xref: /linux-6.15/include/linux/blkdev.h (revision ebb9a9ae)
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3 
4 #include <linux/sched.h>
5 
6 #ifdef CONFIG_BLOCK
7 
8 #include <linux/major.h>
9 #include <linux/genhd.h>
10 #include <linux/list.h>
11 #include <linux/llist.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 
29 struct module;
30 struct scsi_ioctl_command;
31 
32 struct request_queue;
33 struct elevator_queue;
34 struct blk_trace;
35 struct request;
36 struct sg_io_hdr;
37 struct bsg_job;
38 struct blkcg_gq;
39 struct blk_flush_queue;
40 struct pr_ops;
41 struct rq_wb;
42 
43 #define BLKDEV_MIN_RQ	4
44 #define BLKDEV_MAX_RQ	128	/* Default maximum */
45 
46 /*
47  * Maximum number of blkcg policies allowed to be registered concurrently.
48  * Defined here to simplify include dependency.
49  */
50 #define BLKCG_MAX_POLS		2
51 
52 typedef void (rq_end_io_fn)(struct request *, int);
53 
54 #define BLK_RL_SYNCFULL		(1U << 0)
55 #define BLK_RL_ASYNCFULL	(1U << 1)
56 
57 struct request_list {
58 	struct request_queue	*q;	/* the queue this rl belongs to */
59 #ifdef CONFIG_BLK_CGROUP
60 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
61 #endif
62 	/*
63 	 * count[], starved[], and wait[] are indexed by
64 	 * BLK_RW_SYNC/BLK_RW_ASYNC
65 	 */
66 	int			count[2];
67 	int			starved[2];
68 	mempool_t		*rq_pool;
69 	wait_queue_head_t	wait[2];
70 	unsigned int		flags;
71 };
72 
73 /*
74  * request command types
75  */
76 enum rq_cmd_type_bits {
77 	REQ_TYPE_FS		= 1,	/* fs request */
78 	REQ_TYPE_BLOCK_PC,		/* scsi command */
79 	REQ_TYPE_DRV_PRIV,		/* driver defined types from here */
80 };
81 
82 /*
83  * request flags */
84 typedef __u32 __bitwise req_flags_t;
85 
86 /* elevator knows about this request */
87 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
88 /* drive already may have started this one */
89 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
90 /* uses tagged queueing */
91 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
92 /* may not be passed by ioscheduler */
93 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
94 /* request for flush sequence */
95 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
96 /* merge of different types, fail separately */
97 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
98 /* track inflight for MQ */
99 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
100 /* don't call prep for this one */
101 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
102 /* set for "ide_preempt" requests and also for requests for which the SCSI
103    "quiesce" state must be ignored. */
104 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
105 /* contains copies of user pages */
106 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
107 /* vaguely specified driver internal error.  Ignored by the block layer */
108 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
109 /* don't warn about errors */
110 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
111 /* elevator private data attached */
112 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
113 /* account I/O stat */
114 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
115 /* request came from our alloc pool */
116 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
117 /* runtime pm request */
118 #define RQF_PM			((__force req_flags_t)(1 << 15))
119 /* on IO scheduler merge hash */
120 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
121 /* IO stats tracking on */
122 #define RQF_STATS		((__force req_flags_t)(1 << 17))
123 /* Look at ->special_vec for the actual data payload instead of the
124    bio chain. */
125 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
126 
127 /* flags that prevent us from merging requests: */
128 #define RQF_NOMERGE_FLAGS \
129 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
130 
131 #define BLK_MAX_CDB	16
132 
133 /*
134  * Try to put the fields that are referenced together in the same cacheline.
135  *
136  * If you modify this structure, make sure to update blk_rq_init() and
137  * especially blk_mq_rq_ctx_init() to take care of the added fields.
138  */
139 struct request {
140 	struct list_head queuelist;
141 	union {
142 		struct call_single_data csd;
143 		u64 fifo_time;
144 	};
145 
146 	struct request_queue *q;
147 	struct blk_mq_ctx *mq_ctx;
148 
149 	int cpu;
150 	unsigned cmd_type;
151 	unsigned int cmd_flags;		/* op and common flags */
152 	req_flags_t rq_flags;
153 	unsigned long atomic_flags;
154 
155 	/* the following two fields are internal, NEVER access directly */
156 	unsigned int __data_len;	/* total data len */
157 	sector_t __sector;		/* sector cursor */
158 
159 	struct bio *bio;
160 	struct bio *biotail;
161 
162 	/*
163 	 * The hash is used inside the scheduler, and killed once the
164 	 * request reaches the dispatch list. The ipi_list is only used
165 	 * to queue the request for softirq completion, which is long
166 	 * after the request has been unhashed (and even removed from
167 	 * the dispatch list).
168 	 */
169 	union {
170 		struct hlist_node hash;	/* merge hash */
171 		struct list_head ipi_list;
172 	};
173 
174 	/*
175 	 * The rb_node is only used inside the io scheduler, requests
176 	 * are pruned when moved to the dispatch queue. So let the
177 	 * completion_data share space with the rb_node.
178 	 */
179 	union {
180 		struct rb_node rb_node;	/* sort/lookup */
181 		struct bio_vec special_vec;
182 		void *completion_data;
183 	};
184 
185 	/*
186 	 * Three pointers are available for the IO schedulers, if they need
187 	 * more they have to dynamically allocate it.  Flush requests are
188 	 * never put on the IO scheduler. So let the flush fields share
189 	 * space with the elevator data.
190 	 */
191 	union {
192 		struct {
193 			struct io_cq		*icq;
194 			void			*priv[2];
195 		} elv;
196 
197 		struct {
198 			unsigned int		seq;
199 			struct list_head	list;
200 			rq_end_io_fn		*saved_end_io;
201 		} flush;
202 	};
203 
204 	struct gendisk *rq_disk;
205 	struct hd_struct *part;
206 	unsigned long start_time;
207 	struct blk_issue_stat issue_stat;
208 #ifdef CONFIG_BLK_CGROUP
209 	struct request_list *rl;		/* rl this rq is alloced from */
210 	unsigned long long start_time_ns;
211 	unsigned long long io_start_time_ns;    /* when passed to hardware */
212 #endif
213 	/* Number of scatter-gather DMA addr+len pairs after
214 	 * physical address coalescing is performed.
215 	 */
216 	unsigned short nr_phys_segments;
217 #if defined(CONFIG_BLK_DEV_INTEGRITY)
218 	unsigned short nr_integrity_segments;
219 #endif
220 
221 	unsigned short ioprio;
222 
223 	void *special;		/* opaque pointer available for LLD use */
224 
225 	int tag;
226 	int errors;
227 
228 	/*
229 	 * when request is used as a packet command carrier
230 	 */
231 	unsigned char __cmd[BLK_MAX_CDB];
232 	unsigned char *cmd;
233 	unsigned short cmd_len;
234 
235 	unsigned int extra_len;	/* length of alignment and padding */
236 	unsigned int sense_len;
237 	unsigned int resid_len;	/* residual count */
238 	void *sense;
239 
240 	unsigned long deadline;
241 	struct list_head timeout_list;
242 	unsigned int timeout;
243 	int retries;
244 
245 	/*
246 	 * completion callback.
247 	 */
248 	rq_end_io_fn *end_io;
249 	void *end_io_data;
250 
251 	/* for bidi */
252 	struct request *next_rq;
253 };
254 
255 static inline unsigned short req_get_ioprio(struct request *req)
256 {
257 	return req->ioprio;
258 }
259 
260 #include <linux/elevator.h>
261 
262 struct blk_queue_ctx;
263 
264 typedef void (request_fn_proc) (struct request_queue *q);
265 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
266 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
267 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
268 
269 struct bio_vec;
270 typedef void (softirq_done_fn)(struct request *);
271 typedef int (dma_drain_needed_fn)(struct request *);
272 typedef int (lld_busy_fn) (struct request_queue *q);
273 typedef int (bsg_job_fn) (struct bsg_job *);
274 
275 enum blk_eh_timer_return {
276 	BLK_EH_NOT_HANDLED,
277 	BLK_EH_HANDLED,
278 	BLK_EH_RESET_TIMER,
279 };
280 
281 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
282 
283 enum blk_queue_state {
284 	Queue_down,
285 	Queue_up,
286 };
287 
288 struct blk_queue_tag {
289 	struct request **tag_index;	/* map of busy tags */
290 	unsigned long *tag_map;		/* bit map of free/busy tags */
291 	int busy;			/* current depth */
292 	int max_depth;			/* what we will send to device */
293 	int real_max_depth;		/* what the array can hold */
294 	atomic_t refcnt;		/* map can be shared */
295 	int alloc_policy;		/* tag allocation policy */
296 	int next_tag;			/* next tag */
297 };
298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
300 
301 #define BLK_SCSI_MAX_CMDS	(256)
302 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
303 
304 /*
305  * Zoned block device models (zoned limit).
306  */
307 enum blk_zoned_model {
308 	BLK_ZONED_NONE,	/* Regular block device */
309 	BLK_ZONED_HA,	/* Host-aware zoned block device */
310 	BLK_ZONED_HM,	/* Host-managed zoned block device */
311 };
312 
313 struct queue_limits {
314 	unsigned long		bounce_pfn;
315 	unsigned long		seg_boundary_mask;
316 	unsigned long		virt_boundary_mask;
317 
318 	unsigned int		max_hw_sectors;
319 	unsigned int		max_dev_sectors;
320 	unsigned int		chunk_sectors;
321 	unsigned int		max_sectors;
322 	unsigned int		max_segment_size;
323 	unsigned int		physical_block_size;
324 	unsigned int		alignment_offset;
325 	unsigned int		io_min;
326 	unsigned int		io_opt;
327 	unsigned int		max_discard_sectors;
328 	unsigned int		max_hw_discard_sectors;
329 	unsigned int		max_write_same_sectors;
330 	unsigned int		max_write_zeroes_sectors;
331 	unsigned int		discard_granularity;
332 	unsigned int		discard_alignment;
333 
334 	unsigned short		logical_block_size;
335 	unsigned short		max_segments;
336 	unsigned short		max_integrity_segments;
337 
338 	unsigned char		misaligned;
339 	unsigned char		discard_misaligned;
340 	unsigned char		cluster;
341 	unsigned char		discard_zeroes_data;
342 	unsigned char		raid_partial_stripes_expensive;
343 	enum blk_zoned_model	zoned;
344 };
345 
346 #ifdef CONFIG_BLK_DEV_ZONED
347 
348 struct blk_zone_report_hdr {
349 	unsigned int	nr_zones;
350 	u8		padding[60];
351 };
352 
353 extern int blkdev_report_zones(struct block_device *bdev,
354 			       sector_t sector, struct blk_zone *zones,
355 			       unsigned int *nr_zones, gfp_t gfp_mask);
356 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
357 			      sector_t nr_sectors, gfp_t gfp_mask);
358 
359 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
360 				     unsigned int cmd, unsigned long arg);
361 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
362 				    unsigned int cmd, unsigned long arg);
363 
364 #else /* CONFIG_BLK_DEV_ZONED */
365 
366 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
367 					    fmode_t mode, unsigned int cmd,
368 					    unsigned long arg)
369 {
370 	return -ENOTTY;
371 }
372 
373 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
374 					   fmode_t mode, unsigned int cmd,
375 					   unsigned long arg)
376 {
377 	return -ENOTTY;
378 }
379 
380 #endif /* CONFIG_BLK_DEV_ZONED */
381 
382 struct request_queue {
383 	/*
384 	 * Together with queue_head for cacheline sharing
385 	 */
386 	struct list_head	queue_head;
387 	struct request		*last_merge;
388 	struct elevator_queue	*elevator;
389 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
390 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
391 
392 	struct rq_wb		*rq_wb;
393 
394 	/*
395 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
396 	 * is used, root blkg allocates from @q->root_rl and all other
397 	 * blkgs from their own blkg->rl.  Which one to use should be
398 	 * determined using bio_request_list().
399 	 */
400 	struct request_list	root_rl;
401 
402 	request_fn_proc		*request_fn;
403 	make_request_fn		*make_request_fn;
404 	prep_rq_fn		*prep_rq_fn;
405 	unprep_rq_fn		*unprep_rq_fn;
406 	softirq_done_fn		*softirq_done_fn;
407 	rq_timed_out_fn		*rq_timed_out_fn;
408 	dma_drain_needed_fn	*dma_drain_needed;
409 	lld_busy_fn		*lld_busy_fn;
410 
411 	struct blk_mq_ops	*mq_ops;
412 
413 	unsigned int		*mq_map;
414 
415 	/* sw queues */
416 	struct blk_mq_ctx __percpu	*queue_ctx;
417 	unsigned int		nr_queues;
418 
419 	unsigned int		queue_depth;
420 
421 	/* hw dispatch queues */
422 	struct blk_mq_hw_ctx	**queue_hw_ctx;
423 	unsigned int		nr_hw_queues;
424 
425 	/*
426 	 * Dispatch queue sorting
427 	 */
428 	sector_t		end_sector;
429 	struct request		*boundary_rq;
430 
431 	/*
432 	 * Delayed queue handling
433 	 */
434 	struct delayed_work	delay_work;
435 
436 	struct backing_dev_info	backing_dev_info;
437 
438 	/*
439 	 * The queue owner gets to use this for whatever they like.
440 	 * ll_rw_blk doesn't touch it.
441 	 */
442 	void			*queuedata;
443 
444 	/*
445 	 * various queue flags, see QUEUE_* below
446 	 */
447 	unsigned long		queue_flags;
448 
449 	/*
450 	 * ida allocated id for this queue.  Used to index queues from
451 	 * ioctx.
452 	 */
453 	int			id;
454 
455 	/*
456 	 * queue needs bounce pages for pages above this limit
457 	 */
458 	gfp_t			bounce_gfp;
459 
460 	/*
461 	 * protects queue structures from reentrancy. ->__queue_lock should
462 	 * _never_ be used directly, it is queue private. always use
463 	 * ->queue_lock.
464 	 */
465 	spinlock_t		__queue_lock;
466 	spinlock_t		*queue_lock;
467 
468 	/*
469 	 * queue kobject
470 	 */
471 	struct kobject kobj;
472 
473 	/*
474 	 * mq queue kobject
475 	 */
476 	struct kobject mq_kobj;
477 
478 #ifdef  CONFIG_BLK_DEV_INTEGRITY
479 	struct blk_integrity integrity;
480 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
481 
482 #ifdef CONFIG_PM
483 	struct device		*dev;
484 	int			rpm_status;
485 	unsigned int		nr_pending;
486 #endif
487 
488 	/*
489 	 * queue settings
490 	 */
491 	unsigned long		nr_requests;	/* Max # of requests */
492 	unsigned int		nr_congestion_on;
493 	unsigned int		nr_congestion_off;
494 	unsigned int		nr_batching;
495 
496 	unsigned int		dma_drain_size;
497 	void			*dma_drain_buffer;
498 	unsigned int		dma_pad_mask;
499 	unsigned int		dma_alignment;
500 
501 	struct blk_queue_tag	*queue_tags;
502 	struct list_head	tag_busy_list;
503 
504 	unsigned int		nr_sorted;
505 	unsigned int		in_flight[2];
506 
507 	struct blk_rq_stat	rq_stats[2];
508 
509 	/*
510 	 * Number of active block driver functions for which blk_drain_queue()
511 	 * must wait. Must be incremented around functions that unlock the
512 	 * queue_lock internally, e.g. scsi_request_fn().
513 	 */
514 	unsigned int		request_fn_active;
515 
516 	unsigned int		rq_timeout;
517 	int			poll_nsec;
518 	struct timer_list	timeout;
519 	struct work_struct	timeout_work;
520 	struct list_head	timeout_list;
521 
522 	struct list_head	icq_list;
523 #ifdef CONFIG_BLK_CGROUP
524 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
525 	struct blkcg_gq		*root_blkg;
526 	struct list_head	blkg_list;
527 #endif
528 
529 	struct queue_limits	limits;
530 
531 	/*
532 	 * sg stuff
533 	 */
534 	unsigned int		sg_timeout;
535 	unsigned int		sg_reserved_size;
536 	int			node;
537 #ifdef CONFIG_BLK_DEV_IO_TRACE
538 	struct blk_trace	*blk_trace;
539 #endif
540 	/*
541 	 * for flush operations
542 	 */
543 	struct blk_flush_queue	*fq;
544 
545 	struct list_head	requeue_list;
546 	spinlock_t		requeue_lock;
547 	struct delayed_work	requeue_work;
548 
549 	struct mutex		sysfs_lock;
550 
551 	int			bypass_depth;
552 	atomic_t		mq_freeze_depth;
553 
554 #if defined(CONFIG_BLK_DEV_BSG)
555 	bsg_job_fn		*bsg_job_fn;
556 	int			bsg_job_size;
557 	struct bsg_class_device bsg_dev;
558 #endif
559 
560 #ifdef CONFIG_BLK_DEV_THROTTLING
561 	/* Throttle data */
562 	struct throtl_data *td;
563 #endif
564 	struct rcu_head		rcu_head;
565 	wait_queue_head_t	mq_freeze_wq;
566 	struct percpu_ref	q_usage_counter;
567 	struct list_head	all_q_node;
568 
569 	struct blk_mq_tag_set	*tag_set;
570 	struct list_head	tag_set_list;
571 	struct bio_set		*bio_split;
572 
573 	bool			mq_sysfs_init_done;
574 };
575 
576 #define QUEUE_FLAG_QUEUED	1	/* uses generic tag queueing */
577 #define QUEUE_FLAG_STOPPED	2	/* queue is stopped */
578 #define	QUEUE_FLAG_SYNCFULL	3	/* read queue has been filled */
579 #define QUEUE_FLAG_ASYNCFULL	4	/* write queue has been filled */
580 #define QUEUE_FLAG_DYING	5	/* queue being torn down */
581 #define QUEUE_FLAG_BYPASS	6	/* act as dumb FIFO queue */
582 #define QUEUE_FLAG_BIDI		7	/* queue supports bidi requests */
583 #define QUEUE_FLAG_NOMERGES     8	/* disable merge attempts */
584 #define QUEUE_FLAG_SAME_COMP	9	/* complete on same CPU-group */
585 #define QUEUE_FLAG_FAIL_IO     10	/* fake timeout */
586 #define QUEUE_FLAG_STACKABLE   11	/* supports request stacking */
587 #define QUEUE_FLAG_NONROT      12	/* non-rotational device (SSD) */
588 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
589 #define QUEUE_FLAG_IO_STAT     13	/* do IO stats */
590 #define QUEUE_FLAG_DISCARD     14	/* supports DISCARD */
591 #define QUEUE_FLAG_NOXMERGES   15	/* No extended merges */
592 #define QUEUE_FLAG_ADD_RANDOM  16	/* Contributes to random pool */
593 #define QUEUE_FLAG_SECERASE    17	/* supports secure erase */
594 #define QUEUE_FLAG_SAME_FORCE  18	/* force complete on same CPU */
595 #define QUEUE_FLAG_DEAD        19	/* queue tear-down finished */
596 #define QUEUE_FLAG_INIT_DONE   20	/* queue is initialized */
597 #define QUEUE_FLAG_NO_SG_MERGE 21	/* don't attempt to merge SG segments*/
598 #define QUEUE_FLAG_POLL	       22	/* IO polling enabled if set */
599 #define QUEUE_FLAG_WC	       23	/* Write back caching */
600 #define QUEUE_FLAG_FUA	       24	/* device supports FUA writes */
601 #define QUEUE_FLAG_FLUSH_NQ    25	/* flush not queueuable */
602 #define QUEUE_FLAG_DAX         26	/* device supports DAX */
603 #define QUEUE_FLAG_STATS       27	/* track rq completion times */
604 
605 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
606 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
607 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
608 				 (1 << QUEUE_FLAG_ADD_RANDOM))
609 
610 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
611 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
612 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
613 				 (1 << QUEUE_FLAG_POLL))
614 
615 static inline void queue_lockdep_assert_held(struct request_queue *q)
616 {
617 	if (q->queue_lock)
618 		lockdep_assert_held(q->queue_lock);
619 }
620 
621 static inline void queue_flag_set_unlocked(unsigned int flag,
622 					   struct request_queue *q)
623 {
624 	__set_bit(flag, &q->queue_flags);
625 }
626 
627 static inline int queue_flag_test_and_clear(unsigned int flag,
628 					    struct request_queue *q)
629 {
630 	queue_lockdep_assert_held(q);
631 
632 	if (test_bit(flag, &q->queue_flags)) {
633 		__clear_bit(flag, &q->queue_flags);
634 		return 1;
635 	}
636 
637 	return 0;
638 }
639 
640 static inline int queue_flag_test_and_set(unsigned int flag,
641 					  struct request_queue *q)
642 {
643 	queue_lockdep_assert_held(q);
644 
645 	if (!test_bit(flag, &q->queue_flags)) {
646 		__set_bit(flag, &q->queue_flags);
647 		return 0;
648 	}
649 
650 	return 1;
651 }
652 
653 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
654 {
655 	queue_lockdep_assert_held(q);
656 	__set_bit(flag, &q->queue_flags);
657 }
658 
659 static inline void queue_flag_clear_unlocked(unsigned int flag,
660 					     struct request_queue *q)
661 {
662 	__clear_bit(flag, &q->queue_flags);
663 }
664 
665 static inline int queue_in_flight(struct request_queue *q)
666 {
667 	return q->in_flight[0] + q->in_flight[1];
668 }
669 
670 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
671 {
672 	queue_lockdep_assert_held(q);
673 	__clear_bit(flag, &q->queue_flags);
674 }
675 
676 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
677 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
678 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
679 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
680 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
681 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
682 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
683 #define blk_queue_noxmerges(q)	\
684 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
685 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
686 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
687 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
688 #define blk_queue_stackable(q)	\
689 	test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
690 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
691 #define blk_queue_secure_erase(q) \
692 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
693 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
694 
695 #define blk_noretry_request(rq) \
696 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
697 			     REQ_FAILFAST_DRIVER))
698 
699 #define blk_account_rq(rq) \
700 	(((rq)->rq_flags & RQF_STARTED) && \
701 	 ((rq)->cmd_type == REQ_TYPE_FS))
702 
703 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
704 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
705 /* rq->queuelist of dequeued request must be list_empty() */
706 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
707 
708 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
709 
710 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
711 
712 /*
713  * Driver can handle struct request, if it either has an old style
714  * request_fn defined, or is blk-mq based.
715  */
716 static inline bool queue_is_rq_based(struct request_queue *q)
717 {
718 	return q->request_fn || q->mq_ops;
719 }
720 
721 static inline unsigned int blk_queue_cluster(struct request_queue *q)
722 {
723 	return q->limits.cluster;
724 }
725 
726 static inline enum blk_zoned_model
727 blk_queue_zoned_model(struct request_queue *q)
728 {
729 	return q->limits.zoned;
730 }
731 
732 static inline bool blk_queue_is_zoned(struct request_queue *q)
733 {
734 	switch (blk_queue_zoned_model(q)) {
735 	case BLK_ZONED_HA:
736 	case BLK_ZONED_HM:
737 		return true;
738 	default:
739 		return false;
740 	}
741 }
742 
743 static inline unsigned int blk_queue_zone_size(struct request_queue *q)
744 {
745 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
746 }
747 
748 static inline bool rq_is_sync(struct request *rq)
749 {
750 	return op_is_sync(rq->cmd_flags);
751 }
752 
753 static inline bool blk_rl_full(struct request_list *rl, bool sync)
754 {
755 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
756 
757 	return rl->flags & flag;
758 }
759 
760 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
761 {
762 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
763 
764 	rl->flags |= flag;
765 }
766 
767 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
768 {
769 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
770 
771 	rl->flags &= ~flag;
772 }
773 
774 static inline bool rq_mergeable(struct request *rq)
775 {
776 	if (rq->cmd_type != REQ_TYPE_FS)
777 		return false;
778 
779 	if (req_op(rq) == REQ_OP_FLUSH)
780 		return false;
781 
782 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
783 		return false;
784 
785 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
786 		return false;
787 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
788 		return false;
789 
790 	return true;
791 }
792 
793 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
794 {
795 	if (bio_data(a) == bio_data(b))
796 		return true;
797 
798 	return false;
799 }
800 
801 static inline unsigned int blk_queue_depth(struct request_queue *q)
802 {
803 	if (q->queue_depth)
804 		return q->queue_depth;
805 
806 	return q->nr_requests;
807 }
808 
809 /*
810  * q->prep_rq_fn return values
811  */
812 enum {
813 	BLKPREP_OK,		/* serve it */
814 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
815 	BLKPREP_DEFER,		/* leave on queue */
816 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
817 };
818 
819 extern unsigned long blk_max_low_pfn, blk_max_pfn;
820 
821 /*
822  * standard bounce addresses:
823  *
824  * BLK_BOUNCE_HIGH	: bounce all highmem pages
825  * BLK_BOUNCE_ANY	: don't bounce anything
826  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
827  */
828 
829 #if BITS_PER_LONG == 32
830 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
831 #else
832 #define BLK_BOUNCE_HIGH		-1ULL
833 #endif
834 #define BLK_BOUNCE_ANY		(-1ULL)
835 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
836 
837 /*
838  * default timeout for SG_IO if none specified
839  */
840 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
841 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
842 
843 #ifdef CONFIG_BOUNCE
844 extern int init_emergency_isa_pool(void);
845 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
846 #else
847 static inline int init_emergency_isa_pool(void)
848 {
849 	return 0;
850 }
851 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
852 {
853 }
854 #endif /* CONFIG_MMU */
855 
856 struct rq_map_data {
857 	struct page **pages;
858 	int page_order;
859 	int nr_entries;
860 	unsigned long offset;
861 	int null_mapped;
862 	int from_user;
863 };
864 
865 struct req_iterator {
866 	struct bvec_iter iter;
867 	struct bio *bio;
868 };
869 
870 /* This should not be used directly - use rq_for_each_segment */
871 #define for_each_bio(_bio)		\
872 	for (; _bio; _bio = _bio->bi_next)
873 #define __rq_for_each_bio(_bio, rq)	\
874 	if ((rq->bio))			\
875 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
876 
877 #define rq_for_each_segment(bvl, _rq, _iter)			\
878 	__rq_for_each_bio(_iter.bio, _rq)			\
879 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
880 
881 #define rq_iter_last(bvec, _iter)				\
882 		(_iter.bio->bi_next == NULL &&			\
883 		 bio_iter_last(bvec, _iter.iter))
884 
885 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
886 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
887 #endif
888 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
889 extern void rq_flush_dcache_pages(struct request *rq);
890 #else
891 static inline void rq_flush_dcache_pages(struct request *rq)
892 {
893 }
894 #endif
895 
896 #ifdef CONFIG_PRINTK
897 #define vfs_msg(sb, level, fmt, ...)				\
898 	__vfs_msg(sb, level, fmt, ##__VA_ARGS__)
899 #else
900 #define vfs_msg(sb, level, fmt, ...)				\
901 do {								\
902 	no_printk(fmt, ##__VA_ARGS__);				\
903 	__vfs_msg(sb, "", " ");					\
904 } while (0)
905 #endif
906 
907 extern int blk_register_queue(struct gendisk *disk);
908 extern void blk_unregister_queue(struct gendisk *disk);
909 extern blk_qc_t generic_make_request(struct bio *bio);
910 extern void blk_rq_init(struct request_queue *q, struct request *rq);
911 extern void blk_put_request(struct request *);
912 extern void __blk_put_request(struct request_queue *, struct request *);
913 extern struct request *blk_get_request(struct request_queue *, int, gfp_t);
914 extern void blk_rq_set_block_pc(struct request *);
915 extern void blk_requeue_request(struct request_queue *, struct request *);
916 extern int blk_lld_busy(struct request_queue *q);
917 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
918 			     struct bio_set *bs, gfp_t gfp_mask,
919 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
920 			     void *data);
921 extern void blk_rq_unprep_clone(struct request *rq);
922 extern int blk_insert_cloned_request(struct request_queue *q,
923 				     struct request *rq);
924 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
925 extern void blk_delay_queue(struct request_queue *, unsigned long);
926 extern void blk_queue_split(struct request_queue *, struct bio **,
927 			    struct bio_set *);
928 extern void blk_recount_segments(struct request_queue *, struct bio *);
929 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
930 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
931 			      unsigned int, void __user *);
932 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
933 			  unsigned int, void __user *);
934 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
935 			 struct scsi_ioctl_command __user *);
936 
937 extern int blk_queue_enter(struct request_queue *q, bool nowait);
938 extern void blk_queue_exit(struct request_queue *q);
939 extern void blk_start_queue(struct request_queue *q);
940 extern void blk_start_queue_async(struct request_queue *q);
941 extern void blk_stop_queue(struct request_queue *q);
942 extern void blk_sync_queue(struct request_queue *q);
943 extern void __blk_stop_queue(struct request_queue *q);
944 extern void __blk_run_queue(struct request_queue *q);
945 extern void __blk_run_queue_uncond(struct request_queue *q);
946 extern void blk_run_queue(struct request_queue *);
947 extern void blk_run_queue_async(struct request_queue *q);
948 extern void blk_mq_quiesce_queue(struct request_queue *q);
949 extern int blk_rq_map_user(struct request_queue *, struct request *,
950 			   struct rq_map_data *, void __user *, unsigned long,
951 			   gfp_t);
952 extern int blk_rq_unmap_user(struct bio *);
953 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
954 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
955 			       struct rq_map_data *, const struct iov_iter *,
956 			       gfp_t);
957 extern int blk_execute_rq(struct request_queue *, struct gendisk *,
958 			  struct request *, int);
959 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
960 				  struct request *, int, rq_end_io_fn *);
961 
962 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
963 
964 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
965 {
966 	return bdev->bd_disk->queue;	/* this is never NULL */
967 }
968 
969 /*
970  * blk_rq_pos()			: the current sector
971  * blk_rq_bytes()		: bytes left in the entire request
972  * blk_rq_cur_bytes()		: bytes left in the current segment
973  * blk_rq_err_bytes()		: bytes left till the next error boundary
974  * blk_rq_sectors()		: sectors left in the entire request
975  * blk_rq_cur_sectors()		: sectors left in the current segment
976  */
977 static inline sector_t blk_rq_pos(const struct request *rq)
978 {
979 	return rq->__sector;
980 }
981 
982 static inline unsigned int blk_rq_bytes(const struct request *rq)
983 {
984 	return rq->__data_len;
985 }
986 
987 static inline int blk_rq_cur_bytes(const struct request *rq)
988 {
989 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
990 }
991 
992 extern unsigned int blk_rq_err_bytes(const struct request *rq);
993 
994 static inline unsigned int blk_rq_sectors(const struct request *rq)
995 {
996 	return blk_rq_bytes(rq) >> 9;
997 }
998 
999 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1000 {
1001 	return blk_rq_cur_bytes(rq) >> 9;
1002 }
1003 
1004 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1005 						     int op)
1006 {
1007 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1008 		return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1009 
1010 	if (unlikely(op == REQ_OP_WRITE_SAME))
1011 		return q->limits.max_write_same_sectors;
1012 
1013 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1014 		return q->limits.max_write_zeroes_sectors;
1015 
1016 	return q->limits.max_sectors;
1017 }
1018 
1019 /*
1020  * Return maximum size of a request at given offset. Only valid for
1021  * file system requests.
1022  */
1023 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1024 					       sector_t offset)
1025 {
1026 	if (!q->limits.chunk_sectors)
1027 		return q->limits.max_sectors;
1028 
1029 	return q->limits.chunk_sectors -
1030 			(offset & (q->limits.chunk_sectors - 1));
1031 }
1032 
1033 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1034 						  sector_t offset)
1035 {
1036 	struct request_queue *q = rq->q;
1037 
1038 	if (unlikely(rq->cmd_type != REQ_TYPE_FS))
1039 		return q->limits.max_hw_sectors;
1040 
1041 	if (!q->limits.chunk_sectors ||
1042 	    req_op(rq) == REQ_OP_DISCARD ||
1043 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1044 		return blk_queue_get_max_sectors(q, req_op(rq));
1045 
1046 	return min(blk_max_size_offset(q, offset),
1047 			blk_queue_get_max_sectors(q, req_op(rq)));
1048 }
1049 
1050 static inline unsigned int blk_rq_count_bios(struct request *rq)
1051 {
1052 	unsigned int nr_bios = 0;
1053 	struct bio *bio;
1054 
1055 	__rq_for_each_bio(bio, rq)
1056 		nr_bios++;
1057 
1058 	return nr_bios;
1059 }
1060 
1061 /*
1062  * blk_rq_set_prio - associate a request with prio from ioc
1063  * @rq: request of interest
1064  * @ioc: target iocontext
1065  *
1066  * Assocate request prio with ioc prio so request based drivers
1067  * can leverage priority information.
1068  */
1069 static inline void blk_rq_set_prio(struct request *rq, struct io_context *ioc)
1070 {
1071 	if (ioc)
1072 		rq->ioprio = ioc->ioprio;
1073 }
1074 
1075 /*
1076  * Request issue related functions.
1077  */
1078 extern struct request *blk_peek_request(struct request_queue *q);
1079 extern void blk_start_request(struct request *rq);
1080 extern struct request *blk_fetch_request(struct request_queue *q);
1081 
1082 /*
1083  * Request completion related functions.
1084  *
1085  * blk_update_request() completes given number of bytes and updates
1086  * the request without completing it.
1087  *
1088  * blk_end_request() and friends.  __blk_end_request() must be called
1089  * with the request queue spinlock acquired.
1090  *
1091  * Several drivers define their own end_request and call
1092  * blk_end_request() for parts of the original function.
1093  * This prevents code duplication in drivers.
1094  */
1095 extern bool blk_update_request(struct request *rq, int error,
1096 			       unsigned int nr_bytes);
1097 extern void blk_finish_request(struct request *rq, int error);
1098 extern bool blk_end_request(struct request *rq, int error,
1099 			    unsigned int nr_bytes);
1100 extern void blk_end_request_all(struct request *rq, int error);
1101 extern bool blk_end_request_cur(struct request *rq, int error);
1102 extern bool blk_end_request_err(struct request *rq, int error);
1103 extern bool __blk_end_request(struct request *rq, int error,
1104 			      unsigned int nr_bytes);
1105 extern void __blk_end_request_all(struct request *rq, int error);
1106 extern bool __blk_end_request_cur(struct request *rq, int error);
1107 extern bool __blk_end_request_err(struct request *rq, int error);
1108 
1109 extern void blk_complete_request(struct request *);
1110 extern void __blk_complete_request(struct request *);
1111 extern void blk_abort_request(struct request *);
1112 extern void blk_unprep_request(struct request *);
1113 
1114 /*
1115  * Access functions for manipulating queue properties
1116  */
1117 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1118 					spinlock_t *lock, int node_id);
1119 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1120 extern struct request_queue *blk_init_allocated_queue(struct request_queue *,
1121 						      request_fn_proc *, spinlock_t *);
1122 extern void blk_cleanup_queue(struct request_queue *);
1123 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1124 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1125 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1126 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1127 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1128 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1129 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1130 		unsigned int max_discard_sectors);
1131 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1132 		unsigned int max_write_same_sectors);
1133 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1134 		unsigned int max_write_same_sectors);
1135 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1136 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1137 extern void blk_queue_alignment_offset(struct request_queue *q,
1138 				       unsigned int alignment);
1139 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1140 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1141 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1142 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1143 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1144 extern void blk_set_default_limits(struct queue_limits *lim);
1145 extern void blk_set_stacking_limits(struct queue_limits *lim);
1146 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1147 			    sector_t offset);
1148 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1149 			    sector_t offset);
1150 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1151 			      sector_t offset);
1152 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1153 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1154 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1155 extern int blk_queue_dma_drain(struct request_queue *q,
1156 			       dma_drain_needed_fn *dma_drain_needed,
1157 			       void *buf, unsigned int size);
1158 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1159 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1160 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1161 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1162 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1163 extern void blk_queue_dma_alignment(struct request_queue *, int);
1164 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1165 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1166 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1167 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1168 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1169 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1170 extern struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev);
1171 
1172 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1173 {
1174 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1175 		return 1;
1176 	return rq->nr_phys_segments;
1177 }
1178 
1179 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1180 extern void blk_dump_rq_flags(struct request *, char *);
1181 extern long nr_blockdev_pages(void);
1182 
1183 bool __must_check blk_get_queue(struct request_queue *);
1184 struct request_queue *blk_alloc_queue(gfp_t);
1185 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1186 extern void blk_put_queue(struct request_queue *);
1187 extern void blk_set_queue_dying(struct request_queue *);
1188 
1189 /*
1190  * block layer runtime pm functions
1191  */
1192 #ifdef CONFIG_PM
1193 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1194 extern int blk_pre_runtime_suspend(struct request_queue *q);
1195 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1196 extern void blk_pre_runtime_resume(struct request_queue *q);
1197 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1198 extern void blk_set_runtime_active(struct request_queue *q);
1199 #else
1200 static inline void blk_pm_runtime_init(struct request_queue *q,
1201 	struct device *dev) {}
1202 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1203 {
1204 	return -ENOSYS;
1205 }
1206 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1207 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1208 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1209 static inline void blk_set_runtime_active(struct request_queue *q) {}
1210 #endif
1211 
1212 /*
1213  * blk_plug permits building a queue of related requests by holding the I/O
1214  * fragments for a short period. This allows merging of sequential requests
1215  * into single larger request. As the requests are moved from a per-task list to
1216  * the device's request_queue in a batch, this results in improved scalability
1217  * as the lock contention for request_queue lock is reduced.
1218  *
1219  * It is ok not to disable preemption when adding the request to the plug list
1220  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1221  * the plug list when the task sleeps by itself. For details, please see
1222  * schedule() where blk_schedule_flush_plug() is called.
1223  */
1224 struct blk_plug {
1225 	struct list_head list; /* requests */
1226 	struct list_head mq_list; /* blk-mq requests */
1227 	struct list_head cb_list; /* md requires an unplug callback */
1228 };
1229 #define BLK_MAX_REQUEST_COUNT 16
1230 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1231 
1232 struct blk_plug_cb;
1233 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1234 struct blk_plug_cb {
1235 	struct list_head list;
1236 	blk_plug_cb_fn callback;
1237 	void *data;
1238 };
1239 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1240 					     void *data, int size);
1241 extern void blk_start_plug(struct blk_plug *);
1242 extern void blk_finish_plug(struct blk_plug *);
1243 extern void blk_flush_plug_list(struct blk_plug *, bool);
1244 
1245 static inline void blk_flush_plug(struct task_struct *tsk)
1246 {
1247 	struct blk_plug *plug = tsk->plug;
1248 
1249 	if (plug)
1250 		blk_flush_plug_list(plug, false);
1251 }
1252 
1253 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1254 {
1255 	struct blk_plug *plug = tsk->plug;
1256 
1257 	if (plug)
1258 		blk_flush_plug_list(plug, true);
1259 }
1260 
1261 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1262 {
1263 	struct blk_plug *plug = tsk->plug;
1264 
1265 	return plug &&
1266 		(!list_empty(&plug->list) ||
1267 		 !list_empty(&plug->mq_list) ||
1268 		 !list_empty(&plug->cb_list));
1269 }
1270 
1271 /*
1272  * tag stuff
1273  */
1274 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1275 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1276 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1277 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1278 extern void blk_queue_free_tags(struct request_queue *);
1279 extern int blk_queue_resize_tags(struct request_queue *, int);
1280 extern void blk_queue_invalidate_tags(struct request_queue *);
1281 extern struct blk_queue_tag *blk_init_tags(int, int);
1282 extern void blk_free_tags(struct blk_queue_tag *);
1283 
1284 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1285 						int tag)
1286 {
1287 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1288 		return NULL;
1289 	return bqt->tag_index[tag];
1290 }
1291 
1292 
1293 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1294 #define BLKDEV_DISCARD_ZERO	(1 << 1)	/* must reliably zero data */
1295 
1296 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1297 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1298 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1299 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1300 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1301 		struct bio **biop);
1302 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1303 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1304 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1305 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1306 		bool discard);
1307 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1308 		sector_t nr_sects, gfp_t gfp_mask, bool discard);
1309 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1310 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1311 {
1312 	return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1313 				    nr_blocks << (sb->s_blocksize_bits - 9),
1314 				    gfp_mask, flags);
1315 }
1316 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1317 		sector_t nr_blocks, gfp_t gfp_mask)
1318 {
1319 	return blkdev_issue_zeroout(sb->s_bdev,
1320 				    block << (sb->s_blocksize_bits - 9),
1321 				    nr_blocks << (sb->s_blocksize_bits - 9),
1322 				    gfp_mask, true);
1323 }
1324 
1325 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1326 
1327 enum blk_default_limits {
1328 	BLK_MAX_SEGMENTS	= 128,
1329 	BLK_SAFE_MAX_SECTORS	= 255,
1330 	BLK_DEF_MAX_SECTORS	= 2560,
1331 	BLK_MAX_SEGMENT_SIZE	= 65536,
1332 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1333 };
1334 
1335 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1336 
1337 static inline unsigned long queue_bounce_pfn(struct request_queue *q)
1338 {
1339 	return q->limits.bounce_pfn;
1340 }
1341 
1342 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1343 {
1344 	return q->limits.seg_boundary_mask;
1345 }
1346 
1347 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1348 {
1349 	return q->limits.virt_boundary_mask;
1350 }
1351 
1352 static inline unsigned int queue_max_sectors(struct request_queue *q)
1353 {
1354 	return q->limits.max_sectors;
1355 }
1356 
1357 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1358 {
1359 	return q->limits.max_hw_sectors;
1360 }
1361 
1362 static inline unsigned short queue_max_segments(struct request_queue *q)
1363 {
1364 	return q->limits.max_segments;
1365 }
1366 
1367 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1368 {
1369 	return q->limits.max_segment_size;
1370 }
1371 
1372 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1373 {
1374 	int retval = 512;
1375 
1376 	if (q && q->limits.logical_block_size)
1377 		retval = q->limits.logical_block_size;
1378 
1379 	return retval;
1380 }
1381 
1382 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1383 {
1384 	return queue_logical_block_size(bdev_get_queue(bdev));
1385 }
1386 
1387 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1388 {
1389 	return q->limits.physical_block_size;
1390 }
1391 
1392 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1393 {
1394 	return queue_physical_block_size(bdev_get_queue(bdev));
1395 }
1396 
1397 static inline unsigned int queue_io_min(struct request_queue *q)
1398 {
1399 	return q->limits.io_min;
1400 }
1401 
1402 static inline int bdev_io_min(struct block_device *bdev)
1403 {
1404 	return queue_io_min(bdev_get_queue(bdev));
1405 }
1406 
1407 static inline unsigned int queue_io_opt(struct request_queue *q)
1408 {
1409 	return q->limits.io_opt;
1410 }
1411 
1412 static inline int bdev_io_opt(struct block_device *bdev)
1413 {
1414 	return queue_io_opt(bdev_get_queue(bdev));
1415 }
1416 
1417 static inline int queue_alignment_offset(struct request_queue *q)
1418 {
1419 	if (q->limits.misaligned)
1420 		return -1;
1421 
1422 	return q->limits.alignment_offset;
1423 }
1424 
1425 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1426 {
1427 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1428 	unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1429 
1430 	return (granularity + lim->alignment_offset - alignment) % granularity;
1431 }
1432 
1433 static inline int bdev_alignment_offset(struct block_device *bdev)
1434 {
1435 	struct request_queue *q = bdev_get_queue(bdev);
1436 
1437 	if (q->limits.misaligned)
1438 		return -1;
1439 
1440 	if (bdev != bdev->bd_contains)
1441 		return bdev->bd_part->alignment_offset;
1442 
1443 	return q->limits.alignment_offset;
1444 }
1445 
1446 static inline int queue_discard_alignment(struct request_queue *q)
1447 {
1448 	if (q->limits.discard_misaligned)
1449 		return -1;
1450 
1451 	return q->limits.discard_alignment;
1452 }
1453 
1454 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1455 {
1456 	unsigned int alignment, granularity, offset;
1457 
1458 	if (!lim->max_discard_sectors)
1459 		return 0;
1460 
1461 	/* Why are these in bytes, not sectors? */
1462 	alignment = lim->discard_alignment >> 9;
1463 	granularity = lim->discard_granularity >> 9;
1464 	if (!granularity)
1465 		return 0;
1466 
1467 	/* Offset of the partition start in 'granularity' sectors */
1468 	offset = sector_div(sector, granularity);
1469 
1470 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1471 	offset = (granularity + alignment - offset) % granularity;
1472 
1473 	/* Turn it back into bytes, gaah */
1474 	return offset << 9;
1475 }
1476 
1477 static inline int bdev_discard_alignment(struct block_device *bdev)
1478 {
1479 	struct request_queue *q = bdev_get_queue(bdev);
1480 
1481 	if (bdev != bdev->bd_contains)
1482 		return bdev->bd_part->discard_alignment;
1483 
1484 	return q->limits.discard_alignment;
1485 }
1486 
1487 static inline unsigned int queue_discard_zeroes_data(struct request_queue *q)
1488 {
1489 	if (q->limits.max_discard_sectors && q->limits.discard_zeroes_data == 1)
1490 		return 1;
1491 
1492 	return 0;
1493 }
1494 
1495 static inline unsigned int bdev_discard_zeroes_data(struct block_device *bdev)
1496 {
1497 	return queue_discard_zeroes_data(bdev_get_queue(bdev));
1498 }
1499 
1500 static inline unsigned int bdev_write_same(struct block_device *bdev)
1501 {
1502 	struct request_queue *q = bdev_get_queue(bdev);
1503 
1504 	if (q)
1505 		return q->limits.max_write_same_sectors;
1506 
1507 	return 0;
1508 }
1509 
1510 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1511 {
1512 	struct request_queue *q = bdev_get_queue(bdev);
1513 
1514 	if (q)
1515 		return q->limits.max_write_zeroes_sectors;
1516 
1517 	return 0;
1518 }
1519 
1520 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1521 {
1522 	struct request_queue *q = bdev_get_queue(bdev);
1523 
1524 	if (q)
1525 		return blk_queue_zoned_model(q);
1526 
1527 	return BLK_ZONED_NONE;
1528 }
1529 
1530 static inline bool bdev_is_zoned(struct block_device *bdev)
1531 {
1532 	struct request_queue *q = bdev_get_queue(bdev);
1533 
1534 	if (q)
1535 		return blk_queue_is_zoned(q);
1536 
1537 	return false;
1538 }
1539 
1540 static inline unsigned int bdev_zone_size(struct block_device *bdev)
1541 {
1542 	struct request_queue *q = bdev_get_queue(bdev);
1543 
1544 	if (q)
1545 		return blk_queue_zone_size(q);
1546 
1547 	return 0;
1548 }
1549 
1550 static inline int queue_dma_alignment(struct request_queue *q)
1551 {
1552 	return q ? q->dma_alignment : 511;
1553 }
1554 
1555 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1556 				 unsigned int len)
1557 {
1558 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1559 	return !(addr & alignment) && !(len & alignment);
1560 }
1561 
1562 /* assumes size > 256 */
1563 static inline unsigned int blksize_bits(unsigned int size)
1564 {
1565 	unsigned int bits = 8;
1566 	do {
1567 		bits++;
1568 		size >>= 1;
1569 	} while (size > 256);
1570 	return bits;
1571 }
1572 
1573 static inline unsigned int block_size(struct block_device *bdev)
1574 {
1575 	return bdev->bd_block_size;
1576 }
1577 
1578 static inline bool queue_flush_queueable(struct request_queue *q)
1579 {
1580 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1581 }
1582 
1583 typedef struct {struct page *v;} Sector;
1584 
1585 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1586 
1587 static inline void put_dev_sector(Sector p)
1588 {
1589 	put_page(p.v);
1590 }
1591 
1592 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1593 				struct bio_vec *bprv, unsigned int offset)
1594 {
1595 	return offset ||
1596 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1597 }
1598 
1599 /*
1600  * Check if adding a bio_vec after bprv with offset would create a gap in
1601  * the SG list. Most drivers don't care about this, but some do.
1602  */
1603 static inline bool bvec_gap_to_prev(struct request_queue *q,
1604 				struct bio_vec *bprv, unsigned int offset)
1605 {
1606 	if (!queue_virt_boundary(q))
1607 		return false;
1608 	return __bvec_gap_to_prev(q, bprv, offset);
1609 }
1610 
1611 static inline bool bio_will_gap(struct request_queue *q, struct bio *prev,
1612 			 struct bio *next)
1613 {
1614 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1615 		struct bio_vec pb, nb;
1616 
1617 		bio_get_last_bvec(prev, &pb);
1618 		bio_get_first_bvec(next, &nb);
1619 
1620 		return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1621 	}
1622 
1623 	return false;
1624 }
1625 
1626 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1627 {
1628 	return bio_will_gap(req->q, req->biotail, bio);
1629 }
1630 
1631 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1632 {
1633 	return bio_will_gap(req->q, bio, req->bio);
1634 }
1635 
1636 int kblockd_schedule_work(struct work_struct *work);
1637 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1638 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1639 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1640 
1641 #ifdef CONFIG_BLK_CGROUP
1642 /*
1643  * This should not be using sched_clock(). A real patch is in progress
1644  * to fix this up, until that is in place we need to disable preemption
1645  * around sched_clock() in this function and set_io_start_time_ns().
1646  */
1647 static inline void set_start_time_ns(struct request *req)
1648 {
1649 	preempt_disable();
1650 	req->start_time_ns = sched_clock();
1651 	preempt_enable();
1652 }
1653 
1654 static inline void set_io_start_time_ns(struct request *req)
1655 {
1656 	preempt_disable();
1657 	req->io_start_time_ns = sched_clock();
1658 	preempt_enable();
1659 }
1660 
1661 static inline uint64_t rq_start_time_ns(struct request *req)
1662 {
1663         return req->start_time_ns;
1664 }
1665 
1666 static inline uint64_t rq_io_start_time_ns(struct request *req)
1667 {
1668         return req->io_start_time_ns;
1669 }
1670 #else
1671 static inline void set_start_time_ns(struct request *req) {}
1672 static inline void set_io_start_time_ns(struct request *req) {}
1673 static inline uint64_t rq_start_time_ns(struct request *req)
1674 {
1675 	return 0;
1676 }
1677 static inline uint64_t rq_io_start_time_ns(struct request *req)
1678 {
1679 	return 0;
1680 }
1681 #endif
1682 
1683 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1684 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1685 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1686 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1687 
1688 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1689 
1690 enum blk_integrity_flags {
1691 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1692 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1693 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1694 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1695 };
1696 
1697 struct blk_integrity_iter {
1698 	void			*prot_buf;
1699 	void			*data_buf;
1700 	sector_t		seed;
1701 	unsigned int		data_size;
1702 	unsigned short		interval;
1703 	const char		*disk_name;
1704 };
1705 
1706 typedef int (integrity_processing_fn) (struct blk_integrity_iter *);
1707 
1708 struct blk_integrity_profile {
1709 	integrity_processing_fn		*generate_fn;
1710 	integrity_processing_fn		*verify_fn;
1711 	const char			*name;
1712 };
1713 
1714 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1715 extern void blk_integrity_unregister(struct gendisk *);
1716 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1717 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1718 				   struct scatterlist *);
1719 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1720 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1721 				   struct request *);
1722 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1723 				    struct bio *);
1724 
1725 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1726 {
1727 	struct blk_integrity *bi = &disk->queue->integrity;
1728 
1729 	if (!bi->profile)
1730 		return NULL;
1731 
1732 	return bi;
1733 }
1734 
1735 static inline
1736 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1737 {
1738 	return blk_get_integrity(bdev->bd_disk);
1739 }
1740 
1741 static inline bool blk_integrity_rq(struct request *rq)
1742 {
1743 	return rq->cmd_flags & REQ_INTEGRITY;
1744 }
1745 
1746 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1747 						    unsigned int segs)
1748 {
1749 	q->limits.max_integrity_segments = segs;
1750 }
1751 
1752 static inline unsigned short
1753 queue_max_integrity_segments(struct request_queue *q)
1754 {
1755 	return q->limits.max_integrity_segments;
1756 }
1757 
1758 static inline bool integrity_req_gap_back_merge(struct request *req,
1759 						struct bio *next)
1760 {
1761 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1762 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1763 
1764 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1765 				bip_next->bip_vec[0].bv_offset);
1766 }
1767 
1768 static inline bool integrity_req_gap_front_merge(struct request *req,
1769 						 struct bio *bio)
1770 {
1771 	struct bio_integrity_payload *bip = bio_integrity(bio);
1772 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1773 
1774 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1775 				bip_next->bip_vec[0].bv_offset);
1776 }
1777 
1778 #else /* CONFIG_BLK_DEV_INTEGRITY */
1779 
1780 struct bio;
1781 struct block_device;
1782 struct gendisk;
1783 struct blk_integrity;
1784 
1785 static inline int blk_integrity_rq(struct request *rq)
1786 {
1787 	return 0;
1788 }
1789 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1790 					    struct bio *b)
1791 {
1792 	return 0;
1793 }
1794 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1795 					  struct bio *b,
1796 					  struct scatterlist *s)
1797 {
1798 	return 0;
1799 }
1800 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1801 {
1802 	return NULL;
1803 }
1804 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1805 {
1806 	return NULL;
1807 }
1808 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1809 {
1810 	return 0;
1811 }
1812 static inline void blk_integrity_register(struct gendisk *d,
1813 					 struct blk_integrity *b)
1814 {
1815 }
1816 static inline void blk_integrity_unregister(struct gendisk *d)
1817 {
1818 }
1819 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1820 						    unsigned int segs)
1821 {
1822 }
1823 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1824 {
1825 	return 0;
1826 }
1827 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1828 					  struct request *r1,
1829 					  struct request *r2)
1830 {
1831 	return true;
1832 }
1833 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1834 					   struct request *r,
1835 					   struct bio *b)
1836 {
1837 	return true;
1838 }
1839 
1840 static inline bool integrity_req_gap_back_merge(struct request *req,
1841 						struct bio *next)
1842 {
1843 	return false;
1844 }
1845 static inline bool integrity_req_gap_front_merge(struct request *req,
1846 						 struct bio *bio)
1847 {
1848 	return false;
1849 }
1850 
1851 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1852 
1853 /**
1854  * struct blk_dax_ctl - control and output parameters for ->direct_access
1855  * @sector: (input) offset relative to a block_device
1856  * @addr: (output) kernel virtual address for @sector populated by driver
1857  * @pfn: (output) page frame number for @addr populated by driver
1858  * @size: (input) number of bytes requested
1859  */
1860 struct blk_dax_ctl {
1861 	sector_t sector;
1862 	void *addr;
1863 	long size;
1864 	pfn_t pfn;
1865 };
1866 
1867 struct block_device_operations {
1868 	int (*open) (struct block_device *, fmode_t);
1869 	void (*release) (struct gendisk *, fmode_t);
1870 	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1871 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1872 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1873 	long (*direct_access)(struct block_device *, sector_t, void **, pfn_t *,
1874 			long);
1875 	unsigned int (*check_events) (struct gendisk *disk,
1876 				      unsigned int clearing);
1877 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1878 	int (*media_changed) (struct gendisk *);
1879 	void (*unlock_native_capacity) (struct gendisk *);
1880 	int (*revalidate_disk) (struct gendisk *);
1881 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1882 	/* this callback is with swap_lock and sometimes page table lock held */
1883 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1884 	struct module *owner;
1885 	const struct pr_ops *pr_ops;
1886 };
1887 
1888 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1889 				 unsigned long);
1890 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1891 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1892 						struct writeback_control *);
1893 extern long bdev_direct_access(struct block_device *, struct blk_dax_ctl *);
1894 extern int bdev_dax_supported(struct super_block *, int);
1895 extern bool bdev_dax_capable(struct block_device *);
1896 #else /* CONFIG_BLOCK */
1897 
1898 struct block_device;
1899 
1900 /*
1901  * stubs for when the block layer is configured out
1902  */
1903 #define buffer_heads_over_limit 0
1904 
1905 static inline long nr_blockdev_pages(void)
1906 {
1907 	return 0;
1908 }
1909 
1910 struct blk_plug {
1911 };
1912 
1913 static inline void blk_start_plug(struct blk_plug *plug)
1914 {
1915 }
1916 
1917 static inline void blk_finish_plug(struct blk_plug *plug)
1918 {
1919 }
1920 
1921 static inline void blk_flush_plug(struct task_struct *task)
1922 {
1923 }
1924 
1925 static inline void blk_schedule_flush_plug(struct task_struct *task)
1926 {
1927 }
1928 
1929 
1930 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1931 {
1932 	return false;
1933 }
1934 
1935 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1936 				     sector_t *error_sector)
1937 {
1938 	return 0;
1939 }
1940 
1941 #endif /* CONFIG_BLOCK */
1942 
1943 #endif
1944