1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/srcu.h> 26 #include <linux/uuid.h> 27 #include <linux/xarray.h> 28 29 struct module; 30 struct request_queue; 31 struct elevator_queue; 32 struct blk_trace; 33 struct request; 34 struct sg_io_hdr; 35 struct blkcg_gq; 36 struct blk_flush_queue; 37 struct kiocb; 38 struct pr_ops; 39 struct rq_qos; 40 struct blk_queue_stats; 41 struct blk_stat_callback; 42 struct blk_crypto_profile; 43 44 extern const struct device_type disk_type; 45 extern struct device_type part_type; 46 extern struct class block_class; 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 6 59 60 #define DISK_MAX_PARTS 256 61 #define DISK_NAME_LEN 32 62 63 #define PARTITION_META_INFO_VOLNAMELTH 64 64 /* 65 * Enough for the string representation of any kind of UUID plus NULL. 66 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 67 */ 68 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 69 70 struct partition_meta_info { 71 char uuid[PARTITION_META_INFO_UUIDLTH]; 72 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 73 }; 74 75 /** 76 * DOC: genhd capability flags 77 * 78 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 79 * removable media. When set, the device remains present even when media is not 80 * inserted. Shall not be set for devices which are removed entirely when the 81 * media is removed. 82 * 83 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 84 * doesn't appear in sysfs, and can't be opened from userspace or using 85 * blkdev_get*. Used for the underlying components of multipath devices. 86 * 87 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 88 * scan for partitions from add_disk, and users can't add partitions manually. 89 * 90 */ 91 enum { 92 GENHD_FL_REMOVABLE = 1 << 0, 93 GENHD_FL_HIDDEN = 1 << 1, 94 GENHD_FL_NO_PART = 1 << 2, 95 }; 96 97 enum { 98 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 99 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 100 }; 101 102 enum { 103 /* Poll even if events_poll_msecs is unset */ 104 DISK_EVENT_FLAG_POLL = 1 << 0, 105 /* Forward events to udev */ 106 DISK_EVENT_FLAG_UEVENT = 1 << 1, 107 /* Block event polling when open for exclusive write */ 108 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 109 }; 110 111 struct disk_events; 112 struct badblocks; 113 114 struct blk_integrity { 115 const struct blk_integrity_profile *profile; 116 unsigned char flags; 117 unsigned char tuple_size; 118 unsigned char interval_exp; 119 unsigned char tag_size; 120 }; 121 122 struct gendisk { 123 /* 124 * major/first_minor/minors should not be set by any new driver, the 125 * block core will take care of allocating them automatically. 126 */ 127 int major; 128 int first_minor; 129 int minors; 130 131 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 132 133 unsigned short events; /* supported events */ 134 unsigned short event_flags; /* flags related to event processing */ 135 136 struct xarray part_tbl; 137 struct block_device *part0; 138 139 const struct block_device_operations *fops; 140 struct request_queue *queue; 141 void *private_data; 142 143 int flags; 144 unsigned long state; 145 #define GD_NEED_PART_SCAN 0 146 #define GD_READ_ONLY 1 147 #define GD_DEAD 2 148 #define GD_NATIVE_CAPACITY 3 149 #define GD_ADDED 4 150 151 struct mutex open_mutex; /* open/close mutex */ 152 unsigned open_partitions; /* number of open partitions */ 153 154 struct backing_dev_info *bdi; 155 struct kobject *slave_dir; 156 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 157 struct list_head slave_bdevs; 158 #endif 159 struct timer_rand_state *random; 160 atomic_t sync_io; /* RAID */ 161 struct disk_events *ev; 162 #ifdef CONFIG_BLK_DEV_INTEGRITY 163 struct kobject integrity_kobj; 164 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 165 #if IS_ENABLED(CONFIG_CDROM) 166 struct cdrom_device_info *cdi; 167 #endif 168 int node_id; 169 struct badblocks *bb; 170 struct lockdep_map lockdep_map; 171 u64 diskseq; 172 }; 173 174 static inline bool disk_live(struct gendisk *disk) 175 { 176 return !inode_unhashed(disk->part0->bd_inode); 177 } 178 179 /* 180 * The gendisk is refcounted by the part0 block_device, and the bd_device 181 * therein is also used for device model presentation in sysfs. 182 */ 183 #define dev_to_disk(device) \ 184 (dev_to_bdev(device)->bd_disk) 185 #define disk_to_dev(disk) \ 186 (&((disk)->part0->bd_device)) 187 188 #if IS_REACHABLE(CONFIG_CDROM) 189 #define disk_to_cdi(disk) ((disk)->cdi) 190 #else 191 #define disk_to_cdi(disk) NULL 192 #endif 193 194 static inline dev_t disk_devt(struct gendisk *disk) 195 { 196 return MKDEV(disk->major, disk->first_minor); 197 } 198 199 static inline int blk_validate_block_size(unsigned long bsize) 200 { 201 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 static inline bool blk_op_is_passthrough(unsigned int op) 208 { 209 op &= REQ_OP_MASK; 210 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 211 } 212 213 /* 214 * Zoned block device models (zoned limit). 215 * 216 * Note: This needs to be ordered from the least to the most severe 217 * restrictions for the inheritance in blk_stack_limits() to work. 218 */ 219 enum blk_zoned_model { 220 BLK_ZONED_NONE = 0, /* Regular block device */ 221 BLK_ZONED_HA, /* Host-aware zoned block device */ 222 BLK_ZONED_HM, /* Host-managed zoned block device */ 223 }; 224 225 /* 226 * BLK_BOUNCE_NONE: never bounce (default) 227 * BLK_BOUNCE_HIGH: bounce all highmem pages 228 */ 229 enum blk_bounce { 230 BLK_BOUNCE_NONE, 231 BLK_BOUNCE_HIGH, 232 }; 233 234 struct queue_limits { 235 enum blk_bounce bounce; 236 unsigned long seg_boundary_mask; 237 unsigned long virt_boundary_mask; 238 239 unsigned int max_hw_sectors; 240 unsigned int max_dev_sectors; 241 unsigned int chunk_sectors; 242 unsigned int max_sectors; 243 unsigned int max_segment_size; 244 unsigned int physical_block_size; 245 unsigned int logical_block_size; 246 unsigned int alignment_offset; 247 unsigned int io_min; 248 unsigned int io_opt; 249 unsigned int max_discard_sectors; 250 unsigned int max_hw_discard_sectors; 251 unsigned int max_write_zeroes_sectors; 252 unsigned int max_zone_append_sectors; 253 unsigned int discard_granularity; 254 unsigned int discard_alignment; 255 unsigned int zone_write_granularity; 256 257 unsigned short max_segments; 258 unsigned short max_integrity_segments; 259 unsigned short max_discard_segments; 260 261 unsigned char misaligned; 262 unsigned char discard_misaligned; 263 unsigned char raid_partial_stripes_expensive; 264 enum blk_zoned_model zoned; 265 }; 266 267 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 268 void *data); 269 270 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 271 272 #ifdef CONFIG_BLK_DEV_ZONED 273 274 #define BLK_ALL_ZONES ((unsigned int)-1) 275 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 276 unsigned int nr_zones, report_zones_cb cb, void *data); 277 unsigned int blkdev_nr_zones(struct gendisk *disk); 278 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 279 sector_t sectors, sector_t nr_sectors, 280 gfp_t gfp_mask); 281 int blk_revalidate_disk_zones(struct gendisk *disk, 282 void (*update_driver_data)(struct gendisk *disk)); 283 284 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 285 unsigned int cmd, unsigned long arg); 286 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 287 unsigned int cmd, unsigned long arg); 288 289 #else /* CONFIG_BLK_DEV_ZONED */ 290 291 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 292 { 293 return 0; 294 } 295 296 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 297 fmode_t mode, unsigned int cmd, 298 unsigned long arg) 299 { 300 return -ENOTTY; 301 } 302 303 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 304 fmode_t mode, unsigned int cmd, 305 unsigned long arg) 306 { 307 return -ENOTTY; 308 } 309 310 #endif /* CONFIG_BLK_DEV_ZONED */ 311 312 /* 313 * Independent access ranges: struct blk_independent_access_range describes 314 * a range of contiguous sectors that can be accessed using device command 315 * execution resources that are independent from the resources used for 316 * other access ranges. This is typically found with single-LUN multi-actuator 317 * HDDs where each access range is served by a different set of heads. 318 * The set of independent ranges supported by the device is defined using 319 * struct blk_independent_access_ranges. The independent ranges must not overlap 320 * and must include all sectors within the disk capacity (no sector holes 321 * allowed). 322 * For a device with multiple ranges, requests targeting sectors in different 323 * ranges can be executed in parallel. A request can straddle an access range 324 * boundary. 325 */ 326 struct blk_independent_access_range { 327 struct kobject kobj; 328 struct request_queue *queue; 329 sector_t sector; 330 sector_t nr_sectors; 331 }; 332 333 struct blk_independent_access_ranges { 334 struct kobject kobj; 335 bool sysfs_registered; 336 unsigned int nr_ia_ranges; 337 struct blk_independent_access_range ia_range[]; 338 }; 339 340 struct request_queue { 341 struct request *last_merge; 342 struct elevator_queue *elevator; 343 344 struct percpu_ref q_usage_counter; 345 346 struct blk_queue_stats *stats; 347 struct rq_qos *rq_qos; 348 349 const struct blk_mq_ops *mq_ops; 350 351 /* sw queues */ 352 struct blk_mq_ctx __percpu *queue_ctx; 353 354 unsigned int queue_depth; 355 356 /* hw dispatch queues */ 357 struct xarray hctx_table; 358 unsigned int nr_hw_queues; 359 360 /* 361 * The queue owner gets to use this for whatever they like. 362 * ll_rw_blk doesn't touch it. 363 */ 364 void *queuedata; 365 366 /* 367 * various queue flags, see QUEUE_* below 368 */ 369 unsigned long queue_flags; 370 /* 371 * Number of contexts that have called blk_set_pm_only(). If this 372 * counter is above zero then only RQF_PM requests are processed. 373 */ 374 atomic_t pm_only; 375 376 /* 377 * ida allocated id for this queue. Used to index queues from 378 * ioctx. 379 */ 380 int id; 381 382 spinlock_t queue_lock; 383 384 struct gendisk *disk; 385 386 /* 387 * queue kobject 388 */ 389 struct kobject kobj; 390 391 /* 392 * mq queue kobject 393 */ 394 struct kobject *mq_kobj; 395 396 #ifdef CONFIG_BLK_DEV_INTEGRITY 397 struct blk_integrity integrity; 398 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 399 400 #ifdef CONFIG_PM 401 struct device *dev; 402 enum rpm_status rpm_status; 403 #endif 404 405 /* 406 * queue settings 407 */ 408 unsigned long nr_requests; /* Max # of requests */ 409 410 unsigned int dma_pad_mask; 411 unsigned int dma_alignment; 412 413 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 414 struct blk_crypto_profile *crypto_profile; 415 struct kobject *crypto_kobject; 416 #endif 417 418 unsigned int rq_timeout; 419 int poll_nsec; 420 421 struct blk_stat_callback *poll_cb; 422 struct blk_rq_stat *poll_stat; 423 424 struct timer_list timeout; 425 struct work_struct timeout_work; 426 427 atomic_t nr_active_requests_shared_tags; 428 429 struct blk_mq_tags *sched_shared_tags; 430 431 struct list_head icq_list; 432 #ifdef CONFIG_BLK_CGROUP 433 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 434 struct blkcg_gq *root_blkg; 435 struct list_head blkg_list; 436 #endif 437 438 struct queue_limits limits; 439 440 unsigned int required_elevator_features; 441 442 #ifdef CONFIG_BLK_DEV_ZONED 443 /* 444 * Zoned block device information for request dispatch control. 445 * nr_zones is the total number of zones of the device. This is always 446 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 447 * bits which indicates if a zone is conventional (bit set) or 448 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 449 * bits which indicates if a zone is write locked, that is, if a write 450 * request targeting the zone was dispatched. All three fields are 451 * initialized by the low level device driver (e.g. scsi/sd.c). 452 * Stacking drivers (device mappers) may or may not initialize 453 * these fields. 454 * 455 * Reads of this information must be protected with blk_queue_enter() / 456 * blk_queue_exit(). Modifying this information is only allowed while 457 * no requests are being processed. See also blk_mq_freeze_queue() and 458 * blk_mq_unfreeze_queue(). 459 */ 460 unsigned int nr_zones; 461 unsigned long *conv_zones_bitmap; 462 unsigned long *seq_zones_wlock; 463 unsigned int max_open_zones; 464 unsigned int max_active_zones; 465 #endif /* CONFIG_BLK_DEV_ZONED */ 466 467 int node; 468 struct mutex debugfs_mutex; 469 #ifdef CONFIG_BLK_DEV_IO_TRACE 470 struct blk_trace __rcu *blk_trace; 471 #endif 472 /* 473 * for flush operations 474 */ 475 struct blk_flush_queue *fq; 476 477 struct list_head requeue_list; 478 spinlock_t requeue_lock; 479 struct delayed_work requeue_work; 480 481 struct mutex sysfs_lock; 482 struct mutex sysfs_dir_lock; 483 484 /* 485 * for reusing dead hctx instance in case of updating 486 * nr_hw_queues 487 */ 488 struct list_head unused_hctx_list; 489 spinlock_t unused_hctx_lock; 490 491 int mq_freeze_depth; 492 493 #ifdef CONFIG_BLK_DEV_THROTTLING 494 /* Throttle data */ 495 struct throtl_data *td; 496 #endif 497 struct rcu_head rcu_head; 498 wait_queue_head_t mq_freeze_wq; 499 /* 500 * Protect concurrent access to q_usage_counter by 501 * percpu_ref_kill() and percpu_ref_reinit(). 502 */ 503 struct mutex mq_freeze_lock; 504 505 int quiesce_depth; 506 507 struct blk_mq_tag_set *tag_set; 508 struct list_head tag_set_list; 509 struct bio_set bio_split; 510 511 struct dentry *debugfs_dir; 512 513 #ifdef CONFIG_BLK_DEBUG_FS 514 struct dentry *sched_debugfs_dir; 515 struct dentry *rqos_debugfs_dir; 516 #endif 517 518 bool mq_sysfs_init_done; 519 520 /* 521 * Independent sector access ranges. This is always NULL for 522 * devices that do not have multiple independent access ranges. 523 */ 524 struct blk_independent_access_ranges *ia_ranges; 525 526 /** 527 * @srcu: Sleepable RCU. Use as lock when type of the request queue 528 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member 529 */ 530 struct srcu_struct srcu[]; 531 }; 532 533 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 534 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 535 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 536 #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */ 537 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 538 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 539 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 540 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 541 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 542 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 543 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 544 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 545 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 546 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 547 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 548 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 549 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 550 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 551 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 552 #define QUEUE_FLAG_WC 17 /* Write back caching */ 553 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 554 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 555 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 556 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 557 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 558 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 559 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 560 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 561 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 562 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 563 564 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 565 (1 << QUEUE_FLAG_SAME_COMP) | \ 566 (1 << QUEUE_FLAG_NOWAIT)) 567 568 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 569 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 570 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 571 572 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 573 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 574 #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags) 575 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 576 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 577 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 578 #define blk_queue_noxmerges(q) \ 579 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 580 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 581 #define blk_queue_stable_writes(q) \ 582 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 583 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 584 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 585 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 586 #define blk_queue_zone_resetall(q) \ 587 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 588 #define blk_queue_secure_erase(q) \ 589 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 590 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 591 #define blk_queue_pci_p2pdma(q) \ 592 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 593 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 594 #define blk_queue_rq_alloc_time(q) \ 595 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 596 #else 597 #define blk_queue_rq_alloc_time(q) false 598 #endif 599 600 #define blk_noretry_request(rq) \ 601 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 602 REQ_FAILFAST_DRIVER)) 603 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 604 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 605 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 606 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 607 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 608 609 extern void blk_set_pm_only(struct request_queue *q); 610 extern void blk_clear_pm_only(struct request_queue *q); 611 612 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 613 614 #define dma_map_bvec(dev, bv, dir, attrs) \ 615 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 616 (dir), (attrs)) 617 618 static inline bool queue_is_mq(struct request_queue *q) 619 { 620 return q->mq_ops; 621 } 622 623 #ifdef CONFIG_PM 624 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 625 { 626 return q->rpm_status; 627 } 628 #else 629 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 630 { 631 return RPM_ACTIVE; 632 } 633 #endif 634 635 static inline enum blk_zoned_model 636 blk_queue_zoned_model(struct request_queue *q) 637 { 638 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 639 return q->limits.zoned; 640 return BLK_ZONED_NONE; 641 } 642 643 static inline bool blk_queue_is_zoned(struct request_queue *q) 644 { 645 switch (blk_queue_zoned_model(q)) { 646 case BLK_ZONED_HA: 647 case BLK_ZONED_HM: 648 return true; 649 default: 650 return false; 651 } 652 } 653 654 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 655 { 656 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 657 } 658 659 #ifdef CONFIG_BLK_DEV_ZONED 660 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 661 { 662 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 663 } 664 665 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 666 sector_t sector) 667 { 668 if (!blk_queue_is_zoned(q)) 669 return 0; 670 return sector >> ilog2(q->limits.chunk_sectors); 671 } 672 673 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 674 sector_t sector) 675 { 676 if (!blk_queue_is_zoned(q)) 677 return false; 678 if (!q->conv_zones_bitmap) 679 return true; 680 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 681 } 682 683 static inline void blk_queue_max_open_zones(struct request_queue *q, 684 unsigned int max_open_zones) 685 { 686 q->max_open_zones = max_open_zones; 687 } 688 689 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 690 { 691 return q->max_open_zones; 692 } 693 694 static inline void blk_queue_max_active_zones(struct request_queue *q, 695 unsigned int max_active_zones) 696 { 697 q->max_active_zones = max_active_zones; 698 } 699 700 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 701 { 702 return q->max_active_zones; 703 } 704 #else /* CONFIG_BLK_DEV_ZONED */ 705 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 706 { 707 return 0; 708 } 709 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 710 sector_t sector) 711 { 712 return false; 713 } 714 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 715 sector_t sector) 716 { 717 return 0; 718 } 719 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 720 { 721 return 0; 722 } 723 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 724 { 725 return 0; 726 } 727 #endif /* CONFIG_BLK_DEV_ZONED */ 728 729 static inline unsigned int blk_queue_depth(struct request_queue *q) 730 { 731 if (q->queue_depth) 732 return q->queue_depth; 733 734 return q->nr_requests; 735 } 736 737 /* 738 * default timeout for SG_IO if none specified 739 */ 740 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 741 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 742 743 /* This should not be used directly - use rq_for_each_segment */ 744 #define for_each_bio(_bio) \ 745 for (; _bio; _bio = _bio->bi_next) 746 747 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 748 const struct attribute_group **groups); 749 static inline int __must_check add_disk(struct gendisk *disk) 750 { 751 return device_add_disk(NULL, disk, NULL); 752 } 753 void del_gendisk(struct gendisk *gp); 754 void invalidate_disk(struct gendisk *disk); 755 void set_disk_ro(struct gendisk *disk, bool read_only); 756 void disk_uevent(struct gendisk *disk, enum kobject_action action); 757 758 static inline int get_disk_ro(struct gendisk *disk) 759 { 760 return disk->part0->bd_read_only || 761 test_bit(GD_READ_ONLY, &disk->state); 762 } 763 764 static inline int bdev_read_only(struct block_device *bdev) 765 { 766 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 767 } 768 769 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 770 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 771 772 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 773 void rand_initialize_disk(struct gendisk *disk); 774 775 static inline sector_t get_start_sect(struct block_device *bdev) 776 { 777 return bdev->bd_start_sect; 778 } 779 780 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 781 { 782 return bdev->bd_nr_sectors; 783 } 784 785 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 786 { 787 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 788 } 789 790 static inline sector_t get_capacity(struct gendisk *disk) 791 { 792 return bdev_nr_sectors(disk->part0); 793 } 794 795 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 796 { 797 return bdev_nr_sectors(sb->s_bdev) >> 798 (sb->s_blocksize_bits - SECTOR_SHIFT); 799 } 800 801 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 802 803 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 804 struct lock_class_key *lkclass); 805 void put_disk(struct gendisk *disk); 806 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 807 808 /** 809 * blk_alloc_disk - allocate a gendisk structure 810 * @node_id: numa node to allocate on 811 * 812 * Allocate and pre-initialize a gendisk structure for use with BIO based 813 * drivers. 814 * 815 * Context: can sleep 816 */ 817 #define blk_alloc_disk(node_id) \ 818 ({ \ 819 static struct lock_class_key __key; \ 820 \ 821 __blk_alloc_disk(node_id, &__key); \ 822 }) 823 void blk_cleanup_disk(struct gendisk *disk); 824 825 int __register_blkdev(unsigned int major, const char *name, 826 void (*probe)(dev_t devt)); 827 #define register_blkdev(major, name) \ 828 __register_blkdev(major, name, NULL) 829 void unregister_blkdev(unsigned int major, const char *name); 830 831 bool bdev_check_media_change(struct block_device *bdev); 832 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 833 void set_capacity(struct gendisk *disk, sector_t size); 834 835 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 836 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 837 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 838 int bd_register_pending_holders(struct gendisk *disk); 839 #else 840 static inline int bd_link_disk_holder(struct block_device *bdev, 841 struct gendisk *disk) 842 { 843 return 0; 844 } 845 static inline void bd_unlink_disk_holder(struct block_device *bdev, 846 struct gendisk *disk) 847 { 848 } 849 static inline int bd_register_pending_holders(struct gendisk *disk) 850 { 851 return 0; 852 } 853 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 854 855 dev_t part_devt(struct gendisk *disk, u8 partno); 856 void inc_diskseq(struct gendisk *disk); 857 dev_t blk_lookup_devt(const char *name, int partno); 858 void blk_request_module(dev_t devt); 859 860 extern int blk_register_queue(struct gendisk *disk); 861 extern void blk_unregister_queue(struct gendisk *disk); 862 void submit_bio_noacct(struct bio *bio); 863 864 extern int blk_lld_busy(struct request_queue *q); 865 extern void blk_queue_split(struct bio **); 866 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 867 extern void blk_queue_exit(struct request_queue *q); 868 extern void blk_sync_queue(struct request_queue *q); 869 870 /* Helper to convert REQ_OP_XXX to its string format XXX */ 871 extern const char *blk_op_str(unsigned int op); 872 873 int blk_status_to_errno(blk_status_t status); 874 blk_status_t errno_to_blk_status(int errno); 875 876 /* only poll the hardware once, don't continue until a completion was found */ 877 #define BLK_POLL_ONESHOT (1 << 0) 878 /* do not sleep to wait for the expected completion time */ 879 #define BLK_POLL_NOSLEEP (1 << 1) 880 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 881 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 882 unsigned int flags); 883 884 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 885 { 886 return bdev->bd_queue; /* this is never NULL */ 887 } 888 889 #ifdef CONFIG_BLK_DEV_ZONED 890 891 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 892 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 893 894 static inline unsigned int bio_zone_no(struct bio *bio) 895 { 896 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 897 bio->bi_iter.bi_sector); 898 } 899 900 static inline unsigned int bio_zone_is_seq(struct bio *bio) 901 { 902 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 903 bio->bi_iter.bi_sector); 904 } 905 #endif /* CONFIG_BLK_DEV_ZONED */ 906 907 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 908 int op) 909 { 910 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 911 return min(q->limits.max_discard_sectors, 912 UINT_MAX >> SECTOR_SHIFT); 913 914 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 915 return q->limits.max_write_zeroes_sectors; 916 917 return q->limits.max_sectors; 918 } 919 920 /* 921 * Return maximum size of a request at given offset. Only valid for 922 * file system requests. 923 */ 924 static inline unsigned int blk_max_size_offset(struct request_queue *q, 925 sector_t offset, 926 unsigned int chunk_sectors) 927 { 928 if (!chunk_sectors) { 929 if (q->limits.chunk_sectors) 930 chunk_sectors = q->limits.chunk_sectors; 931 else 932 return q->limits.max_sectors; 933 } 934 935 if (likely(is_power_of_2(chunk_sectors))) 936 chunk_sectors -= offset & (chunk_sectors - 1); 937 else 938 chunk_sectors -= sector_div(offset, chunk_sectors); 939 940 return min(q->limits.max_sectors, chunk_sectors); 941 } 942 943 /* 944 * Access functions for manipulating queue properties 945 */ 946 extern void blk_cleanup_queue(struct request_queue *); 947 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 948 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 949 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 950 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 951 extern void blk_queue_max_discard_segments(struct request_queue *, 952 unsigned short); 953 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 954 extern void blk_queue_max_discard_sectors(struct request_queue *q, 955 unsigned int max_discard_sectors); 956 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 957 unsigned int max_write_same_sectors); 958 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 959 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 960 unsigned int max_zone_append_sectors); 961 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 962 void blk_queue_zone_write_granularity(struct request_queue *q, 963 unsigned int size); 964 extern void blk_queue_alignment_offset(struct request_queue *q, 965 unsigned int alignment); 966 void disk_update_readahead(struct gendisk *disk); 967 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 968 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 969 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 970 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 971 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 972 extern void blk_set_default_limits(struct queue_limits *lim); 973 extern void blk_set_stacking_limits(struct queue_limits *lim); 974 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 975 sector_t offset); 976 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 977 sector_t offset); 978 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 979 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 980 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 981 extern void blk_queue_dma_alignment(struct request_queue *, int); 982 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 983 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 984 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 985 986 struct blk_independent_access_ranges * 987 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 988 void disk_set_independent_access_ranges(struct gendisk *disk, 989 struct blk_independent_access_ranges *iars); 990 991 /* 992 * Elevator features for blk_queue_required_elevator_features: 993 */ 994 /* Supports zoned block devices sequential write constraint */ 995 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 996 /* Supports scheduling on multiple hardware queues */ 997 #define ELEVATOR_F_MQ_AWARE (1U << 1) 998 999 extern void blk_queue_required_elevator_features(struct request_queue *q, 1000 unsigned int features); 1001 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1002 struct device *dev); 1003 1004 bool __must_check blk_get_queue(struct request_queue *); 1005 extern void blk_put_queue(struct request_queue *); 1006 1007 void blk_mark_disk_dead(struct gendisk *disk); 1008 1009 #ifdef CONFIG_BLOCK 1010 /* 1011 * blk_plug permits building a queue of related requests by holding the I/O 1012 * fragments for a short period. This allows merging of sequential requests 1013 * into single larger request. As the requests are moved from a per-task list to 1014 * the device's request_queue in a batch, this results in improved scalability 1015 * as the lock contention for request_queue lock is reduced. 1016 * 1017 * It is ok not to disable preemption when adding the request to the plug list 1018 * or when attempting a merge. For details, please see schedule() where 1019 * blk_flush_plug() is called. 1020 */ 1021 struct blk_plug { 1022 struct request *mq_list; /* blk-mq requests */ 1023 1024 /* if ios_left is > 1, we can batch tag/rq allocations */ 1025 struct request *cached_rq; 1026 unsigned short nr_ios; 1027 1028 unsigned short rq_count; 1029 1030 bool multiple_queues; 1031 bool has_elevator; 1032 bool nowait; 1033 1034 struct list_head cb_list; /* md requires an unplug callback */ 1035 }; 1036 1037 struct blk_plug_cb; 1038 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1039 struct blk_plug_cb { 1040 struct list_head list; 1041 blk_plug_cb_fn callback; 1042 void *data; 1043 }; 1044 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1045 void *data, int size); 1046 extern void blk_start_plug(struct blk_plug *); 1047 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1048 extern void blk_finish_plug(struct blk_plug *); 1049 1050 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1051 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1052 { 1053 if (plug) 1054 __blk_flush_plug(plug, async); 1055 } 1056 1057 int blkdev_issue_flush(struct block_device *bdev); 1058 long nr_blockdev_pages(void); 1059 #else /* CONFIG_BLOCK */ 1060 struct blk_plug { 1061 }; 1062 1063 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1064 unsigned short nr_ios) 1065 { 1066 } 1067 1068 static inline void blk_start_plug(struct blk_plug *plug) 1069 { 1070 } 1071 1072 static inline void blk_finish_plug(struct blk_plug *plug) 1073 { 1074 } 1075 1076 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1077 { 1078 } 1079 1080 static inline int blkdev_issue_flush(struct block_device *bdev) 1081 { 1082 return 0; 1083 } 1084 1085 static inline long nr_blockdev_pages(void) 1086 { 1087 return 0; 1088 } 1089 #endif /* CONFIG_BLOCK */ 1090 1091 extern void blk_io_schedule(void); 1092 1093 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1094 1095 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1096 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1097 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1098 sector_t nr_sects, gfp_t gfp_mask, int flags, 1099 struct bio **biop); 1100 1101 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1102 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1103 1104 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1105 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1106 unsigned flags); 1107 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1108 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1109 1110 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1111 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1112 { 1113 return blkdev_issue_discard(sb->s_bdev, 1114 block << (sb->s_blocksize_bits - 1115 SECTOR_SHIFT), 1116 nr_blocks << (sb->s_blocksize_bits - 1117 SECTOR_SHIFT), 1118 gfp_mask, flags); 1119 } 1120 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1121 sector_t nr_blocks, gfp_t gfp_mask) 1122 { 1123 return blkdev_issue_zeroout(sb->s_bdev, 1124 block << (sb->s_blocksize_bits - 1125 SECTOR_SHIFT), 1126 nr_blocks << (sb->s_blocksize_bits - 1127 SECTOR_SHIFT), 1128 gfp_mask, 0); 1129 } 1130 1131 static inline bool bdev_is_partition(struct block_device *bdev) 1132 { 1133 return bdev->bd_partno; 1134 } 1135 1136 enum blk_default_limits { 1137 BLK_MAX_SEGMENTS = 128, 1138 BLK_SAFE_MAX_SECTORS = 255, 1139 BLK_DEF_MAX_SECTORS = 2560, 1140 BLK_MAX_SEGMENT_SIZE = 65536, 1141 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1142 }; 1143 1144 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1145 { 1146 return q->limits.seg_boundary_mask; 1147 } 1148 1149 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1150 { 1151 return q->limits.virt_boundary_mask; 1152 } 1153 1154 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1155 { 1156 return q->limits.max_sectors; 1157 } 1158 1159 static inline unsigned int queue_max_bytes(struct request_queue *q) 1160 { 1161 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1162 } 1163 1164 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1165 { 1166 return q->limits.max_hw_sectors; 1167 } 1168 1169 static inline unsigned short queue_max_segments(const struct request_queue *q) 1170 { 1171 return q->limits.max_segments; 1172 } 1173 1174 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1175 { 1176 return q->limits.max_discard_segments; 1177 } 1178 1179 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1180 { 1181 return q->limits.max_segment_size; 1182 } 1183 1184 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1185 { 1186 1187 const struct queue_limits *l = &q->limits; 1188 1189 return min(l->max_zone_append_sectors, l->max_sectors); 1190 } 1191 1192 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1193 { 1194 int retval = 512; 1195 1196 if (q && q->limits.logical_block_size) 1197 retval = q->limits.logical_block_size; 1198 1199 return retval; 1200 } 1201 1202 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1203 { 1204 return queue_logical_block_size(bdev_get_queue(bdev)); 1205 } 1206 1207 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1208 { 1209 return q->limits.physical_block_size; 1210 } 1211 1212 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1213 { 1214 return queue_physical_block_size(bdev_get_queue(bdev)); 1215 } 1216 1217 static inline unsigned int queue_io_min(const struct request_queue *q) 1218 { 1219 return q->limits.io_min; 1220 } 1221 1222 static inline int bdev_io_min(struct block_device *bdev) 1223 { 1224 return queue_io_min(bdev_get_queue(bdev)); 1225 } 1226 1227 static inline unsigned int queue_io_opt(const struct request_queue *q) 1228 { 1229 return q->limits.io_opt; 1230 } 1231 1232 static inline int bdev_io_opt(struct block_device *bdev) 1233 { 1234 return queue_io_opt(bdev_get_queue(bdev)); 1235 } 1236 1237 static inline unsigned int 1238 queue_zone_write_granularity(const struct request_queue *q) 1239 { 1240 return q->limits.zone_write_granularity; 1241 } 1242 1243 static inline unsigned int 1244 bdev_zone_write_granularity(struct block_device *bdev) 1245 { 1246 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1247 } 1248 1249 static inline int queue_alignment_offset(const struct request_queue *q) 1250 { 1251 if (q->limits.misaligned) 1252 return -1; 1253 1254 return q->limits.alignment_offset; 1255 } 1256 1257 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1258 { 1259 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1260 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1261 << SECTOR_SHIFT; 1262 1263 return (granularity + lim->alignment_offset - alignment) % granularity; 1264 } 1265 1266 static inline int bdev_alignment_offset(struct block_device *bdev) 1267 { 1268 struct request_queue *q = bdev_get_queue(bdev); 1269 1270 if (q->limits.misaligned) 1271 return -1; 1272 if (bdev_is_partition(bdev)) 1273 return queue_limit_alignment_offset(&q->limits, 1274 bdev->bd_start_sect); 1275 return q->limits.alignment_offset; 1276 } 1277 1278 static inline int queue_discard_alignment(const struct request_queue *q) 1279 { 1280 if (q->limits.discard_misaligned) 1281 return -1; 1282 1283 return q->limits.discard_alignment; 1284 } 1285 1286 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1287 { 1288 unsigned int alignment, granularity, offset; 1289 1290 if (!lim->max_discard_sectors) 1291 return 0; 1292 1293 /* Why are these in bytes, not sectors? */ 1294 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1295 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1296 if (!granularity) 1297 return 0; 1298 1299 /* Offset of the partition start in 'granularity' sectors */ 1300 offset = sector_div(sector, granularity); 1301 1302 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1303 offset = (granularity + alignment - offset) % granularity; 1304 1305 /* Turn it back into bytes, gaah */ 1306 return offset << SECTOR_SHIFT; 1307 } 1308 1309 static inline int bdev_discard_alignment(struct block_device *bdev) 1310 { 1311 struct request_queue *q = bdev_get_queue(bdev); 1312 1313 if (bdev_is_partition(bdev)) 1314 return queue_limit_discard_alignment(&q->limits, 1315 bdev->bd_start_sect); 1316 return q->limits.discard_alignment; 1317 } 1318 1319 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1320 { 1321 struct request_queue *q = bdev_get_queue(bdev); 1322 1323 if (q) 1324 return q->limits.max_write_zeroes_sectors; 1325 1326 return 0; 1327 } 1328 1329 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1330 { 1331 struct request_queue *q = bdev_get_queue(bdev); 1332 1333 if (q) 1334 return blk_queue_zoned_model(q); 1335 1336 return BLK_ZONED_NONE; 1337 } 1338 1339 static inline bool bdev_is_zoned(struct block_device *bdev) 1340 { 1341 struct request_queue *q = bdev_get_queue(bdev); 1342 1343 if (q) 1344 return blk_queue_is_zoned(q); 1345 1346 return false; 1347 } 1348 1349 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1350 { 1351 struct request_queue *q = bdev_get_queue(bdev); 1352 1353 if (q) 1354 return blk_queue_zone_sectors(q); 1355 return 0; 1356 } 1357 1358 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1359 { 1360 struct request_queue *q = bdev_get_queue(bdev); 1361 1362 if (q) 1363 return queue_max_open_zones(q); 1364 return 0; 1365 } 1366 1367 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1368 { 1369 struct request_queue *q = bdev_get_queue(bdev); 1370 1371 if (q) 1372 return queue_max_active_zones(q); 1373 return 0; 1374 } 1375 1376 static inline int queue_dma_alignment(const struct request_queue *q) 1377 { 1378 return q ? q->dma_alignment : 511; 1379 } 1380 1381 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1382 unsigned int len) 1383 { 1384 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1385 return !(addr & alignment) && !(len & alignment); 1386 } 1387 1388 /* assumes size > 256 */ 1389 static inline unsigned int blksize_bits(unsigned int size) 1390 { 1391 unsigned int bits = 8; 1392 do { 1393 bits++; 1394 size >>= 1; 1395 } while (size > 256); 1396 return bits; 1397 } 1398 1399 static inline unsigned int block_size(struct block_device *bdev) 1400 { 1401 return 1 << bdev->bd_inode->i_blkbits; 1402 } 1403 1404 int kblockd_schedule_work(struct work_struct *work); 1405 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1406 1407 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1408 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1409 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1410 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1411 1412 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1413 1414 bool blk_crypto_register(struct blk_crypto_profile *profile, 1415 struct request_queue *q); 1416 1417 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1418 1419 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1420 struct request_queue *q) 1421 { 1422 return true; 1423 } 1424 1425 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1426 1427 enum blk_unique_id { 1428 /* these match the Designator Types specified in SPC */ 1429 BLK_UID_T10 = 1, 1430 BLK_UID_EUI64 = 2, 1431 BLK_UID_NAA = 3, 1432 }; 1433 1434 #define NFL4_UFLG_MASK 0x0000003F 1435 1436 struct block_device_operations { 1437 void (*submit_bio)(struct bio *bio); 1438 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1439 unsigned int flags); 1440 int (*open) (struct block_device *, fmode_t); 1441 void (*release) (struct gendisk *, fmode_t); 1442 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1443 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1444 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1445 unsigned int (*check_events) (struct gendisk *disk, 1446 unsigned int clearing); 1447 void (*unlock_native_capacity) (struct gendisk *); 1448 int (*getgeo)(struct block_device *, struct hd_geometry *); 1449 int (*set_read_only)(struct block_device *bdev, bool ro); 1450 void (*free_disk)(struct gendisk *disk); 1451 /* this callback is with swap_lock and sometimes page table lock held */ 1452 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1453 int (*report_zones)(struct gendisk *, sector_t sector, 1454 unsigned int nr_zones, report_zones_cb cb, void *data); 1455 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1456 /* returns the length of the identifier or a negative errno: */ 1457 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1458 enum blk_unique_id id_type); 1459 struct module *owner; 1460 const struct pr_ops *pr_ops; 1461 1462 /* 1463 * Special callback for probing GPT entry at a given sector. 1464 * Needed by Android devices, used by GPT scanner and MMC blk 1465 * driver. 1466 */ 1467 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1468 }; 1469 1470 #ifdef CONFIG_COMPAT 1471 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1472 unsigned int, unsigned long); 1473 #else 1474 #define blkdev_compat_ptr_ioctl NULL 1475 #endif 1476 1477 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1478 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1479 struct writeback_control *); 1480 1481 static inline void blk_wake_io_task(struct task_struct *waiter) 1482 { 1483 /* 1484 * If we're polling, the task itself is doing the completions. For 1485 * that case, we don't need to signal a wakeup, it's enough to just 1486 * mark us as RUNNING. 1487 */ 1488 if (waiter == current) 1489 __set_current_state(TASK_RUNNING); 1490 else 1491 wake_up_process(waiter); 1492 } 1493 1494 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1495 unsigned int op); 1496 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1497 unsigned long start_time); 1498 1499 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time); 1500 unsigned long bio_start_io_acct(struct bio *bio); 1501 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1502 struct block_device *orig_bdev); 1503 1504 /** 1505 * bio_end_io_acct - end I/O accounting for bio based drivers 1506 * @bio: bio to end account for 1507 * @start_time: start time returned by bio_start_io_acct() 1508 */ 1509 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1510 { 1511 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1512 } 1513 1514 int bdev_read_only(struct block_device *bdev); 1515 int set_blocksize(struct block_device *bdev, int size); 1516 1517 const char *bdevname(struct block_device *bdev, char *buffer); 1518 int lookup_bdev(const char *pathname, dev_t *dev); 1519 1520 void blkdev_show(struct seq_file *seqf, off_t offset); 1521 1522 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1523 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1524 #ifdef CONFIG_BLOCK 1525 #define BLKDEV_MAJOR_MAX 512 1526 #else 1527 #define BLKDEV_MAJOR_MAX 0 1528 #endif 1529 1530 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1531 void *holder); 1532 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1533 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1534 void bd_abort_claiming(struct block_device *bdev, void *holder); 1535 void blkdev_put(struct block_device *bdev, fmode_t mode); 1536 1537 /* just for blk-cgroup, don't use elsewhere */ 1538 struct block_device *blkdev_get_no_open(dev_t dev); 1539 void blkdev_put_no_open(struct block_device *bdev); 1540 1541 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1542 void bdev_add(struct block_device *bdev, dev_t dev); 1543 struct block_device *I_BDEV(struct inode *inode); 1544 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1545 loff_t lend); 1546 1547 #ifdef CONFIG_BLOCK 1548 void invalidate_bdev(struct block_device *bdev); 1549 int sync_blockdev(struct block_device *bdev); 1550 int sync_blockdev_nowait(struct block_device *bdev); 1551 void sync_bdevs(bool wait); 1552 void printk_all_partitions(void); 1553 #else 1554 static inline void invalidate_bdev(struct block_device *bdev) 1555 { 1556 } 1557 static inline int sync_blockdev(struct block_device *bdev) 1558 { 1559 return 0; 1560 } 1561 static inline int sync_blockdev_nowait(struct block_device *bdev) 1562 { 1563 return 0; 1564 } 1565 static inline void sync_bdevs(bool wait) 1566 { 1567 } 1568 static inline void printk_all_partitions(void) 1569 { 1570 } 1571 #endif /* CONFIG_BLOCK */ 1572 1573 int fsync_bdev(struct block_device *bdev); 1574 1575 int freeze_bdev(struct block_device *bdev); 1576 int thaw_bdev(struct block_device *bdev); 1577 1578 struct io_comp_batch { 1579 struct request *req_list; 1580 bool need_ts; 1581 void (*complete)(struct io_comp_batch *); 1582 }; 1583 1584 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1585 1586 #endif /* _LINUX_BLKDEV_H */ 1587