1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/srcu.h> 26 #include <linux/uuid.h> 27 #include <linux/xarray.h> 28 29 struct module; 30 struct request_queue; 31 struct elevator_queue; 32 struct blk_trace; 33 struct request; 34 struct sg_io_hdr; 35 struct blkcg_gq; 36 struct blk_flush_queue; 37 struct kiocb; 38 struct pr_ops; 39 struct rq_qos; 40 struct blk_queue_stats; 41 struct blk_stat_callback; 42 struct blk_crypto_profile; 43 44 extern const struct device_type disk_type; 45 extern struct device_type part_type; 46 extern struct class block_class; 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 6 59 60 #define DISK_MAX_PARTS 256 61 #define DISK_NAME_LEN 32 62 63 #define PARTITION_META_INFO_VOLNAMELTH 64 64 /* 65 * Enough for the string representation of any kind of UUID plus NULL. 66 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 67 */ 68 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 69 70 struct partition_meta_info { 71 char uuid[PARTITION_META_INFO_UUIDLTH]; 72 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 73 }; 74 75 /** 76 * DOC: genhd capability flags 77 * 78 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 79 * removable media. When set, the device remains present even when media is not 80 * inserted. Shall not be set for devices which are removed entirely when the 81 * media is removed. 82 * 83 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 84 * doesn't appear in sysfs, and can't be opened from userspace or using 85 * blkdev_get*. Used for the underlying components of multipath devices. 86 * 87 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 88 * scan for partitions from add_disk, and users can't add partitions manually. 89 * 90 */ 91 enum { 92 GENHD_FL_REMOVABLE = 1 << 0, 93 GENHD_FL_HIDDEN = 1 << 1, 94 GENHD_FL_NO_PART = 1 << 2, 95 }; 96 97 enum { 98 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 99 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 100 }; 101 102 enum { 103 /* Poll even if events_poll_msecs is unset */ 104 DISK_EVENT_FLAG_POLL = 1 << 0, 105 /* Forward events to udev */ 106 DISK_EVENT_FLAG_UEVENT = 1 << 1, 107 /* Block event polling when open for exclusive write */ 108 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 109 }; 110 111 struct disk_events; 112 struct badblocks; 113 114 struct blk_integrity { 115 const struct blk_integrity_profile *profile; 116 unsigned char flags; 117 unsigned char tuple_size; 118 unsigned char interval_exp; 119 unsigned char tag_size; 120 }; 121 122 struct gendisk { 123 /* 124 * major/first_minor/minors should not be set by any new driver, the 125 * block core will take care of allocating them automatically. 126 */ 127 int major; 128 int first_minor; 129 int minors; 130 131 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 132 133 unsigned short events; /* supported events */ 134 unsigned short event_flags; /* flags related to event processing */ 135 136 struct xarray part_tbl; 137 struct block_device *part0; 138 139 const struct block_device_operations *fops; 140 struct request_queue *queue; 141 void *private_data; 142 143 int flags; 144 unsigned long state; 145 #define GD_NEED_PART_SCAN 0 146 #define GD_READ_ONLY 1 147 #define GD_DEAD 2 148 #define GD_NATIVE_CAPACITY 3 149 #define GD_ADDED 4 150 #define GD_SUPPRESS_PART_SCAN 5 151 152 struct mutex open_mutex; /* open/close mutex */ 153 unsigned open_partitions; /* number of open partitions */ 154 155 struct backing_dev_info *bdi; 156 struct kobject *slave_dir; 157 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 158 struct list_head slave_bdevs; 159 #endif 160 struct timer_rand_state *random; 161 atomic_t sync_io; /* RAID */ 162 struct disk_events *ev; 163 #ifdef CONFIG_BLK_DEV_INTEGRITY 164 struct kobject integrity_kobj; 165 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 166 #if IS_ENABLED(CONFIG_CDROM) 167 struct cdrom_device_info *cdi; 168 #endif 169 int node_id; 170 struct badblocks *bb; 171 struct lockdep_map lockdep_map; 172 u64 diskseq; 173 }; 174 175 static inline bool disk_live(struct gendisk *disk) 176 { 177 return !inode_unhashed(disk->part0->bd_inode); 178 } 179 180 /** 181 * disk_openers - returns how many openers are there for a disk 182 * @disk: disk to check 183 * 184 * This returns the number of openers for a disk. Note that this value is only 185 * stable if disk->open_mutex is held. 186 * 187 * Note: Due to a quirk in the block layer open code, each open partition is 188 * only counted once even if there are multiple openers. 189 */ 190 static inline unsigned int disk_openers(struct gendisk *disk) 191 { 192 return atomic_read(&disk->part0->bd_openers); 193 } 194 195 /* 196 * The gendisk is refcounted by the part0 block_device, and the bd_device 197 * therein is also used for device model presentation in sysfs. 198 */ 199 #define dev_to_disk(device) \ 200 (dev_to_bdev(device)->bd_disk) 201 #define disk_to_dev(disk) \ 202 (&((disk)->part0->bd_device)) 203 204 #if IS_REACHABLE(CONFIG_CDROM) 205 #define disk_to_cdi(disk) ((disk)->cdi) 206 #else 207 #define disk_to_cdi(disk) NULL 208 #endif 209 210 static inline dev_t disk_devt(struct gendisk *disk) 211 { 212 return MKDEV(disk->major, disk->first_minor); 213 } 214 215 static inline int blk_validate_block_size(unsigned long bsize) 216 { 217 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 218 return -EINVAL; 219 220 return 0; 221 } 222 223 static inline bool blk_op_is_passthrough(unsigned int op) 224 { 225 op &= REQ_OP_MASK; 226 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 227 } 228 229 /* 230 * Zoned block device models (zoned limit). 231 * 232 * Note: This needs to be ordered from the least to the most severe 233 * restrictions for the inheritance in blk_stack_limits() to work. 234 */ 235 enum blk_zoned_model { 236 BLK_ZONED_NONE = 0, /* Regular block device */ 237 BLK_ZONED_HA, /* Host-aware zoned block device */ 238 BLK_ZONED_HM, /* Host-managed zoned block device */ 239 }; 240 241 /* 242 * BLK_BOUNCE_NONE: never bounce (default) 243 * BLK_BOUNCE_HIGH: bounce all highmem pages 244 */ 245 enum blk_bounce { 246 BLK_BOUNCE_NONE, 247 BLK_BOUNCE_HIGH, 248 }; 249 250 struct queue_limits { 251 enum blk_bounce bounce; 252 unsigned long seg_boundary_mask; 253 unsigned long virt_boundary_mask; 254 255 unsigned int max_hw_sectors; 256 unsigned int max_dev_sectors; 257 unsigned int chunk_sectors; 258 unsigned int max_sectors; 259 unsigned int max_segment_size; 260 unsigned int physical_block_size; 261 unsigned int logical_block_size; 262 unsigned int alignment_offset; 263 unsigned int io_min; 264 unsigned int io_opt; 265 unsigned int max_discard_sectors; 266 unsigned int max_hw_discard_sectors; 267 unsigned int max_secure_erase_sectors; 268 unsigned int max_write_zeroes_sectors; 269 unsigned int max_zone_append_sectors; 270 unsigned int discard_granularity; 271 unsigned int discard_alignment; 272 unsigned int zone_write_granularity; 273 274 unsigned short max_segments; 275 unsigned short max_integrity_segments; 276 unsigned short max_discard_segments; 277 278 unsigned char misaligned; 279 unsigned char discard_misaligned; 280 unsigned char raid_partial_stripes_expensive; 281 enum blk_zoned_model zoned; 282 }; 283 284 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 285 void *data); 286 287 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 288 289 #ifdef CONFIG_BLK_DEV_ZONED 290 291 #define BLK_ALL_ZONES ((unsigned int)-1) 292 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 293 unsigned int nr_zones, report_zones_cb cb, void *data); 294 unsigned int blkdev_nr_zones(struct gendisk *disk); 295 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 296 sector_t sectors, sector_t nr_sectors, 297 gfp_t gfp_mask); 298 int blk_revalidate_disk_zones(struct gendisk *disk, 299 void (*update_driver_data)(struct gendisk *disk)); 300 301 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 302 unsigned int cmd, unsigned long arg); 303 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 304 unsigned int cmd, unsigned long arg); 305 306 #else /* CONFIG_BLK_DEV_ZONED */ 307 308 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 309 { 310 return 0; 311 } 312 313 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 314 fmode_t mode, unsigned int cmd, 315 unsigned long arg) 316 { 317 return -ENOTTY; 318 } 319 320 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 321 fmode_t mode, unsigned int cmd, 322 unsigned long arg) 323 { 324 return -ENOTTY; 325 } 326 327 #endif /* CONFIG_BLK_DEV_ZONED */ 328 329 /* 330 * Independent access ranges: struct blk_independent_access_range describes 331 * a range of contiguous sectors that can be accessed using device command 332 * execution resources that are independent from the resources used for 333 * other access ranges. This is typically found with single-LUN multi-actuator 334 * HDDs where each access range is served by a different set of heads. 335 * The set of independent ranges supported by the device is defined using 336 * struct blk_independent_access_ranges. The independent ranges must not overlap 337 * and must include all sectors within the disk capacity (no sector holes 338 * allowed). 339 * For a device with multiple ranges, requests targeting sectors in different 340 * ranges can be executed in parallel. A request can straddle an access range 341 * boundary. 342 */ 343 struct blk_independent_access_range { 344 struct kobject kobj; 345 sector_t sector; 346 sector_t nr_sectors; 347 }; 348 349 struct blk_independent_access_ranges { 350 struct kobject kobj; 351 bool sysfs_registered; 352 unsigned int nr_ia_ranges; 353 struct blk_independent_access_range ia_range[]; 354 }; 355 356 struct request_queue { 357 struct request *last_merge; 358 struct elevator_queue *elevator; 359 360 struct percpu_ref q_usage_counter; 361 362 struct blk_queue_stats *stats; 363 struct rq_qos *rq_qos; 364 365 const struct blk_mq_ops *mq_ops; 366 367 /* sw queues */ 368 struct blk_mq_ctx __percpu *queue_ctx; 369 370 unsigned int queue_depth; 371 372 /* hw dispatch queues */ 373 struct xarray hctx_table; 374 unsigned int nr_hw_queues; 375 376 /* 377 * The queue owner gets to use this for whatever they like. 378 * ll_rw_blk doesn't touch it. 379 */ 380 void *queuedata; 381 382 /* 383 * various queue flags, see QUEUE_* below 384 */ 385 unsigned long queue_flags; 386 /* 387 * Number of contexts that have called blk_set_pm_only(). If this 388 * counter is above zero then only RQF_PM requests are processed. 389 */ 390 atomic_t pm_only; 391 392 /* 393 * ida allocated id for this queue. Used to index queues from 394 * ioctx. 395 */ 396 int id; 397 398 spinlock_t queue_lock; 399 400 struct gendisk *disk; 401 402 /* 403 * queue kobject 404 */ 405 struct kobject kobj; 406 407 /* 408 * mq queue kobject 409 */ 410 struct kobject *mq_kobj; 411 412 #ifdef CONFIG_BLK_DEV_INTEGRITY 413 struct blk_integrity integrity; 414 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 415 416 #ifdef CONFIG_PM 417 struct device *dev; 418 enum rpm_status rpm_status; 419 #endif 420 421 /* 422 * queue settings 423 */ 424 unsigned long nr_requests; /* Max # of requests */ 425 426 unsigned int dma_pad_mask; 427 unsigned int dma_alignment; 428 429 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 430 struct blk_crypto_profile *crypto_profile; 431 struct kobject *crypto_kobject; 432 #endif 433 434 unsigned int rq_timeout; 435 int poll_nsec; 436 437 struct blk_stat_callback *poll_cb; 438 struct blk_rq_stat *poll_stat; 439 440 struct timer_list timeout; 441 struct work_struct timeout_work; 442 443 atomic_t nr_active_requests_shared_tags; 444 445 struct blk_mq_tags *sched_shared_tags; 446 447 struct list_head icq_list; 448 #ifdef CONFIG_BLK_CGROUP 449 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 450 struct blkcg_gq *root_blkg; 451 struct list_head blkg_list; 452 #endif 453 454 struct queue_limits limits; 455 456 unsigned int required_elevator_features; 457 458 #ifdef CONFIG_BLK_DEV_ZONED 459 /* 460 * Zoned block device information for request dispatch control. 461 * nr_zones is the total number of zones of the device. This is always 462 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 463 * bits which indicates if a zone is conventional (bit set) or 464 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 465 * bits which indicates if a zone is write locked, that is, if a write 466 * request targeting the zone was dispatched. All three fields are 467 * initialized by the low level device driver (e.g. scsi/sd.c). 468 * Stacking drivers (device mappers) may or may not initialize 469 * these fields. 470 * 471 * Reads of this information must be protected with blk_queue_enter() / 472 * blk_queue_exit(). Modifying this information is only allowed while 473 * no requests are being processed. See also blk_mq_freeze_queue() and 474 * blk_mq_unfreeze_queue(). 475 */ 476 unsigned int nr_zones; 477 unsigned long *conv_zones_bitmap; 478 unsigned long *seq_zones_wlock; 479 unsigned int max_open_zones; 480 unsigned int max_active_zones; 481 #endif /* CONFIG_BLK_DEV_ZONED */ 482 483 int node; 484 #ifdef CONFIG_BLK_DEV_IO_TRACE 485 struct blk_trace __rcu *blk_trace; 486 #endif 487 /* 488 * for flush operations 489 */ 490 struct blk_flush_queue *fq; 491 492 struct list_head requeue_list; 493 spinlock_t requeue_lock; 494 struct delayed_work requeue_work; 495 496 struct mutex sysfs_lock; 497 struct mutex sysfs_dir_lock; 498 499 /* 500 * for reusing dead hctx instance in case of updating 501 * nr_hw_queues 502 */ 503 struct list_head unused_hctx_list; 504 spinlock_t unused_hctx_lock; 505 506 int mq_freeze_depth; 507 508 #ifdef CONFIG_BLK_DEV_THROTTLING 509 /* Throttle data */ 510 struct throtl_data *td; 511 #endif 512 struct rcu_head rcu_head; 513 wait_queue_head_t mq_freeze_wq; 514 /* 515 * Protect concurrent access to q_usage_counter by 516 * percpu_ref_kill() and percpu_ref_reinit(). 517 */ 518 struct mutex mq_freeze_lock; 519 520 int quiesce_depth; 521 522 struct blk_mq_tag_set *tag_set; 523 struct list_head tag_set_list; 524 struct bio_set bio_split; 525 526 struct dentry *debugfs_dir; 527 struct dentry *sched_debugfs_dir; 528 struct dentry *rqos_debugfs_dir; 529 /* 530 * Serializes all debugfs metadata operations using the above dentries. 531 */ 532 struct mutex debugfs_mutex; 533 534 bool mq_sysfs_init_done; 535 536 /* 537 * Independent sector access ranges. This is always NULL for 538 * devices that do not have multiple independent access ranges. 539 */ 540 struct blk_independent_access_ranges *ia_ranges; 541 542 /** 543 * @srcu: Sleepable RCU. Use as lock when type of the request queue 544 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member 545 */ 546 struct srcu_struct srcu[]; 547 }; 548 549 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 550 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 551 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 552 #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */ 553 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 554 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 555 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 556 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 557 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 558 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 559 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 560 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 561 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 562 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 563 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 564 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 565 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 566 #define QUEUE_FLAG_WC 17 /* Write back caching */ 567 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 568 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 569 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 570 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 571 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 572 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 573 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 574 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 575 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 576 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 577 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 578 579 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 580 (1 << QUEUE_FLAG_SAME_COMP) | \ 581 (1 << QUEUE_FLAG_NOWAIT)) 582 583 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 584 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 585 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 586 587 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 588 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 589 #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags) 590 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 591 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 592 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 593 #define blk_queue_noxmerges(q) \ 594 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 595 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 596 #define blk_queue_stable_writes(q) \ 597 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 598 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 599 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 600 #define blk_queue_zone_resetall(q) \ 601 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 602 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 603 #define blk_queue_pci_p2pdma(q) \ 604 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 605 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 606 #define blk_queue_rq_alloc_time(q) \ 607 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 608 #else 609 #define blk_queue_rq_alloc_time(q) false 610 #endif 611 612 #define blk_noretry_request(rq) \ 613 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 614 REQ_FAILFAST_DRIVER)) 615 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 616 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 617 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 618 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 619 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 620 621 extern void blk_set_pm_only(struct request_queue *q); 622 extern void blk_clear_pm_only(struct request_queue *q); 623 624 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 625 626 #define dma_map_bvec(dev, bv, dir, attrs) \ 627 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 628 (dir), (attrs)) 629 630 static inline bool queue_is_mq(struct request_queue *q) 631 { 632 return q->mq_ops; 633 } 634 635 #ifdef CONFIG_PM 636 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 637 { 638 return q->rpm_status; 639 } 640 #else 641 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 642 { 643 return RPM_ACTIVE; 644 } 645 #endif 646 647 static inline enum blk_zoned_model 648 blk_queue_zoned_model(struct request_queue *q) 649 { 650 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 651 return q->limits.zoned; 652 return BLK_ZONED_NONE; 653 } 654 655 static inline bool blk_queue_is_zoned(struct request_queue *q) 656 { 657 switch (blk_queue_zoned_model(q)) { 658 case BLK_ZONED_HA: 659 case BLK_ZONED_HM: 660 return true; 661 default: 662 return false; 663 } 664 } 665 666 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 667 { 668 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 669 } 670 671 #ifdef CONFIG_BLK_DEV_ZONED 672 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 673 { 674 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 675 } 676 677 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 678 sector_t sector) 679 { 680 if (!blk_queue_is_zoned(q)) 681 return 0; 682 return sector >> ilog2(q->limits.chunk_sectors); 683 } 684 685 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 686 sector_t sector) 687 { 688 if (!blk_queue_is_zoned(q)) 689 return false; 690 if (!q->conv_zones_bitmap) 691 return true; 692 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 693 } 694 695 static inline void blk_queue_max_open_zones(struct request_queue *q, 696 unsigned int max_open_zones) 697 { 698 q->max_open_zones = max_open_zones; 699 } 700 701 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 702 { 703 return q->max_open_zones; 704 } 705 706 static inline void blk_queue_max_active_zones(struct request_queue *q, 707 unsigned int max_active_zones) 708 { 709 q->max_active_zones = max_active_zones; 710 } 711 712 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 713 { 714 return q->max_active_zones; 715 } 716 #else /* CONFIG_BLK_DEV_ZONED */ 717 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 718 { 719 return 0; 720 } 721 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 722 sector_t sector) 723 { 724 return false; 725 } 726 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 727 sector_t sector) 728 { 729 return 0; 730 } 731 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 732 { 733 return 0; 734 } 735 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 736 { 737 return 0; 738 } 739 #endif /* CONFIG_BLK_DEV_ZONED */ 740 741 static inline unsigned int blk_queue_depth(struct request_queue *q) 742 { 743 if (q->queue_depth) 744 return q->queue_depth; 745 746 return q->nr_requests; 747 } 748 749 /* 750 * default timeout for SG_IO if none specified 751 */ 752 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 753 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 754 755 /* This should not be used directly - use rq_for_each_segment */ 756 #define for_each_bio(_bio) \ 757 for (; _bio; _bio = _bio->bi_next) 758 759 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 760 const struct attribute_group **groups); 761 static inline int __must_check add_disk(struct gendisk *disk) 762 { 763 return device_add_disk(NULL, disk, NULL); 764 } 765 void del_gendisk(struct gendisk *gp); 766 void invalidate_disk(struct gendisk *disk); 767 void set_disk_ro(struct gendisk *disk, bool read_only); 768 void disk_uevent(struct gendisk *disk, enum kobject_action action); 769 770 static inline int get_disk_ro(struct gendisk *disk) 771 { 772 return disk->part0->bd_read_only || 773 test_bit(GD_READ_ONLY, &disk->state); 774 } 775 776 static inline int bdev_read_only(struct block_device *bdev) 777 { 778 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 779 } 780 781 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 782 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 783 784 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 785 void rand_initialize_disk(struct gendisk *disk); 786 787 static inline sector_t get_start_sect(struct block_device *bdev) 788 { 789 return bdev->bd_start_sect; 790 } 791 792 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 793 { 794 return bdev->bd_nr_sectors; 795 } 796 797 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 798 { 799 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 800 } 801 802 static inline sector_t get_capacity(struct gendisk *disk) 803 { 804 return bdev_nr_sectors(disk->part0); 805 } 806 807 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 808 { 809 return bdev_nr_sectors(sb->s_bdev) >> 810 (sb->s_blocksize_bits - SECTOR_SHIFT); 811 } 812 813 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 814 815 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 816 struct lock_class_key *lkclass); 817 void put_disk(struct gendisk *disk); 818 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 819 820 /** 821 * blk_alloc_disk - allocate a gendisk structure 822 * @node_id: numa node to allocate on 823 * 824 * Allocate and pre-initialize a gendisk structure for use with BIO based 825 * drivers. 826 * 827 * Context: can sleep 828 */ 829 #define blk_alloc_disk(node_id) \ 830 ({ \ 831 static struct lock_class_key __key; \ 832 \ 833 __blk_alloc_disk(node_id, &__key); \ 834 }) 835 void blk_cleanup_disk(struct gendisk *disk); 836 837 int __register_blkdev(unsigned int major, const char *name, 838 void (*probe)(dev_t devt)); 839 #define register_blkdev(major, name) \ 840 __register_blkdev(major, name, NULL) 841 void unregister_blkdev(unsigned int major, const char *name); 842 843 bool bdev_check_media_change(struct block_device *bdev); 844 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 845 void set_capacity(struct gendisk *disk, sector_t size); 846 847 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 848 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 849 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 850 int bd_register_pending_holders(struct gendisk *disk); 851 #else 852 static inline int bd_link_disk_holder(struct block_device *bdev, 853 struct gendisk *disk) 854 { 855 return 0; 856 } 857 static inline void bd_unlink_disk_holder(struct block_device *bdev, 858 struct gendisk *disk) 859 { 860 } 861 static inline int bd_register_pending_holders(struct gendisk *disk) 862 { 863 return 0; 864 } 865 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 866 867 dev_t part_devt(struct gendisk *disk, u8 partno); 868 void inc_diskseq(struct gendisk *disk); 869 dev_t blk_lookup_devt(const char *name, int partno); 870 void blk_request_module(dev_t devt); 871 872 extern int blk_register_queue(struct gendisk *disk); 873 extern void blk_unregister_queue(struct gendisk *disk); 874 void submit_bio_noacct(struct bio *bio); 875 876 extern int blk_lld_busy(struct request_queue *q); 877 extern void blk_queue_split(struct bio **); 878 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 879 extern void blk_queue_exit(struct request_queue *q); 880 extern void blk_sync_queue(struct request_queue *q); 881 882 /* Helper to convert REQ_OP_XXX to its string format XXX */ 883 extern const char *blk_op_str(unsigned int op); 884 885 int blk_status_to_errno(blk_status_t status); 886 blk_status_t errno_to_blk_status(int errno); 887 888 /* only poll the hardware once, don't continue until a completion was found */ 889 #define BLK_POLL_ONESHOT (1 << 0) 890 /* do not sleep to wait for the expected completion time */ 891 #define BLK_POLL_NOSLEEP (1 << 1) 892 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 893 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 894 unsigned int flags); 895 896 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 897 { 898 return bdev->bd_queue; /* this is never NULL */ 899 } 900 901 #ifdef CONFIG_BLK_DEV_ZONED 902 903 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 904 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 905 906 static inline unsigned int bio_zone_no(struct bio *bio) 907 { 908 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 909 bio->bi_iter.bi_sector); 910 } 911 912 static inline unsigned int bio_zone_is_seq(struct bio *bio) 913 { 914 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 915 bio->bi_iter.bi_sector); 916 } 917 #endif /* CONFIG_BLK_DEV_ZONED */ 918 919 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 920 int op) 921 { 922 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 923 return min(q->limits.max_discard_sectors, 924 UINT_MAX >> SECTOR_SHIFT); 925 926 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 927 return q->limits.max_write_zeroes_sectors; 928 929 return q->limits.max_sectors; 930 } 931 932 /* 933 * Return maximum size of a request at given offset. Only valid for 934 * file system requests. 935 */ 936 static inline unsigned int blk_max_size_offset(struct request_queue *q, 937 sector_t offset, 938 unsigned int chunk_sectors) 939 { 940 if (!chunk_sectors) { 941 if (q->limits.chunk_sectors) 942 chunk_sectors = q->limits.chunk_sectors; 943 else 944 return q->limits.max_sectors; 945 } 946 947 if (likely(is_power_of_2(chunk_sectors))) 948 chunk_sectors -= offset & (chunk_sectors - 1); 949 else 950 chunk_sectors -= sector_div(offset, chunk_sectors); 951 952 return min(q->limits.max_sectors, chunk_sectors); 953 } 954 955 /* 956 * Access functions for manipulating queue properties 957 */ 958 extern void blk_cleanup_queue(struct request_queue *); 959 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 960 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 961 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 962 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 963 extern void blk_queue_max_discard_segments(struct request_queue *, 964 unsigned short); 965 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 966 unsigned int max_sectors); 967 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 968 extern void blk_queue_max_discard_sectors(struct request_queue *q, 969 unsigned int max_discard_sectors); 970 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 971 unsigned int max_write_same_sectors); 972 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 973 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 974 unsigned int max_zone_append_sectors); 975 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 976 void blk_queue_zone_write_granularity(struct request_queue *q, 977 unsigned int size); 978 extern void blk_queue_alignment_offset(struct request_queue *q, 979 unsigned int alignment); 980 void disk_update_readahead(struct gendisk *disk); 981 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 982 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 983 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 984 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 985 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 986 extern void blk_set_default_limits(struct queue_limits *lim); 987 extern void blk_set_stacking_limits(struct queue_limits *lim); 988 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 989 sector_t offset); 990 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 991 sector_t offset); 992 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 993 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 994 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 995 extern void blk_queue_dma_alignment(struct request_queue *, int); 996 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 997 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 998 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 999 1000 struct blk_independent_access_ranges * 1001 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 1002 void disk_set_independent_access_ranges(struct gendisk *disk, 1003 struct blk_independent_access_ranges *iars); 1004 1005 /* 1006 * Elevator features for blk_queue_required_elevator_features: 1007 */ 1008 /* Supports zoned block devices sequential write constraint */ 1009 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 1010 1011 extern void blk_queue_required_elevator_features(struct request_queue *q, 1012 unsigned int features); 1013 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1014 struct device *dev); 1015 1016 bool __must_check blk_get_queue(struct request_queue *); 1017 extern void blk_put_queue(struct request_queue *); 1018 1019 void blk_mark_disk_dead(struct gendisk *disk); 1020 1021 #ifdef CONFIG_BLOCK 1022 /* 1023 * blk_plug permits building a queue of related requests by holding the I/O 1024 * fragments for a short period. This allows merging of sequential requests 1025 * into single larger request. As the requests are moved from a per-task list to 1026 * the device's request_queue in a batch, this results in improved scalability 1027 * as the lock contention for request_queue lock is reduced. 1028 * 1029 * It is ok not to disable preemption when adding the request to the plug list 1030 * or when attempting a merge. For details, please see schedule() where 1031 * blk_flush_plug() is called. 1032 */ 1033 struct blk_plug { 1034 struct request *mq_list; /* blk-mq requests */ 1035 1036 /* if ios_left is > 1, we can batch tag/rq allocations */ 1037 struct request *cached_rq; 1038 unsigned short nr_ios; 1039 1040 unsigned short rq_count; 1041 1042 bool multiple_queues; 1043 bool has_elevator; 1044 bool nowait; 1045 1046 struct list_head cb_list; /* md requires an unplug callback */ 1047 }; 1048 1049 struct blk_plug_cb; 1050 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1051 struct blk_plug_cb { 1052 struct list_head list; 1053 blk_plug_cb_fn callback; 1054 void *data; 1055 }; 1056 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1057 void *data, int size); 1058 extern void blk_start_plug(struct blk_plug *); 1059 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1060 extern void blk_finish_plug(struct blk_plug *); 1061 1062 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1063 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1064 { 1065 if (plug) 1066 __blk_flush_plug(plug, async); 1067 } 1068 1069 int blkdev_issue_flush(struct block_device *bdev); 1070 long nr_blockdev_pages(void); 1071 #else /* CONFIG_BLOCK */ 1072 struct blk_plug { 1073 }; 1074 1075 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1076 unsigned short nr_ios) 1077 { 1078 } 1079 1080 static inline void blk_start_plug(struct blk_plug *plug) 1081 { 1082 } 1083 1084 static inline void blk_finish_plug(struct blk_plug *plug) 1085 { 1086 } 1087 1088 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1089 { 1090 } 1091 1092 static inline int blkdev_issue_flush(struct block_device *bdev) 1093 { 1094 return 0; 1095 } 1096 1097 static inline long nr_blockdev_pages(void) 1098 { 1099 return 0; 1100 } 1101 #endif /* CONFIG_BLOCK */ 1102 1103 extern void blk_io_schedule(void); 1104 1105 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1106 sector_t nr_sects, gfp_t gfp_mask); 1107 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1108 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1109 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1110 sector_t nr_sects, gfp_t gfp); 1111 1112 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1113 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1114 1115 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1116 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1117 unsigned flags); 1118 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1119 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1120 1121 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1122 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1123 { 1124 return blkdev_issue_discard(sb->s_bdev, 1125 block << (sb->s_blocksize_bits - 1126 SECTOR_SHIFT), 1127 nr_blocks << (sb->s_blocksize_bits - 1128 SECTOR_SHIFT), 1129 gfp_mask); 1130 } 1131 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1132 sector_t nr_blocks, gfp_t gfp_mask) 1133 { 1134 return blkdev_issue_zeroout(sb->s_bdev, 1135 block << (sb->s_blocksize_bits - 1136 SECTOR_SHIFT), 1137 nr_blocks << (sb->s_blocksize_bits - 1138 SECTOR_SHIFT), 1139 gfp_mask, 0); 1140 } 1141 1142 static inline bool bdev_is_partition(struct block_device *bdev) 1143 { 1144 return bdev->bd_partno; 1145 } 1146 1147 enum blk_default_limits { 1148 BLK_MAX_SEGMENTS = 128, 1149 BLK_SAFE_MAX_SECTORS = 255, 1150 BLK_DEF_MAX_SECTORS = 2560, 1151 BLK_MAX_SEGMENT_SIZE = 65536, 1152 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1153 }; 1154 1155 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1156 { 1157 return q->limits.seg_boundary_mask; 1158 } 1159 1160 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1161 { 1162 return q->limits.virt_boundary_mask; 1163 } 1164 1165 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1166 { 1167 return q->limits.max_sectors; 1168 } 1169 1170 static inline unsigned int queue_max_bytes(struct request_queue *q) 1171 { 1172 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1173 } 1174 1175 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1176 { 1177 return q->limits.max_hw_sectors; 1178 } 1179 1180 static inline unsigned short queue_max_segments(const struct request_queue *q) 1181 { 1182 return q->limits.max_segments; 1183 } 1184 1185 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1186 { 1187 return q->limits.max_discard_segments; 1188 } 1189 1190 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1191 { 1192 return q->limits.max_segment_size; 1193 } 1194 1195 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1196 { 1197 1198 const struct queue_limits *l = &q->limits; 1199 1200 return min(l->max_zone_append_sectors, l->max_sectors); 1201 } 1202 1203 static inline unsigned int 1204 bdev_max_zone_append_sectors(struct block_device *bdev) 1205 { 1206 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1207 } 1208 1209 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1210 { 1211 int retval = 512; 1212 1213 if (q && q->limits.logical_block_size) 1214 retval = q->limits.logical_block_size; 1215 1216 return retval; 1217 } 1218 1219 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1220 { 1221 return queue_logical_block_size(bdev_get_queue(bdev)); 1222 } 1223 1224 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1225 { 1226 return q->limits.physical_block_size; 1227 } 1228 1229 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1230 { 1231 return queue_physical_block_size(bdev_get_queue(bdev)); 1232 } 1233 1234 static inline unsigned int queue_io_min(const struct request_queue *q) 1235 { 1236 return q->limits.io_min; 1237 } 1238 1239 static inline int bdev_io_min(struct block_device *bdev) 1240 { 1241 return queue_io_min(bdev_get_queue(bdev)); 1242 } 1243 1244 static inline unsigned int queue_io_opt(const struct request_queue *q) 1245 { 1246 return q->limits.io_opt; 1247 } 1248 1249 static inline int bdev_io_opt(struct block_device *bdev) 1250 { 1251 return queue_io_opt(bdev_get_queue(bdev)); 1252 } 1253 1254 static inline unsigned int 1255 queue_zone_write_granularity(const struct request_queue *q) 1256 { 1257 return q->limits.zone_write_granularity; 1258 } 1259 1260 static inline unsigned int 1261 bdev_zone_write_granularity(struct block_device *bdev) 1262 { 1263 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1264 } 1265 1266 int bdev_alignment_offset(struct block_device *bdev); 1267 unsigned int bdev_discard_alignment(struct block_device *bdev); 1268 1269 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1270 { 1271 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1272 } 1273 1274 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1275 { 1276 return bdev_get_queue(bdev)->limits.discard_granularity; 1277 } 1278 1279 static inline unsigned int 1280 bdev_max_secure_erase_sectors(struct block_device *bdev) 1281 { 1282 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1283 } 1284 1285 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1286 { 1287 struct request_queue *q = bdev_get_queue(bdev); 1288 1289 if (q) 1290 return q->limits.max_write_zeroes_sectors; 1291 1292 return 0; 1293 } 1294 1295 static inline bool bdev_nonrot(struct block_device *bdev) 1296 { 1297 return blk_queue_nonrot(bdev_get_queue(bdev)); 1298 } 1299 1300 static inline bool bdev_stable_writes(struct block_device *bdev) 1301 { 1302 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1303 &bdev_get_queue(bdev)->queue_flags); 1304 } 1305 1306 static inline bool bdev_write_cache(struct block_device *bdev) 1307 { 1308 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1309 } 1310 1311 static inline bool bdev_fua(struct block_device *bdev) 1312 { 1313 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1314 } 1315 1316 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1317 { 1318 struct request_queue *q = bdev_get_queue(bdev); 1319 1320 if (q) 1321 return blk_queue_zoned_model(q); 1322 1323 return BLK_ZONED_NONE; 1324 } 1325 1326 static inline bool bdev_is_zoned(struct block_device *bdev) 1327 { 1328 struct request_queue *q = bdev_get_queue(bdev); 1329 1330 if (q) 1331 return blk_queue_is_zoned(q); 1332 1333 return false; 1334 } 1335 1336 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1337 { 1338 struct request_queue *q = bdev_get_queue(bdev); 1339 1340 if (q) 1341 return blk_queue_zone_sectors(q); 1342 return 0; 1343 } 1344 1345 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1346 { 1347 struct request_queue *q = bdev_get_queue(bdev); 1348 1349 if (q) 1350 return queue_max_open_zones(q); 1351 return 0; 1352 } 1353 1354 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1355 { 1356 struct request_queue *q = bdev_get_queue(bdev); 1357 1358 if (q) 1359 return queue_max_active_zones(q); 1360 return 0; 1361 } 1362 1363 static inline int queue_dma_alignment(const struct request_queue *q) 1364 { 1365 return q ? q->dma_alignment : 511; 1366 } 1367 1368 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1369 unsigned int len) 1370 { 1371 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1372 return !(addr & alignment) && !(len & alignment); 1373 } 1374 1375 /* assumes size > 256 */ 1376 static inline unsigned int blksize_bits(unsigned int size) 1377 { 1378 unsigned int bits = 8; 1379 do { 1380 bits++; 1381 size >>= 1; 1382 } while (size > 256); 1383 return bits; 1384 } 1385 1386 static inline unsigned int block_size(struct block_device *bdev) 1387 { 1388 return 1 << bdev->bd_inode->i_blkbits; 1389 } 1390 1391 int kblockd_schedule_work(struct work_struct *work); 1392 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1393 1394 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1395 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1396 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1397 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1398 1399 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1400 1401 bool blk_crypto_register(struct blk_crypto_profile *profile, 1402 struct request_queue *q); 1403 1404 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1405 1406 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1407 struct request_queue *q) 1408 { 1409 return true; 1410 } 1411 1412 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1413 1414 enum blk_unique_id { 1415 /* these match the Designator Types specified in SPC */ 1416 BLK_UID_T10 = 1, 1417 BLK_UID_EUI64 = 2, 1418 BLK_UID_NAA = 3, 1419 }; 1420 1421 #define NFL4_UFLG_MASK 0x0000003F 1422 1423 struct block_device_operations { 1424 void (*submit_bio)(struct bio *bio); 1425 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1426 unsigned int flags); 1427 int (*open) (struct block_device *, fmode_t); 1428 void (*release) (struct gendisk *, fmode_t); 1429 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1430 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1431 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1432 unsigned int (*check_events) (struct gendisk *disk, 1433 unsigned int clearing); 1434 void (*unlock_native_capacity) (struct gendisk *); 1435 int (*getgeo)(struct block_device *, struct hd_geometry *); 1436 int (*set_read_only)(struct block_device *bdev, bool ro); 1437 void (*free_disk)(struct gendisk *disk); 1438 /* this callback is with swap_lock and sometimes page table lock held */ 1439 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1440 int (*report_zones)(struct gendisk *, sector_t sector, 1441 unsigned int nr_zones, report_zones_cb cb, void *data); 1442 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1443 /* returns the length of the identifier or a negative errno: */ 1444 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1445 enum blk_unique_id id_type); 1446 struct module *owner; 1447 const struct pr_ops *pr_ops; 1448 1449 /* 1450 * Special callback for probing GPT entry at a given sector. 1451 * Needed by Android devices, used by GPT scanner and MMC blk 1452 * driver. 1453 */ 1454 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1455 }; 1456 1457 #ifdef CONFIG_COMPAT 1458 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1459 unsigned int, unsigned long); 1460 #else 1461 #define blkdev_compat_ptr_ioctl NULL 1462 #endif 1463 1464 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1465 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1466 struct writeback_control *); 1467 1468 static inline void blk_wake_io_task(struct task_struct *waiter) 1469 { 1470 /* 1471 * If we're polling, the task itself is doing the completions. For 1472 * that case, we don't need to signal a wakeup, it's enough to just 1473 * mark us as RUNNING. 1474 */ 1475 if (waiter == current) 1476 __set_current_state(TASK_RUNNING); 1477 else 1478 wake_up_process(waiter); 1479 } 1480 1481 unsigned long bdev_start_io_acct(struct block_device *bdev, 1482 unsigned int sectors, unsigned int op, 1483 unsigned long start_time); 1484 void bdev_end_io_acct(struct block_device *bdev, unsigned int op, 1485 unsigned long start_time); 1486 1487 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time); 1488 unsigned long bio_start_io_acct(struct bio *bio); 1489 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1490 struct block_device *orig_bdev); 1491 1492 /** 1493 * bio_end_io_acct - end I/O accounting for bio based drivers 1494 * @bio: bio to end account for 1495 * @start_time: start time returned by bio_start_io_acct() 1496 */ 1497 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1498 { 1499 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1500 } 1501 1502 int bdev_read_only(struct block_device *bdev); 1503 int set_blocksize(struct block_device *bdev, int size); 1504 1505 const char *bdevname(struct block_device *bdev, char *buffer); 1506 int lookup_bdev(const char *pathname, dev_t *dev); 1507 1508 void blkdev_show(struct seq_file *seqf, off_t offset); 1509 1510 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1511 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1512 #ifdef CONFIG_BLOCK 1513 #define BLKDEV_MAJOR_MAX 512 1514 #else 1515 #define BLKDEV_MAJOR_MAX 0 1516 #endif 1517 1518 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1519 void *holder); 1520 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1521 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1522 void bd_abort_claiming(struct block_device *bdev, void *holder); 1523 void blkdev_put(struct block_device *bdev, fmode_t mode); 1524 1525 /* just for blk-cgroup, don't use elsewhere */ 1526 struct block_device *blkdev_get_no_open(dev_t dev); 1527 void blkdev_put_no_open(struct block_device *bdev); 1528 1529 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1530 void bdev_add(struct block_device *bdev, dev_t dev); 1531 struct block_device *I_BDEV(struct inode *inode); 1532 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1533 loff_t lend); 1534 1535 #ifdef CONFIG_BLOCK 1536 void invalidate_bdev(struct block_device *bdev); 1537 int sync_blockdev(struct block_device *bdev); 1538 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1539 int sync_blockdev_nowait(struct block_device *bdev); 1540 void sync_bdevs(bool wait); 1541 void printk_all_partitions(void); 1542 #else 1543 static inline void invalidate_bdev(struct block_device *bdev) 1544 { 1545 } 1546 static inline int sync_blockdev(struct block_device *bdev) 1547 { 1548 return 0; 1549 } 1550 static inline int sync_blockdev_nowait(struct block_device *bdev) 1551 { 1552 return 0; 1553 } 1554 static inline void sync_bdevs(bool wait) 1555 { 1556 } 1557 static inline void printk_all_partitions(void) 1558 { 1559 } 1560 #endif /* CONFIG_BLOCK */ 1561 1562 int fsync_bdev(struct block_device *bdev); 1563 1564 int freeze_bdev(struct block_device *bdev); 1565 int thaw_bdev(struct block_device *bdev); 1566 1567 struct io_comp_batch { 1568 struct request *req_list; 1569 bool need_ts; 1570 void (*complete)(struct io_comp_batch *); 1571 }; 1572 1573 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1574 1575 #endif /* _LINUX_BLKDEV_H */ 1576