xref: /linux-6.15/include/linux/blkdev.h (revision d66fa9ec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 
8 #ifdef CONFIG_BLOCK
9 
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30 
31 struct module;
32 struct scsi_ioctl_command;
33 
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_wb;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consisitent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /*
54  * Maximum number of blkcg policies allowed to be registered concurrently.
55  * Defined here to simplify include dependency.
56  */
57 #define BLKCG_MAX_POLS		3
58 
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60 
61 #define BLK_RL_SYNCFULL		(1U << 0)
62 #define BLK_RL_ASYNCFULL	(1U << 1)
63 
64 struct request_list {
65 	struct request_queue	*q;	/* the queue this rl belongs to */
66 #ifdef CONFIG_BLK_CGROUP
67 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
68 #endif
69 	/*
70 	 * count[], starved[], and wait[] are indexed by
71 	 * BLK_RW_SYNC/BLK_RW_ASYNC
72 	 */
73 	int			count[2];
74 	int			starved[2];
75 	mempool_t		*rq_pool;
76 	wait_queue_head_t	wait[2];
77 	unsigned int		flags;
78 };
79 
80 /*
81  * request flags */
82 typedef __u32 __bitwise req_flags_t;
83 
84 /* elevator knows about this request */
85 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
86 /* drive already may have started this one */
87 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
88 /* uses tagged queueing */
89 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
90 /* may not be passed by ioscheduler */
91 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
92 /* request for flush sequence */
93 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
94 /* merge of different types, fail separately */
95 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
96 /* track inflight for MQ */
97 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
98 /* don't call prep for this one */
99 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
100 /* set for "ide_preempt" requests and also for requests for which the SCSI
101    "quiesce" state must be ignored. */
102 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
103 /* contains copies of user pages */
104 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
105 /* vaguely specified driver internal error.  Ignored by the block layer */
106 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
107 /* don't warn about errors */
108 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
109 /* elevator private data attached */
110 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
111 /* account I/O stat */
112 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
113 /* request came from our alloc pool */
114 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
115 /* runtime pm request */
116 #define RQF_PM			((__force req_flags_t)(1 << 15))
117 /* on IO scheduler merge hash */
118 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
119 /* IO stats tracking on */
120 #define RQF_STATS		((__force req_flags_t)(1 << 17))
121 /* Look at ->special_vec for the actual data payload instead of the
122    bio chain. */
123 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
124 
125 /* flags that prevent us from merging requests: */
126 #define RQF_NOMERGE_FLAGS \
127 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
128 
129 /*
130  * Try to put the fields that are referenced together in the same cacheline.
131  *
132  * If you modify this structure, make sure to update blk_rq_init() and
133  * especially blk_mq_rq_ctx_init() to take care of the added fields.
134  */
135 struct request {
136 	struct list_head queuelist;
137 	union {
138 		struct __call_single_data csd;
139 		u64 fifo_time;
140 	};
141 
142 	struct request_queue *q;
143 	struct blk_mq_ctx *mq_ctx;
144 
145 	int cpu;
146 	unsigned int cmd_flags;		/* op and common flags */
147 	req_flags_t rq_flags;
148 
149 	int internal_tag;
150 
151 	unsigned long atomic_flags;
152 
153 	/* the following two fields are internal, NEVER access directly */
154 	unsigned int __data_len;	/* total data len */
155 	int tag;
156 	sector_t __sector;		/* sector cursor */
157 
158 	struct bio *bio;
159 	struct bio *biotail;
160 
161 	/*
162 	 * The hash is used inside the scheduler, and killed once the
163 	 * request reaches the dispatch list. The ipi_list is only used
164 	 * to queue the request for softirq completion, which is long
165 	 * after the request has been unhashed (and even removed from
166 	 * the dispatch list).
167 	 */
168 	union {
169 		struct hlist_node hash;	/* merge hash */
170 		struct list_head ipi_list;
171 	};
172 
173 	/*
174 	 * The rb_node is only used inside the io scheduler, requests
175 	 * are pruned when moved to the dispatch queue. So let the
176 	 * completion_data share space with the rb_node.
177 	 */
178 	union {
179 		struct rb_node rb_node;	/* sort/lookup */
180 		struct bio_vec special_vec;
181 		void *completion_data;
182 		int error_count; /* for legacy drivers, don't use */
183 	};
184 
185 	/*
186 	 * Three pointers are available for the IO schedulers, if they need
187 	 * more they have to dynamically allocate it.  Flush requests are
188 	 * never put on the IO scheduler. So let the flush fields share
189 	 * space with the elevator data.
190 	 */
191 	union {
192 		struct {
193 			struct io_cq		*icq;
194 			void			*priv[2];
195 		} elv;
196 
197 		struct {
198 			unsigned int		seq;
199 			struct list_head	list;
200 			rq_end_io_fn		*saved_end_io;
201 		} flush;
202 	};
203 
204 	struct gendisk *rq_disk;
205 	struct hd_struct *part;
206 	unsigned long start_time;
207 	struct blk_issue_stat issue_stat;
208 #ifdef CONFIG_BLK_CGROUP
209 	struct request_list *rl;		/* rl this rq is alloced from */
210 	unsigned long long start_time_ns;
211 	unsigned long long io_start_time_ns;    /* when passed to hardware */
212 #endif
213 	/* Number of scatter-gather DMA addr+len pairs after
214 	 * physical address coalescing is performed.
215 	 */
216 	unsigned short nr_phys_segments;
217 #if defined(CONFIG_BLK_DEV_INTEGRITY)
218 	unsigned short nr_integrity_segments;
219 #endif
220 
221 	unsigned short ioprio;
222 
223 	unsigned int timeout;
224 
225 	void *special;		/* opaque pointer available for LLD use */
226 
227 	unsigned int extra_len;	/* length of alignment and padding */
228 
229 	unsigned short write_hint;
230 
231 	unsigned long deadline;
232 	struct list_head timeout_list;
233 
234 	/*
235 	 * completion callback.
236 	 */
237 	rq_end_io_fn *end_io;
238 	void *end_io_data;
239 
240 	/* for bidi */
241 	struct request *next_rq;
242 };
243 
244 static inline bool blk_op_is_scsi(unsigned int op)
245 {
246 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
247 }
248 
249 static inline bool blk_op_is_private(unsigned int op)
250 {
251 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
252 }
253 
254 static inline bool blk_rq_is_scsi(struct request *rq)
255 {
256 	return blk_op_is_scsi(req_op(rq));
257 }
258 
259 static inline bool blk_rq_is_private(struct request *rq)
260 {
261 	return blk_op_is_private(req_op(rq));
262 }
263 
264 static inline bool blk_rq_is_passthrough(struct request *rq)
265 {
266 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
267 }
268 
269 static inline bool bio_is_passthrough(struct bio *bio)
270 {
271 	unsigned op = bio_op(bio);
272 
273 	return blk_op_is_scsi(op) || blk_op_is_private(op);
274 }
275 
276 static inline unsigned short req_get_ioprio(struct request *req)
277 {
278 	return req->ioprio;
279 }
280 
281 #include <linux/elevator.h>
282 
283 struct blk_queue_ctx;
284 
285 typedef void (request_fn_proc) (struct request_queue *q);
286 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
287 typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t);
288 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
289 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
290 
291 struct bio_vec;
292 typedef void (softirq_done_fn)(struct request *);
293 typedef int (dma_drain_needed_fn)(struct request *);
294 typedef int (lld_busy_fn) (struct request_queue *q);
295 typedef int (bsg_job_fn) (struct bsg_job *);
296 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
297 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
298 
299 enum blk_eh_timer_return {
300 	BLK_EH_NOT_HANDLED,
301 	BLK_EH_HANDLED,
302 	BLK_EH_RESET_TIMER,
303 };
304 
305 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
306 
307 enum blk_queue_state {
308 	Queue_down,
309 	Queue_up,
310 };
311 
312 struct blk_queue_tag {
313 	struct request **tag_index;	/* map of busy tags */
314 	unsigned long *tag_map;		/* bit map of free/busy tags */
315 	int max_depth;			/* what we will send to device */
316 	int real_max_depth;		/* what the array can hold */
317 	atomic_t refcnt;		/* map can be shared */
318 	int alloc_policy;		/* tag allocation policy */
319 	int next_tag;			/* next tag */
320 };
321 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
322 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
323 
324 #define BLK_SCSI_MAX_CMDS	(256)
325 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
326 
327 /*
328  * Zoned block device models (zoned limit).
329  */
330 enum blk_zoned_model {
331 	BLK_ZONED_NONE,	/* Regular block device */
332 	BLK_ZONED_HA,	/* Host-aware zoned block device */
333 	BLK_ZONED_HM,	/* Host-managed zoned block device */
334 };
335 
336 struct queue_limits {
337 	unsigned long		bounce_pfn;
338 	unsigned long		seg_boundary_mask;
339 	unsigned long		virt_boundary_mask;
340 
341 	unsigned int		max_hw_sectors;
342 	unsigned int		max_dev_sectors;
343 	unsigned int		chunk_sectors;
344 	unsigned int		max_sectors;
345 	unsigned int		max_segment_size;
346 	unsigned int		physical_block_size;
347 	unsigned int		alignment_offset;
348 	unsigned int		io_min;
349 	unsigned int		io_opt;
350 	unsigned int		max_discard_sectors;
351 	unsigned int		max_hw_discard_sectors;
352 	unsigned int		max_write_same_sectors;
353 	unsigned int		max_write_zeroes_sectors;
354 	unsigned int		discard_granularity;
355 	unsigned int		discard_alignment;
356 
357 	unsigned short		logical_block_size;
358 	unsigned short		max_segments;
359 	unsigned short		max_integrity_segments;
360 	unsigned short		max_discard_segments;
361 
362 	unsigned char		misaligned;
363 	unsigned char		discard_misaligned;
364 	unsigned char		cluster;
365 	unsigned char		raid_partial_stripes_expensive;
366 	enum blk_zoned_model	zoned;
367 };
368 
369 #ifdef CONFIG_BLK_DEV_ZONED
370 
371 struct blk_zone_report_hdr {
372 	unsigned int	nr_zones;
373 	u8		padding[60];
374 };
375 
376 extern int blkdev_report_zones(struct block_device *bdev,
377 			       sector_t sector, struct blk_zone *zones,
378 			       unsigned int *nr_zones, gfp_t gfp_mask);
379 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
380 			      sector_t nr_sectors, gfp_t gfp_mask);
381 
382 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
383 				     unsigned int cmd, unsigned long arg);
384 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
385 				    unsigned int cmd, unsigned long arg);
386 
387 #else /* CONFIG_BLK_DEV_ZONED */
388 
389 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
390 					    fmode_t mode, unsigned int cmd,
391 					    unsigned long arg)
392 {
393 	return -ENOTTY;
394 }
395 
396 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
397 					   fmode_t mode, unsigned int cmd,
398 					   unsigned long arg)
399 {
400 	return -ENOTTY;
401 }
402 
403 #endif /* CONFIG_BLK_DEV_ZONED */
404 
405 struct request_queue {
406 	/*
407 	 * Together with queue_head for cacheline sharing
408 	 */
409 	struct list_head	queue_head;
410 	struct request		*last_merge;
411 	struct elevator_queue	*elevator;
412 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
413 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
414 
415 	atomic_t		shared_hctx_restart;
416 
417 	struct blk_queue_stats	*stats;
418 	struct rq_wb		*rq_wb;
419 
420 	/*
421 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
422 	 * is used, root blkg allocates from @q->root_rl and all other
423 	 * blkgs from their own blkg->rl.  Which one to use should be
424 	 * determined using bio_request_list().
425 	 */
426 	struct request_list	root_rl;
427 
428 	request_fn_proc		*request_fn;
429 	make_request_fn		*make_request_fn;
430 	poll_q_fn		*poll_fn;
431 	prep_rq_fn		*prep_rq_fn;
432 	unprep_rq_fn		*unprep_rq_fn;
433 	softirq_done_fn		*softirq_done_fn;
434 	rq_timed_out_fn		*rq_timed_out_fn;
435 	dma_drain_needed_fn	*dma_drain_needed;
436 	lld_busy_fn		*lld_busy_fn;
437 	/* Called just after a request is allocated */
438 	init_rq_fn		*init_rq_fn;
439 	/* Called just before a request is freed */
440 	exit_rq_fn		*exit_rq_fn;
441 	/* Called from inside blk_get_request() */
442 	void (*initialize_rq_fn)(struct request *rq);
443 
444 	const struct blk_mq_ops	*mq_ops;
445 
446 	unsigned int		*mq_map;
447 
448 	/* sw queues */
449 	struct blk_mq_ctx __percpu	*queue_ctx;
450 	unsigned int		nr_queues;
451 
452 	unsigned int		queue_depth;
453 
454 	/* hw dispatch queues */
455 	struct blk_mq_hw_ctx	**queue_hw_ctx;
456 	unsigned int		nr_hw_queues;
457 
458 	/*
459 	 * Dispatch queue sorting
460 	 */
461 	sector_t		end_sector;
462 	struct request		*boundary_rq;
463 
464 	/*
465 	 * Delayed queue handling
466 	 */
467 	struct delayed_work	delay_work;
468 
469 	struct backing_dev_info	*backing_dev_info;
470 
471 	/*
472 	 * The queue owner gets to use this for whatever they like.
473 	 * ll_rw_blk doesn't touch it.
474 	 */
475 	void			*queuedata;
476 
477 	/*
478 	 * various queue flags, see QUEUE_* below
479 	 */
480 	unsigned long		queue_flags;
481 
482 	/*
483 	 * ida allocated id for this queue.  Used to index queues from
484 	 * ioctx.
485 	 */
486 	int			id;
487 
488 	/*
489 	 * queue needs bounce pages for pages above this limit
490 	 */
491 	gfp_t			bounce_gfp;
492 
493 	/*
494 	 * protects queue structures from reentrancy. ->__queue_lock should
495 	 * _never_ be used directly, it is queue private. always use
496 	 * ->queue_lock.
497 	 */
498 	spinlock_t		__queue_lock;
499 	spinlock_t		*queue_lock;
500 
501 	/*
502 	 * queue kobject
503 	 */
504 	struct kobject kobj;
505 
506 	/*
507 	 * mq queue kobject
508 	 */
509 	struct kobject mq_kobj;
510 
511 #ifdef  CONFIG_BLK_DEV_INTEGRITY
512 	struct blk_integrity integrity;
513 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
514 
515 #ifdef CONFIG_PM
516 	struct device		*dev;
517 	int			rpm_status;
518 	unsigned int		nr_pending;
519 #endif
520 
521 	/*
522 	 * queue settings
523 	 */
524 	unsigned long		nr_requests;	/* Max # of requests */
525 	unsigned int		nr_congestion_on;
526 	unsigned int		nr_congestion_off;
527 	unsigned int		nr_batching;
528 
529 	unsigned int		dma_drain_size;
530 	void			*dma_drain_buffer;
531 	unsigned int		dma_pad_mask;
532 	unsigned int		dma_alignment;
533 
534 	struct blk_queue_tag	*queue_tags;
535 	struct list_head	tag_busy_list;
536 
537 	unsigned int		nr_sorted;
538 	unsigned int		in_flight[2];
539 
540 	/*
541 	 * Number of active block driver functions for which blk_drain_queue()
542 	 * must wait. Must be incremented around functions that unlock the
543 	 * queue_lock internally, e.g. scsi_request_fn().
544 	 */
545 	unsigned int		request_fn_active;
546 
547 	unsigned int		rq_timeout;
548 	int			poll_nsec;
549 
550 	struct blk_stat_callback	*poll_cb;
551 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
552 
553 	struct timer_list	timeout;
554 	struct work_struct	timeout_work;
555 	struct list_head	timeout_list;
556 
557 	struct list_head	icq_list;
558 #ifdef CONFIG_BLK_CGROUP
559 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
560 	struct blkcg_gq		*root_blkg;
561 	struct list_head	blkg_list;
562 #endif
563 
564 	struct queue_limits	limits;
565 
566 	/*
567 	 * sg stuff
568 	 */
569 	unsigned int		sg_timeout;
570 	unsigned int		sg_reserved_size;
571 	int			node;
572 #ifdef CONFIG_BLK_DEV_IO_TRACE
573 	struct blk_trace	*blk_trace;
574 	struct mutex		blk_trace_mutex;
575 #endif
576 	/*
577 	 * for flush operations
578 	 */
579 	struct blk_flush_queue	*fq;
580 
581 	struct list_head	requeue_list;
582 	spinlock_t		requeue_lock;
583 	struct delayed_work	requeue_work;
584 
585 	struct mutex		sysfs_lock;
586 
587 	int			bypass_depth;
588 	atomic_t		mq_freeze_depth;
589 
590 #if defined(CONFIG_BLK_DEV_BSG)
591 	bsg_job_fn		*bsg_job_fn;
592 	struct bsg_class_device bsg_dev;
593 #endif
594 
595 #ifdef CONFIG_BLK_DEV_THROTTLING
596 	/* Throttle data */
597 	struct throtl_data *td;
598 #endif
599 	struct rcu_head		rcu_head;
600 	wait_queue_head_t	mq_freeze_wq;
601 	struct percpu_ref	q_usage_counter;
602 	struct list_head	all_q_node;
603 
604 	struct blk_mq_tag_set	*tag_set;
605 	struct list_head	tag_set_list;
606 	struct bio_set		*bio_split;
607 
608 #ifdef CONFIG_BLK_DEBUG_FS
609 	struct dentry		*debugfs_dir;
610 	struct dentry		*sched_debugfs_dir;
611 #endif
612 
613 	bool			mq_sysfs_init_done;
614 
615 	size_t			cmd_size;
616 	void			*rq_alloc_data;
617 
618 	struct work_struct	release_work;
619 
620 #define BLK_MAX_WRITE_HINTS	5
621 	u64			write_hints[BLK_MAX_WRITE_HINTS];
622 };
623 
624 #define QUEUE_FLAG_QUEUED	0	/* uses generic tag queueing */
625 #define QUEUE_FLAG_STOPPED	1	/* queue is stopped */
626 #define QUEUE_FLAG_DYING	2	/* queue being torn down */
627 #define QUEUE_FLAG_BYPASS	3	/* act as dumb FIFO queue */
628 #define QUEUE_FLAG_BIDI		4	/* queue supports bidi requests */
629 #define QUEUE_FLAG_NOMERGES     5	/* disable merge attempts */
630 #define QUEUE_FLAG_SAME_COMP	6	/* complete on same CPU-group */
631 #define QUEUE_FLAG_FAIL_IO	7	/* fake timeout */
632 #define QUEUE_FLAG_NONROT	9	/* non-rotational device (SSD) */
633 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
634 #define QUEUE_FLAG_IO_STAT     10	/* do IO stats */
635 #define QUEUE_FLAG_DISCARD     11	/* supports DISCARD */
636 #define QUEUE_FLAG_NOXMERGES   12	/* No extended merges */
637 #define QUEUE_FLAG_ADD_RANDOM  13	/* Contributes to random pool */
638 #define QUEUE_FLAG_SECERASE    14	/* supports secure erase */
639 #define QUEUE_FLAG_SAME_FORCE  15	/* force complete on same CPU */
640 #define QUEUE_FLAG_DEAD        16	/* queue tear-down finished */
641 #define QUEUE_FLAG_INIT_DONE   17	/* queue is initialized */
642 #define QUEUE_FLAG_NO_SG_MERGE 18	/* don't attempt to merge SG segments*/
643 #define QUEUE_FLAG_POLL	       19	/* IO polling enabled if set */
644 #define QUEUE_FLAG_WC	       20	/* Write back caching */
645 #define QUEUE_FLAG_FUA	       21	/* device supports FUA writes */
646 #define QUEUE_FLAG_FLUSH_NQ    22	/* flush not queueuable */
647 #define QUEUE_FLAG_DAX         23	/* device supports DAX */
648 #define QUEUE_FLAG_STATS       24	/* track rq completion times */
649 #define QUEUE_FLAG_POLL_STATS  25	/* collecting stats for hybrid polling */
650 #define QUEUE_FLAG_REGISTERED  26	/* queue has been registered to a disk */
651 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27	/* queue supports SCSI commands */
652 #define QUEUE_FLAG_QUIESCED    28	/* queue has been quiesced */
653 #define QUEUE_FLAG_PREEMPT_ONLY	29	/* only process REQ_PREEMPT requests */
654 
655 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
656 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
657 				 (1 << QUEUE_FLAG_ADD_RANDOM))
658 
659 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
660 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
661 				 (1 << QUEUE_FLAG_POLL))
662 
663 /*
664  * @q->queue_lock is set while a queue is being initialized. Since we know
665  * that no other threads access the queue object before @q->queue_lock has
666  * been set, it is safe to manipulate queue flags without holding the
667  * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
668  * blk_init_allocated_queue().
669  */
670 static inline void queue_lockdep_assert_held(struct request_queue *q)
671 {
672 	if (q->queue_lock)
673 		lockdep_assert_held(q->queue_lock);
674 }
675 
676 static inline void queue_flag_set_unlocked(unsigned int flag,
677 					   struct request_queue *q)
678 {
679 	__set_bit(flag, &q->queue_flags);
680 }
681 
682 static inline int queue_flag_test_and_clear(unsigned int flag,
683 					    struct request_queue *q)
684 {
685 	queue_lockdep_assert_held(q);
686 
687 	if (test_bit(flag, &q->queue_flags)) {
688 		__clear_bit(flag, &q->queue_flags);
689 		return 1;
690 	}
691 
692 	return 0;
693 }
694 
695 static inline int queue_flag_test_and_set(unsigned int flag,
696 					  struct request_queue *q)
697 {
698 	queue_lockdep_assert_held(q);
699 
700 	if (!test_bit(flag, &q->queue_flags)) {
701 		__set_bit(flag, &q->queue_flags);
702 		return 0;
703 	}
704 
705 	return 1;
706 }
707 
708 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
709 {
710 	queue_lockdep_assert_held(q);
711 	__set_bit(flag, &q->queue_flags);
712 }
713 
714 static inline void queue_flag_clear_unlocked(unsigned int flag,
715 					     struct request_queue *q)
716 {
717 	__clear_bit(flag, &q->queue_flags);
718 }
719 
720 static inline int queue_in_flight(struct request_queue *q)
721 {
722 	return q->in_flight[0] + q->in_flight[1];
723 }
724 
725 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
726 {
727 	queue_lockdep_assert_held(q);
728 	__clear_bit(flag, &q->queue_flags);
729 }
730 
731 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
732 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
733 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
734 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
735 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
736 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
737 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
738 #define blk_queue_noxmerges(q)	\
739 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
740 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
741 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
742 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
743 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
744 #define blk_queue_secure_erase(q) \
745 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
746 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
747 #define blk_queue_scsi_passthrough(q)	\
748 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
749 
750 #define blk_noretry_request(rq) \
751 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
752 			     REQ_FAILFAST_DRIVER))
753 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
754 #define blk_queue_preempt_only(q)				\
755 	test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags)
756 
757 extern int blk_set_preempt_only(struct request_queue *q);
758 extern void blk_clear_preempt_only(struct request_queue *q);
759 
760 static inline bool blk_account_rq(struct request *rq)
761 {
762 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
763 }
764 
765 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
766 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
767 /* rq->queuelist of dequeued request must be list_empty() */
768 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
769 
770 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
771 
772 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
773 
774 /*
775  * Driver can handle struct request, if it either has an old style
776  * request_fn defined, or is blk-mq based.
777  */
778 static inline bool queue_is_rq_based(struct request_queue *q)
779 {
780 	return q->request_fn || q->mq_ops;
781 }
782 
783 static inline unsigned int blk_queue_cluster(struct request_queue *q)
784 {
785 	return q->limits.cluster;
786 }
787 
788 static inline enum blk_zoned_model
789 blk_queue_zoned_model(struct request_queue *q)
790 {
791 	return q->limits.zoned;
792 }
793 
794 static inline bool blk_queue_is_zoned(struct request_queue *q)
795 {
796 	switch (blk_queue_zoned_model(q)) {
797 	case BLK_ZONED_HA:
798 	case BLK_ZONED_HM:
799 		return true;
800 	default:
801 		return false;
802 	}
803 }
804 
805 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
806 {
807 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
808 }
809 
810 static inline bool rq_is_sync(struct request *rq)
811 {
812 	return op_is_sync(rq->cmd_flags);
813 }
814 
815 static inline bool blk_rl_full(struct request_list *rl, bool sync)
816 {
817 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
818 
819 	return rl->flags & flag;
820 }
821 
822 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
823 {
824 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
825 
826 	rl->flags |= flag;
827 }
828 
829 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
830 {
831 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
832 
833 	rl->flags &= ~flag;
834 }
835 
836 static inline bool rq_mergeable(struct request *rq)
837 {
838 	if (blk_rq_is_passthrough(rq))
839 		return false;
840 
841 	if (req_op(rq) == REQ_OP_FLUSH)
842 		return false;
843 
844 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
845 		return false;
846 
847 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
848 		return false;
849 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
850 		return false;
851 
852 	return true;
853 }
854 
855 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
856 {
857 	if (bio_page(a) == bio_page(b) &&
858 	    bio_offset(a) == bio_offset(b))
859 		return true;
860 
861 	return false;
862 }
863 
864 static inline unsigned int blk_queue_depth(struct request_queue *q)
865 {
866 	if (q->queue_depth)
867 		return q->queue_depth;
868 
869 	return q->nr_requests;
870 }
871 
872 /*
873  * q->prep_rq_fn return values
874  */
875 enum {
876 	BLKPREP_OK,		/* serve it */
877 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
878 	BLKPREP_DEFER,		/* leave on queue */
879 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
880 };
881 
882 extern unsigned long blk_max_low_pfn, blk_max_pfn;
883 
884 /*
885  * standard bounce addresses:
886  *
887  * BLK_BOUNCE_HIGH	: bounce all highmem pages
888  * BLK_BOUNCE_ANY	: don't bounce anything
889  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
890  */
891 
892 #if BITS_PER_LONG == 32
893 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
894 #else
895 #define BLK_BOUNCE_HIGH		-1ULL
896 #endif
897 #define BLK_BOUNCE_ANY		(-1ULL)
898 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
899 
900 /*
901  * default timeout for SG_IO if none specified
902  */
903 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
904 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
905 
906 struct rq_map_data {
907 	struct page **pages;
908 	int page_order;
909 	int nr_entries;
910 	unsigned long offset;
911 	int null_mapped;
912 	int from_user;
913 };
914 
915 struct req_iterator {
916 	struct bvec_iter iter;
917 	struct bio *bio;
918 };
919 
920 /* This should not be used directly - use rq_for_each_segment */
921 #define for_each_bio(_bio)		\
922 	for (; _bio; _bio = _bio->bi_next)
923 #define __rq_for_each_bio(_bio, rq)	\
924 	if ((rq->bio))			\
925 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
926 
927 #define rq_for_each_segment(bvl, _rq, _iter)			\
928 	__rq_for_each_bio(_iter.bio, _rq)			\
929 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
930 
931 #define rq_iter_last(bvec, _iter)				\
932 		(_iter.bio->bi_next == NULL &&			\
933 		 bio_iter_last(bvec, _iter.iter))
934 
935 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
936 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
937 #endif
938 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
939 extern void rq_flush_dcache_pages(struct request *rq);
940 #else
941 static inline void rq_flush_dcache_pages(struct request *rq)
942 {
943 }
944 #endif
945 
946 extern int blk_register_queue(struct gendisk *disk);
947 extern void blk_unregister_queue(struct gendisk *disk);
948 extern blk_qc_t generic_make_request(struct bio *bio);
949 extern blk_qc_t direct_make_request(struct bio *bio);
950 extern void blk_rq_init(struct request_queue *q, struct request *rq);
951 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
952 extern void blk_put_request(struct request *);
953 extern void __blk_put_request(struct request_queue *, struct request *);
954 extern struct request *blk_get_request_flags(struct request_queue *,
955 					     unsigned int op,
956 					     blk_mq_req_flags_t flags);
957 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
958 				       gfp_t gfp_mask);
959 extern void blk_requeue_request(struct request_queue *, struct request *);
960 extern int blk_lld_busy(struct request_queue *q);
961 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
962 			     struct bio_set *bs, gfp_t gfp_mask,
963 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
964 			     void *data);
965 extern void blk_rq_unprep_clone(struct request *rq);
966 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
967 				     struct request *rq);
968 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
969 extern void blk_delay_queue(struct request_queue *, unsigned long);
970 extern void blk_queue_split(struct request_queue *, struct bio **);
971 extern void blk_recount_segments(struct request_queue *, struct bio *);
972 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
973 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
974 			      unsigned int, void __user *);
975 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
976 			  unsigned int, void __user *);
977 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
978 			 struct scsi_ioctl_command __user *);
979 
980 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
981 extern void blk_queue_exit(struct request_queue *q);
982 extern void blk_start_queue(struct request_queue *q);
983 extern void blk_start_queue_async(struct request_queue *q);
984 extern void blk_stop_queue(struct request_queue *q);
985 extern void blk_sync_queue(struct request_queue *q);
986 extern void __blk_stop_queue(struct request_queue *q);
987 extern void __blk_run_queue(struct request_queue *q);
988 extern void __blk_run_queue_uncond(struct request_queue *q);
989 extern void blk_run_queue(struct request_queue *);
990 extern void blk_run_queue_async(struct request_queue *q);
991 extern int blk_rq_map_user(struct request_queue *, struct request *,
992 			   struct rq_map_data *, void __user *, unsigned long,
993 			   gfp_t);
994 extern int blk_rq_unmap_user(struct bio *);
995 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
996 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
997 			       struct rq_map_data *, const struct iov_iter *,
998 			       gfp_t);
999 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
1000 			  struct request *, int);
1001 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
1002 				  struct request *, int, rq_end_io_fn *);
1003 
1004 int blk_status_to_errno(blk_status_t status);
1005 blk_status_t errno_to_blk_status(int errno);
1006 
1007 bool blk_poll(struct request_queue *q, blk_qc_t cookie);
1008 
1009 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
1010 {
1011 	return bdev->bd_disk->queue;	/* this is never NULL */
1012 }
1013 
1014 /*
1015  * blk_rq_pos()			: the current sector
1016  * blk_rq_bytes()		: bytes left in the entire request
1017  * blk_rq_cur_bytes()		: bytes left in the current segment
1018  * blk_rq_err_bytes()		: bytes left till the next error boundary
1019  * blk_rq_sectors()		: sectors left in the entire request
1020  * blk_rq_cur_sectors()		: sectors left in the current segment
1021  */
1022 static inline sector_t blk_rq_pos(const struct request *rq)
1023 {
1024 	return rq->__sector;
1025 }
1026 
1027 static inline unsigned int blk_rq_bytes(const struct request *rq)
1028 {
1029 	return rq->__data_len;
1030 }
1031 
1032 static inline int blk_rq_cur_bytes(const struct request *rq)
1033 {
1034 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1035 }
1036 
1037 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1038 
1039 static inline unsigned int blk_rq_sectors(const struct request *rq)
1040 {
1041 	return blk_rq_bytes(rq) >> 9;
1042 }
1043 
1044 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1045 {
1046 	return blk_rq_cur_bytes(rq) >> 9;
1047 }
1048 
1049 /*
1050  * Some commands like WRITE SAME have a payload or data transfer size which
1051  * is different from the size of the request.  Any driver that supports such
1052  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1053  * calculate the data transfer size.
1054  */
1055 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1056 {
1057 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1058 		return rq->special_vec.bv_len;
1059 	return blk_rq_bytes(rq);
1060 }
1061 
1062 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1063 						     int op)
1064 {
1065 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1066 		return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1067 
1068 	if (unlikely(op == REQ_OP_WRITE_SAME))
1069 		return q->limits.max_write_same_sectors;
1070 
1071 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1072 		return q->limits.max_write_zeroes_sectors;
1073 
1074 	return q->limits.max_sectors;
1075 }
1076 
1077 /*
1078  * Return maximum size of a request at given offset. Only valid for
1079  * file system requests.
1080  */
1081 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1082 					       sector_t offset)
1083 {
1084 	if (!q->limits.chunk_sectors)
1085 		return q->limits.max_sectors;
1086 
1087 	return q->limits.chunk_sectors -
1088 			(offset & (q->limits.chunk_sectors - 1));
1089 }
1090 
1091 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1092 						  sector_t offset)
1093 {
1094 	struct request_queue *q = rq->q;
1095 
1096 	if (blk_rq_is_passthrough(rq))
1097 		return q->limits.max_hw_sectors;
1098 
1099 	if (!q->limits.chunk_sectors ||
1100 	    req_op(rq) == REQ_OP_DISCARD ||
1101 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1102 		return blk_queue_get_max_sectors(q, req_op(rq));
1103 
1104 	return min(blk_max_size_offset(q, offset),
1105 			blk_queue_get_max_sectors(q, req_op(rq)));
1106 }
1107 
1108 static inline unsigned int blk_rq_count_bios(struct request *rq)
1109 {
1110 	unsigned int nr_bios = 0;
1111 	struct bio *bio;
1112 
1113 	__rq_for_each_bio(bio, rq)
1114 		nr_bios++;
1115 
1116 	return nr_bios;
1117 }
1118 
1119 /*
1120  * Request issue related functions.
1121  */
1122 extern struct request *blk_peek_request(struct request_queue *q);
1123 extern void blk_start_request(struct request *rq);
1124 extern struct request *blk_fetch_request(struct request_queue *q);
1125 
1126 void blk_steal_bios(struct bio_list *list, struct request *rq);
1127 
1128 /*
1129  * Request completion related functions.
1130  *
1131  * blk_update_request() completes given number of bytes and updates
1132  * the request without completing it.
1133  *
1134  * blk_end_request() and friends.  __blk_end_request() must be called
1135  * with the request queue spinlock acquired.
1136  *
1137  * Several drivers define their own end_request and call
1138  * blk_end_request() for parts of the original function.
1139  * This prevents code duplication in drivers.
1140  */
1141 extern bool blk_update_request(struct request *rq, blk_status_t error,
1142 			       unsigned int nr_bytes);
1143 extern void blk_finish_request(struct request *rq, blk_status_t error);
1144 extern bool blk_end_request(struct request *rq, blk_status_t error,
1145 			    unsigned int nr_bytes);
1146 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1147 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1148 			      unsigned int nr_bytes);
1149 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1150 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1151 
1152 extern void blk_complete_request(struct request *);
1153 extern void __blk_complete_request(struct request *);
1154 extern void blk_abort_request(struct request *);
1155 extern void blk_unprep_request(struct request *);
1156 
1157 /*
1158  * Access functions for manipulating queue properties
1159  */
1160 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1161 					spinlock_t *lock, int node_id);
1162 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1163 extern int blk_init_allocated_queue(struct request_queue *);
1164 extern void blk_cleanup_queue(struct request_queue *);
1165 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1166 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1167 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1168 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1169 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1170 extern void blk_queue_max_discard_segments(struct request_queue *,
1171 		unsigned short);
1172 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1173 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1174 		unsigned int max_discard_sectors);
1175 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1176 		unsigned int max_write_same_sectors);
1177 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1178 		unsigned int max_write_same_sectors);
1179 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1180 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1181 extern void blk_queue_alignment_offset(struct request_queue *q,
1182 				       unsigned int alignment);
1183 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1184 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1185 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1186 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1187 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1188 extern void blk_set_default_limits(struct queue_limits *lim);
1189 extern void blk_set_stacking_limits(struct queue_limits *lim);
1190 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1191 			    sector_t offset);
1192 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1193 			    sector_t offset);
1194 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1195 			      sector_t offset);
1196 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1197 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1198 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1199 extern int blk_queue_dma_drain(struct request_queue *q,
1200 			       dma_drain_needed_fn *dma_drain_needed,
1201 			       void *buf, unsigned int size);
1202 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1203 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1204 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1205 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1206 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1207 extern void blk_queue_dma_alignment(struct request_queue *, int);
1208 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1209 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1210 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1211 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1212 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1213 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1214 
1215 /*
1216  * Number of physical segments as sent to the device.
1217  *
1218  * Normally this is the number of discontiguous data segments sent by the
1219  * submitter.  But for data-less command like discard we might have no
1220  * actual data segments submitted, but the driver might have to add it's
1221  * own special payload.  In that case we still return 1 here so that this
1222  * special payload will be mapped.
1223  */
1224 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1225 {
1226 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1227 		return 1;
1228 	return rq->nr_phys_segments;
1229 }
1230 
1231 /*
1232  * Number of discard segments (or ranges) the driver needs to fill in.
1233  * Each discard bio merged into a request is counted as one segment.
1234  */
1235 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1236 {
1237 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1238 }
1239 
1240 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1241 extern void blk_dump_rq_flags(struct request *, char *);
1242 extern long nr_blockdev_pages(void);
1243 
1244 bool __must_check blk_get_queue(struct request_queue *);
1245 struct request_queue *blk_alloc_queue(gfp_t);
1246 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1247 extern void blk_put_queue(struct request_queue *);
1248 extern void blk_set_queue_dying(struct request_queue *);
1249 
1250 /*
1251  * block layer runtime pm functions
1252  */
1253 #ifdef CONFIG_PM
1254 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1255 extern int blk_pre_runtime_suspend(struct request_queue *q);
1256 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1257 extern void blk_pre_runtime_resume(struct request_queue *q);
1258 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1259 extern void blk_set_runtime_active(struct request_queue *q);
1260 #else
1261 static inline void blk_pm_runtime_init(struct request_queue *q,
1262 	struct device *dev) {}
1263 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1264 {
1265 	return -ENOSYS;
1266 }
1267 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1268 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1269 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1270 static inline void blk_set_runtime_active(struct request_queue *q) {}
1271 #endif
1272 
1273 /*
1274  * blk_plug permits building a queue of related requests by holding the I/O
1275  * fragments for a short period. This allows merging of sequential requests
1276  * into single larger request. As the requests are moved from a per-task list to
1277  * the device's request_queue in a batch, this results in improved scalability
1278  * as the lock contention for request_queue lock is reduced.
1279  *
1280  * It is ok not to disable preemption when adding the request to the plug list
1281  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1282  * the plug list when the task sleeps by itself. For details, please see
1283  * schedule() where blk_schedule_flush_plug() is called.
1284  */
1285 struct blk_plug {
1286 	struct list_head list; /* requests */
1287 	struct list_head mq_list; /* blk-mq requests */
1288 	struct list_head cb_list; /* md requires an unplug callback */
1289 };
1290 #define BLK_MAX_REQUEST_COUNT 16
1291 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1292 
1293 struct blk_plug_cb;
1294 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1295 struct blk_plug_cb {
1296 	struct list_head list;
1297 	blk_plug_cb_fn callback;
1298 	void *data;
1299 };
1300 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1301 					     void *data, int size);
1302 extern void blk_start_plug(struct blk_plug *);
1303 extern void blk_finish_plug(struct blk_plug *);
1304 extern void blk_flush_plug_list(struct blk_plug *, bool);
1305 
1306 static inline void blk_flush_plug(struct task_struct *tsk)
1307 {
1308 	struct blk_plug *plug = tsk->plug;
1309 
1310 	if (plug)
1311 		blk_flush_plug_list(plug, false);
1312 }
1313 
1314 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1315 {
1316 	struct blk_plug *plug = tsk->plug;
1317 
1318 	if (plug)
1319 		blk_flush_plug_list(plug, true);
1320 }
1321 
1322 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1323 {
1324 	struct blk_plug *plug = tsk->plug;
1325 
1326 	return plug &&
1327 		(!list_empty(&plug->list) ||
1328 		 !list_empty(&plug->mq_list) ||
1329 		 !list_empty(&plug->cb_list));
1330 }
1331 
1332 /*
1333  * tag stuff
1334  */
1335 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1336 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1337 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1338 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1339 extern void blk_queue_free_tags(struct request_queue *);
1340 extern int blk_queue_resize_tags(struct request_queue *, int);
1341 extern void blk_queue_invalidate_tags(struct request_queue *);
1342 extern struct blk_queue_tag *blk_init_tags(int, int);
1343 extern void blk_free_tags(struct blk_queue_tag *);
1344 
1345 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1346 						int tag)
1347 {
1348 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1349 		return NULL;
1350 	return bqt->tag_index[tag];
1351 }
1352 
1353 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1354 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1355 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1356 
1357 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1358 
1359 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1360 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1361 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1362 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1363 		struct bio **biop);
1364 
1365 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1366 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1367 
1368 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1369 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1370 		unsigned flags);
1371 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1372 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1373 
1374 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1375 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1376 {
1377 	return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1378 				    nr_blocks << (sb->s_blocksize_bits - 9),
1379 				    gfp_mask, flags);
1380 }
1381 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1382 		sector_t nr_blocks, gfp_t gfp_mask)
1383 {
1384 	return blkdev_issue_zeroout(sb->s_bdev,
1385 				    block << (sb->s_blocksize_bits - 9),
1386 				    nr_blocks << (sb->s_blocksize_bits - 9),
1387 				    gfp_mask, 0);
1388 }
1389 
1390 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1391 
1392 enum blk_default_limits {
1393 	BLK_MAX_SEGMENTS	= 128,
1394 	BLK_SAFE_MAX_SECTORS	= 255,
1395 	BLK_DEF_MAX_SECTORS	= 2560,
1396 	BLK_MAX_SEGMENT_SIZE	= 65536,
1397 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1398 };
1399 
1400 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1401 
1402 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1403 {
1404 	return q->limits.seg_boundary_mask;
1405 }
1406 
1407 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1408 {
1409 	return q->limits.virt_boundary_mask;
1410 }
1411 
1412 static inline unsigned int queue_max_sectors(struct request_queue *q)
1413 {
1414 	return q->limits.max_sectors;
1415 }
1416 
1417 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1418 {
1419 	return q->limits.max_hw_sectors;
1420 }
1421 
1422 static inline unsigned short queue_max_segments(struct request_queue *q)
1423 {
1424 	return q->limits.max_segments;
1425 }
1426 
1427 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1428 {
1429 	return q->limits.max_discard_segments;
1430 }
1431 
1432 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1433 {
1434 	return q->limits.max_segment_size;
1435 }
1436 
1437 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1438 {
1439 	int retval = 512;
1440 
1441 	if (q && q->limits.logical_block_size)
1442 		retval = q->limits.logical_block_size;
1443 
1444 	return retval;
1445 }
1446 
1447 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1448 {
1449 	return queue_logical_block_size(bdev_get_queue(bdev));
1450 }
1451 
1452 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1453 {
1454 	return q->limits.physical_block_size;
1455 }
1456 
1457 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1458 {
1459 	return queue_physical_block_size(bdev_get_queue(bdev));
1460 }
1461 
1462 static inline unsigned int queue_io_min(struct request_queue *q)
1463 {
1464 	return q->limits.io_min;
1465 }
1466 
1467 static inline int bdev_io_min(struct block_device *bdev)
1468 {
1469 	return queue_io_min(bdev_get_queue(bdev));
1470 }
1471 
1472 static inline unsigned int queue_io_opt(struct request_queue *q)
1473 {
1474 	return q->limits.io_opt;
1475 }
1476 
1477 static inline int bdev_io_opt(struct block_device *bdev)
1478 {
1479 	return queue_io_opt(bdev_get_queue(bdev));
1480 }
1481 
1482 static inline int queue_alignment_offset(struct request_queue *q)
1483 {
1484 	if (q->limits.misaligned)
1485 		return -1;
1486 
1487 	return q->limits.alignment_offset;
1488 }
1489 
1490 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1491 {
1492 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1493 	unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1494 
1495 	return (granularity + lim->alignment_offset - alignment) % granularity;
1496 }
1497 
1498 static inline int bdev_alignment_offset(struct block_device *bdev)
1499 {
1500 	struct request_queue *q = bdev_get_queue(bdev);
1501 
1502 	if (q->limits.misaligned)
1503 		return -1;
1504 
1505 	if (bdev != bdev->bd_contains)
1506 		return bdev->bd_part->alignment_offset;
1507 
1508 	return q->limits.alignment_offset;
1509 }
1510 
1511 static inline int queue_discard_alignment(struct request_queue *q)
1512 {
1513 	if (q->limits.discard_misaligned)
1514 		return -1;
1515 
1516 	return q->limits.discard_alignment;
1517 }
1518 
1519 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1520 {
1521 	unsigned int alignment, granularity, offset;
1522 
1523 	if (!lim->max_discard_sectors)
1524 		return 0;
1525 
1526 	/* Why are these in bytes, not sectors? */
1527 	alignment = lim->discard_alignment >> 9;
1528 	granularity = lim->discard_granularity >> 9;
1529 	if (!granularity)
1530 		return 0;
1531 
1532 	/* Offset of the partition start in 'granularity' sectors */
1533 	offset = sector_div(sector, granularity);
1534 
1535 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1536 	offset = (granularity + alignment - offset) % granularity;
1537 
1538 	/* Turn it back into bytes, gaah */
1539 	return offset << 9;
1540 }
1541 
1542 static inline int bdev_discard_alignment(struct block_device *bdev)
1543 {
1544 	struct request_queue *q = bdev_get_queue(bdev);
1545 
1546 	if (bdev != bdev->bd_contains)
1547 		return bdev->bd_part->discard_alignment;
1548 
1549 	return q->limits.discard_alignment;
1550 }
1551 
1552 static inline unsigned int bdev_write_same(struct block_device *bdev)
1553 {
1554 	struct request_queue *q = bdev_get_queue(bdev);
1555 
1556 	if (q)
1557 		return q->limits.max_write_same_sectors;
1558 
1559 	return 0;
1560 }
1561 
1562 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1563 {
1564 	struct request_queue *q = bdev_get_queue(bdev);
1565 
1566 	if (q)
1567 		return q->limits.max_write_zeroes_sectors;
1568 
1569 	return 0;
1570 }
1571 
1572 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1573 {
1574 	struct request_queue *q = bdev_get_queue(bdev);
1575 
1576 	if (q)
1577 		return blk_queue_zoned_model(q);
1578 
1579 	return BLK_ZONED_NONE;
1580 }
1581 
1582 static inline bool bdev_is_zoned(struct block_device *bdev)
1583 {
1584 	struct request_queue *q = bdev_get_queue(bdev);
1585 
1586 	if (q)
1587 		return blk_queue_is_zoned(q);
1588 
1589 	return false;
1590 }
1591 
1592 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1593 {
1594 	struct request_queue *q = bdev_get_queue(bdev);
1595 
1596 	if (q)
1597 		return blk_queue_zone_sectors(q);
1598 
1599 	return 0;
1600 }
1601 
1602 static inline int queue_dma_alignment(struct request_queue *q)
1603 {
1604 	return q ? q->dma_alignment : 511;
1605 }
1606 
1607 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1608 				 unsigned int len)
1609 {
1610 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1611 	return !(addr & alignment) && !(len & alignment);
1612 }
1613 
1614 /* assumes size > 256 */
1615 static inline unsigned int blksize_bits(unsigned int size)
1616 {
1617 	unsigned int bits = 8;
1618 	do {
1619 		bits++;
1620 		size >>= 1;
1621 	} while (size > 256);
1622 	return bits;
1623 }
1624 
1625 static inline unsigned int block_size(struct block_device *bdev)
1626 {
1627 	return bdev->bd_block_size;
1628 }
1629 
1630 static inline bool queue_flush_queueable(struct request_queue *q)
1631 {
1632 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1633 }
1634 
1635 typedef struct {struct page *v;} Sector;
1636 
1637 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1638 
1639 static inline void put_dev_sector(Sector p)
1640 {
1641 	put_page(p.v);
1642 }
1643 
1644 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1645 				struct bio_vec *bprv, unsigned int offset)
1646 {
1647 	return offset ||
1648 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1649 }
1650 
1651 /*
1652  * Check if adding a bio_vec after bprv with offset would create a gap in
1653  * the SG list. Most drivers don't care about this, but some do.
1654  */
1655 static inline bool bvec_gap_to_prev(struct request_queue *q,
1656 				struct bio_vec *bprv, unsigned int offset)
1657 {
1658 	if (!queue_virt_boundary(q))
1659 		return false;
1660 	return __bvec_gap_to_prev(q, bprv, offset);
1661 }
1662 
1663 /*
1664  * Check if the two bvecs from two bios can be merged to one segment.
1665  * If yes, no need to check gap between the two bios since the 1st bio
1666  * and the 1st bvec in the 2nd bio can be handled in one segment.
1667  */
1668 static inline bool bios_segs_mergeable(struct request_queue *q,
1669 		struct bio *prev, struct bio_vec *prev_last_bv,
1670 		struct bio_vec *next_first_bv)
1671 {
1672 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1673 		return false;
1674 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1675 		return false;
1676 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1677 			queue_max_segment_size(q))
1678 		return false;
1679 	return true;
1680 }
1681 
1682 static inline bool bio_will_gap(struct request_queue *q,
1683 				struct request *prev_rq,
1684 				struct bio *prev,
1685 				struct bio *next)
1686 {
1687 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1688 		struct bio_vec pb, nb;
1689 
1690 		/*
1691 		 * don't merge if the 1st bio starts with non-zero
1692 		 * offset, otherwise it is quite difficult to respect
1693 		 * sg gap limit. We work hard to merge a huge number of small
1694 		 * single bios in case of mkfs.
1695 		 */
1696 		if (prev_rq)
1697 			bio_get_first_bvec(prev_rq->bio, &pb);
1698 		else
1699 			bio_get_first_bvec(prev, &pb);
1700 		if (pb.bv_offset)
1701 			return true;
1702 
1703 		/*
1704 		 * We don't need to worry about the situation that the
1705 		 * merged segment ends in unaligned virt boundary:
1706 		 *
1707 		 * - if 'pb' ends aligned, the merged segment ends aligned
1708 		 * - if 'pb' ends unaligned, the next bio must include
1709 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1710 		 *   merge with 'pb'
1711 		 */
1712 		bio_get_last_bvec(prev, &pb);
1713 		bio_get_first_bvec(next, &nb);
1714 
1715 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1716 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1717 	}
1718 
1719 	return false;
1720 }
1721 
1722 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1723 {
1724 	return bio_will_gap(req->q, req, req->biotail, bio);
1725 }
1726 
1727 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1728 {
1729 	return bio_will_gap(req->q, NULL, bio, req->bio);
1730 }
1731 
1732 int kblockd_schedule_work(struct work_struct *work);
1733 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1734 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1735 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1736 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1737 
1738 #ifdef CONFIG_BLK_CGROUP
1739 /*
1740  * This should not be using sched_clock(). A real patch is in progress
1741  * to fix this up, until that is in place we need to disable preemption
1742  * around sched_clock() in this function and set_io_start_time_ns().
1743  */
1744 static inline void set_start_time_ns(struct request *req)
1745 {
1746 	preempt_disable();
1747 	req->start_time_ns = sched_clock();
1748 	preempt_enable();
1749 }
1750 
1751 static inline void set_io_start_time_ns(struct request *req)
1752 {
1753 	preempt_disable();
1754 	req->io_start_time_ns = sched_clock();
1755 	preempt_enable();
1756 }
1757 
1758 static inline uint64_t rq_start_time_ns(struct request *req)
1759 {
1760         return req->start_time_ns;
1761 }
1762 
1763 static inline uint64_t rq_io_start_time_ns(struct request *req)
1764 {
1765         return req->io_start_time_ns;
1766 }
1767 #else
1768 static inline void set_start_time_ns(struct request *req) {}
1769 static inline void set_io_start_time_ns(struct request *req) {}
1770 static inline uint64_t rq_start_time_ns(struct request *req)
1771 {
1772 	return 0;
1773 }
1774 static inline uint64_t rq_io_start_time_ns(struct request *req)
1775 {
1776 	return 0;
1777 }
1778 #endif
1779 
1780 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1781 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1782 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1783 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1784 
1785 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1786 
1787 enum blk_integrity_flags {
1788 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1789 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1790 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1791 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1792 };
1793 
1794 struct blk_integrity_iter {
1795 	void			*prot_buf;
1796 	void			*data_buf;
1797 	sector_t		seed;
1798 	unsigned int		data_size;
1799 	unsigned short		interval;
1800 	const char		*disk_name;
1801 };
1802 
1803 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1804 
1805 struct blk_integrity_profile {
1806 	integrity_processing_fn		*generate_fn;
1807 	integrity_processing_fn		*verify_fn;
1808 	const char			*name;
1809 };
1810 
1811 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1812 extern void blk_integrity_unregister(struct gendisk *);
1813 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1814 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1815 				   struct scatterlist *);
1816 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1817 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1818 				   struct request *);
1819 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1820 				    struct bio *);
1821 
1822 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1823 {
1824 	struct blk_integrity *bi = &disk->queue->integrity;
1825 
1826 	if (!bi->profile)
1827 		return NULL;
1828 
1829 	return bi;
1830 }
1831 
1832 static inline
1833 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1834 {
1835 	return blk_get_integrity(bdev->bd_disk);
1836 }
1837 
1838 static inline bool blk_integrity_rq(struct request *rq)
1839 {
1840 	return rq->cmd_flags & REQ_INTEGRITY;
1841 }
1842 
1843 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1844 						    unsigned int segs)
1845 {
1846 	q->limits.max_integrity_segments = segs;
1847 }
1848 
1849 static inline unsigned short
1850 queue_max_integrity_segments(struct request_queue *q)
1851 {
1852 	return q->limits.max_integrity_segments;
1853 }
1854 
1855 static inline bool integrity_req_gap_back_merge(struct request *req,
1856 						struct bio *next)
1857 {
1858 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1859 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1860 
1861 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1862 				bip_next->bip_vec[0].bv_offset);
1863 }
1864 
1865 static inline bool integrity_req_gap_front_merge(struct request *req,
1866 						 struct bio *bio)
1867 {
1868 	struct bio_integrity_payload *bip = bio_integrity(bio);
1869 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1870 
1871 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1872 				bip_next->bip_vec[0].bv_offset);
1873 }
1874 
1875 #else /* CONFIG_BLK_DEV_INTEGRITY */
1876 
1877 struct bio;
1878 struct block_device;
1879 struct gendisk;
1880 struct blk_integrity;
1881 
1882 static inline int blk_integrity_rq(struct request *rq)
1883 {
1884 	return 0;
1885 }
1886 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1887 					    struct bio *b)
1888 {
1889 	return 0;
1890 }
1891 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1892 					  struct bio *b,
1893 					  struct scatterlist *s)
1894 {
1895 	return 0;
1896 }
1897 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1898 {
1899 	return NULL;
1900 }
1901 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1902 {
1903 	return NULL;
1904 }
1905 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1906 {
1907 	return 0;
1908 }
1909 static inline void blk_integrity_register(struct gendisk *d,
1910 					 struct blk_integrity *b)
1911 {
1912 }
1913 static inline void blk_integrity_unregister(struct gendisk *d)
1914 {
1915 }
1916 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1917 						    unsigned int segs)
1918 {
1919 }
1920 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1921 {
1922 	return 0;
1923 }
1924 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1925 					  struct request *r1,
1926 					  struct request *r2)
1927 {
1928 	return true;
1929 }
1930 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1931 					   struct request *r,
1932 					   struct bio *b)
1933 {
1934 	return true;
1935 }
1936 
1937 static inline bool integrity_req_gap_back_merge(struct request *req,
1938 						struct bio *next)
1939 {
1940 	return false;
1941 }
1942 static inline bool integrity_req_gap_front_merge(struct request *req,
1943 						 struct bio *bio)
1944 {
1945 	return false;
1946 }
1947 
1948 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1949 
1950 struct block_device_operations {
1951 	int (*open) (struct block_device *, fmode_t);
1952 	void (*release) (struct gendisk *, fmode_t);
1953 	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1954 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1955 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1956 	unsigned int (*check_events) (struct gendisk *disk,
1957 				      unsigned int clearing);
1958 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1959 	int (*media_changed) (struct gendisk *);
1960 	void (*unlock_native_capacity) (struct gendisk *);
1961 	int (*revalidate_disk) (struct gendisk *);
1962 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1963 	/* this callback is with swap_lock and sometimes page table lock held */
1964 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1965 	struct module *owner;
1966 	const struct pr_ops *pr_ops;
1967 };
1968 
1969 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1970 				 unsigned long);
1971 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1972 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1973 						struct writeback_control *);
1974 #else /* CONFIG_BLOCK */
1975 
1976 struct block_device;
1977 
1978 /*
1979  * stubs for when the block layer is configured out
1980  */
1981 #define buffer_heads_over_limit 0
1982 
1983 static inline long nr_blockdev_pages(void)
1984 {
1985 	return 0;
1986 }
1987 
1988 struct blk_plug {
1989 };
1990 
1991 static inline void blk_start_plug(struct blk_plug *plug)
1992 {
1993 }
1994 
1995 static inline void blk_finish_plug(struct blk_plug *plug)
1996 {
1997 }
1998 
1999 static inline void blk_flush_plug(struct task_struct *task)
2000 {
2001 }
2002 
2003 static inline void blk_schedule_flush_plug(struct task_struct *task)
2004 {
2005 }
2006 
2007 
2008 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2009 {
2010 	return false;
2011 }
2012 
2013 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2014 				     sector_t *error_sector)
2015 {
2016 	return 0;
2017 }
2018 
2019 #endif /* CONFIG_BLOCK */
2020 
2021 #endif
2022