1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/wait.h> 15 #include <linux/mempool.h> 16 #include <linux/pfn.h> 17 #include <linux/bio.h> 18 #include <linux/stringify.h> 19 #include <linux/gfp.h> 20 #include <linux/smp.h> 21 #include <linux/rcupdate.h> 22 #include <linux/percpu-refcount.h> 23 #include <linux/scatterlist.h> 24 #include <linux/blkzoned.h> 25 #include <linux/pm.h> 26 #include <linux/sbitmap.h> 27 28 struct module; 29 struct request_queue; 30 struct elevator_queue; 31 struct blk_trace; 32 struct request; 33 struct sg_io_hdr; 34 struct blkcg_gq; 35 struct blk_flush_queue; 36 struct pr_ops; 37 struct rq_qos; 38 struct blk_queue_stats; 39 struct blk_stat_callback; 40 struct blk_keyslot_manager; 41 42 #define BLKDEV_MIN_RQ 4 43 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 44 45 /* Must be consistent with blk_mq_poll_stats_bkt() */ 46 #define BLK_MQ_POLL_STATS_BKTS 16 47 48 /* Doing classic polling */ 49 #define BLK_MQ_POLL_CLASSIC -1 50 51 /* 52 * Maximum number of blkcg policies allowed to be registered concurrently. 53 * Defined here to simplify include dependency. 54 */ 55 #define BLKCG_MAX_POLS 6 56 57 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 58 59 /* 60 * request flags */ 61 typedef __u32 __bitwise req_flags_t; 62 63 /* drive already may have started this one */ 64 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 65 /* may not be passed by ioscheduler */ 66 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 67 /* request for flush sequence */ 68 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 69 /* merge of different types, fail separately */ 70 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 71 /* track inflight for MQ */ 72 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 73 /* don't call prep for this one */ 74 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 75 /* vaguely specified driver internal error. Ignored by the block layer */ 76 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 77 /* don't warn about errors */ 78 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 79 /* elevator private data attached */ 80 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 81 /* account into disk and partition IO statistics */ 82 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 83 /* runtime pm request */ 84 #define RQF_PM ((__force req_flags_t)(1 << 15)) 85 /* on IO scheduler merge hash */ 86 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 87 /* track IO completion time */ 88 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 89 /* Look at ->special_vec for the actual data payload instead of the 90 bio chain. */ 91 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 92 /* The per-zone write lock is held for this request */ 93 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 94 /* already slept for hybrid poll */ 95 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 96 /* ->timeout has been called, don't expire again */ 97 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 98 99 /* flags that prevent us from merging requests: */ 100 #define RQF_NOMERGE_FLAGS \ 101 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 102 103 /* 104 * Request state for blk-mq. 105 */ 106 enum mq_rq_state { 107 MQ_RQ_IDLE = 0, 108 MQ_RQ_IN_FLIGHT = 1, 109 MQ_RQ_COMPLETE = 2, 110 }; 111 112 /* 113 * Try to put the fields that are referenced together in the same cacheline. 114 * 115 * If you modify this structure, make sure to update blk_rq_init() and 116 * especially blk_mq_rq_ctx_init() to take care of the added fields. 117 */ 118 struct request { 119 struct request_queue *q; 120 struct blk_mq_ctx *mq_ctx; 121 struct blk_mq_hw_ctx *mq_hctx; 122 123 unsigned int cmd_flags; /* op and common flags */ 124 req_flags_t rq_flags; 125 126 int tag; 127 int internal_tag; 128 129 /* the following two fields are internal, NEVER access directly */ 130 unsigned int __data_len; /* total data len */ 131 sector_t __sector; /* sector cursor */ 132 133 struct bio *bio; 134 struct bio *biotail; 135 136 struct list_head queuelist; 137 138 /* 139 * The hash is used inside the scheduler, and killed once the 140 * request reaches the dispatch list. The ipi_list is only used 141 * to queue the request for softirq completion, which is long 142 * after the request has been unhashed (and even removed from 143 * the dispatch list). 144 */ 145 union { 146 struct hlist_node hash; /* merge hash */ 147 struct llist_node ipi_list; 148 }; 149 150 /* 151 * The rb_node is only used inside the io scheduler, requests 152 * are pruned when moved to the dispatch queue. So let the 153 * completion_data share space with the rb_node. 154 */ 155 union { 156 struct rb_node rb_node; /* sort/lookup */ 157 struct bio_vec special_vec; 158 void *completion_data; 159 int error_count; /* for legacy drivers, don't use */ 160 }; 161 162 /* 163 * Three pointers are available for the IO schedulers, if they need 164 * more they have to dynamically allocate it. Flush requests are 165 * never put on the IO scheduler. So let the flush fields share 166 * space with the elevator data. 167 */ 168 union { 169 struct { 170 struct io_cq *icq; 171 void *priv[2]; 172 } elv; 173 174 struct { 175 unsigned int seq; 176 struct list_head list; 177 rq_end_io_fn *saved_end_io; 178 } flush; 179 }; 180 181 struct gendisk *rq_disk; 182 struct block_device *part; 183 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 184 /* Time that the first bio started allocating this request. */ 185 u64 alloc_time_ns; 186 #endif 187 /* Time that this request was allocated for this IO. */ 188 u64 start_time_ns; 189 /* Time that I/O was submitted to the device. */ 190 u64 io_start_time_ns; 191 192 #ifdef CONFIG_BLK_WBT 193 unsigned short wbt_flags; 194 #endif 195 /* 196 * rq sectors used for blk stats. It has the same value 197 * with blk_rq_sectors(rq), except that it never be zeroed 198 * by completion. 199 */ 200 unsigned short stats_sectors; 201 202 /* 203 * Number of scatter-gather DMA addr+len pairs after 204 * physical address coalescing is performed. 205 */ 206 unsigned short nr_phys_segments; 207 208 #if defined(CONFIG_BLK_DEV_INTEGRITY) 209 unsigned short nr_integrity_segments; 210 #endif 211 212 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 213 struct bio_crypt_ctx *crypt_ctx; 214 struct blk_ksm_keyslot *crypt_keyslot; 215 #endif 216 217 unsigned short write_hint; 218 unsigned short ioprio; 219 220 enum mq_rq_state state; 221 refcount_t ref; 222 223 unsigned int timeout; 224 unsigned long deadline; 225 226 union { 227 struct __call_single_data csd; 228 u64 fifo_time; 229 }; 230 231 /* 232 * completion callback. 233 */ 234 rq_end_io_fn *end_io; 235 void *end_io_data; 236 }; 237 238 static inline bool blk_op_is_passthrough(unsigned int op) 239 { 240 op &= REQ_OP_MASK; 241 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 242 } 243 244 static inline bool blk_rq_is_passthrough(struct request *rq) 245 { 246 return blk_op_is_passthrough(req_op(rq)); 247 } 248 249 static inline unsigned short req_get_ioprio(struct request *req) 250 { 251 return req->ioprio; 252 } 253 254 #include <linux/elevator.h> 255 256 struct blk_queue_ctx; 257 258 struct bio_vec; 259 260 enum blk_eh_timer_return { 261 BLK_EH_DONE, /* drivers has completed the command */ 262 BLK_EH_RESET_TIMER, /* reset timer and try again */ 263 }; 264 265 enum blk_queue_state { 266 Queue_down, 267 Queue_up, 268 }; 269 270 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 271 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 272 273 /* 274 * Zoned block device models (zoned limit). 275 * 276 * Note: This needs to be ordered from the least to the most severe 277 * restrictions for the inheritance in blk_stack_limits() to work. 278 */ 279 enum blk_zoned_model { 280 BLK_ZONED_NONE = 0, /* Regular block device */ 281 BLK_ZONED_HA, /* Host-aware zoned block device */ 282 BLK_ZONED_HM, /* Host-managed zoned block device */ 283 }; 284 285 /* 286 * BLK_BOUNCE_NONE: never bounce (default) 287 * BLK_BOUNCE_HIGH: bounce all highmem pages 288 */ 289 enum blk_bounce { 290 BLK_BOUNCE_NONE, 291 BLK_BOUNCE_HIGH, 292 }; 293 294 struct queue_limits { 295 enum blk_bounce bounce; 296 unsigned long seg_boundary_mask; 297 unsigned long virt_boundary_mask; 298 299 unsigned int max_hw_sectors; 300 unsigned int max_dev_sectors; 301 unsigned int chunk_sectors; 302 unsigned int max_sectors; 303 unsigned int max_segment_size; 304 unsigned int physical_block_size; 305 unsigned int logical_block_size; 306 unsigned int alignment_offset; 307 unsigned int io_min; 308 unsigned int io_opt; 309 unsigned int max_discard_sectors; 310 unsigned int max_hw_discard_sectors; 311 unsigned int max_write_same_sectors; 312 unsigned int max_write_zeroes_sectors; 313 unsigned int max_zone_append_sectors; 314 unsigned int discard_granularity; 315 unsigned int discard_alignment; 316 unsigned int zone_write_granularity; 317 318 unsigned short max_segments; 319 unsigned short max_integrity_segments; 320 unsigned short max_discard_segments; 321 322 unsigned char misaligned; 323 unsigned char discard_misaligned; 324 unsigned char raid_partial_stripes_expensive; 325 enum blk_zoned_model zoned; 326 }; 327 328 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 329 void *data); 330 331 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 332 333 #ifdef CONFIG_BLK_DEV_ZONED 334 335 #define BLK_ALL_ZONES ((unsigned int)-1) 336 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 337 unsigned int nr_zones, report_zones_cb cb, void *data); 338 unsigned int blkdev_nr_zones(struct gendisk *disk); 339 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 340 sector_t sectors, sector_t nr_sectors, 341 gfp_t gfp_mask); 342 int blk_revalidate_disk_zones(struct gendisk *disk, 343 void (*update_driver_data)(struct gendisk *disk)); 344 345 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 346 unsigned int cmd, unsigned long arg); 347 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 348 unsigned int cmd, unsigned long arg); 349 350 #else /* CONFIG_BLK_DEV_ZONED */ 351 352 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 353 { 354 return 0; 355 } 356 357 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 358 fmode_t mode, unsigned int cmd, 359 unsigned long arg) 360 { 361 return -ENOTTY; 362 } 363 364 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 365 fmode_t mode, unsigned int cmd, 366 unsigned long arg) 367 { 368 return -ENOTTY; 369 } 370 371 #endif /* CONFIG_BLK_DEV_ZONED */ 372 373 struct request_queue { 374 struct request *last_merge; 375 struct elevator_queue *elevator; 376 377 struct percpu_ref q_usage_counter; 378 379 struct blk_queue_stats *stats; 380 struct rq_qos *rq_qos; 381 382 const struct blk_mq_ops *mq_ops; 383 384 /* sw queues */ 385 struct blk_mq_ctx __percpu *queue_ctx; 386 387 unsigned int queue_depth; 388 389 /* hw dispatch queues */ 390 struct blk_mq_hw_ctx **queue_hw_ctx; 391 unsigned int nr_hw_queues; 392 393 /* 394 * The queue owner gets to use this for whatever they like. 395 * ll_rw_blk doesn't touch it. 396 */ 397 void *queuedata; 398 399 /* 400 * various queue flags, see QUEUE_* below 401 */ 402 unsigned long queue_flags; 403 /* 404 * Number of contexts that have called blk_set_pm_only(). If this 405 * counter is above zero then only RQF_PM requests are processed. 406 */ 407 atomic_t pm_only; 408 409 /* 410 * ida allocated id for this queue. Used to index queues from 411 * ioctx. 412 */ 413 int id; 414 415 spinlock_t queue_lock; 416 417 struct gendisk *disk; 418 419 /* 420 * queue kobject 421 */ 422 struct kobject kobj; 423 424 /* 425 * mq queue kobject 426 */ 427 struct kobject *mq_kobj; 428 429 #ifdef CONFIG_BLK_DEV_INTEGRITY 430 struct blk_integrity integrity; 431 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 432 433 #ifdef CONFIG_PM 434 struct device *dev; 435 enum rpm_status rpm_status; 436 #endif 437 438 /* 439 * queue settings 440 */ 441 unsigned long nr_requests; /* Max # of requests */ 442 443 unsigned int dma_pad_mask; 444 unsigned int dma_alignment; 445 446 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 447 /* Inline crypto capabilities */ 448 struct blk_keyslot_manager *ksm; 449 #endif 450 451 unsigned int rq_timeout; 452 int poll_nsec; 453 454 struct blk_stat_callback *poll_cb; 455 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 456 457 struct timer_list timeout; 458 struct work_struct timeout_work; 459 460 atomic_t nr_active_requests_shared_sbitmap; 461 462 struct sbitmap_queue sched_bitmap_tags; 463 struct sbitmap_queue sched_breserved_tags; 464 465 struct list_head icq_list; 466 #ifdef CONFIG_BLK_CGROUP 467 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 468 struct blkcg_gq *root_blkg; 469 struct list_head blkg_list; 470 #endif 471 472 struct queue_limits limits; 473 474 unsigned int required_elevator_features; 475 476 #ifdef CONFIG_BLK_DEV_ZONED 477 /* 478 * Zoned block device information for request dispatch control. 479 * nr_zones is the total number of zones of the device. This is always 480 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 481 * bits which indicates if a zone is conventional (bit set) or 482 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 483 * bits which indicates if a zone is write locked, that is, if a write 484 * request targeting the zone was dispatched. All three fields are 485 * initialized by the low level device driver (e.g. scsi/sd.c). 486 * Stacking drivers (device mappers) may or may not initialize 487 * these fields. 488 * 489 * Reads of this information must be protected with blk_queue_enter() / 490 * blk_queue_exit(). Modifying this information is only allowed while 491 * no requests are being processed. See also blk_mq_freeze_queue() and 492 * blk_mq_unfreeze_queue(). 493 */ 494 unsigned int nr_zones; 495 unsigned long *conv_zones_bitmap; 496 unsigned long *seq_zones_wlock; 497 unsigned int max_open_zones; 498 unsigned int max_active_zones; 499 #endif /* CONFIG_BLK_DEV_ZONED */ 500 501 int node; 502 struct mutex debugfs_mutex; 503 #ifdef CONFIG_BLK_DEV_IO_TRACE 504 struct blk_trace __rcu *blk_trace; 505 #endif 506 /* 507 * for flush operations 508 */ 509 struct blk_flush_queue *fq; 510 511 struct list_head requeue_list; 512 spinlock_t requeue_lock; 513 struct delayed_work requeue_work; 514 515 struct mutex sysfs_lock; 516 struct mutex sysfs_dir_lock; 517 518 /* 519 * for reusing dead hctx instance in case of updating 520 * nr_hw_queues 521 */ 522 struct list_head unused_hctx_list; 523 spinlock_t unused_hctx_lock; 524 525 int mq_freeze_depth; 526 527 #ifdef CONFIG_BLK_DEV_THROTTLING 528 /* Throttle data */ 529 struct throtl_data *td; 530 #endif 531 struct rcu_head rcu_head; 532 wait_queue_head_t mq_freeze_wq; 533 /* 534 * Protect concurrent access to q_usage_counter by 535 * percpu_ref_kill() and percpu_ref_reinit(). 536 */ 537 struct mutex mq_freeze_lock; 538 539 struct blk_mq_tag_set *tag_set; 540 struct list_head tag_set_list; 541 struct bio_set bio_split; 542 543 struct dentry *debugfs_dir; 544 545 #ifdef CONFIG_BLK_DEBUG_FS 546 struct dentry *sched_debugfs_dir; 547 struct dentry *rqos_debugfs_dir; 548 #endif 549 550 bool mq_sysfs_init_done; 551 552 size_t cmd_size; 553 554 #define BLK_MAX_WRITE_HINTS 5 555 u64 write_hints[BLK_MAX_WRITE_HINTS]; 556 }; 557 558 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 559 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 560 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 561 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 562 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 563 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 564 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 565 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 566 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 567 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 568 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 569 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 570 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 571 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 572 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 573 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 574 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 575 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 576 #define QUEUE_FLAG_WC 17 /* Write back caching */ 577 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 578 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 579 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 580 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 581 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 582 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 583 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 584 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 585 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 586 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 587 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 588 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 589 590 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 591 (1 << QUEUE_FLAG_SAME_COMP) | \ 592 (1 << QUEUE_FLAG_NOWAIT)) 593 594 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 595 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 596 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 597 598 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 599 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 600 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 601 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 602 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 603 #define blk_queue_noxmerges(q) \ 604 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 605 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 606 #define blk_queue_stable_writes(q) \ 607 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 608 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 609 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 610 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 611 #define blk_queue_zone_resetall(q) \ 612 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 613 #define blk_queue_secure_erase(q) \ 614 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 615 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 616 #define blk_queue_scsi_passthrough(q) \ 617 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 618 #define blk_queue_pci_p2pdma(q) \ 619 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 620 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 621 #define blk_queue_rq_alloc_time(q) \ 622 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 623 #else 624 #define blk_queue_rq_alloc_time(q) false 625 #endif 626 627 #define blk_noretry_request(rq) \ 628 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 629 REQ_FAILFAST_DRIVER)) 630 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 631 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 632 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 633 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 634 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 635 636 extern void blk_set_pm_only(struct request_queue *q); 637 extern void blk_clear_pm_only(struct request_queue *q); 638 639 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 640 641 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 642 643 #define rq_dma_dir(rq) \ 644 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 645 646 #define dma_map_bvec(dev, bv, dir, attrs) \ 647 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 648 (dir), (attrs)) 649 650 static inline bool queue_is_mq(struct request_queue *q) 651 { 652 return q->mq_ops; 653 } 654 655 #ifdef CONFIG_PM 656 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 657 { 658 return q->rpm_status; 659 } 660 #else 661 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 662 { 663 return RPM_ACTIVE; 664 } 665 #endif 666 667 static inline enum blk_zoned_model 668 blk_queue_zoned_model(struct request_queue *q) 669 { 670 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 671 return q->limits.zoned; 672 return BLK_ZONED_NONE; 673 } 674 675 static inline bool blk_queue_is_zoned(struct request_queue *q) 676 { 677 switch (blk_queue_zoned_model(q)) { 678 case BLK_ZONED_HA: 679 case BLK_ZONED_HM: 680 return true; 681 default: 682 return false; 683 } 684 } 685 686 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 687 { 688 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 689 } 690 691 #ifdef CONFIG_BLK_DEV_ZONED 692 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 693 { 694 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 695 } 696 697 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 698 sector_t sector) 699 { 700 if (!blk_queue_is_zoned(q)) 701 return 0; 702 return sector >> ilog2(q->limits.chunk_sectors); 703 } 704 705 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 706 sector_t sector) 707 { 708 if (!blk_queue_is_zoned(q)) 709 return false; 710 if (!q->conv_zones_bitmap) 711 return true; 712 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 713 } 714 715 static inline void blk_queue_max_open_zones(struct request_queue *q, 716 unsigned int max_open_zones) 717 { 718 q->max_open_zones = max_open_zones; 719 } 720 721 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 722 { 723 return q->max_open_zones; 724 } 725 726 static inline void blk_queue_max_active_zones(struct request_queue *q, 727 unsigned int max_active_zones) 728 { 729 q->max_active_zones = max_active_zones; 730 } 731 732 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 733 { 734 return q->max_active_zones; 735 } 736 #else /* CONFIG_BLK_DEV_ZONED */ 737 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 738 { 739 return 0; 740 } 741 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 742 sector_t sector) 743 { 744 return false; 745 } 746 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 747 sector_t sector) 748 { 749 return 0; 750 } 751 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 752 { 753 return 0; 754 } 755 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 756 { 757 return 0; 758 } 759 #endif /* CONFIG_BLK_DEV_ZONED */ 760 761 static inline bool rq_is_sync(struct request *rq) 762 { 763 return op_is_sync(rq->cmd_flags); 764 } 765 766 static inline bool rq_mergeable(struct request *rq) 767 { 768 if (blk_rq_is_passthrough(rq)) 769 return false; 770 771 if (req_op(rq) == REQ_OP_FLUSH) 772 return false; 773 774 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 775 return false; 776 777 if (req_op(rq) == REQ_OP_ZONE_APPEND) 778 return false; 779 780 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 781 return false; 782 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 783 return false; 784 785 return true; 786 } 787 788 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 789 { 790 if (bio_page(a) == bio_page(b) && 791 bio_offset(a) == bio_offset(b)) 792 return true; 793 794 return false; 795 } 796 797 static inline unsigned int blk_queue_depth(struct request_queue *q) 798 { 799 if (q->queue_depth) 800 return q->queue_depth; 801 802 return q->nr_requests; 803 } 804 805 /* 806 * default timeout for SG_IO if none specified 807 */ 808 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 809 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 810 811 struct rq_map_data { 812 struct page **pages; 813 int page_order; 814 int nr_entries; 815 unsigned long offset; 816 int null_mapped; 817 int from_user; 818 }; 819 820 struct req_iterator { 821 struct bvec_iter iter; 822 struct bio *bio; 823 }; 824 825 /* This should not be used directly - use rq_for_each_segment */ 826 #define for_each_bio(_bio) \ 827 for (; _bio; _bio = _bio->bi_next) 828 #define __rq_for_each_bio(_bio, rq) \ 829 if ((rq->bio)) \ 830 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 831 832 #define rq_for_each_segment(bvl, _rq, _iter) \ 833 __rq_for_each_bio(_iter.bio, _rq) \ 834 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 835 836 #define rq_for_each_bvec(bvl, _rq, _iter) \ 837 __rq_for_each_bio(_iter.bio, _rq) \ 838 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 839 840 #define rq_iter_last(bvec, _iter) \ 841 (_iter.bio->bi_next == NULL && \ 842 bio_iter_last(bvec, _iter.iter)) 843 844 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 845 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 846 #endif 847 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 848 extern void rq_flush_dcache_pages(struct request *rq); 849 #else 850 static inline void rq_flush_dcache_pages(struct request *rq) 851 { 852 } 853 #endif 854 855 extern int blk_register_queue(struct gendisk *disk); 856 extern void blk_unregister_queue(struct gendisk *disk); 857 blk_qc_t submit_bio_noacct(struct bio *bio); 858 extern void blk_rq_init(struct request_queue *q, struct request *rq); 859 extern void blk_put_request(struct request *); 860 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 861 blk_mq_req_flags_t flags); 862 extern int blk_lld_busy(struct request_queue *q); 863 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 864 struct bio_set *bs, gfp_t gfp_mask, 865 int (*bio_ctr)(struct bio *, struct bio *, void *), 866 void *data); 867 extern void blk_rq_unprep_clone(struct request *rq); 868 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 869 struct request *rq); 870 int blk_rq_append_bio(struct request *rq, struct bio *bio); 871 extern void blk_queue_split(struct bio **); 872 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 873 extern void blk_queue_exit(struct request_queue *q); 874 extern void blk_sync_queue(struct request_queue *q); 875 extern int blk_rq_map_user(struct request_queue *, struct request *, 876 struct rq_map_data *, void __user *, unsigned long, 877 gfp_t); 878 extern int blk_rq_unmap_user(struct bio *); 879 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 880 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 881 struct rq_map_data *, const struct iov_iter *, 882 gfp_t); 883 extern void blk_execute_rq_nowait(struct gendisk *, 884 struct request *, int, rq_end_io_fn *); 885 886 blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq, 887 int at_head); 888 889 /* Helper to convert REQ_OP_XXX to its string format XXX */ 890 extern const char *blk_op_str(unsigned int op); 891 892 int blk_status_to_errno(blk_status_t status); 893 blk_status_t errno_to_blk_status(int errno); 894 895 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 896 897 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 898 { 899 return bdev->bd_disk->queue; /* this is never NULL */ 900 } 901 902 /* 903 * The basic unit of block I/O is a sector. It is used in a number of contexts 904 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 905 * bytes. Variables of type sector_t represent an offset or size that is a 906 * multiple of 512 bytes. Hence these two constants. 907 */ 908 #ifndef SECTOR_SHIFT 909 #define SECTOR_SHIFT 9 910 #endif 911 #ifndef SECTOR_SIZE 912 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 913 #endif 914 915 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) 916 #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) 917 #define SECTOR_MASK (PAGE_SECTORS - 1) 918 919 /* 920 * blk_rq_pos() : the current sector 921 * blk_rq_bytes() : bytes left in the entire request 922 * blk_rq_cur_bytes() : bytes left in the current segment 923 * blk_rq_err_bytes() : bytes left till the next error boundary 924 * blk_rq_sectors() : sectors left in the entire request 925 * blk_rq_cur_sectors() : sectors left in the current segment 926 * blk_rq_stats_sectors() : sectors of the entire request used for stats 927 */ 928 static inline sector_t blk_rq_pos(const struct request *rq) 929 { 930 return rq->__sector; 931 } 932 933 static inline unsigned int blk_rq_bytes(const struct request *rq) 934 { 935 return rq->__data_len; 936 } 937 938 static inline int blk_rq_cur_bytes(const struct request *rq) 939 { 940 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 941 } 942 943 extern unsigned int blk_rq_err_bytes(const struct request *rq); 944 945 static inline unsigned int blk_rq_sectors(const struct request *rq) 946 { 947 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 948 } 949 950 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 951 { 952 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 953 } 954 955 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 956 { 957 return rq->stats_sectors; 958 } 959 960 #ifdef CONFIG_BLK_DEV_ZONED 961 962 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 963 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 964 965 static inline unsigned int bio_zone_no(struct bio *bio) 966 { 967 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 968 bio->bi_iter.bi_sector); 969 } 970 971 static inline unsigned int bio_zone_is_seq(struct bio *bio) 972 { 973 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 974 bio->bi_iter.bi_sector); 975 } 976 977 static inline unsigned int blk_rq_zone_no(struct request *rq) 978 { 979 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 980 } 981 982 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 983 { 984 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 985 } 986 #endif /* CONFIG_BLK_DEV_ZONED */ 987 988 /* 989 * Some commands like WRITE SAME have a payload or data transfer size which 990 * is different from the size of the request. Any driver that supports such 991 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 992 * calculate the data transfer size. 993 */ 994 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 995 { 996 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 997 return rq->special_vec.bv_len; 998 return blk_rq_bytes(rq); 999 } 1000 1001 /* 1002 * Return the first full biovec in the request. The caller needs to check that 1003 * there are any bvecs before calling this helper. 1004 */ 1005 static inline struct bio_vec req_bvec(struct request *rq) 1006 { 1007 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1008 return rq->special_vec; 1009 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1010 } 1011 1012 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1013 int op) 1014 { 1015 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1016 return min(q->limits.max_discard_sectors, 1017 UINT_MAX >> SECTOR_SHIFT); 1018 1019 if (unlikely(op == REQ_OP_WRITE_SAME)) 1020 return q->limits.max_write_same_sectors; 1021 1022 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1023 return q->limits.max_write_zeroes_sectors; 1024 1025 return q->limits.max_sectors; 1026 } 1027 1028 /* 1029 * Return maximum size of a request at given offset. Only valid for 1030 * file system requests. 1031 */ 1032 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1033 sector_t offset, 1034 unsigned int chunk_sectors) 1035 { 1036 if (!chunk_sectors) { 1037 if (q->limits.chunk_sectors) 1038 chunk_sectors = q->limits.chunk_sectors; 1039 else 1040 return q->limits.max_sectors; 1041 } 1042 1043 if (likely(is_power_of_2(chunk_sectors))) 1044 chunk_sectors -= offset & (chunk_sectors - 1); 1045 else 1046 chunk_sectors -= sector_div(offset, chunk_sectors); 1047 1048 return min(q->limits.max_sectors, chunk_sectors); 1049 } 1050 1051 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1052 sector_t offset) 1053 { 1054 struct request_queue *q = rq->q; 1055 1056 if (blk_rq_is_passthrough(rq)) 1057 return q->limits.max_hw_sectors; 1058 1059 if (!q->limits.chunk_sectors || 1060 req_op(rq) == REQ_OP_DISCARD || 1061 req_op(rq) == REQ_OP_SECURE_ERASE) 1062 return blk_queue_get_max_sectors(q, req_op(rq)); 1063 1064 return min(blk_max_size_offset(q, offset, 0), 1065 blk_queue_get_max_sectors(q, req_op(rq))); 1066 } 1067 1068 static inline unsigned int blk_rq_count_bios(struct request *rq) 1069 { 1070 unsigned int nr_bios = 0; 1071 struct bio *bio; 1072 1073 __rq_for_each_bio(bio, rq) 1074 nr_bios++; 1075 1076 return nr_bios; 1077 } 1078 1079 void blk_steal_bios(struct bio_list *list, struct request *rq); 1080 1081 /* 1082 * Request completion related functions. 1083 * 1084 * blk_update_request() completes given number of bytes and updates 1085 * the request without completing it. 1086 */ 1087 extern bool blk_update_request(struct request *rq, blk_status_t error, 1088 unsigned int nr_bytes); 1089 1090 extern void blk_abort_request(struct request *); 1091 1092 /* 1093 * Access functions for manipulating queue properties 1094 */ 1095 extern void blk_cleanup_queue(struct request_queue *); 1096 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1097 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1098 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1099 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1100 extern void blk_queue_max_discard_segments(struct request_queue *, 1101 unsigned short); 1102 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1103 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1104 unsigned int max_discard_sectors); 1105 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1106 unsigned int max_write_same_sectors); 1107 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1108 unsigned int max_write_same_sectors); 1109 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1110 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1111 unsigned int max_zone_append_sectors); 1112 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1113 void blk_queue_zone_write_granularity(struct request_queue *q, 1114 unsigned int size); 1115 extern void blk_queue_alignment_offset(struct request_queue *q, 1116 unsigned int alignment); 1117 void disk_update_readahead(struct gendisk *disk); 1118 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1119 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1120 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1121 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1122 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1123 extern void blk_set_default_limits(struct queue_limits *lim); 1124 extern void blk_set_stacking_limits(struct queue_limits *lim); 1125 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1126 sector_t offset); 1127 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1128 sector_t offset); 1129 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1130 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1131 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1132 extern void blk_queue_dma_alignment(struct request_queue *, int); 1133 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1134 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1135 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1136 extern void blk_queue_required_elevator_features(struct request_queue *q, 1137 unsigned int features); 1138 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1139 struct device *dev); 1140 1141 /* 1142 * Number of physical segments as sent to the device. 1143 * 1144 * Normally this is the number of discontiguous data segments sent by the 1145 * submitter. But for data-less command like discard we might have no 1146 * actual data segments submitted, but the driver might have to add it's 1147 * own special payload. In that case we still return 1 here so that this 1148 * special payload will be mapped. 1149 */ 1150 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1151 { 1152 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1153 return 1; 1154 return rq->nr_phys_segments; 1155 } 1156 1157 /* 1158 * Number of discard segments (or ranges) the driver needs to fill in. 1159 * Each discard bio merged into a request is counted as one segment. 1160 */ 1161 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1162 { 1163 return max_t(unsigned short, rq->nr_phys_segments, 1); 1164 } 1165 1166 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1167 struct scatterlist *sglist, struct scatterlist **last_sg); 1168 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1169 struct scatterlist *sglist) 1170 { 1171 struct scatterlist *last_sg = NULL; 1172 1173 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1174 } 1175 extern void blk_dump_rq_flags(struct request *, char *); 1176 1177 bool __must_check blk_get_queue(struct request_queue *); 1178 extern void blk_put_queue(struct request_queue *); 1179 extern void blk_set_queue_dying(struct request_queue *); 1180 1181 #ifdef CONFIG_BLOCK 1182 /* 1183 * blk_plug permits building a queue of related requests by holding the I/O 1184 * fragments for a short period. This allows merging of sequential requests 1185 * into single larger request. As the requests are moved from a per-task list to 1186 * the device's request_queue in a batch, this results in improved scalability 1187 * as the lock contention for request_queue lock is reduced. 1188 * 1189 * It is ok not to disable preemption when adding the request to the plug list 1190 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1191 * the plug list when the task sleeps by itself. For details, please see 1192 * schedule() where blk_schedule_flush_plug() is called. 1193 */ 1194 struct blk_plug { 1195 struct list_head mq_list; /* blk-mq requests */ 1196 struct list_head cb_list; /* md requires an unplug callback */ 1197 unsigned short rq_count; 1198 bool multiple_queues; 1199 bool nowait; 1200 }; 1201 #define BLK_MAX_REQUEST_COUNT 16 1202 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1203 1204 struct blk_plug_cb; 1205 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1206 struct blk_plug_cb { 1207 struct list_head list; 1208 blk_plug_cb_fn callback; 1209 void *data; 1210 }; 1211 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1212 void *data, int size); 1213 extern void blk_start_plug(struct blk_plug *); 1214 extern void blk_finish_plug(struct blk_plug *); 1215 extern void blk_flush_plug_list(struct blk_plug *, bool); 1216 1217 static inline void blk_flush_plug(struct task_struct *tsk) 1218 { 1219 struct blk_plug *plug = tsk->plug; 1220 1221 if (plug) 1222 blk_flush_plug_list(plug, false); 1223 } 1224 1225 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1226 { 1227 struct blk_plug *plug = tsk->plug; 1228 1229 if (plug) 1230 blk_flush_plug_list(plug, true); 1231 } 1232 1233 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1234 { 1235 struct blk_plug *plug = tsk->plug; 1236 1237 return plug && 1238 (!list_empty(&plug->mq_list) || 1239 !list_empty(&plug->cb_list)); 1240 } 1241 1242 int blkdev_issue_flush(struct block_device *bdev); 1243 long nr_blockdev_pages(void); 1244 #else /* CONFIG_BLOCK */ 1245 struct blk_plug { 1246 }; 1247 1248 static inline void blk_start_plug(struct blk_plug *plug) 1249 { 1250 } 1251 1252 static inline void blk_finish_plug(struct blk_plug *plug) 1253 { 1254 } 1255 1256 static inline void blk_flush_plug(struct task_struct *task) 1257 { 1258 } 1259 1260 static inline void blk_schedule_flush_plug(struct task_struct *task) 1261 { 1262 } 1263 1264 1265 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1266 { 1267 return false; 1268 } 1269 1270 static inline int blkdev_issue_flush(struct block_device *bdev) 1271 { 1272 return 0; 1273 } 1274 1275 static inline long nr_blockdev_pages(void) 1276 { 1277 return 0; 1278 } 1279 #endif /* CONFIG_BLOCK */ 1280 1281 extern void blk_io_schedule(void); 1282 1283 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1284 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1285 1286 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1287 1288 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1289 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1290 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1291 sector_t nr_sects, gfp_t gfp_mask, int flags, 1292 struct bio **biop); 1293 1294 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1295 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1296 1297 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1298 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1299 unsigned flags); 1300 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1301 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1302 1303 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1304 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1305 { 1306 return blkdev_issue_discard(sb->s_bdev, 1307 block << (sb->s_blocksize_bits - 1308 SECTOR_SHIFT), 1309 nr_blocks << (sb->s_blocksize_bits - 1310 SECTOR_SHIFT), 1311 gfp_mask, flags); 1312 } 1313 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1314 sector_t nr_blocks, gfp_t gfp_mask) 1315 { 1316 return blkdev_issue_zeroout(sb->s_bdev, 1317 block << (sb->s_blocksize_bits - 1318 SECTOR_SHIFT), 1319 nr_blocks << (sb->s_blocksize_bits - 1320 SECTOR_SHIFT), 1321 gfp_mask, 0); 1322 } 1323 1324 static inline bool bdev_is_partition(struct block_device *bdev) 1325 { 1326 return bdev->bd_partno; 1327 } 1328 1329 enum blk_default_limits { 1330 BLK_MAX_SEGMENTS = 128, 1331 BLK_SAFE_MAX_SECTORS = 255, 1332 BLK_DEF_MAX_SECTORS = 2560, 1333 BLK_MAX_SEGMENT_SIZE = 65536, 1334 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1335 }; 1336 1337 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1338 { 1339 return q->limits.seg_boundary_mask; 1340 } 1341 1342 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1343 { 1344 return q->limits.virt_boundary_mask; 1345 } 1346 1347 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1348 { 1349 return q->limits.max_sectors; 1350 } 1351 1352 static inline unsigned int queue_max_bytes(struct request_queue *q) 1353 { 1354 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1355 } 1356 1357 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1358 { 1359 return q->limits.max_hw_sectors; 1360 } 1361 1362 static inline unsigned short queue_max_segments(const struct request_queue *q) 1363 { 1364 return q->limits.max_segments; 1365 } 1366 1367 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1368 { 1369 return q->limits.max_discard_segments; 1370 } 1371 1372 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1373 { 1374 return q->limits.max_segment_size; 1375 } 1376 1377 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1378 { 1379 1380 const struct queue_limits *l = &q->limits; 1381 1382 return min(l->max_zone_append_sectors, l->max_sectors); 1383 } 1384 1385 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1386 { 1387 int retval = 512; 1388 1389 if (q && q->limits.logical_block_size) 1390 retval = q->limits.logical_block_size; 1391 1392 return retval; 1393 } 1394 1395 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1396 { 1397 return queue_logical_block_size(bdev_get_queue(bdev)); 1398 } 1399 1400 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1401 { 1402 return q->limits.physical_block_size; 1403 } 1404 1405 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1406 { 1407 return queue_physical_block_size(bdev_get_queue(bdev)); 1408 } 1409 1410 static inline unsigned int queue_io_min(const struct request_queue *q) 1411 { 1412 return q->limits.io_min; 1413 } 1414 1415 static inline int bdev_io_min(struct block_device *bdev) 1416 { 1417 return queue_io_min(bdev_get_queue(bdev)); 1418 } 1419 1420 static inline unsigned int queue_io_opt(const struct request_queue *q) 1421 { 1422 return q->limits.io_opt; 1423 } 1424 1425 static inline int bdev_io_opt(struct block_device *bdev) 1426 { 1427 return queue_io_opt(bdev_get_queue(bdev)); 1428 } 1429 1430 static inline unsigned int 1431 queue_zone_write_granularity(const struct request_queue *q) 1432 { 1433 return q->limits.zone_write_granularity; 1434 } 1435 1436 static inline unsigned int 1437 bdev_zone_write_granularity(struct block_device *bdev) 1438 { 1439 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1440 } 1441 1442 static inline int queue_alignment_offset(const struct request_queue *q) 1443 { 1444 if (q->limits.misaligned) 1445 return -1; 1446 1447 return q->limits.alignment_offset; 1448 } 1449 1450 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1451 { 1452 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1453 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1454 << SECTOR_SHIFT; 1455 1456 return (granularity + lim->alignment_offset - alignment) % granularity; 1457 } 1458 1459 static inline int bdev_alignment_offset(struct block_device *bdev) 1460 { 1461 struct request_queue *q = bdev_get_queue(bdev); 1462 1463 if (q->limits.misaligned) 1464 return -1; 1465 if (bdev_is_partition(bdev)) 1466 return queue_limit_alignment_offset(&q->limits, 1467 bdev->bd_start_sect); 1468 return q->limits.alignment_offset; 1469 } 1470 1471 static inline int queue_discard_alignment(const struct request_queue *q) 1472 { 1473 if (q->limits.discard_misaligned) 1474 return -1; 1475 1476 return q->limits.discard_alignment; 1477 } 1478 1479 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1480 { 1481 unsigned int alignment, granularity, offset; 1482 1483 if (!lim->max_discard_sectors) 1484 return 0; 1485 1486 /* Why are these in bytes, not sectors? */ 1487 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1488 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1489 if (!granularity) 1490 return 0; 1491 1492 /* Offset of the partition start in 'granularity' sectors */ 1493 offset = sector_div(sector, granularity); 1494 1495 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1496 offset = (granularity + alignment - offset) % granularity; 1497 1498 /* Turn it back into bytes, gaah */ 1499 return offset << SECTOR_SHIFT; 1500 } 1501 1502 /* 1503 * Two cases of handling DISCARD merge: 1504 * If max_discard_segments > 1, the driver takes every bio 1505 * as a range and send them to controller together. The ranges 1506 * needn't to be contiguous. 1507 * Otherwise, the bios/requests will be handled as same as 1508 * others which should be contiguous. 1509 */ 1510 static inline bool blk_discard_mergable(struct request *req) 1511 { 1512 if (req_op(req) == REQ_OP_DISCARD && 1513 queue_max_discard_segments(req->q) > 1) 1514 return true; 1515 return false; 1516 } 1517 1518 static inline int bdev_discard_alignment(struct block_device *bdev) 1519 { 1520 struct request_queue *q = bdev_get_queue(bdev); 1521 1522 if (bdev_is_partition(bdev)) 1523 return queue_limit_discard_alignment(&q->limits, 1524 bdev->bd_start_sect); 1525 return q->limits.discard_alignment; 1526 } 1527 1528 static inline unsigned int bdev_write_same(struct block_device *bdev) 1529 { 1530 struct request_queue *q = bdev_get_queue(bdev); 1531 1532 if (q) 1533 return q->limits.max_write_same_sectors; 1534 1535 return 0; 1536 } 1537 1538 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1539 { 1540 struct request_queue *q = bdev_get_queue(bdev); 1541 1542 if (q) 1543 return q->limits.max_write_zeroes_sectors; 1544 1545 return 0; 1546 } 1547 1548 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1549 { 1550 struct request_queue *q = bdev_get_queue(bdev); 1551 1552 if (q) 1553 return blk_queue_zoned_model(q); 1554 1555 return BLK_ZONED_NONE; 1556 } 1557 1558 static inline bool bdev_is_zoned(struct block_device *bdev) 1559 { 1560 struct request_queue *q = bdev_get_queue(bdev); 1561 1562 if (q) 1563 return blk_queue_is_zoned(q); 1564 1565 return false; 1566 } 1567 1568 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1569 { 1570 struct request_queue *q = bdev_get_queue(bdev); 1571 1572 if (q) 1573 return blk_queue_zone_sectors(q); 1574 return 0; 1575 } 1576 1577 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1578 { 1579 struct request_queue *q = bdev_get_queue(bdev); 1580 1581 if (q) 1582 return queue_max_open_zones(q); 1583 return 0; 1584 } 1585 1586 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1587 { 1588 struct request_queue *q = bdev_get_queue(bdev); 1589 1590 if (q) 1591 return queue_max_active_zones(q); 1592 return 0; 1593 } 1594 1595 static inline int queue_dma_alignment(const struct request_queue *q) 1596 { 1597 return q ? q->dma_alignment : 511; 1598 } 1599 1600 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1601 unsigned int len) 1602 { 1603 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1604 return !(addr & alignment) && !(len & alignment); 1605 } 1606 1607 /* assumes size > 256 */ 1608 static inline unsigned int blksize_bits(unsigned int size) 1609 { 1610 unsigned int bits = 8; 1611 do { 1612 bits++; 1613 size >>= 1; 1614 } while (size > 256); 1615 return bits; 1616 } 1617 1618 static inline unsigned int block_size(struct block_device *bdev) 1619 { 1620 return 1 << bdev->bd_inode->i_blkbits; 1621 } 1622 1623 int kblockd_schedule_work(struct work_struct *work); 1624 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1625 1626 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1627 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1628 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1629 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1630 1631 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1632 1633 enum blk_integrity_flags { 1634 BLK_INTEGRITY_VERIFY = 1 << 0, 1635 BLK_INTEGRITY_GENERATE = 1 << 1, 1636 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1637 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1638 }; 1639 1640 struct blk_integrity_iter { 1641 void *prot_buf; 1642 void *data_buf; 1643 sector_t seed; 1644 unsigned int data_size; 1645 unsigned short interval; 1646 const char *disk_name; 1647 }; 1648 1649 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1650 typedef void (integrity_prepare_fn) (struct request *); 1651 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1652 1653 struct blk_integrity_profile { 1654 integrity_processing_fn *generate_fn; 1655 integrity_processing_fn *verify_fn; 1656 integrity_prepare_fn *prepare_fn; 1657 integrity_complete_fn *complete_fn; 1658 const char *name; 1659 }; 1660 1661 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1662 extern void blk_integrity_unregister(struct gendisk *); 1663 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1664 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1665 struct scatterlist *); 1666 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1667 1668 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1669 { 1670 struct blk_integrity *bi = &disk->queue->integrity; 1671 1672 if (!bi->profile) 1673 return NULL; 1674 1675 return bi; 1676 } 1677 1678 static inline 1679 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1680 { 1681 return blk_get_integrity(bdev->bd_disk); 1682 } 1683 1684 static inline bool 1685 blk_integrity_queue_supports_integrity(struct request_queue *q) 1686 { 1687 return q->integrity.profile; 1688 } 1689 1690 static inline bool blk_integrity_rq(struct request *rq) 1691 { 1692 return rq->cmd_flags & REQ_INTEGRITY; 1693 } 1694 1695 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1696 unsigned int segs) 1697 { 1698 q->limits.max_integrity_segments = segs; 1699 } 1700 1701 static inline unsigned short 1702 queue_max_integrity_segments(const struct request_queue *q) 1703 { 1704 return q->limits.max_integrity_segments; 1705 } 1706 1707 /** 1708 * bio_integrity_intervals - Return number of integrity intervals for a bio 1709 * @bi: blk_integrity profile for device 1710 * @sectors: Size of the bio in 512-byte sectors 1711 * 1712 * Description: The block layer calculates everything in 512 byte 1713 * sectors but integrity metadata is done in terms of the data integrity 1714 * interval size of the storage device. Convert the block layer sectors 1715 * to the appropriate number of integrity intervals. 1716 */ 1717 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1718 unsigned int sectors) 1719 { 1720 return sectors >> (bi->interval_exp - 9); 1721 } 1722 1723 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1724 unsigned int sectors) 1725 { 1726 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1727 } 1728 1729 /* 1730 * Return the first bvec that contains integrity data. Only drivers that are 1731 * limited to a single integrity segment should use this helper. 1732 */ 1733 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1734 { 1735 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1736 return NULL; 1737 return rq->bio->bi_integrity->bip_vec; 1738 } 1739 1740 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1741 1742 struct bio; 1743 struct block_device; 1744 struct gendisk; 1745 struct blk_integrity; 1746 1747 static inline int blk_integrity_rq(struct request *rq) 1748 { 1749 return 0; 1750 } 1751 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1752 struct bio *b) 1753 { 1754 return 0; 1755 } 1756 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1757 struct bio *b, 1758 struct scatterlist *s) 1759 { 1760 return 0; 1761 } 1762 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1763 { 1764 return NULL; 1765 } 1766 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1767 { 1768 return NULL; 1769 } 1770 static inline bool 1771 blk_integrity_queue_supports_integrity(struct request_queue *q) 1772 { 1773 return false; 1774 } 1775 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1776 { 1777 return 0; 1778 } 1779 static inline void blk_integrity_register(struct gendisk *d, 1780 struct blk_integrity *b) 1781 { 1782 } 1783 static inline void blk_integrity_unregister(struct gendisk *d) 1784 { 1785 } 1786 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1787 unsigned int segs) 1788 { 1789 } 1790 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1791 { 1792 return 0; 1793 } 1794 1795 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1796 unsigned int sectors) 1797 { 1798 return 0; 1799 } 1800 1801 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1802 unsigned int sectors) 1803 { 1804 return 0; 1805 } 1806 1807 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1808 { 1809 return NULL; 1810 } 1811 1812 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1813 1814 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1815 1816 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1817 1818 void blk_ksm_unregister(struct request_queue *q); 1819 1820 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1821 1822 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1823 struct request_queue *q) 1824 { 1825 return true; 1826 } 1827 1828 static inline void blk_ksm_unregister(struct request_queue *q) { } 1829 1830 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1831 1832 1833 struct block_device_operations { 1834 blk_qc_t (*submit_bio) (struct bio *bio); 1835 int (*open) (struct block_device *, fmode_t); 1836 void (*release) (struct gendisk *, fmode_t); 1837 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1838 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1839 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1840 unsigned int (*check_events) (struct gendisk *disk, 1841 unsigned int clearing); 1842 void (*unlock_native_capacity) (struct gendisk *); 1843 int (*getgeo)(struct block_device *, struct hd_geometry *); 1844 int (*set_read_only)(struct block_device *bdev, bool ro); 1845 /* this callback is with swap_lock and sometimes page table lock held */ 1846 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1847 int (*report_zones)(struct gendisk *, sector_t sector, 1848 unsigned int nr_zones, report_zones_cb cb, void *data); 1849 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1850 struct module *owner; 1851 const struct pr_ops *pr_ops; 1852 1853 /* 1854 * Special callback for probing GPT entry at a given sector. 1855 * Needed by Android devices, used by GPT scanner and MMC blk 1856 * driver. 1857 */ 1858 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1859 }; 1860 1861 #ifdef CONFIG_COMPAT 1862 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1863 unsigned int, unsigned long); 1864 #else 1865 #define blkdev_compat_ptr_ioctl NULL 1866 #endif 1867 1868 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1869 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1870 struct writeback_control *); 1871 1872 #ifdef CONFIG_BLK_DEV_ZONED 1873 bool blk_req_needs_zone_write_lock(struct request *rq); 1874 bool blk_req_zone_write_trylock(struct request *rq); 1875 void __blk_req_zone_write_lock(struct request *rq); 1876 void __blk_req_zone_write_unlock(struct request *rq); 1877 1878 static inline void blk_req_zone_write_lock(struct request *rq) 1879 { 1880 if (blk_req_needs_zone_write_lock(rq)) 1881 __blk_req_zone_write_lock(rq); 1882 } 1883 1884 static inline void blk_req_zone_write_unlock(struct request *rq) 1885 { 1886 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1887 __blk_req_zone_write_unlock(rq); 1888 } 1889 1890 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1891 { 1892 return rq->q->seq_zones_wlock && 1893 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1894 } 1895 1896 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1897 { 1898 if (!blk_req_needs_zone_write_lock(rq)) 1899 return true; 1900 return !blk_req_zone_is_write_locked(rq); 1901 } 1902 #else 1903 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1904 { 1905 return false; 1906 } 1907 1908 static inline void blk_req_zone_write_lock(struct request *rq) 1909 { 1910 } 1911 1912 static inline void blk_req_zone_write_unlock(struct request *rq) 1913 { 1914 } 1915 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1916 { 1917 return false; 1918 } 1919 1920 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1921 { 1922 return true; 1923 } 1924 #endif /* CONFIG_BLK_DEV_ZONED */ 1925 1926 static inline void blk_wake_io_task(struct task_struct *waiter) 1927 { 1928 /* 1929 * If we're polling, the task itself is doing the completions. For 1930 * that case, we don't need to signal a wakeup, it's enough to just 1931 * mark us as RUNNING. 1932 */ 1933 if (waiter == current) 1934 __set_current_state(TASK_RUNNING); 1935 else 1936 wake_up_process(waiter); 1937 } 1938 1939 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1940 unsigned int op); 1941 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1942 unsigned long start_time); 1943 1944 unsigned long bio_start_io_acct(struct bio *bio); 1945 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1946 struct block_device *orig_bdev); 1947 1948 /** 1949 * bio_end_io_acct - end I/O accounting for bio based drivers 1950 * @bio: bio to end account for 1951 * @start: start time returned by bio_start_io_acct() 1952 */ 1953 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1954 { 1955 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1956 } 1957 1958 int bdev_read_only(struct block_device *bdev); 1959 int set_blocksize(struct block_device *bdev, int size); 1960 1961 const char *bdevname(struct block_device *bdev, char *buffer); 1962 int lookup_bdev(const char *pathname, dev_t *dev); 1963 1964 void blkdev_show(struct seq_file *seqf, off_t offset); 1965 1966 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1967 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1968 #ifdef CONFIG_BLOCK 1969 #define BLKDEV_MAJOR_MAX 512 1970 #else 1971 #define BLKDEV_MAJOR_MAX 0 1972 #endif 1973 1974 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1975 void *holder); 1976 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1977 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1978 void bd_abort_claiming(struct block_device *bdev, void *holder); 1979 void blkdev_put(struct block_device *bdev, fmode_t mode); 1980 1981 /* just for blk-cgroup, don't use elsewhere */ 1982 struct block_device *blkdev_get_no_open(dev_t dev); 1983 void blkdev_put_no_open(struct block_device *bdev); 1984 1985 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1986 void bdev_add(struct block_device *bdev, dev_t dev); 1987 struct block_device *I_BDEV(struct inode *inode); 1988 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1989 loff_t lend); 1990 1991 #ifdef CONFIG_BLOCK 1992 void invalidate_bdev(struct block_device *bdev); 1993 int sync_blockdev(struct block_device *bdev); 1994 #else 1995 static inline void invalidate_bdev(struct block_device *bdev) 1996 { 1997 } 1998 static inline int sync_blockdev(struct block_device *bdev) 1999 { 2000 return 0; 2001 } 2002 #endif 2003 int fsync_bdev(struct block_device *bdev); 2004 2005 int freeze_bdev(struct block_device *bdev); 2006 int thaw_bdev(struct block_device *bdev); 2007 2008 #endif /* _LINUX_BLKDEV_H */ 2009