1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/backing-dev-defs.h> 15 #include <linux/wait.h> 16 #include <linux/mempool.h> 17 #include <linux/pfn.h> 18 #include <linux/bio.h> 19 #include <linux/stringify.h> 20 #include <linux/gfp.h> 21 #include <linux/bsg.h> 22 #include <linux/smp.h> 23 #include <linux/rcupdate.h> 24 #include <linux/percpu-refcount.h> 25 #include <linux/scatterlist.h> 26 #include <linux/blkzoned.h> 27 #include <linux/pm.h> 28 29 struct module; 30 struct scsi_ioctl_command; 31 32 struct request_queue; 33 struct elevator_queue; 34 struct blk_trace; 35 struct request; 36 struct sg_io_hdr; 37 struct bsg_job; 38 struct blkcg_gq; 39 struct blk_flush_queue; 40 struct pr_ops; 41 struct rq_qos; 42 struct blk_queue_stats; 43 struct blk_stat_callback; 44 struct blk_keyslot_manager; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consistent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* Doing classic polling */ 53 #define BLK_MQ_POLL_CLASSIC -1 54 55 /* 56 * Maximum number of blkcg policies allowed to be registered concurrently. 57 * Defined here to simplify include dependency. 58 */ 59 #define BLKCG_MAX_POLS 5 60 61 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 62 63 /* 64 * request flags */ 65 typedef __u32 __bitwise req_flags_t; 66 67 /* drive already may have started this one */ 68 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 69 /* may not be passed by ioscheduler */ 70 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 71 /* request for flush sequence */ 72 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 73 /* merge of different types, fail separately */ 74 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 75 /* track inflight for MQ */ 76 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 77 /* don't call prep for this one */ 78 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 79 /* vaguely specified driver internal error. Ignored by the block layer */ 80 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 81 /* don't warn about errors */ 82 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 83 /* elevator private data attached */ 84 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 85 /* account into disk and partition IO statistics */ 86 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 87 /* runtime pm request */ 88 #define RQF_PM ((__force req_flags_t)(1 << 15)) 89 /* on IO scheduler merge hash */ 90 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 91 /* track IO completion time */ 92 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 93 /* Look at ->special_vec for the actual data payload instead of the 94 bio chain. */ 95 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 96 /* The per-zone write lock is held for this request */ 97 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 98 /* already slept for hybrid poll */ 99 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 100 /* ->timeout has been called, don't expire again */ 101 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 102 103 /* flags that prevent us from merging requests: */ 104 #define RQF_NOMERGE_FLAGS \ 105 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 106 107 /* 108 * Request state for blk-mq. 109 */ 110 enum mq_rq_state { 111 MQ_RQ_IDLE = 0, 112 MQ_RQ_IN_FLIGHT = 1, 113 MQ_RQ_COMPLETE = 2, 114 }; 115 116 /* 117 * Try to put the fields that are referenced together in the same cacheline. 118 * 119 * If you modify this structure, make sure to update blk_rq_init() and 120 * especially blk_mq_rq_ctx_init() to take care of the added fields. 121 */ 122 struct request { 123 struct request_queue *q; 124 struct blk_mq_ctx *mq_ctx; 125 struct blk_mq_hw_ctx *mq_hctx; 126 127 unsigned int cmd_flags; /* op and common flags */ 128 req_flags_t rq_flags; 129 130 int tag; 131 int internal_tag; 132 133 /* the following two fields are internal, NEVER access directly */ 134 unsigned int __data_len; /* total data len */ 135 sector_t __sector; /* sector cursor */ 136 137 struct bio *bio; 138 struct bio *biotail; 139 140 struct list_head queuelist; 141 142 /* 143 * The hash is used inside the scheduler, and killed once the 144 * request reaches the dispatch list. The ipi_list is only used 145 * to queue the request for softirq completion, which is long 146 * after the request has been unhashed (and even removed from 147 * the dispatch list). 148 */ 149 union { 150 struct hlist_node hash; /* merge hash */ 151 struct llist_node ipi_list; 152 }; 153 154 /* 155 * The rb_node is only used inside the io scheduler, requests 156 * are pruned when moved to the dispatch queue. So let the 157 * completion_data share space with the rb_node. 158 */ 159 union { 160 struct rb_node rb_node; /* sort/lookup */ 161 struct bio_vec special_vec; 162 void *completion_data; 163 int error_count; /* for legacy drivers, don't use */ 164 }; 165 166 /* 167 * Three pointers are available for the IO schedulers, if they need 168 * more they have to dynamically allocate it. Flush requests are 169 * never put on the IO scheduler. So let the flush fields share 170 * space with the elevator data. 171 */ 172 union { 173 struct { 174 struct io_cq *icq; 175 void *priv[2]; 176 } elv; 177 178 struct { 179 unsigned int seq; 180 struct list_head list; 181 rq_end_io_fn *saved_end_io; 182 } flush; 183 }; 184 185 struct gendisk *rq_disk; 186 struct block_device *part; 187 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 188 /* Time that the first bio started allocating this request. */ 189 u64 alloc_time_ns; 190 #endif 191 /* Time that this request was allocated for this IO. */ 192 u64 start_time_ns; 193 /* Time that I/O was submitted to the device. */ 194 u64 io_start_time_ns; 195 196 #ifdef CONFIG_BLK_WBT 197 unsigned short wbt_flags; 198 #endif 199 /* 200 * rq sectors used for blk stats. It has the same value 201 * with blk_rq_sectors(rq), except that it never be zeroed 202 * by completion. 203 */ 204 unsigned short stats_sectors; 205 206 /* 207 * Number of scatter-gather DMA addr+len pairs after 208 * physical address coalescing is performed. 209 */ 210 unsigned short nr_phys_segments; 211 212 #if defined(CONFIG_BLK_DEV_INTEGRITY) 213 unsigned short nr_integrity_segments; 214 #endif 215 216 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 217 struct bio_crypt_ctx *crypt_ctx; 218 struct blk_ksm_keyslot *crypt_keyslot; 219 #endif 220 221 unsigned short write_hint; 222 unsigned short ioprio; 223 224 enum mq_rq_state state; 225 refcount_t ref; 226 227 unsigned int timeout; 228 unsigned long deadline; 229 230 union { 231 struct __call_single_data csd; 232 u64 fifo_time; 233 }; 234 235 /* 236 * completion callback. 237 */ 238 rq_end_io_fn *end_io; 239 void *end_io_data; 240 }; 241 242 static inline bool blk_op_is_scsi(unsigned int op) 243 { 244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 245 } 246 247 static inline bool blk_op_is_private(unsigned int op) 248 { 249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 250 } 251 252 static inline bool blk_rq_is_scsi(struct request *rq) 253 { 254 return blk_op_is_scsi(req_op(rq)); 255 } 256 257 static inline bool blk_rq_is_private(struct request *rq) 258 { 259 return blk_op_is_private(req_op(rq)); 260 } 261 262 static inline bool blk_rq_is_passthrough(struct request *rq) 263 { 264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 265 } 266 267 static inline bool bio_is_passthrough(struct bio *bio) 268 { 269 unsigned op = bio_op(bio); 270 271 return blk_op_is_scsi(op) || blk_op_is_private(op); 272 } 273 274 static inline bool blk_op_is_passthrough(unsigned int op) 275 { 276 return (blk_op_is_scsi(op & REQ_OP_MASK) || 277 blk_op_is_private(op & REQ_OP_MASK)); 278 } 279 280 static inline unsigned short req_get_ioprio(struct request *req) 281 { 282 return req->ioprio; 283 } 284 285 #include <linux/elevator.h> 286 287 struct blk_queue_ctx; 288 289 struct bio_vec; 290 291 enum blk_eh_timer_return { 292 BLK_EH_DONE, /* drivers has completed the command */ 293 BLK_EH_RESET_TIMER, /* reset timer and try again */ 294 }; 295 296 enum blk_queue_state { 297 Queue_down, 298 Queue_up, 299 }; 300 301 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 302 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 303 304 #define BLK_SCSI_MAX_CMDS (256) 305 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 306 307 /* 308 * Zoned block device models (zoned limit). 309 * 310 * Note: This needs to be ordered from the least to the most severe 311 * restrictions for the inheritance in blk_stack_limits() to work. 312 */ 313 enum blk_zoned_model { 314 BLK_ZONED_NONE = 0, /* Regular block device */ 315 BLK_ZONED_HA, /* Host-aware zoned block device */ 316 BLK_ZONED_HM, /* Host-managed zoned block device */ 317 }; 318 319 /* 320 * BLK_BOUNCE_NONE: never bounce (default) 321 * BLK_BOUNCE_HIGH: bounce all highmem pages 322 */ 323 enum blk_bounce { 324 BLK_BOUNCE_NONE, 325 BLK_BOUNCE_HIGH, 326 }; 327 328 struct queue_limits { 329 unsigned int bio_max_bytes; 330 331 enum blk_bounce bounce; 332 unsigned long seg_boundary_mask; 333 unsigned long virt_boundary_mask; 334 335 unsigned int max_hw_sectors; 336 unsigned int max_dev_sectors; 337 unsigned int chunk_sectors; 338 unsigned int max_sectors; 339 unsigned int max_segment_size; 340 unsigned int physical_block_size; 341 unsigned int logical_block_size; 342 unsigned int alignment_offset; 343 unsigned int io_min; 344 unsigned int io_opt; 345 unsigned int max_discard_sectors; 346 unsigned int max_hw_discard_sectors; 347 unsigned int max_write_same_sectors; 348 unsigned int max_write_zeroes_sectors; 349 unsigned int max_zone_append_sectors; 350 unsigned int discard_granularity; 351 unsigned int discard_alignment; 352 unsigned int zone_write_granularity; 353 354 unsigned short max_segments; 355 unsigned short max_integrity_segments; 356 unsigned short max_discard_segments; 357 358 unsigned char misaligned; 359 unsigned char discard_misaligned; 360 unsigned char raid_partial_stripes_expensive; 361 enum blk_zoned_model zoned; 362 }; 363 364 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 365 void *data); 366 367 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 368 369 #ifdef CONFIG_BLK_DEV_ZONED 370 371 #define BLK_ALL_ZONES ((unsigned int)-1) 372 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 373 unsigned int nr_zones, report_zones_cb cb, void *data); 374 unsigned int blkdev_nr_zones(struct gendisk *disk); 375 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 376 sector_t sectors, sector_t nr_sectors, 377 gfp_t gfp_mask); 378 int blk_revalidate_disk_zones(struct gendisk *disk, 379 void (*update_driver_data)(struct gendisk *disk)); 380 381 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 382 unsigned int cmd, unsigned long arg); 383 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 384 unsigned int cmd, unsigned long arg); 385 386 #else /* CONFIG_BLK_DEV_ZONED */ 387 388 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 389 { 390 return 0; 391 } 392 393 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 394 fmode_t mode, unsigned int cmd, 395 unsigned long arg) 396 { 397 return -ENOTTY; 398 } 399 400 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 401 fmode_t mode, unsigned int cmd, 402 unsigned long arg) 403 { 404 return -ENOTTY; 405 } 406 407 #endif /* CONFIG_BLK_DEV_ZONED */ 408 409 struct request_queue { 410 struct request *last_merge; 411 struct elevator_queue *elevator; 412 413 struct percpu_ref q_usage_counter; 414 415 struct blk_queue_stats *stats; 416 struct rq_qos *rq_qos; 417 418 const struct blk_mq_ops *mq_ops; 419 420 /* sw queues */ 421 struct blk_mq_ctx __percpu *queue_ctx; 422 423 unsigned int queue_depth; 424 425 /* hw dispatch queues */ 426 struct blk_mq_hw_ctx **queue_hw_ctx; 427 unsigned int nr_hw_queues; 428 429 struct backing_dev_info *backing_dev_info; 430 431 /* 432 * The queue owner gets to use this for whatever they like. 433 * ll_rw_blk doesn't touch it. 434 */ 435 void *queuedata; 436 437 /* 438 * various queue flags, see QUEUE_* below 439 */ 440 unsigned long queue_flags; 441 /* 442 * Number of contexts that have called blk_set_pm_only(). If this 443 * counter is above zero then only RQF_PM requests are processed. 444 */ 445 atomic_t pm_only; 446 447 /* 448 * ida allocated id for this queue. Used to index queues from 449 * ioctx. 450 */ 451 int id; 452 453 spinlock_t queue_lock; 454 455 /* 456 * queue kobject 457 */ 458 struct kobject kobj; 459 460 /* 461 * mq queue kobject 462 */ 463 struct kobject *mq_kobj; 464 465 #ifdef CONFIG_BLK_DEV_INTEGRITY 466 struct blk_integrity integrity; 467 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 468 469 #ifdef CONFIG_PM 470 struct device *dev; 471 enum rpm_status rpm_status; 472 #endif 473 474 /* 475 * queue settings 476 */ 477 unsigned long nr_requests; /* Max # of requests */ 478 479 unsigned int dma_pad_mask; 480 unsigned int dma_alignment; 481 482 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 483 /* Inline crypto capabilities */ 484 struct blk_keyslot_manager *ksm; 485 #endif 486 487 unsigned int rq_timeout; 488 int poll_nsec; 489 490 struct blk_stat_callback *poll_cb; 491 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 492 493 struct timer_list timeout; 494 struct work_struct timeout_work; 495 496 atomic_t nr_active_requests_shared_sbitmap; 497 498 struct list_head icq_list; 499 #ifdef CONFIG_BLK_CGROUP 500 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 501 struct blkcg_gq *root_blkg; 502 struct list_head blkg_list; 503 #endif 504 505 struct queue_limits limits; 506 507 unsigned int required_elevator_features; 508 509 #ifdef CONFIG_BLK_DEV_ZONED 510 /* 511 * Zoned block device information for request dispatch control. 512 * nr_zones is the total number of zones of the device. This is always 513 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 514 * bits which indicates if a zone is conventional (bit set) or 515 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 516 * bits which indicates if a zone is write locked, that is, if a write 517 * request targeting the zone was dispatched. All three fields are 518 * initialized by the low level device driver (e.g. scsi/sd.c). 519 * Stacking drivers (device mappers) may or may not initialize 520 * these fields. 521 * 522 * Reads of this information must be protected with blk_queue_enter() / 523 * blk_queue_exit(). Modifying this information is only allowed while 524 * no requests are being processed. See also blk_mq_freeze_queue() and 525 * blk_mq_unfreeze_queue(). 526 */ 527 unsigned int nr_zones; 528 unsigned long *conv_zones_bitmap; 529 unsigned long *seq_zones_wlock; 530 unsigned int max_open_zones; 531 unsigned int max_active_zones; 532 #endif /* CONFIG_BLK_DEV_ZONED */ 533 534 /* 535 * sg stuff 536 */ 537 unsigned int sg_timeout; 538 unsigned int sg_reserved_size; 539 int node; 540 struct mutex debugfs_mutex; 541 #ifdef CONFIG_BLK_DEV_IO_TRACE 542 struct blk_trace __rcu *blk_trace; 543 #endif 544 /* 545 * for flush operations 546 */ 547 struct blk_flush_queue *fq; 548 549 struct list_head requeue_list; 550 spinlock_t requeue_lock; 551 struct delayed_work requeue_work; 552 553 struct mutex sysfs_lock; 554 struct mutex sysfs_dir_lock; 555 556 /* 557 * for reusing dead hctx instance in case of updating 558 * nr_hw_queues 559 */ 560 struct list_head unused_hctx_list; 561 spinlock_t unused_hctx_lock; 562 563 int mq_freeze_depth; 564 565 #if defined(CONFIG_BLK_DEV_BSG) 566 struct bsg_class_device bsg_dev; 567 #endif 568 569 #ifdef CONFIG_BLK_DEV_THROTTLING 570 /* Throttle data */ 571 struct throtl_data *td; 572 #endif 573 struct rcu_head rcu_head; 574 wait_queue_head_t mq_freeze_wq; 575 /* 576 * Protect concurrent access to q_usage_counter by 577 * percpu_ref_kill() and percpu_ref_reinit(). 578 */ 579 struct mutex mq_freeze_lock; 580 581 struct blk_mq_tag_set *tag_set; 582 struct list_head tag_set_list; 583 struct bio_set bio_split; 584 585 struct dentry *debugfs_dir; 586 587 #ifdef CONFIG_BLK_DEBUG_FS 588 struct dentry *sched_debugfs_dir; 589 struct dentry *rqos_debugfs_dir; 590 #endif 591 592 bool mq_sysfs_init_done; 593 594 size_t cmd_size; 595 596 #define BLK_MAX_WRITE_HINTS 5 597 u64 write_hints[BLK_MAX_WRITE_HINTS]; 598 }; 599 600 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 601 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 602 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 603 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 604 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 605 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 606 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 607 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 608 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 609 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 610 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 611 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 612 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 613 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 614 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 615 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 616 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 617 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 618 #define QUEUE_FLAG_WC 17 /* Write back caching */ 619 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 620 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 621 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 622 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 623 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 624 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 625 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 626 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 627 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 628 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 629 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 630 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 631 632 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 633 (1 << QUEUE_FLAG_SAME_COMP) | \ 634 (1 << QUEUE_FLAG_NOWAIT)) 635 636 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 637 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 638 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 639 640 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 641 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 642 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 643 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 644 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 645 #define blk_queue_noxmerges(q) \ 646 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 647 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 648 #define blk_queue_stable_writes(q) \ 649 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 650 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 651 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 652 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 653 #define blk_queue_zone_resetall(q) \ 654 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 655 #define blk_queue_secure_erase(q) \ 656 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 657 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 658 #define blk_queue_scsi_passthrough(q) \ 659 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 660 #define blk_queue_pci_p2pdma(q) \ 661 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 662 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 663 #define blk_queue_rq_alloc_time(q) \ 664 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 665 #else 666 #define blk_queue_rq_alloc_time(q) false 667 #endif 668 669 #define blk_noretry_request(rq) \ 670 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 671 REQ_FAILFAST_DRIVER)) 672 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 673 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 674 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 675 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 676 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 677 678 extern void blk_set_pm_only(struct request_queue *q); 679 extern void blk_clear_pm_only(struct request_queue *q); 680 681 static inline bool blk_account_rq(struct request *rq) 682 { 683 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 684 } 685 686 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 687 688 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 689 690 #define rq_dma_dir(rq) \ 691 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 692 693 #define dma_map_bvec(dev, bv, dir, attrs) \ 694 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 695 (dir), (attrs)) 696 697 #define queue_to_disk(q) (dev_to_disk(kobj_to_dev((q)->kobj.parent))) 698 699 static inline bool queue_is_mq(struct request_queue *q) 700 { 701 return q->mq_ops; 702 } 703 704 #ifdef CONFIG_PM 705 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 706 { 707 return q->rpm_status; 708 } 709 #else 710 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 711 { 712 return RPM_ACTIVE; 713 } 714 #endif 715 716 static inline enum blk_zoned_model 717 blk_queue_zoned_model(struct request_queue *q) 718 { 719 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 720 return q->limits.zoned; 721 return BLK_ZONED_NONE; 722 } 723 724 static inline bool blk_queue_is_zoned(struct request_queue *q) 725 { 726 switch (blk_queue_zoned_model(q)) { 727 case BLK_ZONED_HA: 728 case BLK_ZONED_HM: 729 return true; 730 default: 731 return false; 732 } 733 } 734 735 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 736 { 737 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 738 } 739 740 #ifdef CONFIG_BLK_DEV_ZONED 741 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 742 { 743 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 744 } 745 746 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 747 sector_t sector) 748 { 749 if (!blk_queue_is_zoned(q)) 750 return 0; 751 return sector >> ilog2(q->limits.chunk_sectors); 752 } 753 754 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 755 sector_t sector) 756 { 757 if (!blk_queue_is_zoned(q)) 758 return false; 759 if (!q->conv_zones_bitmap) 760 return true; 761 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 762 } 763 764 static inline void blk_queue_max_open_zones(struct request_queue *q, 765 unsigned int max_open_zones) 766 { 767 q->max_open_zones = max_open_zones; 768 } 769 770 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 771 { 772 return q->max_open_zones; 773 } 774 775 static inline void blk_queue_max_active_zones(struct request_queue *q, 776 unsigned int max_active_zones) 777 { 778 q->max_active_zones = max_active_zones; 779 } 780 781 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 782 { 783 return q->max_active_zones; 784 } 785 #else /* CONFIG_BLK_DEV_ZONED */ 786 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 787 { 788 return 0; 789 } 790 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 791 sector_t sector) 792 { 793 return false; 794 } 795 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 796 sector_t sector) 797 { 798 return 0; 799 } 800 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 801 { 802 return 0; 803 } 804 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 805 { 806 return 0; 807 } 808 #endif /* CONFIG_BLK_DEV_ZONED */ 809 810 static inline bool rq_is_sync(struct request *rq) 811 { 812 return op_is_sync(rq->cmd_flags); 813 } 814 815 static inline bool rq_mergeable(struct request *rq) 816 { 817 if (blk_rq_is_passthrough(rq)) 818 return false; 819 820 if (req_op(rq) == REQ_OP_FLUSH) 821 return false; 822 823 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 824 return false; 825 826 if (req_op(rq) == REQ_OP_ZONE_APPEND) 827 return false; 828 829 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 830 return false; 831 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 832 return false; 833 834 return true; 835 } 836 837 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 838 { 839 if (bio_page(a) == bio_page(b) && 840 bio_offset(a) == bio_offset(b)) 841 return true; 842 843 return false; 844 } 845 846 static inline unsigned int blk_queue_depth(struct request_queue *q) 847 { 848 if (q->queue_depth) 849 return q->queue_depth; 850 851 return q->nr_requests; 852 } 853 854 /* 855 * default timeout for SG_IO if none specified 856 */ 857 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 858 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 859 860 struct rq_map_data { 861 struct page **pages; 862 int page_order; 863 int nr_entries; 864 unsigned long offset; 865 int null_mapped; 866 int from_user; 867 }; 868 869 struct req_iterator { 870 struct bvec_iter iter; 871 struct bio *bio; 872 }; 873 874 /* This should not be used directly - use rq_for_each_segment */ 875 #define for_each_bio(_bio) \ 876 for (; _bio; _bio = _bio->bi_next) 877 #define __rq_for_each_bio(_bio, rq) \ 878 if ((rq->bio)) \ 879 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 880 881 #define rq_for_each_segment(bvl, _rq, _iter) \ 882 __rq_for_each_bio(_iter.bio, _rq) \ 883 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 884 885 #define rq_for_each_bvec(bvl, _rq, _iter) \ 886 __rq_for_each_bio(_iter.bio, _rq) \ 887 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 888 889 #define rq_iter_last(bvec, _iter) \ 890 (_iter.bio->bi_next == NULL && \ 891 bio_iter_last(bvec, _iter.iter)) 892 893 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 894 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 895 #endif 896 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 897 extern void rq_flush_dcache_pages(struct request *rq); 898 #else 899 static inline void rq_flush_dcache_pages(struct request *rq) 900 { 901 } 902 #endif 903 904 extern int blk_register_queue(struct gendisk *disk); 905 extern void blk_unregister_queue(struct gendisk *disk); 906 blk_qc_t submit_bio_noacct(struct bio *bio); 907 extern void blk_rq_init(struct request_queue *q, struct request *rq); 908 extern void blk_put_request(struct request *); 909 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 910 blk_mq_req_flags_t flags); 911 extern int blk_lld_busy(struct request_queue *q); 912 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 913 struct bio_set *bs, gfp_t gfp_mask, 914 int (*bio_ctr)(struct bio *, struct bio *, void *), 915 void *data); 916 extern void blk_rq_unprep_clone(struct request *rq); 917 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 918 struct request *rq); 919 int blk_rq_append_bio(struct request *rq, struct bio *bio); 920 extern void blk_queue_split(struct bio **); 921 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 922 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 923 unsigned int, void __user *); 924 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 925 unsigned int, void __user *); 926 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 927 struct scsi_ioctl_command __user *); 928 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 929 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 930 931 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 932 extern void blk_queue_exit(struct request_queue *q); 933 extern void blk_sync_queue(struct request_queue *q); 934 extern int blk_rq_map_user(struct request_queue *, struct request *, 935 struct rq_map_data *, void __user *, unsigned long, 936 gfp_t); 937 extern int blk_rq_unmap_user(struct bio *); 938 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 939 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 940 struct rq_map_data *, const struct iov_iter *, 941 gfp_t); 942 extern void blk_execute_rq(struct gendisk *, struct request *, int); 943 extern void blk_execute_rq_nowait(struct gendisk *, 944 struct request *, int, rq_end_io_fn *); 945 946 /* Helper to convert REQ_OP_XXX to its string format XXX */ 947 extern const char *blk_op_str(unsigned int op); 948 949 int blk_status_to_errno(blk_status_t status); 950 blk_status_t errno_to_blk_status(int errno); 951 952 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 953 954 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 955 { 956 return bdev->bd_disk->queue; /* this is never NULL */ 957 } 958 959 /* 960 * The basic unit of block I/O is a sector. It is used in a number of contexts 961 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 962 * bytes. Variables of type sector_t represent an offset or size that is a 963 * multiple of 512 bytes. Hence these two constants. 964 */ 965 #ifndef SECTOR_SHIFT 966 #define SECTOR_SHIFT 9 967 #endif 968 #ifndef SECTOR_SIZE 969 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 970 #endif 971 972 /* 973 * blk_rq_pos() : the current sector 974 * blk_rq_bytes() : bytes left in the entire request 975 * blk_rq_cur_bytes() : bytes left in the current segment 976 * blk_rq_err_bytes() : bytes left till the next error boundary 977 * blk_rq_sectors() : sectors left in the entire request 978 * blk_rq_cur_sectors() : sectors left in the current segment 979 * blk_rq_stats_sectors() : sectors of the entire request used for stats 980 */ 981 static inline sector_t blk_rq_pos(const struct request *rq) 982 { 983 return rq->__sector; 984 } 985 986 static inline unsigned int blk_rq_bytes(const struct request *rq) 987 { 988 return rq->__data_len; 989 } 990 991 static inline int blk_rq_cur_bytes(const struct request *rq) 992 { 993 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 994 } 995 996 extern unsigned int blk_rq_err_bytes(const struct request *rq); 997 998 static inline unsigned int blk_rq_sectors(const struct request *rq) 999 { 1000 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1001 } 1002 1003 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1004 { 1005 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1006 } 1007 1008 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1009 { 1010 return rq->stats_sectors; 1011 } 1012 1013 #ifdef CONFIG_BLK_DEV_ZONED 1014 1015 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1016 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1017 1018 static inline unsigned int blk_rq_zone_no(struct request *rq) 1019 { 1020 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1021 } 1022 1023 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1024 { 1025 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1026 } 1027 #endif /* CONFIG_BLK_DEV_ZONED */ 1028 1029 /* 1030 * Some commands like WRITE SAME have a payload or data transfer size which 1031 * is different from the size of the request. Any driver that supports such 1032 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1033 * calculate the data transfer size. 1034 */ 1035 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1036 { 1037 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1038 return rq->special_vec.bv_len; 1039 return blk_rq_bytes(rq); 1040 } 1041 1042 /* 1043 * Return the first full biovec in the request. The caller needs to check that 1044 * there are any bvecs before calling this helper. 1045 */ 1046 static inline struct bio_vec req_bvec(struct request *rq) 1047 { 1048 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1049 return rq->special_vec; 1050 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1051 } 1052 1053 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1054 int op) 1055 { 1056 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1057 return min(q->limits.max_discard_sectors, 1058 UINT_MAX >> SECTOR_SHIFT); 1059 1060 if (unlikely(op == REQ_OP_WRITE_SAME)) 1061 return q->limits.max_write_same_sectors; 1062 1063 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1064 return q->limits.max_write_zeroes_sectors; 1065 1066 return q->limits.max_sectors; 1067 } 1068 1069 /* 1070 * Return maximum size of a request at given offset. Only valid for 1071 * file system requests. 1072 */ 1073 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1074 sector_t offset, 1075 unsigned int chunk_sectors) 1076 { 1077 if (!chunk_sectors) { 1078 if (q->limits.chunk_sectors) 1079 chunk_sectors = q->limits.chunk_sectors; 1080 else 1081 return q->limits.max_sectors; 1082 } 1083 1084 if (likely(is_power_of_2(chunk_sectors))) 1085 chunk_sectors -= offset & (chunk_sectors - 1); 1086 else 1087 chunk_sectors -= sector_div(offset, chunk_sectors); 1088 1089 return min(q->limits.max_sectors, chunk_sectors); 1090 } 1091 1092 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1093 sector_t offset) 1094 { 1095 struct request_queue *q = rq->q; 1096 1097 if (blk_rq_is_passthrough(rq)) 1098 return q->limits.max_hw_sectors; 1099 1100 if (!q->limits.chunk_sectors || 1101 req_op(rq) == REQ_OP_DISCARD || 1102 req_op(rq) == REQ_OP_SECURE_ERASE) 1103 return blk_queue_get_max_sectors(q, req_op(rq)); 1104 1105 return min(blk_max_size_offset(q, offset, 0), 1106 blk_queue_get_max_sectors(q, req_op(rq))); 1107 } 1108 1109 static inline unsigned int blk_rq_count_bios(struct request *rq) 1110 { 1111 unsigned int nr_bios = 0; 1112 struct bio *bio; 1113 1114 __rq_for_each_bio(bio, rq) 1115 nr_bios++; 1116 1117 return nr_bios; 1118 } 1119 1120 void blk_steal_bios(struct bio_list *list, struct request *rq); 1121 1122 /* 1123 * Request completion related functions. 1124 * 1125 * blk_update_request() completes given number of bytes and updates 1126 * the request without completing it. 1127 */ 1128 extern bool blk_update_request(struct request *rq, blk_status_t error, 1129 unsigned int nr_bytes); 1130 1131 extern void blk_abort_request(struct request *); 1132 1133 /* 1134 * Access functions for manipulating queue properties 1135 */ 1136 extern void blk_cleanup_queue(struct request_queue *); 1137 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1138 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1139 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1140 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1141 extern void blk_queue_max_discard_segments(struct request_queue *, 1142 unsigned short); 1143 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1144 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1145 unsigned int max_discard_sectors); 1146 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1147 unsigned int max_write_same_sectors); 1148 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1149 unsigned int max_write_same_sectors); 1150 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1151 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1152 unsigned int max_zone_append_sectors); 1153 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1154 void blk_queue_zone_write_granularity(struct request_queue *q, 1155 unsigned int size); 1156 extern void blk_queue_alignment_offset(struct request_queue *q, 1157 unsigned int alignment); 1158 void blk_queue_update_readahead(struct request_queue *q); 1159 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1160 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1161 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1162 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1163 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1164 extern void blk_set_default_limits(struct queue_limits *lim); 1165 extern void blk_set_stacking_limits(struct queue_limits *lim); 1166 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1167 sector_t offset); 1168 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1169 sector_t offset); 1170 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1171 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1172 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1173 extern void blk_queue_dma_alignment(struct request_queue *, int); 1174 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1175 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1176 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1177 extern void blk_queue_required_elevator_features(struct request_queue *q, 1178 unsigned int features); 1179 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1180 struct device *dev); 1181 1182 /* 1183 * Number of physical segments as sent to the device. 1184 * 1185 * Normally this is the number of discontiguous data segments sent by the 1186 * submitter. But for data-less command like discard we might have no 1187 * actual data segments submitted, but the driver might have to add it's 1188 * own special payload. In that case we still return 1 here so that this 1189 * special payload will be mapped. 1190 */ 1191 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1192 { 1193 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1194 return 1; 1195 return rq->nr_phys_segments; 1196 } 1197 1198 /* 1199 * Number of discard segments (or ranges) the driver needs to fill in. 1200 * Each discard bio merged into a request is counted as one segment. 1201 */ 1202 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1203 { 1204 return max_t(unsigned short, rq->nr_phys_segments, 1); 1205 } 1206 1207 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1208 struct scatterlist *sglist, struct scatterlist **last_sg); 1209 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1210 struct scatterlist *sglist) 1211 { 1212 struct scatterlist *last_sg = NULL; 1213 1214 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1215 } 1216 extern void blk_dump_rq_flags(struct request *, char *); 1217 1218 bool __must_check blk_get_queue(struct request_queue *); 1219 struct request_queue *blk_alloc_queue(int node_id); 1220 extern void blk_put_queue(struct request_queue *); 1221 extern void blk_set_queue_dying(struct request_queue *); 1222 1223 #ifdef CONFIG_BLOCK 1224 /* 1225 * blk_plug permits building a queue of related requests by holding the I/O 1226 * fragments for a short period. This allows merging of sequential requests 1227 * into single larger request. As the requests are moved from a per-task list to 1228 * the device's request_queue in a batch, this results in improved scalability 1229 * as the lock contention for request_queue lock is reduced. 1230 * 1231 * It is ok not to disable preemption when adding the request to the plug list 1232 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1233 * the plug list when the task sleeps by itself. For details, please see 1234 * schedule() where blk_schedule_flush_plug() is called. 1235 */ 1236 struct blk_plug { 1237 struct list_head mq_list; /* blk-mq requests */ 1238 struct list_head cb_list; /* md requires an unplug callback */ 1239 unsigned short rq_count; 1240 bool multiple_queues; 1241 bool nowait; 1242 }; 1243 #define BLK_MAX_REQUEST_COUNT 16 1244 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1245 1246 struct blk_plug_cb; 1247 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1248 struct blk_plug_cb { 1249 struct list_head list; 1250 blk_plug_cb_fn callback; 1251 void *data; 1252 }; 1253 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1254 void *data, int size); 1255 extern void blk_start_plug(struct blk_plug *); 1256 extern void blk_finish_plug(struct blk_plug *); 1257 extern void blk_flush_plug_list(struct blk_plug *, bool); 1258 1259 static inline void blk_flush_plug(struct task_struct *tsk) 1260 { 1261 struct blk_plug *plug = tsk->plug; 1262 1263 if (plug) 1264 blk_flush_plug_list(plug, false); 1265 } 1266 1267 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1268 { 1269 struct blk_plug *plug = tsk->plug; 1270 1271 if (plug) 1272 blk_flush_plug_list(plug, true); 1273 } 1274 1275 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1276 { 1277 struct blk_plug *plug = tsk->plug; 1278 1279 return plug && 1280 (!list_empty(&plug->mq_list) || 1281 !list_empty(&plug->cb_list)); 1282 } 1283 1284 int blkdev_issue_flush(struct block_device *bdev); 1285 long nr_blockdev_pages(void); 1286 #else /* CONFIG_BLOCK */ 1287 struct blk_plug { 1288 }; 1289 1290 static inline void blk_start_plug(struct blk_plug *plug) 1291 { 1292 } 1293 1294 static inline void blk_finish_plug(struct blk_plug *plug) 1295 { 1296 } 1297 1298 static inline void blk_flush_plug(struct task_struct *task) 1299 { 1300 } 1301 1302 static inline void blk_schedule_flush_plug(struct task_struct *task) 1303 { 1304 } 1305 1306 1307 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1308 { 1309 return false; 1310 } 1311 1312 static inline int blkdev_issue_flush(struct block_device *bdev) 1313 { 1314 return 0; 1315 } 1316 1317 static inline long nr_blockdev_pages(void) 1318 { 1319 return 0; 1320 } 1321 #endif /* CONFIG_BLOCK */ 1322 1323 extern void blk_io_schedule(void); 1324 1325 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1326 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1327 1328 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1329 1330 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1331 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1332 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1333 sector_t nr_sects, gfp_t gfp_mask, int flags, 1334 struct bio **biop); 1335 1336 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1337 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1338 1339 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1340 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1341 unsigned flags); 1342 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1343 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1344 1345 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1346 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1347 { 1348 return blkdev_issue_discard(sb->s_bdev, 1349 block << (sb->s_blocksize_bits - 1350 SECTOR_SHIFT), 1351 nr_blocks << (sb->s_blocksize_bits - 1352 SECTOR_SHIFT), 1353 gfp_mask, flags); 1354 } 1355 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1356 sector_t nr_blocks, gfp_t gfp_mask) 1357 { 1358 return blkdev_issue_zeroout(sb->s_bdev, 1359 block << (sb->s_blocksize_bits - 1360 SECTOR_SHIFT), 1361 nr_blocks << (sb->s_blocksize_bits - 1362 SECTOR_SHIFT), 1363 gfp_mask, 0); 1364 } 1365 1366 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1367 1368 static inline bool bdev_is_partition(struct block_device *bdev) 1369 { 1370 return bdev->bd_partno; 1371 } 1372 1373 enum blk_default_limits { 1374 BLK_MAX_SEGMENTS = 128, 1375 BLK_SAFE_MAX_SECTORS = 255, 1376 BLK_DEF_MAX_SECTORS = 2560, 1377 BLK_MAX_SEGMENT_SIZE = 65536, 1378 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1379 }; 1380 1381 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1382 { 1383 return q->limits.seg_boundary_mask; 1384 } 1385 1386 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1387 { 1388 return q->limits.virt_boundary_mask; 1389 } 1390 1391 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1392 { 1393 return q->limits.max_sectors; 1394 } 1395 1396 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1397 { 1398 return q->limits.max_hw_sectors; 1399 } 1400 1401 static inline unsigned short queue_max_segments(const struct request_queue *q) 1402 { 1403 return q->limits.max_segments; 1404 } 1405 1406 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1407 { 1408 return q->limits.max_discard_segments; 1409 } 1410 1411 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1412 { 1413 return q->limits.max_segment_size; 1414 } 1415 1416 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1417 { 1418 1419 const struct queue_limits *l = &q->limits; 1420 1421 return min(l->max_zone_append_sectors, l->max_sectors); 1422 } 1423 1424 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1425 { 1426 int retval = 512; 1427 1428 if (q && q->limits.logical_block_size) 1429 retval = q->limits.logical_block_size; 1430 1431 return retval; 1432 } 1433 1434 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1435 { 1436 return queue_logical_block_size(bdev_get_queue(bdev)); 1437 } 1438 1439 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1440 { 1441 return q->limits.physical_block_size; 1442 } 1443 1444 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1445 { 1446 return queue_physical_block_size(bdev_get_queue(bdev)); 1447 } 1448 1449 static inline unsigned int queue_io_min(const struct request_queue *q) 1450 { 1451 return q->limits.io_min; 1452 } 1453 1454 static inline int bdev_io_min(struct block_device *bdev) 1455 { 1456 return queue_io_min(bdev_get_queue(bdev)); 1457 } 1458 1459 static inline unsigned int queue_io_opt(const struct request_queue *q) 1460 { 1461 return q->limits.io_opt; 1462 } 1463 1464 static inline int bdev_io_opt(struct block_device *bdev) 1465 { 1466 return queue_io_opt(bdev_get_queue(bdev)); 1467 } 1468 1469 static inline unsigned int 1470 queue_zone_write_granularity(const struct request_queue *q) 1471 { 1472 return q->limits.zone_write_granularity; 1473 } 1474 1475 static inline unsigned int 1476 bdev_zone_write_granularity(struct block_device *bdev) 1477 { 1478 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1479 } 1480 1481 static inline int queue_alignment_offset(const struct request_queue *q) 1482 { 1483 if (q->limits.misaligned) 1484 return -1; 1485 1486 return q->limits.alignment_offset; 1487 } 1488 1489 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1490 { 1491 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1492 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1493 << SECTOR_SHIFT; 1494 1495 return (granularity + lim->alignment_offset - alignment) % granularity; 1496 } 1497 1498 static inline int bdev_alignment_offset(struct block_device *bdev) 1499 { 1500 struct request_queue *q = bdev_get_queue(bdev); 1501 1502 if (q->limits.misaligned) 1503 return -1; 1504 if (bdev_is_partition(bdev)) 1505 return queue_limit_alignment_offset(&q->limits, 1506 bdev->bd_start_sect); 1507 return q->limits.alignment_offset; 1508 } 1509 1510 static inline int queue_discard_alignment(const struct request_queue *q) 1511 { 1512 if (q->limits.discard_misaligned) 1513 return -1; 1514 1515 return q->limits.discard_alignment; 1516 } 1517 1518 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1519 { 1520 unsigned int alignment, granularity, offset; 1521 1522 if (!lim->max_discard_sectors) 1523 return 0; 1524 1525 /* Why are these in bytes, not sectors? */ 1526 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1527 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1528 if (!granularity) 1529 return 0; 1530 1531 /* Offset of the partition start in 'granularity' sectors */ 1532 offset = sector_div(sector, granularity); 1533 1534 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1535 offset = (granularity + alignment - offset) % granularity; 1536 1537 /* Turn it back into bytes, gaah */ 1538 return offset << SECTOR_SHIFT; 1539 } 1540 1541 static inline int bdev_discard_alignment(struct block_device *bdev) 1542 { 1543 struct request_queue *q = bdev_get_queue(bdev); 1544 1545 if (bdev_is_partition(bdev)) 1546 return queue_limit_discard_alignment(&q->limits, 1547 bdev->bd_start_sect); 1548 return q->limits.discard_alignment; 1549 } 1550 1551 static inline unsigned int bdev_write_same(struct block_device *bdev) 1552 { 1553 struct request_queue *q = bdev_get_queue(bdev); 1554 1555 if (q) 1556 return q->limits.max_write_same_sectors; 1557 1558 return 0; 1559 } 1560 1561 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1562 { 1563 struct request_queue *q = bdev_get_queue(bdev); 1564 1565 if (q) 1566 return q->limits.max_write_zeroes_sectors; 1567 1568 return 0; 1569 } 1570 1571 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1572 { 1573 struct request_queue *q = bdev_get_queue(bdev); 1574 1575 if (q) 1576 return blk_queue_zoned_model(q); 1577 1578 return BLK_ZONED_NONE; 1579 } 1580 1581 static inline bool bdev_is_zoned(struct block_device *bdev) 1582 { 1583 struct request_queue *q = bdev_get_queue(bdev); 1584 1585 if (q) 1586 return blk_queue_is_zoned(q); 1587 1588 return false; 1589 } 1590 1591 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1592 { 1593 struct request_queue *q = bdev_get_queue(bdev); 1594 1595 if (q) 1596 return blk_queue_zone_sectors(q); 1597 return 0; 1598 } 1599 1600 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1601 { 1602 struct request_queue *q = bdev_get_queue(bdev); 1603 1604 if (q) 1605 return queue_max_open_zones(q); 1606 return 0; 1607 } 1608 1609 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1610 { 1611 struct request_queue *q = bdev_get_queue(bdev); 1612 1613 if (q) 1614 return queue_max_active_zones(q); 1615 return 0; 1616 } 1617 1618 static inline int queue_dma_alignment(const struct request_queue *q) 1619 { 1620 return q ? q->dma_alignment : 511; 1621 } 1622 1623 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1624 unsigned int len) 1625 { 1626 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1627 return !(addr & alignment) && !(len & alignment); 1628 } 1629 1630 /* assumes size > 256 */ 1631 static inline unsigned int blksize_bits(unsigned int size) 1632 { 1633 unsigned int bits = 8; 1634 do { 1635 bits++; 1636 size >>= 1; 1637 } while (size > 256); 1638 return bits; 1639 } 1640 1641 static inline unsigned int block_size(struct block_device *bdev) 1642 { 1643 return 1 << bdev->bd_inode->i_blkbits; 1644 } 1645 1646 int kblockd_schedule_work(struct work_struct *work); 1647 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1648 1649 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1650 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1651 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1652 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1653 1654 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1655 1656 enum blk_integrity_flags { 1657 BLK_INTEGRITY_VERIFY = 1 << 0, 1658 BLK_INTEGRITY_GENERATE = 1 << 1, 1659 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1660 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1661 }; 1662 1663 struct blk_integrity_iter { 1664 void *prot_buf; 1665 void *data_buf; 1666 sector_t seed; 1667 unsigned int data_size; 1668 unsigned short interval; 1669 const char *disk_name; 1670 }; 1671 1672 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1673 typedef void (integrity_prepare_fn) (struct request *); 1674 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1675 1676 struct blk_integrity_profile { 1677 integrity_processing_fn *generate_fn; 1678 integrity_processing_fn *verify_fn; 1679 integrity_prepare_fn *prepare_fn; 1680 integrity_complete_fn *complete_fn; 1681 const char *name; 1682 }; 1683 1684 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1685 extern void blk_integrity_unregister(struct gendisk *); 1686 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1687 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1688 struct scatterlist *); 1689 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1690 1691 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1692 { 1693 struct blk_integrity *bi = &disk->queue->integrity; 1694 1695 if (!bi->profile) 1696 return NULL; 1697 1698 return bi; 1699 } 1700 1701 static inline 1702 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1703 { 1704 return blk_get_integrity(bdev->bd_disk); 1705 } 1706 1707 static inline bool 1708 blk_integrity_queue_supports_integrity(struct request_queue *q) 1709 { 1710 return q->integrity.profile; 1711 } 1712 1713 static inline bool blk_integrity_rq(struct request *rq) 1714 { 1715 return rq->cmd_flags & REQ_INTEGRITY; 1716 } 1717 1718 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1719 unsigned int segs) 1720 { 1721 q->limits.max_integrity_segments = segs; 1722 } 1723 1724 static inline unsigned short 1725 queue_max_integrity_segments(const struct request_queue *q) 1726 { 1727 return q->limits.max_integrity_segments; 1728 } 1729 1730 /** 1731 * bio_integrity_intervals - Return number of integrity intervals for a bio 1732 * @bi: blk_integrity profile for device 1733 * @sectors: Size of the bio in 512-byte sectors 1734 * 1735 * Description: The block layer calculates everything in 512 byte 1736 * sectors but integrity metadata is done in terms of the data integrity 1737 * interval size of the storage device. Convert the block layer sectors 1738 * to the appropriate number of integrity intervals. 1739 */ 1740 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1741 unsigned int sectors) 1742 { 1743 return sectors >> (bi->interval_exp - 9); 1744 } 1745 1746 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1747 unsigned int sectors) 1748 { 1749 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1750 } 1751 1752 /* 1753 * Return the first bvec that contains integrity data. Only drivers that are 1754 * limited to a single integrity segment should use this helper. 1755 */ 1756 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1757 { 1758 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1759 return NULL; 1760 return rq->bio->bi_integrity->bip_vec; 1761 } 1762 1763 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1764 1765 struct bio; 1766 struct block_device; 1767 struct gendisk; 1768 struct blk_integrity; 1769 1770 static inline int blk_integrity_rq(struct request *rq) 1771 { 1772 return 0; 1773 } 1774 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1775 struct bio *b) 1776 { 1777 return 0; 1778 } 1779 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1780 struct bio *b, 1781 struct scatterlist *s) 1782 { 1783 return 0; 1784 } 1785 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1786 { 1787 return NULL; 1788 } 1789 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1790 { 1791 return NULL; 1792 } 1793 static inline bool 1794 blk_integrity_queue_supports_integrity(struct request_queue *q) 1795 { 1796 return false; 1797 } 1798 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1799 { 1800 return 0; 1801 } 1802 static inline void blk_integrity_register(struct gendisk *d, 1803 struct blk_integrity *b) 1804 { 1805 } 1806 static inline void blk_integrity_unregister(struct gendisk *d) 1807 { 1808 } 1809 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1810 unsigned int segs) 1811 { 1812 } 1813 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1814 { 1815 return 0; 1816 } 1817 1818 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1819 unsigned int sectors) 1820 { 1821 return 0; 1822 } 1823 1824 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1825 unsigned int sectors) 1826 { 1827 return 0; 1828 } 1829 1830 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1831 { 1832 return NULL; 1833 } 1834 1835 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1836 1837 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1838 1839 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1840 1841 void blk_ksm_unregister(struct request_queue *q); 1842 1843 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1844 1845 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1846 struct request_queue *q) 1847 { 1848 return true; 1849 } 1850 1851 static inline void blk_ksm_unregister(struct request_queue *q) { } 1852 1853 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1854 1855 1856 struct block_device_operations { 1857 blk_qc_t (*submit_bio) (struct bio *bio); 1858 int (*open) (struct block_device *, fmode_t); 1859 void (*release) (struct gendisk *, fmode_t); 1860 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1861 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1862 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1863 unsigned int (*check_events) (struct gendisk *disk, 1864 unsigned int clearing); 1865 void (*unlock_native_capacity) (struct gendisk *); 1866 int (*getgeo)(struct block_device *, struct hd_geometry *); 1867 int (*set_read_only)(struct block_device *bdev, bool ro); 1868 /* this callback is with swap_lock and sometimes page table lock held */ 1869 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1870 int (*report_zones)(struct gendisk *, sector_t sector, 1871 unsigned int nr_zones, report_zones_cb cb, void *data); 1872 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1873 struct module *owner; 1874 const struct pr_ops *pr_ops; 1875 }; 1876 1877 #ifdef CONFIG_COMPAT 1878 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1879 unsigned int, unsigned long); 1880 #else 1881 #define blkdev_compat_ptr_ioctl NULL 1882 #endif 1883 1884 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1885 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1886 struct writeback_control *); 1887 1888 #ifdef CONFIG_BLK_DEV_ZONED 1889 bool blk_req_needs_zone_write_lock(struct request *rq); 1890 bool blk_req_zone_write_trylock(struct request *rq); 1891 void __blk_req_zone_write_lock(struct request *rq); 1892 void __blk_req_zone_write_unlock(struct request *rq); 1893 1894 static inline void blk_req_zone_write_lock(struct request *rq) 1895 { 1896 if (blk_req_needs_zone_write_lock(rq)) 1897 __blk_req_zone_write_lock(rq); 1898 } 1899 1900 static inline void blk_req_zone_write_unlock(struct request *rq) 1901 { 1902 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1903 __blk_req_zone_write_unlock(rq); 1904 } 1905 1906 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1907 { 1908 return rq->q->seq_zones_wlock && 1909 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1910 } 1911 1912 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1913 { 1914 if (!blk_req_needs_zone_write_lock(rq)) 1915 return true; 1916 return !blk_req_zone_is_write_locked(rq); 1917 } 1918 #else 1919 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1920 { 1921 return false; 1922 } 1923 1924 static inline void blk_req_zone_write_lock(struct request *rq) 1925 { 1926 } 1927 1928 static inline void blk_req_zone_write_unlock(struct request *rq) 1929 { 1930 } 1931 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1932 { 1933 return false; 1934 } 1935 1936 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1937 { 1938 return true; 1939 } 1940 #endif /* CONFIG_BLK_DEV_ZONED */ 1941 1942 static inline void blk_wake_io_task(struct task_struct *waiter) 1943 { 1944 /* 1945 * If we're polling, the task itself is doing the completions. For 1946 * that case, we don't need to signal a wakeup, it's enough to just 1947 * mark us as RUNNING. 1948 */ 1949 if (waiter == current) 1950 __set_current_state(TASK_RUNNING); 1951 else 1952 wake_up_process(waiter); 1953 } 1954 1955 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1956 unsigned int op); 1957 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1958 unsigned long start_time); 1959 1960 unsigned long bio_start_io_acct(struct bio *bio); 1961 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1962 struct block_device *orig_bdev); 1963 1964 /** 1965 * bio_end_io_acct - end I/O accounting for bio based drivers 1966 * @bio: bio to end account for 1967 * @start: start time returned by bio_start_io_acct() 1968 */ 1969 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1970 { 1971 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1972 } 1973 1974 int bdev_read_only(struct block_device *bdev); 1975 int set_blocksize(struct block_device *bdev, int size); 1976 1977 const char *bdevname(struct block_device *bdev, char *buffer); 1978 int lookup_bdev(const char *pathname, dev_t *dev); 1979 1980 void blkdev_show(struct seq_file *seqf, off_t offset); 1981 1982 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1983 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1984 #ifdef CONFIG_BLOCK 1985 #define BLKDEV_MAJOR_MAX 512 1986 #else 1987 #define BLKDEV_MAJOR_MAX 0 1988 #endif 1989 1990 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1991 void *holder); 1992 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1993 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1994 void bd_abort_claiming(struct block_device *bdev, void *holder); 1995 void blkdev_put(struct block_device *bdev, fmode_t mode); 1996 1997 /* just for blk-cgroup, don't use elsewhere */ 1998 struct block_device *blkdev_get_no_open(dev_t dev); 1999 void blkdev_put_no_open(struct block_device *bdev); 2000 2001 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 2002 void bdev_add(struct block_device *bdev, dev_t dev); 2003 struct block_device *I_BDEV(struct inode *inode); 2004 struct block_device *bdgrab(struct block_device *bdev); 2005 void bdput(struct block_device *); 2006 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2007 loff_t lend); 2008 2009 #ifdef CONFIG_BLOCK 2010 void invalidate_bdev(struct block_device *bdev); 2011 int sync_blockdev(struct block_device *bdev); 2012 #else 2013 static inline void invalidate_bdev(struct block_device *bdev) 2014 { 2015 } 2016 static inline int sync_blockdev(struct block_device *bdev) 2017 { 2018 return 0; 2019 } 2020 #endif 2021 int fsync_bdev(struct block_device *bdev); 2022 2023 int freeze_bdev(struct block_device *bdev); 2024 int thaw_bdev(struct block_device *bdev); 2025 2026 #endif /* _LINUX_BLKDEV_H */ 2027