xref: /linux-6.15/include/linux/blkdev.h (revision eb9928be)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83    "quiesce" state must be ignored. */
84 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error.  Ignored by the block layer */
88 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM			((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS		((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104    bio chain. */
105 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
112 
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116 
117 /*
118  * Request state for blk-mq.
119  */
120 enum mq_rq_state {
121 	MQ_RQ_IDLE		= 0,
122 	MQ_RQ_IN_FLIGHT		= 1,
123 	MQ_RQ_COMPLETE		= 2,
124 };
125 
126 /*
127  * Try to put the fields that are referenced together in the same cacheline.
128  *
129  * If you modify this structure, make sure to update blk_rq_init() and
130  * especially blk_mq_rq_ctx_init() to take care of the added fields.
131  */
132 struct request {
133 	struct request_queue *q;
134 	struct blk_mq_ctx *mq_ctx;
135 	struct blk_mq_hw_ctx *mq_hctx;
136 
137 	unsigned int cmd_flags;		/* op and common flags */
138 	req_flags_t rq_flags;
139 
140 	int tag;
141 	int internal_tag;
142 
143 	/* the following two fields are internal, NEVER access directly */
144 	unsigned int __data_len;	/* total data len */
145 	sector_t __sector;		/* sector cursor */
146 
147 	struct bio *bio;
148 	struct bio *biotail;
149 
150 	struct list_head queuelist;
151 
152 	/*
153 	 * The hash is used inside the scheduler, and killed once the
154 	 * request reaches the dispatch list. The ipi_list is only used
155 	 * to queue the request for softirq completion, which is long
156 	 * after the request has been unhashed (and even removed from
157 	 * the dispatch list).
158 	 */
159 	union {
160 		struct hlist_node hash;	/* merge hash */
161 		struct list_head ipi_list;
162 	};
163 
164 	/*
165 	 * The rb_node is only used inside the io scheduler, requests
166 	 * are pruned when moved to the dispatch queue. So let the
167 	 * completion_data share space with the rb_node.
168 	 */
169 	union {
170 		struct rb_node rb_node;	/* sort/lookup */
171 		struct bio_vec special_vec;
172 		void *completion_data;
173 		int error_count; /* for legacy drivers, don't use */
174 	};
175 
176 	/*
177 	 * Three pointers are available for the IO schedulers, if they need
178 	 * more they have to dynamically allocate it.  Flush requests are
179 	 * never put on the IO scheduler. So let the flush fields share
180 	 * space with the elevator data.
181 	 */
182 	union {
183 		struct {
184 			struct io_cq		*icq;
185 			void			*priv[2];
186 		} elv;
187 
188 		struct {
189 			unsigned int		seq;
190 			struct list_head	list;
191 			rq_end_io_fn		*saved_end_io;
192 		} flush;
193 	};
194 
195 	struct gendisk *rq_disk;
196 	struct hd_struct *part;
197 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
198 	/* Time that the first bio started allocating this request. */
199 	u64 alloc_time_ns;
200 #endif
201 	/* Time that this request was allocated for this IO. */
202 	u64 start_time_ns;
203 	/* Time that I/O was submitted to the device. */
204 	u64 io_start_time_ns;
205 
206 #ifdef CONFIG_BLK_WBT
207 	unsigned short wbt_flags;
208 #endif
209 	/*
210 	 * rq sectors used for blk stats. It has the same value
211 	 * with blk_rq_sectors(rq), except that it never be zeroed
212 	 * by completion.
213 	 */
214 	unsigned short stats_sectors;
215 
216 	/*
217 	 * Number of scatter-gather DMA addr+len pairs after
218 	 * physical address coalescing is performed.
219 	 */
220 	unsigned short nr_phys_segments;
221 
222 #if defined(CONFIG_BLK_DEV_INTEGRITY)
223 	unsigned short nr_integrity_segments;
224 #endif
225 
226 	unsigned short write_hint;
227 	unsigned short ioprio;
228 
229 	unsigned int extra_len;	/* length of alignment and padding */
230 
231 	enum mq_rq_state state;
232 	refcount_t ref;
233 
234 	unsigned int timeout;
235 	unsigned long deadline;
236 
237 	union {
238 		struct __call_single_data csd;
239 		u64 fifo_time;
240 	};
241 
242 	/*
243 	 * completion callback.
244 	 */
245 	rq_end_io_fn *end_io;
246 	void *end_io_data;
247 };
248 
249 static inline bool blk_op_is_scsi(unsigned int op)
250 {
251 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
252 }
253 
254 static inline bool blk_op_is_private(unsigned int op)
255 {
256 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
257 }
258 
259 static inline bool blk_rq_is_scsi(struct request *rq)
260 {
261 	return blk_op_is_scsi(req_op(rq));
262 }
263 
264 static inline bool blk_rq_is_private(struct request *rq)
265 {
266 	return blk_op_is_private(req_op(rq));
267 }
268 
269 static inline bool blk_rq_is_passthrough(struct request *rq)
270 {
271 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
272 }
273 
274 static inline bool bio_is_passthrough(struct bio *bio)
275 {
276 	unsigned op = bio_op(bio);
277 
278 	return blk_op_is_scsi(op) || blk_op_is_private(op);
279 }
280 
281 static inline unsigned short req_get_ioprio(struct request *req)
282 {
283 	return req->ioprio;
284 }
285 
286 #include <linux/elevator.h>
287 
288 struct blk_queue_ctx;
289 
290 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
291 
292 struct bio_vec;
293 typedef int (dma_drain_needed_fn)(struct request *);
294 
295 enum blk_eh_timer_return {
296 	BLK_EH_DONE,		/* drivers has completed the command */
297 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
298 };
299 
300 enum blk_queue_state {
301 	Queue_down,
302 	Queue_up,
303 };
304 
305 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
306 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
307 
308 #define BLK_SCSI_MAX_CMDS	(256)
309 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
310 
311 /*
312  * Zoned block device models (zoned limit).
313  */
314 enum blk_zoned_model {
315 	BLK_ZONED_NONE,	/* Regular block device */
316 	BLK_ZONED_HA,	/* Host-aware zoned block device */
317 	BLK_ZONED_HM,	/* Host-managed zoned block device */
318 };
319 
320 struct queue_limits {
321 	unsigned long		bounce_pfn;
322 	unsigned long		seg_boundary_mask;
323 	unsigned long		virt_boundary_mask;
324 
325 	unsigned int		max_hw_sectors;
326 	unsigned int		max_dev_sectors;
327 	unsigned int		chunk_sectors;
328 	unsigned int		max_sectors;
329 	unsigned int		max_segment_size;
330 	unsigned int		physical_block_size;
331 	unsigned int		alignment_offset;
332 	unsigned int		io_min;
333 	unsigned int		io_opt;
334 	unsigned int		max_discard_sectors;
335 	unsigned int		max_hw_discard_sectors;
336 	unsigned int		max_write_same_sectors;
337 	unsigned int		max_write_zeroes_sectors;
338 	unsigned int		discard_granularity;
339 	unsigned int		discard_alignment;
340 
341 	unsigned short		logical_block_size;
342 	unsigned short		max_segments;
343 	unsigned short		max_integrity_segments;
344 	unsigned short		max_discard_segments;
345 
346 	unsigned char		misaligned;
347 	unsigned char		discard_misaligned;
348 	unsigned char		raid_partial_stripes_expensive;
349 	enum blk_zoned_model	zoned;
350 };
351 
352 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
353 			       void *data);
354 
355 #ifdef CONFIG_BLK_DEV_ZONED
356 
357 #define BLK_ALL_ZONES  ((unsigned int)-1)
358 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
359 			unsigned int nr_zones, report_zones_cb cb, void *data);
360 unsigned int blkdev_nr_zones(struct gendisk *disk);
361 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
362 			    sector_t sectors, sector_t nr_sectors,
363 			    gfp_t gfp_mask);
364 extern int blk_revalidate_disk_zones(struct gendisk *disk);
365 
366 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
367 				     unsigned int cmd, unsigned long arg);
368 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
369 				  unsigned int cmd, unsigned long arg);
370 
371 #else /* CONFIG_BLK_DEV_ZONED */
372 
373 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
374 {
375 	return 0;
376 }
377 
378 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
379 					    fmode_t mode, unsigned int cmd,
380 					    unsigned long arg)
381 {
382 	return -ENOTTY;
383 }
384 
385 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
386 					 fmode_t mode, unsigned int cmd,
387 					 unsigned long arg)
388 {
389 	return -ENOTTY;
390 }
391 
392 #endif /* CONFIG_BLK_DEV_ZONED */
393 
394 struct request_queue {
395 	struct request		*last_merge;
396 	struct elevator_queue	*elevator;
397 
398 	struct blk_queue_stats	*stats;
399 	struct rq_qos		*rq_qos;
400 
401 	make_request_fn		*make_request_fn;
402 	dma_drain_needed_fn	*dma_drain_needed;
403 
404 	const struct blk_mq_ops	*mq_ops;
405 
406 	/* sw queues */
407 	struct blk_mq_ctx __percpu	*queue_ctx;
408 
409 	unsigned int		queue_depth;
410 
411 	/* hw dispatch queues */
412 	struct blk_mq_hw_ctx	**queue_hw_ctx;
413 	unsigned int		nr_hw_queues;
414 
415 	struct backing_dev_info	*backing_dev_info;
416 
417 	/*
418 	 * The queue owner gets to use this for whatever they like.
419 	 * ll_rw_blk doesn't touch it.
420 	 */
421 	void			*queuedata;
422 
423 	/*
424 	 * various queue flags, see QUEUE_* below
425 	 */
426 	unsigned long		queue_flags;
427 	/*
428 	 * Number of contexts that have called blk_set_pm_only(). If this
429 	 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
430 	 * processed.
431 	 */
432 	atomic_t		pm_only;
433 
434 	/*
435 	 * ida allocated id for this queue.  Used to index queues from
436 	 * ioctx.
437 	 */
438 	int			id;
439 
440 	/*
441 	 * queue needs bounce pages for pages above this limit
442 	 */
443 	gfp_t			bounce_gfp;
444 
445 	spinlock_t		queue_lock;
446 
447 	/*
448 	 * queue kobject
449 	 */
450 	struct kobject kobj;
451 
452 	/*
453 	 * mq queue kobject
454 	 */
455 	struct kobject *mq_kobj;
456 
457 #ifdef  CONFIG_BLK_DEV_INTEGRITY
458 	struct blk_integrity integrity;
459 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
460 
461 #ifdef CONFIG_PM
462 	struct device		*dev;
463 	int			rpm_status;
464 	unsigned int		nr_pending;
465 #endif
466 
467 	/*
468 	 * queue settings
469 	 */
470 	unsigned long		nr_requests;	/* Max # of requests */
471 
472 	unsigned int		dma_drain_size;
473 	void			*dma_drain_buffer;
474 	unsigned int		dma_pad_mask;
475 	unsigned int		dma_alignment;
476 
477 	unsigned int		rq_timeout;
478 	int			poll_nsec;
479 
480 	struct blk_stat_callback	*poll_cb;
481 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
482 
483 	struct timer_list	timeout;
484 	struct work_struct	timeout_work;
485 
486 	struct list_head	icq_list;
487 #ifdef CONFIG_BLK_CGROUP
488 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
489 	struct blkcg_gq		*root_blkg;
490 	struct list_head	blkg_list;
491 #endif
492 
493 	struct queue_limits	limits;
494 
495 	unsigned int		required_elevator_features;
496 
497 #ifdef CONFIG_BLK_DEV_ZONED
498 	/*
499 	 * Zoned block device information for request dispatch control.
500 	 * nr_zones is the total number of zones of the device. This is always
501 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
502 	 * bits which indicates if a zone is conventional (bit set) or
503 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
504 	 * bits which indicates if a zone is write locked, that is, if a write
505 	 * request targeting the zone was dispatched. All three fields are
506 	 * initialized by the low level device driver (e.g. scsi/sd.c).
507 	 * Stacking drivers (device mappers) may or may not initialize
508 	 * these fields.
509 	 *
510 	 * Reads of this information must be protected with blk_queue_enter() /
511 	 * blk_queue_exit(). Modifying this information is only allowed while
512 	 * no requests are being processed. See also blk_mq_freeze_queue() and
513 	 * blk_mq_unfreeze_queue().
514 	 */
515 	unsigned int		nr_zones;
516 	unsigned long		*conv_zones_bitmap;
517 	unsigned long		*seq_zones_wlock;
518 #endif /* CONFIG_BLK_DEV_ZONED */
519 
520 	/*
521 	 * sg stuff
522 	 */
523 	unsigned int		sg_timeout;
524 	unsigned int		sg_reserved_size;
525 	int			node;
526 #ifdef CONFIG_BLK_DEV_IO_TRACE
527 	struct blk_trace	*blk_trace;
528 	struct mutex		blk_trace_mutex;
529 #endif
530 	/*
531 	 * for flush operations
532 	 */
533 	struct blk_flush_queue	*fq;
534 
535 	struct list_head	requeue_list;
536 	spinlock_t		requeue_lock;
537 	struct delayed_work	requeue_work;
538 
539 	struct mutex		sysfs_lock;
540 	struct mutex		sysfs_dir_lock;
541 
542 	/*
543 	 * for reusing dead hctx instance in case of updating
544 	 * nr_hw_queues
545 	 */
546 	struct list_head	unused_hctx_list;
547 	spinlock_t		unused_hctx_lock;
548 
549 	int			mq_freeze_depth;
550 
551 #if defined(CONFIG_BLK_DEV_BSG)
552 	struct bsg_class_device bsg_dev;
553 #endif
554 
555 #ifdef CONFIG_BLK_DEV_THROTTLING
556 	/* Throttle data */
557 	struct throtl_data *td;
558 #endif
559 	struct rcu_head		rcu_head;
560 	wait_queue_head_t	mq_freeze_wq;
561 	/*
562 	 * Protect concurrent access to q_usage_counter by
563 	 * percpu_ref_kill() and percpu_ref_reinit().
564 	 */
565 	struct mutex		mq_freeze_lock;
566 	struct percpu_ref	q_usage_counter;
567 
568 	struct blk_mq_tag_set	*tag_set;
569 	struct list_head	tag_set_list;
570 	struct bio_set		bio_split;
571 
572 #ifdef CONFIG_BLK_DEBUG_FS
573 	struct dentry		*debugfs_dir;
574 	struct dentry		*sched_debugfs_dir;
575 	struct dentry		*rqos_debugfs_dir;
576 #endif
577 
578 	bool			mq_sysfs_init_done;
579 
580 	size_t			cmd_size;
581 
582 	struct work_struct	release_work;
583 
584 #define BLK_MAX_WRITE_HINTS	5
585 	u64			write_hints[BLK_MAX_WRITE_HINTS];
586 };
587 
588 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
589 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
590 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
591 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
592 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
593 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
594 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
595 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
596 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
597 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
598 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
599 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
600 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
601 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
602 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
603 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
604 #define QUEUE_FLAG_WC		17	/* Write back caching */
605 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
606 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
607 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
608 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
609 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
610 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
611 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
612 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
613 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
614 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
615 
616 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
617 				 (1 << QUEUE_FLAG_SAME_COMP))
618 
619 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
620 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
621 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
622 
623 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
624 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
625 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
626 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
627 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
628 #define blk_queue_noxmerges(q)	\
629 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
630 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
631 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
632 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
633 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
634 #define blk_queue_zone_resetall(q)	\
635 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
636 #define blk_queue_secure_erase(q) \
637 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
638 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
639 #define blk_queue_scsi_passthrough(q)	\
640 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
641 #define blk_queue_pci_p2pdma(q)	\
642 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
643 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
644 #define blk_queue_rq_alloc_time(q)	\
645 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
646 #else
647 #define blk_queue_rq_alloc_time(q)	false
648 #endif
649 
650 #define blk_noretry_request(rq) \
651 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
652 			     REQ_FAILFAST_DRIVER))
653 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
654 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
655 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
656 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
657 
658 extern void blk_set_pm_only(struct request_queue *q);
659 extern void blk_clear_pm_only(struct request_queue *q);
660 
661 static inline bool blk_account_rq(struct request *rq)
662 {
663 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
664 }
665 
666 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
667 
668 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
669 
670 #define rq_dma_dir(rq) \
671 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
672 
673 #define dma_map_bvec(dev, bv, dir, attrs) \
674 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
675 	(dir), (attrs))
676 
677 static inline bool queue_is_mq(struct request_queue *q)
678 {
679 	return q->mq_ops;
680 }
681 
682 static inline enum blk_zoned_model
683 blk_queue_zoned_model(struct request_queue *q)
684 {
685 	return q->limits.zoned;
686 }
687 
688 static inline bool blk_queue_is_zoned(struct request_queue *q)
689 {
690 	switch (blk_queue_zoned_model(q)) {
691 	case BLK_ZONED_HA:
692 	case BLK_ZONED_HM:
693 		return true;
694 	default:
695 		return false;
696 	}
697 }
698 
699 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
700 {
701 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
702 }
703 
704 #ifdef CONFIG_BLK_DEV_ZONED
705 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
706 {
707 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
708 }
709 
710 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
711 					     sector_t sector)
712 {
713 	if (!blk_queue_is_zoned(q))
714 		return 0;
715 	return sector >> ilog2(q->limits.chunk_sectors);
716 }
717 
718 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
719 					 sector_t sector)
720 {
721 	if (!blk_queue_is_zoned(q))
722 		return false;
723 	if (!q->conv_zones_bitmap)
724 		return true;
725 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
726 }
727 #else /* CONFIG_BLK_DEV_ZONED */
728 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
729 {
730 	return 0;
731 }
732 #endif /* CONFIG_BLK_DEV_ZONED */
733 
734 static inline bool rq_is_sync(struct request *rq)
735 {
736 	return op_is_sync(rq->cmd_flags);
737 }
738 
739 static inline bool rq_mergeable(struct request *rq)
740 {
741 	if (blk_rq_is_passthrough(rq))
742 		return false;
743 
744 	if (req_op(rq) == REQ_OP_FLUSH)
745 		return false;
746 
747 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
748 		return false;
749 
750 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
751 		return false;
752 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
753 		return false;
754 
755 	return true;
756 }
757 
758 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
759 {
760 	if (bio_page(a) == bio_page(b) &&
761 	    bio_offset(a) == bio_offset(b))
762 		return true;
763 
764 	return false;
765 }
766 
767 static inline unsigned int blk_queue_depth(struct request_queue *q)
768 {
769 	if (q->queue_depth)
770 		return q->queue_depth;
771 
772 	return q->nr_requests;
773 }
774 
775 extern unsigned long blk_max_low_pfn, blk_max_pfn;
776 
777 /*
778  * standard bounce addresses:
779  *
780  * BLK_BOUNCE_HIGH	: bounce all highmem pages
781  * BLK_BOUNCE_ANY	: don't bounce anything
782  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
783  */
784 
785 #if BITS_PER_LONG == 32
786 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
787 #else
788 #define BLK_BOUNCE_HIGH		-1ULL
789 #endif
790 #define BLK_BOUNCE_ANY		(-1ULL)
791 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
792 
793 /*
794  * default timeout for SG_IO if none specified
795  */
796 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
797 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
798 
799 struct rq_map_data {
800 	struct page **pages;
801 	int page_order;
802 	int nr_entries;
803 	unsigned long offset;
804 	int null_mapped;
805 	int from_user;
806 };
807 
808 struct req_iterator {
809 	struct bvec_iter iter;
810 	struct bio *bio;
811 };
812 
813 /* This should not be used directly - use rq_for_each_segment */
814 #define for_each_bio(_bio)		\
815 	for (; _bio; _bio = _bio->bi_next)
816 #define __rq_for_each_bio(_bio, rq)	\
817 	if ((rq->bio))			\
818 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
819 
820 #define rq_for_each_segment(bvl, _rq, _iter)			\
821 	__rq_for_each_bio(_iter.bio, _rq)			\
822 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
823 
824 #define rq_for_each_bvec(bvl, _rq, _iter)			\
825 	__rq_for_each_bio(_iter.bio, _rq)			\
826 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
827 
828 #define rq_iter_last(bvec, _iter)				\
829 		(_iter.bio->bi_next == NULL &&			\
830 		 bio_iter_last(bvec, _iter.iter))
831 
832 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
833 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
834 #endif
835 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
836 extern void rq_flush_dcache_pages(struct request *rq);
837 #else
838 static inline void rq_flush_dcache_pages(struct request *rq)
839 {
840 }
841 #endif
842 
843 extern int blk_register_queue(struct gendisk *disk);
844 extern void blk_unregister_queue(struct gendisk *disk);
845 extern blk_qc_t generic_make_request(struct bio *bio);
846 extern blk_qc_t direct_make_request(struct bio *bio);
847 extern void blk_rq_init(struct request_queue *q, struct request *rq);
848 extern void blk_put_request(struct request *);
849 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
850 				       blk_mq_req_flags_t flags);
851 extern int blk_lld_busy(struct request_queue *q);
852 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
853 			     struct bio_set *bs, gfp_t gfp_mask,
854 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
855 			     void *data);
856 extern void blk_rq_unprep_clone(struct request *rq);
857 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
858 				     struct request *rq);
859 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
860 extern void blk_queue_split(struct request_queue *, struct bio **);
861 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
862 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
863 			      unsigned int, void __user *);
864 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
865 			  unsigned int, void __user *);
866 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
867 			 struct scsi_ioctl_command __user *);
868 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
869 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
870 
871 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
872 extern void blk_queue_exit(struct request_queue *q);
873 extern void blk_sync_queue(struct request_queue *q);
874 extern int blk_rq_map_user(struct request_queue *, struct request *,
875 			   struct rq_map_data *, void __user *, unsigned long,
876 			   gfp_t);
877 extern int blk_rq_unmap_user(struct bio *);
878 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
879 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
880 			       struct rq_map_data *, const struct iov_iter *,
881 			       gfp_t);
882 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
883 			  struct request *, int);
884 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
885 				  struct request *, int, rq_end_io_fn *);
886 
887 /* Helper to convert REQ_OP_XXX to its string format XXX */
888 extern const char *blk_op_str(unsigned int op);
889 
890 int blk_status_to_errno(blk_status_t status);
891 blk_status_t errno_to_blk_status(int errno);
892 
893 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
894 
895 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
896 {
897 	return bdev->bd_disk->queue;	/* this is never NULL */
898 }
899 
900 /*
901  * The basic unit of block I/O is a sector. It is used in a number of contexts
902  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
903  * bytes. Variables of type sector_t represent an offset or size that is a
904  * multiple of 512 bytes. Hence these two constants.
905  */
906 #ifndef SECTOR_SHIFT
907 #define SECTOR_SHIFT 9
908 #endif
909 #ifndef SECTOR_SIZE
910 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
911 #endif
912 
913 /*
914  * blk_rq_pos()			: the current sector
915  * blk_rq_bytes()		: bytes left in the entire request
916  * blk_rq_cur_bytes()		: bytes left in the current segment
917  * blk_rq_err_bytes()		: bytes left till the next error boundary
918  * blk_rq_sectors()		: sectors left in the entire request
919  * blk_rq_cur_sectors()		: sectors left in the current segment
920  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
921  */
922 static inline sector_t blk_rq_pos(const struct request *rq)
923 {
924 	return rq->__sector;
925 }
926 
927 static inline unsigned int blk_rq_bytes(const struct request *rq)
928 {
929 	return rq->__data_len;
930 }
931 
932 static inline int blk_rq_cur_bytes(const struct request *rq)
933 {
934 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
935 }
936 
937 extern unsigned int blk_rq_err_bytes(const struct request *rq);
938 
939 static inline unsigned int blk_rq_sectors(const struct request *rq)
940 {
941 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
942 }
943 
944 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
945 {
946 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
947 }
948 
949 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
950 {
951 	return rq->stats_sectors;
952 }
953 
954 #ifdef CONFIG_BLK_DEV_ZONED
955 static inline unsigned int blk_rq_zone_no(struct request *rq)
956 {
957 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
958 }
959 
960 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
961 {
962 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
963 }
964 #endif /* CONFIG_BLK_DEV_ZONED */
965 
966 /*
967  * Some commands like WRITE SAME have a payload or data transfer size which
968  * is different from the size of the request.  Any driver that supports such
969  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
970  * calculate the data transfer size.
971  */
972 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
973 {
974 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
975 		return rq->special_vec.bv_len;
976 	return blk_rq_bytes(rq);
977 }
978 
979 /*
980  * Return the first full biovec in the request.  The caller needs to check that
981  * there are any bvecs before calling this helper.
982  */
983 static inline struct bio_vec req_bvec(struct request *rq)
984 {
985 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
986 		return rq->special_vec;
987 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
988 }
989 
990 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
991 						     int op)
992 {
993 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
994 		return min(q->limits.max_discard_sectors,
995 			   UINT_MAX >> SECTOR_SHIFT);
996 
997 	if (unlikely(op == REQ_OP_WRITE_SAME))
998 		return q->limits.max_write_same_sectors;
999 
1000 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1001 		return q->limits.max_write_zeroes_sectors;
1002 
1003 	return q->limits.max_sectors;
1004 }
1005 
1006 /*
1007  * Return maximum size of a request at given offset. Only valid for
1008  * file system requests.
1009  */
1010 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1011 					       sector_t offset)
1012 {
1013 	if (!q->limits.chunk_sectors)
1014 		return q->limits.max_sectors;
1015 
1016 	return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
1017 			(offset & (q->limits.chunk_sectors - 1))));
1018 }
1019 
1020 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1021 						  sector_t offset)
1022 {
1023 	struct request_queue *q = rq->q;
1024 
1025 	if (blk_rq_is_passthrough(rq))
1026 		return q->limits.max_hw_sectors;
1027 
1028 	if (!q->limits.chunk_sectors ||
1029 	    req_op(rq) == REQ_OP_DISCARD ||
1030 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1031 		return blk_queue_get_max_sectors(q, req_op(rq));
1032 
1033 	return min(blk_max_size_offset(q, offset),
1034 			blk_queue_get_max_sectors(q, req_op(rq)));
1035 }
1036 
1037 static inline unsigned int blk_rq_count_bios(struct request *rq)
1038 {
1039 	unsigned int nr_bios = 0;
1040 	struct bio *bio;
1041 
1042 	__rq_for_each_bio(bio, rq)
1043 		nr_bios++;
1044 
1045 	return nr_bios;
1046 }
1047 
1048 void blk_steal_bios(struct bio_list *list, struct request *rq);
1049 
1050 /*
1051  * Request completion related functions.
1052  *
1053  * blk_update_request() completes given number of bytes and updates
1054  * the request without completing it.
1055  */
1056 extern bool blk_update_request(struct request *rq, blk_status_t error,
1057 			       unsigned int nr_bytes);
1058 
1059 extern void __blk_complete_request(struct request *);
1060 extern void blk_abort_request(struct request *);
1061 
1062 /*
1063  * Access functions for manipulating queue properties
1064  */
1065 extern void blk_cleanup_queue(struct request_queue *);
1066 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1067 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1068 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1069 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1070 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1071 extern void blk_queue_max_discard_segments(struct request_queue *,
1072 		unsigned short);
1073 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1074 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1075 		unsigned int max_discard_sectors);
1076 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1077 		unsigned int max_write_same_sectors);
1078 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1079 		unsigned int max_write_same_sectors);
1080 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1081 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1082 extern void blk_queue_alignment_offset(struct request_queue *q,
1083 				       unsigned int alignment);
1084 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1085 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1086 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1087 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1088 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1089 extern void blk_set_default_limits(struct queue_limits *lim);
1090 extern void blk_set_stacking_limits(struct queue_limits *lim);
1091 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1092 			    sector_t offset);
1093 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1094 			    sector_t offset);
1095 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1096 			      sector_t offset);
1097 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1098 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1099 extern int blk_queue_dma_drain(struct request_queue *q,
1100 			       dma_drain_needed_fn *dma_drain_needed,
1101 			       void *buf, unsigned int size);
1102 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1103 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1104 extern void blk_queue_dma_alignment(struct request_queue *, int);
1105 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1106 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1107 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1108 extern void blk_queue_required_elevator_features(struct request_queue *q,
1109 						 unsigned int features);
1110 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1111 					      struct device *dev);
1112 
1113 /*
1114  * Number of physical segments as sent to the device.
1115  *
1116  * Normally this is the number of discontiguous data segments sent by the
1117  * submitter.  But for data-less command like discard we might have no
1118  * actual data segments submitted, but the driver might have to add it's
1119  * own special payload.  In that case we still return 1 here so that this
1120  * special payload will be mapped.
1121  */
1122 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1123 {
1124 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1125 		return 1;
1126 	return rq->nr_phys_segments;
1127 }
1128 
1129 /*
1130  * Number of discard segments (or ranges) the driver needs to fill in.
1131  * Each discard bio merged into a request is counted as one segment.
1132  */
1133 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1134 {
1135 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1136 }
1137 
1138 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1139 extern void blk_dump_rq_flags(struct request *, char *);
1140 extern long nr_blockdev_pages(void);
1141 
1142 bool __must_check blk_get_queue(struct request_queue *);
1143 struct request_queue *blk_alloc_queue(gfp_t);
1144 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1145 extern void blk_put_queue(struct request_queue *);
1146 extern void blk_set_queue_dying(struct request_queue *);
1147 
1148 /*
1149  * blk_plug permits building a queue of related requests by holding the I/O
1150  * fragments for a short period. This allows merging of sequential requests
1151  * into single larger request. As the requests are moved from a per-task list to
1152  * the device's request_queue in a batch, this results in improved scalability
1153  * as the lock contention for request_queue lock is reduced.
1154  *
1155  * It is ok not to disable preemption when adding the request to the plug list
1156  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1157  * the plug list when the task sleeps by itself. For details, please see
1158  * schedule() where blk_schedule_flush_plug() is called.
1159  */
1160 struct blk_plug {
1161 	struct list_head mq_list; /* blk-mq requests */
1162 	struct list_head cb_list; /* md requires an unplug callback */
1163 	unsigned short rq_count;
1164 	bool multiple_queues;
1165 };
1166 #define BLK_MAX_REQUEST_COUNT 16
1167 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1168 
1169 struct blk_plug_cb;
1170 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1171 struct blk_plug_cb {
1172 	struct list_head list;
1173 	blk_plug_cb_fn callback;
1174 	void *data;
1175 };
1176 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1177 					     void *data, int size);
1178 extern void blk_start_plug(struct blk_plug *);
1179 extern void blk_finish_plug(struct blk_plug *);
1180 extern void blk_flush_plug_list(struct blk_plug *, bool);
1181 
1182 static inline void blk_flush_plug(struct task_struct *tsk)
1183 {
1184 	struct blk_plug *plug = tsk->plug;
1185 
1186 	if (plug)
1187 		blk_flush_plug_list(plug, false);
1188 }
1189 
1190 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1191 {
1192 	struct blk_plug *plug = tsk->plug;
1193 
1194 	if (plug)
1195 		blk_flush_plug_list(plug, true);
1196 }
1197 
1198 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1199 {
1200 	struct blk_plug *plug = tsk->plug;
1201 
1202 	return plug &&
1203 		 (!list_empty(&plug->mq_list) ||
1204 		 !list_empty(&plug->cb_list));
1205 }
1206 
1207 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1208 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1209 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1210 
1211 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1212 
1213 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1214 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1215 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1216 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1217 		struct bio **biop);
1218 
1219 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1220 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1221 
1222 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1223 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1224 		unsigned flags);
1225 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1226 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1227 
1228 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1229 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1230 {
1231 	return blkdev_issue_discard(sb->s_bdev,
1232 				    block << (sb->s_blocksize_bits -
1233 					      SECTOR_SHIFT),
1234 				    nr_blocks << (sb->s_blocksize_bits -
1235 						  SECTOR_SHIFT),
1236 				    gfp_mask, flags);
1237 }
1238 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1239 		sector_t nr_blocks, gfp_t gfp_mask)
1240 {
1241 	return blkdev_issue_zeroout(sb->s_bdev,
1242 				    block << (sb->s_blocksize_bits -
1243 					      SECTOR_SHIFT),
1244 				    nr_blocks << (sb->s_blocksize_bits -
1245 						  SECTOR_SHIFT),
1246 				    gfp_mask, 0);
1247 }
1248 
1249 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1250 
1251 enum blk_default_limits {
1252 	BLK_MAX_SEGMENTS	= 128,
1253 	BLK_SAFE_MAX_SECTORS	= 255,
1254 	BLK_DEF_MAX_SECTORS	= 2560,
1255 	BLK_MAX_SEGMENT_SIZE	= 65536,
1256 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1257 };
1258 
1259 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1260 {
1261 	return q->limits.seg_boundary_mask;
1262 }
1263 
1264 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1265 {
1266 	return q->limits.virt_boundary_mask;
1267 }
1268 
1269 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1270 {
1271 	return q->limits.max_sectors;
1272 }
1273 
1274 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1275 {
1276 	return q->limits.max_hw_sectors;
1277 }
1278 
1279 static inline unsigned short queue_max_segments(const struct request_queue *q)
1280 {
1281 	return q->limits.max_segments;
1282 }
1283 
1284 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1285 {
1286 	return q->limits.max_discard_segments;
1287 }
1288 
1289 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1290 {
1291 	return q->limits.max_segment_size;
1292 }
1293 
1294 static inline unsigned short queue_logical_block_size(const struct request_queue *q)
1295 {
1296 	int retval = 512;
1297 
1298 	if (q && q->limits.logical_block_size)
1299 		retval = q->limits.logical_block_size;
1300 
1301 	return retval;
1302 }
1303 
1304 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1305 {
1306 	return queue_logical_block_size(bdev_get_queue(bdev));
1307 }
1308 
1309 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1310 {
1311 	return q->limits.physical_block_size;
1312 }
1313 
1314 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1315 {
1316 	return queue_physical_block_size(bdev_get_queue(bdev));
1317 }
1318 
1319 static inline unsigned int queue_io_min(const struct request_queue *q)
1320 {
1321 	return q->limits.io_min;
1322 }
1323 
1324 static inline int bdev_io_min(struct block_device *bdev)
1325 {
1326 	return queue_io_min(bdev_get_queue(bdev));
1327 }
1328 
1329 static inline unsigned int queue_io_opt(const struct request_queue *q)
1330 {
1331 	return q->limits.io_opt;
1332 }
1333 
1334 static inline int bdev_io_opt(struct block_device *bdev)
1335 {
1336 	return queue_io_opt(bdev_get_queue(bdev));
1337 }
1338 
1339 static inline int queue_alignment_offset(const struct request_queue *q)
1340 {
1341 	if (q->limits.misaligned)
1342 		return -1;
1343 
1344 	return q->limits.alignment_offset;
1345 }
1346 
1347 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1348 {
1349 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1350 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1351 		<< SECTOR_SHIFT;
1352 
1353 	return (granularity + lim->alignment_offset - alignment) % granularity;
1354 }
1355 
1356 static inline int bdev_alignment_offset(struct block_device *bdev)
1357 {
1358 	struct request_queue *q = bdev_get_queue(bdev);
1359 
1360 	if (q->limits.misaligned)
1361 		return -1;
1362 
1363 	if (bdev != bdev->bd_contains)
1364 		return bdev->bd_part->alignment_offset;
1365 
1366 	return q->limits.alignment_offset;
1367 }
1368 
1369 static inline int queue_discard_alignment(const struct request_queue *q)
1370 {
1371 	if (q->limits.discard_misaligned)
1372 		return -1;
1373 
1374 	return q->limits.discard_alignment;
1375 }
1376 
1377 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1378 {
1379 	unsigned int alignment, granularity, offset;
1380 
1381 	if (!lim->max_discard_sectors)
1382 		return 0;
1383 
1384 	/* Why are these in bytes, not sectors? */
1385 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1386 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1387 	if (!granularity)
1388 		return 0;
1389 
1390 	/* Offset of the partition start in 'granularity' sectors */
1391 	offset = sector_div(sector, granularity);
1392 
1393 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1394 	offset = (granularity + alignment - offset) % granularity;
1395 
1396 	/* Turn it back into bytes, gaah */
1397 	return offset << SECTOR_SHIFT;
1398 }
1399 
1400 static inline int bdev_discard_alignment(struct block_device *bdev)
1401 {
1402 	struct request_queue *q = bdev_get_queue(bdev);
1403 
1404 	if (bdev != bdev->bd_contains)
1405 		return bdev->bd_part->discard_alignment;
1406 
1407 	return q->limits.discard_alignment;
1408 }
1409 
1410 static inline unsigned int bdev_write_same(struct block_device *bdev)
1411 {
1412 	struct request_queue *q = bdev_get_queue(bdev);
1413 
1414 	if (q)
1415 		return q->limits.max_write_same_sectors;
1416 
1417 	return 0;
1418 }
1419 
1420 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1421 {
1422 	struct request_queue *q = bdev_get_queue(bdev);
1423 
1424 	if (q)
1425 		return q->limits.max_write_zeroes_sectors;
1426 
1427 	return 0;
1428 }
1429 
1430 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1431 {
1432 	struct request_queue *q = bdev_get_queue(bdev);
1433 
1434 	if (q)
1435 		return blk_queue_zoned_model(q);
1436 
1437 	return BLK_ZONED_NONE;
1438 }
1439 
1440 static inline bool bdev_is_zoned(struct block_device *bdev)
1441 {
1442 	struct request_queue *q = bdev_get_queue(bdev);
1443 
1444 	if (q)
1445 		return blk_queue_is_zoned(q);
1446 
1447 	return false;
1448 }
1449 
1450 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1451 {
1452 	struct request_queue *q = bdev_get_queue(bdev);
1453 
1454 	if (q)
1455 		return blk_queue_zone_sectors(q);
1456 	return 0;
1457 }
1458 
1459 static inline int queue_dma_alignment(const struct request_queue *q)
1460 {
1461 	return q ? q->dma_alignment : 511;
1462 }
1463 
1464 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1465 				 unsigned int len)
1466 {
1467 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1468 	return !(addr & alignment) && !(len & alignment);
1469 }
1470 
1471 /* assumes size > 256 */
1472 static inline unsigned int blksize_bits(unsigned int size)
1473 {
1474 	unsigned int bits = 8;
1475 	do {
1476 		bits++;
1477 		size >>= 1;
1478 	} while (size > 256);
1479 	return bits;
1480 }
1481 
1482 static inline unsigned int block_size(struct block_device *bdev)
1483 {
1484 	return bdev->bd_block_size;
1485 }
1486 
1487 typedef struct {struct page *v;} Sector;
1488 
1489 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1490 
1491 static inline void put_dev_sector(Sector p)
1492 {
1493 	put_page(p.v);
1494 }
1495 
1496 int kblockd_schedule_work(struct work_struct *work);
1497 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1498 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1499 
1500 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1501 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1502 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1503 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1504 
1505 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1506 
1507 enum blk_integrity_flags {
1508 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1509 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1510 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1511 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1512 };
1513 
1514 struct blk_integrity_iter {
1515 	void			*prot_buf;
1516 	void			*data_buf;
1517 	sector_t		seed;
1518 	unsigned int		data_size;
1519 	unsigned short		interval;
1520 	const char		*disk_name;
1521 };
1522 
1523 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1524 typedef void (integrity_prepare_fn) (struct request *);
1525 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1526 
1527 struct blk_integrity_profile {
1528 	integrity_processing_fn		*generate_fn;
1529 	integrity_processing_fn		*verify_fn;
1530 	integrity_prepare_fn		*prepare_fn;
1531 	integrity_complete_fn		*complete_fn;
1532 	const char			*name;
1533 };
1534 
1535 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1536 extern void blk_integrity_unregister(struct gendisk *);
1537 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1538 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1539 				   struct scatterlist *);
1540 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1541 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1542 				   struct request *);
1543 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1544 				    struct bio *);
1545 
1546 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1547 {
1548 	struct blk_integrity *bi = &disk->queue->integrity;
1549 
1550 	if (!bi->profile)
1551 		return NULL;
1552 
1553 	return bi;
1554 }
1555 
1556 static inline
1557 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1558 {
1559 	return blk_get_integrity(bdev->bd_disk);
1560 }
1561 
1562 static inline bool blk_integrity_rq(struct request *rq)
1563 {
1564 	return rq->cmd_flags & REQ_INTEGRITY;
1565 }
1566 
1567 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1568 						    unsigned int segs)
1569 {
1570 	q->limits.max_integrity_segments = segs;
1571 }
1572 
1573 static inline unsigned short
1574 queue_max_integrity_segments(const struct request_queue *q)
1575 {
1576 	return q->limits.max_integrity_segments;
1577 }
1578 
1579 /**
1580  * bio_integrity_intervals - Return number of integrity intervals for a bio
1581  * @bi:		blk_integrity profile for device
1582  * @sectors:	Size of the bio in 512-byte sectors
1583  *
1584  * Description: The block layer calculates everything in 512 byte
1585  * sectors but integrity metadata is done in terms of the data integrity
1586  * interval size of the storage device.  Convert the block layer sectors
1587  * to the appropriate number of integrity intervals.
1588  */
1589 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1590 						   unsigned int sectors)
1591 {
1592 	return sectors >> (bi->interval_exp - 9);
1593 }
1594 
1595 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1596 					       unsigned int sectors)
1597 {
1598 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1599 }
1600 
1601 /*
1602  * Return the first bvec that contains integrity data.  Only drivers that are
1603  * limited to a single integrity segment should use this helper.
1604  */
1605 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1606 {
1607 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1608 		return NULL;
1609 	return rq->bio->bi_integrity->bip_vec;
1610 }
1611 
1612 #else /* CONFIG_BLK_DEV_INTEGRITY */
1613 
1614 struct bio;
1615 struct block_device;
1616 struct gendisk;
1617 struct blk_integrity;
1618 
1619 static inline int blk_integrity_rq(struct request *rq)
1620 {
1621 	return 0;
1622 }
1623 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1624 					    struct bio *b)
1625 {
1626 	return 0;
1627 }
1628 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1629 					  struct bio *b,
1630 					  struct scatterlist *s)
1631 {
1632 	return 0;
1633 }
1634 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1635 {
1636 	return NULL;
1637 }
1638 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1639 {
1640 	return NULL;
1641 }
1642 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1643 {
1644 	return 0;
1645 }
1646 static inline void blk_integrity_register(struct gendisk *d,
1647 					 struct blk_integrity *b)
1648 {
1649 }
1650 static inline void blk_integrity_unregister(struct gendisk *d)
1651 {
1652 }
1653 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1654 						    unsigned int segs)
1655 {
1656 }
1657 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1658 {
1659 	return 0;
1660 }
1661 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1662 					  struct request *r1,
1663 					  struct request *r2)
1664 {
1665 	return true;
1666 }
1667 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1668 					   struct request *r,
1669 					   struct bio *b)
1670 {
1671 	return true;
1672 }
1673 
1674 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1675 						   unsigned int sectors)
1676 {
1677 	return 0;
1678 }
1679 
1680 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1681 					       unsigned int sectors)
1682 {
1683 	return 0;
1684 }
1685 
1686 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1687 {
1688 	return NULL;
1689 }
1690 
1691 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1692 
1693 struct block_device_operations {
1694 	int (*open) (struct block_device *, fmode_t);
1695 	void (*release) (struct gendisk *, fmode_t);
1696 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1697 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1698 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1699 	unsigned int (*check_events) (struct gendisk *disk,
1700 				      unsigned int clearing);
1701 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1702 	int (*media_changed) (struct gendisk *);
1703 	void (*unlock_native_capacity) (struct gendisk *);
1704 	int (*revalidate_disk) (struct gendisk *);
1705 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1706 	/* this callback is with swap_lock and sometimes page table lock held */
1707 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1708 	int (*report_zones)(struct gendisk *, sector_t sector,
1709 			unsigned int nr_zones, report_zones_cb cb, void *data);
1710 	struct module *owner;
1711 	const struct pr_ops *pr_ops;
1712 };
1713 
1714 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1715 				 unsigned long);
1716 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1717 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1718 						struct writeback_control *);
1719 
1720 #ifdef CONFIG_BLK_DEV_ZONED
1721 bool blk_req_needs_zone_write_lock(struct request *rq);
1722 void __blk_req_zone_write_lock(struct request *rq);
1723 void __blk_req_zone_write_unlock(struct request *rq);
1724 
1725 static inline void blk_req_zone_write_lock(struct request *rq)
1726 {
1727 	if (blk_req_needs_zone_write_lock(rq))
1728 		__blk_req_zone_write_lock(rq);
1729 }
1730 
1731 static inline void blk_req_zone_write_unlock(struct request *rq)
1732 {
1733 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1734 		__blk_req_zone_write_unlock(rq);
1735 }
1736 
1737 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1738 {
1739 	return rq->q->seq_zones_wlock &&
1740 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1741 }
1742 
1743 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1744 {
1745 	if (!blk_req_needs_zone_write_lock(rq))
1746 		return true;
1747 	return !blk_req_zone_is_write_locked(rq);
1748 }
1749 #else
1750 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1751 {
1752 	return false;
1753 }
1754 
1755 static inline void blk_req_zone_write_lock(struct request *rq)
1756 {
1757 }
1758 
1759 static inline void blk_req_zone_write_unlock(struct request *rq)
1760 {
1761 }
1762 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1763 {
1764 	return false;
1765 }
1766 
1767 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1768 {
1769 	return true;
1770 }
1771 #endif /* CONFIG_BLK_DEV_ZONED */
1772 
1773 #else /* CONFIG_BLOCK */
1774 
1775 struct block_device;
1776 
1777 /*
1778  * stubs for when the block layer is configured out
1779  */
1780 #define buffer_heads_over_limit 0
1781 
1782 static inline long nr_blockdev_pages(void)
1783 {
1784 	return 0;
1785 }
1786 
1787 struct blk_plug {
1788 };
1789 
1790 static inline void blk_start_plug(struct blk_plug *plug)
1791 {
1792 }
1793 
1794 static inline void blk_finish_plug(struct blk_plug *plug)
1795 {
1796 }
1797 
1798 static inline void blk_flush_plug(struct task_struct *task)
1799 {
1800 }
1801 
1802 static inline void blk_schedule_flush_plug(struct task_struct *task)
1803 {
1804 }
1805 
1806 
1807 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1808 {
1809 	return false;
1810 }
1811 
1812 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1813 				     sector_t *error_sector)
1814 {
1815 	return 0;
1816 }
1817 
1818 #endif /* CONFIG_BLOCK */
1819 
1820 static inline void blk_wake_io_task(struct task_struct *waiter)
1821 {
1822 	/*
1823 	 * If we're polling, the task itself is doing the completions. For
1824 	 * that case, we don't need to signal a wakeup, it's enough to just
1825 	 * mark us as RUNNING.
1826 	 */
1827 	if (waiter == current)
1828 		__set_current_state(TASK_RUNNING);
1829 	else
1830 		wake_up_process(waiter);
1831 }
1832 
1833 #endif
1834