 unsigned int zone_write_granularity; 324 325 unsigned short max_segments; 326 unsigned short max_integrity_segments; 327 unsigned short max_discard_segments; 328 329 unsigned char misaligned; 330 unsigned char discard_misaligned; 331 unsigned char raid_partial_stripes_expensive; 332 enum blk_zoned_model zoned; 333 }; 334 335 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 336 void *data); 337 338 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 339 340 #ifdef CONFIG_BLK_DEV_ZONED 341 342 #define BLK_ALL_ZONES ((unsigned int)-1) 343 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 344 unsigned int nr_zones, report_zones_cb cb, void *data); 345 unsigned int blkdev_nr_zones(struct gendisk *disk); 346 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 347 sector_t sectors, sector_t nr_sectors, 348 gfp_t gfp_mask); 349 int blk_revalidate_disk_zones(struct gendisk *disk, 350 void (*update_driver_data)(struct gendisk *disk)); 351 352 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 353 unsigned int cmd, unsigned long arg); 354 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 355 unsigned int cmd, unsigned long arg); 356 357 #else /* CONFIG_BLK_DEV_ZONED */ 358 359 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 360 { 361 return 0; 362 } 363 364 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 365 fmode_t mode, unsigned int cmd, 366 unsigned long arg) 367 { 368 return -ENOTTY; 369 } 370 371 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 372 fmode_t mode, unsigned int cmd, 373 unsigned long arg) 374 { 375 return -ENOTTY; 376 } 377 378 #endif /* CONFIG_BLK_DEV_ZONED */ 379 380 struct request_queue { 381 struct request *last_merge; 382 struct elevator_queue *elevator; 383 384 struct percpu_ref q_usage_counter; 385 386 struct blk_queue_stats *stats; 387 struct rq_qos *rq_qos; 388 389 const struct blk_mq_ops *mq_ops; 390 391 /* sw queues */ 392 struct blk_mq_ctx __percpu *queue_ctx; 393 394 unsigned int queue_depth; 395 396 /* hw dispatch queues */ 397 struct blk_mq_hw_ctx **queue_hw_ctx; 398 unsigned int nr_hw_queues; 399 400 /* 401 * The queue owner gets to use this for whatever they like. 402 * ll_rw_blk doesn't touch it. 403 */ 404 void *queuedata; 405 406 /* 407 * various queue flags, see QUEUE_* below 408 */ 409 unsigned long queue_flags; 410 /* 411 * Number of contexts that have called blk_set_pm_only(). If this 412 * counter is above zero then only RQF_PM requests are processed. 413 */ 414 atomic_t pm_only; 415 416 /* 417 * ida allocated id for this queue. Used to index queues from 418 * ioctx. 419 */ 420 int id; 421 422 spinlock_t queue_lock; 423 424 struct gendisk *disk; 425 426 /* 427 * queue kobject 428 */ 429 struct kobject kobj; 430 431 /* 432 * mq queue kobject 433 */ 434 struct kobject *mq_kobj; 435 436 #ifdef CONFIG_BLK_DEV_INTEGRITY 437 struct blk_integrity integrity; 438 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 439 440 #ifdef CONFIG_PM 441 struct device *dev; 442 enum rpm_status rpm_status; 443 #endif 444 445 /* 446 * queue settings 447 */ 448 unsigned long nr_requests; /* Max # of requests */ 449 450 unsigned int dma_pad_mask; 451 unsigned int dma_alignment; 452 453 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 454 /* Inline crypto capabilities */ 455 struct blk_keyslot_manager *ksm; 456 #endif 457 458 unsigned int rq_timeout; 459 int poll_nsec; 460 461 struct blk_stat_callback *poll_cb; 462 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 463 464 struct timer_list timeout; 465 struct work_struct timeout_work; 466 467 atomic_t nr_active_requests_shared_sbitmap; 468 469 struct sbitmap_queue sched_bitmap_tags; 470 struct sbitmap_queue sched_breserved_tags; 471 472 struct list_head icq_list; 473 #ifdef CONFIG_BLK_CGROUP 474 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 475 struct blkcg_gq *root_blkg; 476 struct list_head blkg_list; 477 #endif 478 479 struct queue_limits limits; 480 481 unsigned int required_elevator_features; 482 483 #ifdef CONFIG_BLK_DEV_ZONED 484 /* 485 * Zoned block device information for request dispatch control. 486 * nr_zones is the total number of zones of the device. This is always 487 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 488 * bits which indicates if a zone is conventional (bit set) or 489 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 490 * bits which indicates if a zone is write locked, that is, if a write 491 * request targeting the zone was dispatched. All three fields are 492 * initialized by the low level device driver (e.g. scsi/sd.c). 493 * Stacking drivers (device mappers) may or may not initialize 494 * these fields. 495 * 496 * Reads of this information must be protected with blk_queue_enter() / 497 * blk_queue_exit(). Modifying this information is only allowed while 498 * no requests are being processed. See also blk_mq_freeze_queue() and 499 * blk_mq_unfreeze_queue(). 500 */ 501 unsigned int nr_zones; 502 unsigned long *conv_zones_bitmap; 503 unsigned long *seq_zones_wlock; 504 unsigned int max_open_zones; 505 unsigned int max_active_zones; 506 #endif /* CONFIG_BLK_DEV_ZONED */ 507 508 /* 509 * sg stuff 510 */ 511 unsigned int sg_timeout; 512 unsigned int sg_reserved_size; 513 int node; 514 struct mutex debugfs_mutex; 515 #ifdef CONFIG_BLK_DEV_IO_TRACE 516 struct blk_trace __rcu *blk_trace; 517 #endif 518 /* 519 * for flush operations 520 */ 521 struct blk_flush_queue *fq; 522 523 struct list_head requeue_list; 524 spinlock_t requeue_lock; 525 struct delayed_work requeue_work; 526 527 struct mutex sysfs_lock; 528 struct mutex sysfs_dir_lock; 529 530 /* 531 * for reusing dead hctx instance in case of updating 532 * nr_hw_queues 533 */ 534 struct list_head unused_hctx_list; 535 spinlock_t unused_hctx_lock; 536 537 int mq_freeze_depth; 538 539 #if defined(CONFIG_BLK_DEV_BSG) 540 struct bsg_class_device bsg_dev; 541 #endif 542 543 #ifdef CONFIG_BLK_DEV_THROTTLING 544 /* Throttle data */ 545 struct throtl_data *td; 546 #endif 547 struct rcu_head rcu_head; 548 wait_queue_head_t mq_freeze_wq; 549 /* 550 * Protect concurrent access to q_usage_counter by 551 * percpu_ref_kill() and percpu_ref_reinit(). 552 */ 553 struct mutex mq_freeze_lock; 554 555 struct blk_mq_tag_set *tag_set; 556 struct list_head tag_set_list; 557 struct bio_set bio_split; 558 559 struct dentry *debugfs_dir; 560 561 #ifdef CONFIG_BLK_DEBUG_FS 562 struct dentry *sched_debugfs_dir; 563 struct dentry *rqos_debugfs_dir; 564 #endif 565 566 bool mq_sysfs_init_done; 567 568 size_t cmd_size; 569 570 #define BLK_MAX_WRITE_HINTS 5 571 u64 write_hints[BLK_MAX_WRITE_HINTS]; 572 }; 573 574 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 575 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 576 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 577 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 578 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 579 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 580 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 581 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 582 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 583 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 584 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 585 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 586 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 587 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 588 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 589 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 590 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 591 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 592 #define QUEUE_FLAG_WC 17 /* Write back caching */ 593 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 594 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 595 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 596 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 597 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 598 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 599 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 600 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 601 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 602 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 603 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 604 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 605 606 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 607 (1 << QUEUE_FLAG_SAME_COMP) | \ 608 (1 << QUEUE_FLAG_NOWAIT)) 609 610 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 611 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 612 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 613 614 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 615 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 616 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 617 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 618 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 619 #define blk_queue_noxmerges(q) \ 620 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 621 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 622 #define blk_queue_stable_writes(q) \ 623 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 624 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 625 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 626 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 627 #define blk_queue_zone_resetall(q) \ 628 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 629 #define blk_queue_secure_erase(q) \ 630 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 631 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 632 #define blk_queue_scsi_passthrough(q) \ 633 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 634 #define blk_queue_pci_p2pdma(q) \ 635 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 636 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 637 #define blk_queue_rq_alloc_time(q) \ 638 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 639 #else 640 #define blk_queue_rq_alloc_time(q) false 641 #endif 642 643 #define blk_noretry_request(rq) \ 644 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 645 REQ_FAILFAST_DRIVER)) 646 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 647 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 648 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 649 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 650 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 651 652 extern void blk_set_pm_only(struct request_queue *q); 653 extern void blk_clear_pm_only(struct request_queue *q); 654 655 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 656 657 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 658 659 #define rq_dma_dir(rq) \ 660 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 661 662 #define dma_map_bvec(dev, bv, dir, attrs) \ 663 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 664 (dir), (attrs)) 665 666 static inline bool queue_is_mq(struct request_queue *q) 667 { 668 return q->mq_ops; 669 } 670 671 #ifdef CONFIG_PM 672 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 673 { 674 return q->rpm_status; 675 } 676 #else 677 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 678 { 679 return RPM_ACTIVE; 680 } 681 #endif 682 683 static inline enum blk_zoned_model 684 blk_queue_zoned_model(struct request_queue *q) 685 { 686 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 687 return q->limits.zoned; 688 return BLK_ZONED_NONE; 689 } 690 691 static inline bool blk_queue_is_zoned(struct request_queue *q) 692 { 693 switch (blk_queue_zoned_model(q)) { 694 case BLK_ZONED_HA: 695 case BLK_ZONED_HM: 696 return true; 697 default: 698 return false; 699 } 700 } 701 702 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 703 { 704 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 705 } 706 707 #ifdef CONFIG_BLK_DEV_ZONED 708 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 709 { 710 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 711 } 712 713 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 714 sector_t sector) 715 { 716 if (!blk_queue_is_zoned(q)) 717 return 0; 718 return sector >> ilog2(q->limits.chunk_sectors); 719 } 720 721 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 722 sector_t sector) 723 { 724 if (!blk_queue_is_zoned(q)) 725 return false; 726 if (!q->conv_zones_bitmap) 727 return true; 728 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 729 } 730 731 static inline void blk_queue_max_open_zones(struct request_queue *q, 732 unsigned int max_open_zones) 733 { 734 q->max_open_zones = max_open_zones; 735 } 736 737 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 738 { 739 return q->max_open_zones; 740 } 741 742 static inline void blk_queue_max_active_zones(struct request_queue *q, 743 unsigned int max_active_zones) 744 { 745 q->max_active_zones = max_active_zones; 746 } 747 748 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 749 { 750 return q->max_active_zones; 751 } 752 #else /* CONFIG_BLK_DEV_ZONED */ 753 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 754 { 755 return 0; 756 } 757 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 758 sector_t sector) 759 { 760 return false; 761 } 762 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 763 sector_t sector) 764 { 765 return 0; 766 } 767 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 768 { 769 return 0; 770 } 771 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 772 { 773 return 0; 774 } 775 #endif /* CONFIG_BLK_DEV_ZONED */ 776 777 static inline bool rq_is_sync(struct request *rq) 778 { 779 return op_is_sync(rq->cmd_flags); 780 } 781 782 static inline bool rq_mergeable(struct request *rq) 783 { 784 if (blk_rq_is_passthrough(rq)) 785 return false; 786 787 if (req_op(rq) == REQ_OP_FLUSH) 788 return false; 789 790 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 791 return false; 792 793 if (req_op(rq) == REQ_OP_ZONE_APPEND) 794 return false; 795 796 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 797 return false; 798 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 799 return false; 800 801 return true; 802 } 803 804 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 805 { 806 if (bio_page(a) == bio_page(b) && 807 bio_offset(a) == bio_offset(b)) 808 return true; 809 810 return false; 811 } 812 813 static inline unsigned int blk_queue_depth(struct request_queue *q) 814 { 815 if (q->queue_depth) 816 return q->queue_depth; 817 818 return q->nr_requests; 819 } 820 821 /* 822 * default timeout for SG_IO if none specified 823 */ 824 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 825 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 826 827 struct rq_map_data { 828 struct page **pages; 829 int page_order; 830 int nr_entries; 831 unsigned long offset; 832 int null_mapped; 833 int from_user; 834 }; 835 836 struct req_iterator { 837 struct bvec_iter iter; 838 struct bio *bio; 839 }; 840 841 /* This should not be used directly - use rq_for_each_segment */ 842 #define for_each_bio(_bio) \ 843 for (; _bio; _bio = _bio->bi_next) 844 #define __rq_for_each_bio(_bio, rq) \ 845 if ((rq->bio)) \ 846 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 847 848 #define rq_for_each_segment(bvl, _rq, _iter) \ 849 __rq_for_each_bio(_iter.bio, _rq) \ 850 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 851 852 #define rq_for_each_bvec(bvl, _rq, _iter) \ 853 __rq_for_each_bio(_iter.bio, _rq) \ 854 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 855 856 #define rq_iter_last(bvec, _iter) \ 857 (_iter.bio->bi_next == NULL && \ 858 bio_iter_last(bvec, _iter.iter)) 859 860 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 861 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 862 #endif 863 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 864 extern void rq_flush_dcache_pages(struct request *rq); 865 #else 866 static inline void rq_flush_dcache_pages(struct request *rq) 867 { 868 } 869 #endif 870 871 extern int blk_register_queue(struct gendisk *disk); 872 extern void blk_unregister_queue(struct gendisk *disk); 873 blk_qc_t submit_bio_noacct(struct bio *bio); 874 extern void blk_rq_init(struct request_queue *q, struct request *rq); 875 extern void blk_put_request(struct request *); 876 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 877 blk_mq_req_flags_t flags); 878 extern int blk_lld_busy(struct request_queue *q); 879 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 880 struct bio_set *bs, gfp_t gfp_mask, 881 int (*bio_ctr)(struct bio *, struct bio *, void *), 882 void *data); 883 extern void blk_rq_unprep_clone(struct request *rq); 884 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 885 struct request *rq); 886 int blk_rq_append_bio(struct request *rq, struct bio *bio); 887 extern void blk_queue_split(struct bio **); 888 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 889 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 890 unsigned int, void __user *); 891 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 892 unsigned int, void __user *); 893 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 894 struct scsi_ioctl_command __user *); 895 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 896 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 897 898 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 899 extern void blk_queue_exit(struct request_queue *q); 900 extern void blk_sync_queue(struct request_queue *q); 901 extern int blk_rq_map_user(struct request_queue *, struct request *, 902 struct rq_map_data *, void __user *, unsigned long, 903 gfp_t); 904 extern int blk_rq_unmap_user(struct bio *); 905 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 906 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 907 struct rq_map_data *, const struct iov_iter *, 908 gfp_t); 909 extern void blk_execute_rq_nowait(struct gendisk *, 910 struct request *, int, rq_end_io_fn *); 911 912 blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq, 913 int at_head); 914 915 /* Helper to convert REQ_OP_XXX to its string format XXX */ 916 extern const char *blk_op_str(unsigned int op); 917 918 int blk_status_to_errno(blk_status_t status); 919 blk_status_t errno_to_blk_status(int errno); 920 921 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 922 923 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 924 { 925 return bdev->bd_disk->queue; /* this is never NULL */ 926 } 927 928 /* 929 * The basic unit of block I/O is a sector. It is used in a number of contexts 930 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 931 * bytes. Variables of type sector_t represent an offset or size that is a 932 * multiple of 512 bytes. Hence these two constants. 933 */ 934 #ifndef SECTOR_SHIFT 935 #define SECTOR_SHIFT 9 936 #endif 937 #ifndef SECTOR_SIZE 938 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 939 #endif 940 941 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 942 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 943 #define SECTOR_MASK (PAGE_SECTORS - 1) 944 945 /* 946 * blk_rq_pos() : the current sector 947 * blk_rq_bytes() : bytes left in the entire request 948 * blk_rq_cur_bytes() : bytes left in the current segment 949 * blk_rq_err_bytes() : bytes left till the next error boundary 950 * blk_rq_sectors() : sectors left in the entire request 951 * blk_rq_cur_sectors() : sectors left in the current segment 952 * blk_rq_stats_sectors() : sectors of the entire request used for stats 953 */ 954 static inline sector_t blk_rq_pos(const struct request *rq) 955 { 956 return rq->__sector; 957 } 958 959 static inline unsigned int blk_rq_bytes(const struct request *rq) 960 { 961 return rq->__data_len; 962 } 963 964 static inline int blk_rq_cur_bytes(const struct request *rq) 965 { 966 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 967 } 968 969 extern unsigned int blk_rq_err_bytes(const struct request *rq); 970 971 static inline unsigned int blk_rq_sectors(const struct request *rq) 972 { 973 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 974 } 975 976 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 977 { 978 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 979 } 980 981 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 982 { 983 return rq->stats_sectors; 984 } 985 986 #ifdef CONFIG_BLK_DEV_ZONED 987 988 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 989 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 990 991 static inline unsigned int bio_zone_no(struct bio *bio) 992 { 993 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 994 bio->bi_iter.bi_sector); 995 } 996 997 static inline unsigned int bio_zone_is_seq(struct bio *bio) 998 { 999 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 1000 bio->bi_iter.bi_sector); 1001 } 1002 1003 static inline unsigned int blk_rq_zone_no(struct request *rq) 1004 { 1005 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1006 } 1007 1008 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1009 { 1010 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1011 } 1012 #endif /* CONFIG_BLK_DEV_ZONED */ 1013 1014 /* 1015 * Some commands like WRITE SAME have a payload or data transfer size which 1016 * is different from the size of the request. Any driver that supports such 1017 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1018 * calculate the data transfer size. 1019 */ 1020 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1021 { 1022 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1023 return rq->special_vec.bv_len; 1024 return blk_rq_bytes(rq); 1025 } 1026 1027 /* 1028 * Return the first full biovec in the request. The caller needs to check that 1029 * there are any bvecs before calling this helper. 1030 */ 1031 static inline struct bio_vec req_bvec(struct request *rq) 1032 { 1033 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1034 return rq->special_vec; 1035 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1036 } 1037 1038 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1039 int op) 1040 { 1041 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1042 return min(q->limits.max_discard_sectors, 1043 UINT_MAX >> SECTOR_SHIFT); 1044 1045 if (unlikely(op == REQ_OP_WRITE_SAME)) 1046 return q->limits.max_write_same_sectors; 1047 1048 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1049 return q->limits.max_write_zeroes_sectors; 1050 1051 return q->limits.max_sectors; 1052 } 1053 1054 /* 1055 * Return maximum size of a request at given offset. Only valid for 1056 * file system requests. 1057 */ 1058 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1059 sector_t offset, 1060 unsigned int chunk_sectors) 1061 { 1062 if (!chunk_sectors) { 1063 if (q->limits.chunk_sectors) 1064 chunk_sectors = q->limits.chunk_sectors; 1065 else 1066 return q->limits.max_sectors; 1067 } 1068 1069 if (likely(is_power_of_2(chunk_sectors))) 1070 chunk_sectors -= offset & (chunk_sectors - 1); 1071 else 1072 chunk_sectors -= sector_div(offset, chunk_sectors); 1073 1074 return min(q->limits.max_sectors, chunk_sectors); 1075 } 1076 1077 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1078 sector_t offset) 1079 { 1080 struct request_queue *q = rq->q; 1081 1082 if (blk_rq_is_passthrough(rq)) 1083 return q->limits.max_hw_sectors; 1084 1085 if (!q->limits.chunk_sectors || 1086 req_op(rq) == REQ_OP_DISCARD || 1087 req_op(rq) == REQ_OP_SECURE_ERASE) 1088 return blk_queue_get_max_sectors(q, req_op(rq)); 1089 1090 return min(blk_max_size_offset(q, offset, 0), 1091 blk_queue_get_max_sectors(q, req_op(rq))); 1092 } 1093 1094 static inline unsigned int blk_rq_count_bios(struct request *rq) 1095 { 1096 unsigned int nr_bios = 0; 1097 struct bio *bio; 1098 1099 __rq_for_each_bio(bio, rq) 1100 nr_bios++; 1101 1102 return nr_bios; 1103 } 1104 1105 void blk_steal_bios(struct bio_list *list, struct request *rq); 1106 1107 /* 1108 * Request completion related functions. 1109 * 1110 * blk_update_request() completes given number of bytes and updates 1111 * the request without completing it. 1112 */ 1113 extern bool blk_update_request(struct request *rq, blk_status_t error, 1114 unsigned int nr_bytes); 1115 1116 extern void blk_abort_request(struct request *); 1117 1118 /* 1119 * Access functions for manipulating queue properties 1120 */ 1121 extern void blk_cleanup_queue(struct request_queue *); 1122 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1123 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1124 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1125 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1126 extern void blk_queue_max_discard_segments(struct request_queue *, 1127 unsigned short); 1128 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1129 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1130 unsigned int max_discard_sectors); 1131 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1132 unsigned int max_write_same_sectors); 1133 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1134 unsigned int max_write_same_sectors); 1135 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1136 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1137 unsigned int max_zone_append_sectors); 1138 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1139 void blk_queue_zone_write_granularity(struct request_queue *q, 1140 unsigned int size); 1141 extern void blk_queue_alignment_offset(struct request_queue *q, 1142 unsigned int alignment); 1143 void disk_update_readahead(struct gendisk *disk); 1144 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1145 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1146 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1147 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1148 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1149 extern void blk_set_default_limits(struct queue_limits *lim); 1150 extern void blk_set_stacking_limits(struct queue_limits *lim); 1151 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1152 sector_t offset); 1153 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1154 sector_t offset); 1155 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1156 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1157 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1158 extern void blk_queue_dma_alignment(struct request_queue *, int); 1159 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1160 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1161 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1162 extern void blk_queue_required_elevator_features(struct request_queue *q, 1163 unsigned int features); 1164 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1165 struct device *dev); 1166 1167 /* 1168 * Number of physical segments as sent to the device. 1169 * 1170 * Normally this is the number of discontiguous data segments sent by the 1171 * submitter. But for data-less command like discard we might have no 1172 * actual data segments submitted, but the driver might have to add it's 1173 * own special payload. In that case we still return 1 here so that this 1174 * special payload will be mapped. 1175 */ 1176 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1177 { 1178 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1179 return 1; 1180 return rq->nr_phys_segments; 1181 } 1182 1183 /* 1184 * Number of discard segments (or ranges) the driver needs to fill in. 1185 * Each discard bio merged into a request is counted as one segment. 1186 */ 1187 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1188 { 1189 return max_t(unsigned short, rq->nr_phys_segments, 1); 1190 } 1191 1192 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1193 struct scatterlist *sglist, struct scatterlist **last_sg); 1194 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1195 struct scatterlist *sglist) 1196 { 1197 struct scatterlist *last_sg = NULL; 1198 1199 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1200 } 1201 extern void blk_dump_rq_flags(struct request *, char *); 1202 1203 bool __must_check blk_get_queue(struct request_queue *); 1204 extern void blk_put_queue(struct request_queue *); 1205 extern void blk_set_queue_dying(struct request_queue *); 1206 1207 #ifdef CONFIG_BLOCK 1208 /* 1209 * blk_plug permits building a queue of related requests by holding the I/O 1210 * fragments for a short period. This allows merging of sequential requests 1211 * into single larger request. As the requests are moved from a per-task list to 1212 * the device's request_queue in a batch, this results in improved scalability 1213 * as the lock contention for request_queue lock is reduced. 1214 * 1215 * It is ok not to disable preemption when adding the request to the plug list 1216 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1217 * the plug list when the task sleeps by itself. For details, please see 1218 * schedule() where blk_schedule_flush_plug() is called. 1219 */ 1220 struct blk_plug { 1221 struct list_head mq_list; /* blk-mq requests */ 1222 struct list_head cb_list; /* md requires an unplug callback */ 1223 unsigned short rq_count; 1224 bool multiple_queues; 1225 bool nowait; 1226 }; 1227 #define BLK_MAX_REQUEST_COUNT 16 1228 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1229 1230 struct blk_plug_cb; 1231 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1232 struct blk_plug_cb { 1233 struct list_head list; 1234 blk_plug_cb_fn callback; 1235 void *data; 1236 }; 1237 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1238 void *data, int size); 1239 extern void blk_start_plug(struct blk_plug *); 1240 extern void blk_finish_plug(struct blk_plug *); 1241 extern void blk_flush_plug_list(struct blk_plug *, bool); 1242 1243 static inline void blk_flush_plug(struct task_struct *tsk) 1244 { 1245 struct blk_plug *plug = tsk->plug; 1246 1247 if (plug) 1248 blk_flush_plug_list(plug, false); 1249 } 1250 1251 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1252 { 1253 struct blk_plug *plug = tsk->plug; 1254 1255 if (plug) 1256 blk_flush_plug_list(plug, true); 1257 } 1258 1259 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1260 { 1261 struct blk_plug *plug = tsk->plug; 1262 1263 return plug && 1264 (!list_empty(&plug->mq_list) || 1265 !list_empty(&plug->cb_list)); 1266 } 1267 1268 int blkdev_issue_flush(struct block_device *bdev); 1269 long nr_blockdev_pages(void); 1270 #else /* CONFIG_BLOCK */ 1271 struct blk_plug { 1272 }; 1273 1274 static inline void blk_start_plug(struct blk_plug *plug) 1275 { 1276 } 1277 1278 static inline void blk_finish_plug(struct blk_plug *plug) 1279 { 1280 } 1281 1282 static inline void blk_flush_plug(struct task_struct *task) 1283 { 1284 } 1285 1286 static inline void blk_schedule_flush_plug(struct task_struct *task) 1287 { 1288 } 1289 1290 1291 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1292 { 1293 return false; 1294 } 1295 1296 static inline int blkdev_issue_flush(struct block_device *bdev) 1297 { 1298 return 0; 1299 } 1300 1301 static inline long nr_blockdev_pages(void) 1302 { 1303 return 0; 1304 } 1305 #endif /* CONFIG_BLOCK */ 1306 1307 extern void blk_io_schedule(void); 1308 1309 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1310 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1311 1312 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1313 1314 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1315 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1316 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1317 sector_t nr_sects, gfp_t gfp_mask, int flags, 1318 struct bio **biop); 1319 1320 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1321 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1322 1323 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1324 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1325 unsigned flags); 1326 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1327 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1328 1329 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1330 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1331 { 1332 return blkdev_issue_discard(sb->s_bdev, 1333 block << (sb->s_blocksize_bits - 1334 SECTOR_SHIFT), 1335 nr_blocks << (sb->s_blocksize_bits - 1336 SECTOR_SHIFT), 1337 gfp_mask, flags); 1338 } 1339 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1340 sector_t nr_blocks, gfp_t gfp_mask) 1341 { 1342 return blkdev_issue_zeroout(sb->s_bdev, 1343 block << (sb->s_blocksize_bits - 1344 SECTOR_SHIFT), 1345 nr_blocks << (sb->s_blocksize_bits - 1346 SECTOR_SHIFT), 1347 gfp_mask, 0); 1348 } 1349 1350 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1351 1352 static inline bool bdev_is_partition(struct block_device *bdev) 1353 { 1354 return bdev->bd_partno; 1355 } 1356 1357 enum blk_default_limits { 1358 BLK_MAX_SEGMENTS = 128, 1359 BLK_SAFE_MAX_SECTORS = 255, 1360 BLK_DEF_MAX_SECTORS = 2560, 1361 BLK_MAX_SEGMENT_SIZE = 65536, 1362 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1363 }; 1364 1365 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1366 { 1367 return q->limits.seg_boundary_mask; 1368 } 1369 1370 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1371 { 1372 return q->limits.virt_boundary_mask; 1373 } 1374 1375 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1376 { 1377 return q->limits.max_sectors; 1378 } 1379 1380 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1381 { 1382 return q->limits.max_hw_sectors; 1383 } 1384 1385 static inline unsigned short queue_max_segments(const struct request_queue *q) 1386 { 1387 return q->limits.max_segments; 1388 } 1389 1390 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1391 { 1392 return q->limits.max_discard_segments; 1393 } 1394 1395 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1396 { 1397 return q->limits.max_segment_size; 1398 } 1399 1400 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1401 { 1402 1403 const struct queue_limits *l = &q->limits; 1404 1405 return min(l->max_zone_append_sectors, l->max_sectors); 1406 } 1407 1408 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1409 { 1410 int retval = 512; 1411 1412 if (q && q->limits.logical_block_size) 1413 retval = q->limits.logical_block_size; 1414 1415 return retval; 1416 } 1417 1418 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1419 { 1420 return queue_logical_block_size(bdev_get_queue(bdev)); 1421 } 1422 1423 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1424 { 1425 return q->limits.physical_block_size; 1426 } 1427 1428 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1429 { 1430 return queue_physical_block_size(bdev_get_queue(bdev)); 1431 } 1432 1433 static inline unsigned int queue_io_min(const struct request_queue *q) 1434 { 1435 return q->limits.io_min; 1436 } 1437 1438 static inline int bdev_io_min(struct block_device *bdev) 1439 { 1440 return queue_io_min(bdev_get_queue(bdev)); 1441 } 1442 1443 static inline unsigned int queue_io_opt(const struct request_queue *q) 1444 { 1445 return q->limits.io_opt; 1446 } 1447 1448 static inline int bdev_io_opt(struct block_device *bdev) 1449 { 1450 return queue_io_opt(bdev_get_queue(bdev)); 1451 } 1452 1453 static inline unsigned int 1454 queue_zone_write_granularity(const struct request_queue *q) 1455 { 1456 return q->limits.zone_write_granularity; 1457 } 1458 1459 static inline unsigned int 1460 bdev_zone_write_granularity(struct block_device *bdev) 1461 { 1462 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1463 } 1464 1465 static inline int queue_alignment_offset(const struct request_queue *q) 1466 { 1467 if (q->limits.misaligned) 1468 return -1; 1469 1470 return q->limits.alignment_offset; 1471 } 1472 1473 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1474 { 1475 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1476 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1477 << SECTOR_SHIFT; 1478 1479 return (granularity + lim->alignment_offset - alignment) % granularity; 1480 } 1481 1482 static inline int bdev_alignment_offset(struct block_device *bdev) 1483 { 1484 struct request_queue *q = bdev_get_queue(bdev); 1485 1486 if (q->limits.misaligned) 1487 return -1; 1488 if (bdev_is_partition(bdev)) 1489 return queue_limit_alignment_offset(&q->limits, 1490 bdev->bd_start_sect); 1491 return q->limits.alignment_offset; 1492 } 1493 1494 static inline int queue_discard_alignment(const struct request_queue *q) 1495 { 1496 if (q->limits.discard_misaligned) 1497 return -1; 1498 1499 return q->limits.discard_alignment; 1500 } 1501 1502 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1503 { 1504 unsigned int alignment, granularity, offset; 1505 1506 if (!lim->max_discard_sectors) 1507 return 0; 1508 1509 /* Why are these in bytes, not sectors? */ 1510 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1511 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1512 if (!granularity) 1513 return 0; 1514 1515 /* Offset of the partition start in 'granularity' sectors */ 1516 offset = sector_div(sector, granularity); 1517 1518 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1519 offset = (granularity + alignment - offset) % granularity; 1520 1521 /* Turn it back into bytes, gaah */ 1522 return offset << SECTOR_SHIFT; 1523 } 1524 1525 /* 1526 * Two cases of handling DISCARD merge: 1527 * If max_discard_segments > 1, the driver takes every bio 1528 * as a range and send them to controller together. The ranges 1529 * needn't to be contiguous. 1530 * Otherwise, the bios/requests will be handled as same as 1531 * others which should be contiguous. 1532 */ 1533 static inline bool blk_discard_mergable(struct request *req) 1534 { 1535 if (req_op(req) == REQ_OP_DISCARD && 1536 queue_max_discard_segments(req->q) > 1) 1537 return true; 1538 return false; 1539 } 1540 1541 static inline int bdev_discard_alignment(struct block_device *bdev) 1542 { 1543 struct request_queue *q = bdev_get_queue(bdev); 1544 1545 if (bdev_is_partition(bdev)) 1546 return queue_limit_discard_alignment(&q->limits, 1547 bdev->bd_start_sect); 1548 return q->limits.discard_alignment; 1549 } 1550 1551 static inline unsigned int bdev_write_same(struct block_device *bdev) 1552 { 1553 struct request_queue *q = bdev_get_queue(bdev); 1554 1555 if (q) 1556 return q->limits.max_write_same_sectors; 1557 1558 return 0; 1559 } 1560 1561 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1562 { 1563 struct request_queue *q = bdev_get_queue(bdev); 1564 1565 if (q) 1566 return q->limits.max_write_zeroes_sectors; 1567 1568 return 0; 1569 } 1570 1571 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1572 { 1573 struct request_queue *q = bdev_get_queue(bdev); 1574 1575 if (q) 1576 return blk_queue_zoned_model(q); 1577 1578 return BLK_ZONED_NONE; 1579 } 1580 1581 static inline bool bdev_is_zoned(struct block_device *bdev) 1582 { 1583 struct request_queue *q = bdev_get_queue(bdev); 1584 1585 if (q) 1586 return blk_queue_is_zoned(q); 1587 1588 return false; 1589 } 1590 1591 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1592 { 1593 struct request_queue *q = bdev_get_queue(bdev); 1594 1595 if (q) 1596 return blk_queue_zone_sectors(q); 1597 return 0; 1598 } 1599 1600 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1601 { 1602 struct request_queue *q = bdev_get_queue(bdev); 1603 1604 if (q) 1605 return queue_max_open_zones(q); 1606 return 0; 1607 } 1608 1609 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1610 { 1611 struct request_queue *q = bdev_get_queue(bdev); 1612 1613 if (q) 1614 return queue_max_active_zones(q); 1615 return 0; 1616 } 1617 1618 static inline int queue_dma_alignment(const struct request_queue *q) 1619 { 1620 return q ? q->dma_alignment : 511; 1621 } 1622 1623 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1624 unsigned int len) 1625 { 1626 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1627 return !(addr & alignment) && !(len & alignment); 1628 } 1629 1630 /* assumes size > 256 */ 1631 static inline unsigned int blksize_bits(unsigned int size) 1632 { 1633 unsigned int bits = 8; 1634 do { 1635 bits++; 1636 size >>= 1; 1637 } while (size > 256); 1638 return bits; 1639 } 1640 1641 static inline unsigned int block_size(struct block_device *bdev) 1642 { 1643 return 1 << bdev->bd_inode->i_blkbits; 1644 } 1645 1646 int kblockd_schedule_work(struct work_struct *work); 1647 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1648 1649 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1650 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1651 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1652 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1653 1654 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1655 1656 enum blk_integrity_flags { 1657 BLK_INTEGRITY_VERIFY = 1 << 0, 1658 BLK_INTEGRITY_GENERATE = 1 << 1, 1659 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1660 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1661 }; 1662 1663 struct blk_integrity_iter { 1664 void *prot_buf; 1665 void *data_buf; 1666 sector_t seed; 1667 unsigned int data_size; 1668 unsigned short interval; 1669 const char *disk_name; 1670 }; 1671 1672 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1673 typedef void (integrity_prepare_fn) (struct request *); 1674 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1675 1676 struct blk_integrity_profile { 1677 integrity_processing_fn *generate_fn; 1678 integrity_processing_fn *verify_fn; 1679 integrity_prepare_fn *prepare_fn; 1680 integrity_complete_fn *complete_fn; 1681 const char *name; 1682 }; 1683 1684 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1685 extern void blk_integrity_unregister(struct gendisk *); 1686 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1687 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1688 struct scatterlist *); 1689 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1690 1691 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1692 { 1693 struct blk_integrity *bi = &disk->queue->integrity; 1694 1695 if (!bi->profile) 1696 return NULL; 1697 1698 return bi; 1699 } 1700 1701 static inline 1702 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1703 { 1704 return blk_get_integrity(bdev->bd_disk); 1705 } 1706 1707 static inline bool 1708 blk_integrity_queue_supports_integrity(struct request_queue *q) 1709 { 1710 return q->integrity.profile; 1711 } 1712 1713 static inline bool blk_integrity_rq(struct request *rq) 1714 { 1715 return rq->cmd_flags & REQ_INTEGRITY; 1716 } 1717 1718 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1719 unsigned int segs) 1720 { 1721 q->limits.max_integrity_segments = segs; 1722 } 1723 1724 static inline unsigned short 1725 queue_max_integrity_segments(const struct request_queue *q) 1726 { 1727 return q->limits.max_integrity_segments; 1728 } 1729 1730 /** 1731 * bio_integrity_intervals - Return number of integrity intervals for a bio 1732 * @bi: blk_integrity profile for device 1733 * @sectors: Size of the bio in 512-byte sectors 1734 * 1735 * Description: The block layer calculates everything in 512 byte 1736 * sectors but integrity metadata is done in terms of the data integrity 1737 * interval size of the storage device. Convert the block layer sectors 1738 * to the appropriate number of integrity intervals. 1739 */ 1740 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1741 unsigned int sectors) 1742 { 1743 return sectors >> (bi->interval_exp - 9); 1744 } 1745 1746 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1747 unsigned int sectors) 1748 { 1749 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1750 } 1751 1752 /* 1753 * Return the first bvec that contains integrity data. Only drivers that are 1754 * limited to a single integrity segment should use this helper. 1755 */ 1756 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1757 { 1758 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1759 return NULL; 1760 return rq->bio->bi_integrity->bip_vec; 1761 } 1762 1763 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1764 1765 struct bio; 1766 struct block_device; 1767 struct gendisk; 1768 struct blk_integrity; 1769 1770 static inline int blk_integrity_rq(struct request *rq) 1771 { 1772 return 0; 1773 } 1774 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1775 struct bio *b) 1776 { 1777 return 0; 1778 } 1779 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1780 struct bio *b, 1781 struct scatterlist *s) 1782 { 1783 return 0; 1784 } 1785 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1786 { 1787 return NULL; 1788 } 1789 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1790 { 1791 return NULL; 1792 } 1793 static inline bool 1794 blk_integrity_queue_supports_integrity(struct request_queue *q) 1795 { 1796 return false; 1797 } 1798 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1799 { 1800 return 0; 1801 } 1802 static inline void blk_integrity_register(struct gendisk *d, 1803 struct blk_integrity *b) 1804 { 1805 } 1806 static inline void blk_integrity_unregister(struct gendisk *d) 1807 { 1808 } 1809 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1810 unsigned int segs) 1811 { 1812 } 1813 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1814 { 1815 return 0; 1816 } 1817 1818 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1819 unsigned int sectors) 1820 { 1821 return 0; 1822 } 1823 1824 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1825 unsigned int sectors) 1826 { 1827 return 0; 1828 } 1829 1830 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1831 { 1832 return NULL; 1833 } 1834 1835 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1836 1837 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1838 1839 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1840 1841 void blk_ksm_unregister(struct request_queue *q); 1842 1843 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1844 1845 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1846 struct request_queue *q) 1847 { 1848 return true; 1849 } 1850 1851 static inline void blk_ksm_unregister(struct request_queue *q) { } 1852 1853 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1854 1855 1856 struct block_device_operations { 1857 blk_qc_t (*submit_bio) (struct bio *bio); 1858 int (*open) (struct block_device *, fmode_t); 1859 void (*release) (struct gendisk *, fmode_t); 1860 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1861 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1862 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1863 unsigned int (*check_events) (struct gendisk *disk, 1864 unsigned int clearing); 1865 void (*unlock_native_capacity) (struct gendisk *); 1866 int (*getgeo)(struct block_device *, struct hd_geometry *); 1867 int (*set_read_only)(struct block_device *bdev, bool ro); 1868 /* this callback is with swap_lock and sometimes page table lock held */ 1869 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1870 int (*report_zones)(struct gendisk *, sector_t sector, 1871 unsigned int nr_zones, report_zones_cb cb, void *data); 1872 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1873 struct module *owner; 1874 const struct pr_ops *pr_ops; 1875 1876 /* 1877 * Special callback for probing GPT entry at a given sector. 1878 * Needed by Android devices, used by GPT scanner and MMC blk 1879 * driver. 1880 */ 1881 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1882 }; 1883 1884 #ifdef CONFIG_COMPAT 1885 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1886 unsigned int, unsigned long); 1887 #else 1888 #define blkdev_compat_ptr_ioctl NULL 1889 #endif 1890 1891 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1892 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1893 struct writeback_control *); 1894 1895 #ifdef CONFIG_BLK_DEV_ZONED 1896 bool blk_req_needs_zone_write_lock(struct request *rq); 1897 bool blk_req_zone_write_trylock(struct request *rq); 1898 void __blk_req_zone_write_lock(struct request *rq); 1899 void __blk_req_zone_write_unlock(struct request *rq); 1900 1901 static inline void blk_req_zone_write_lock(struct request *rq) 1902 { 1903 if (blk_req_needs_zone_write_lock(rq)) 1904 __blk_req_zone_write_lock(rq); 1905 } 1906 1907 static inline void blk_req_zone_write_unlock(struct request *rq) 1908 { 1909 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1910 __blk_req_zone_write_unlock(rq); 1911 } 1912 1913 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1914 { 1915 return rq->q->seq_zones_wlock && 1916 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1917 } 1918 1919 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1920 { 1921 if (!blk_req_needs_zone_write_lock(rq)) 1922 return true; 1923 return !blk_req_zone_is_write_locked(rq); 1924 } 1925 #else 1926 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1927 { 1928 return false; 1929 } 1930 1931 static inline void blk_req_zone_write_lock(struct request *rq) 1932 { 1933 } 1934 1935 static inline void blk_req_zone_write_unlock(struct request *rq) 1936 { 1937 } 1938 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1939 { 1940 return false; 1941 } 1942 1943 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1944 { 1945 return true; 1946 } 1947 #endif /* CONFIG_BLK_DEV_ZONED */ 1948 1949 static inline void blk_wake_io_task(struct task_struct *waiter) 1950 { 1951 /* 1952 * If we're polling, the task itself is doing the completions. For 1953 * that case, we don't need to signal a wakeup, it's enough to just 1954 * mark us as RUNNING. 1955 */ 1956 if (waiter == current) 1957 __set_current_state(TASK_RUNNING); 1958 else 1959 wake_up_process(waiter); 1960 } 1961 1962 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1963 unsigned int op); 1964 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1965 unsigned long start_time); 1966 1967 unsigned long bio_start_io_acct(struct bio *bio); 1968 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1969 struct block_device *orig_bdev); 1970 1971 /** 1972 * bio_end_io_acct - end I/O accounting for bio based drivers 1973 * @bio: bio to end account for 1974 * @start: start time returned by bio_start_io_acct() 1975 */ 1976 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1977 { 1978 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1979 } 1980 1981 int bdev_read_only(struct block_device *bdev); 1982 int set_blocksize(struct block_device *bdev, int size); 1983 1984 const char *bdevname(struct block_device *bdev, char *buffer); 1985 int lookup_bdev(const char *pathname, dev_t *dev); 1986 1987 void blkdev_show(struct seq_file *seqf, off_t offset); 1988 1989 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1990 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1991 #ifdef CONFIG_BLOCK 1992 #define BLKDEV_MAJOR_MAX 512 1993 #else 1994 #define BLKDEV_MAJOR_MAX 0 1995 #endif 1996 1997 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1998 void *holder); 1999 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 2000 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 2001 void bd_abort_claiming(struct block_device *bdev, void *holder); 2002 void blkdev_put(struct block_device *bdev, fmode_t mode); 2003 2004 /* just for blk-cgroup, don't use elsewhere */ 2005 struct block_device *blkdev_get_no_open(dev_t dev); 2006 void blkdev_put_no_open(struct block_device *bdev); 2007 2008 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 2009 void bdev_add(struct block_device *bdev, dev_t dev); 2010 struct block_device *I_BDEV(struct inode *inode); 2011 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2012 loff_t lend); 2013 2014 #ifdef CONFIG_BLOCK 2015 void invalidate_bdev(struct block_device *bdev); 2016 int sync_blockdev(struct block_device *bdev); 2017 #else 2018 static inline void invalidate_bdev(struct block_device *bdev) 2019 { 2020 } 2021 static inline int sync_blockdev(struct block_device *bdev) 2022 { 2023 return 0; 2024 } 2025 #endif 2026 int fsync_bdev(struct block_device *bdev); 2027 2028 int freeze_bdev(struct block_device *bdev); 2029 int thaw_bdev(struct block_device *bdev); 2030 2031 #endif /* _LINUX_BLKDEV_H */ 2032