xref: /linux-6.15/include/linux/blkdev.h (revision d2cf8ccf)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29 
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44 
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48 
49 /*
50  * Maximum number of blkcg policies allowed to be registered concurrently.
51  * Defined here to simplify include dependency.
52  */
53 #define BLKCG_MAX_POLS		6
54 
55 #define DISK_MAX_PARTS			256
56 #define DISK_NAME_LEN			32
57 
58 #define PARTITION_META_INFO_VOLNAMELTH	64
59 /*
60  * Enough for the string representation of any kind of UUID plus NULL.
61  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62  */
63 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
64 
65 struct partition_meta_info {
66 	char uuid[PARTITION_META_INFO_UUIDLTH];
67 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69 
70 /**
71  * DOC: genhd capability flags
72  *
73  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74  * removable media.  When set, the device remains present even when media is not
75  * inserted.  Shall not be set for devices which are removed entirely when the
76  * media is removed.
77  *
78  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79  * doesn't appear in sysfs, and can't be opened from userspace or using
80  * blkdev_get*. Used for the underlying components of multipath devices.
81  *
82  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
83  * scan for partitions from add_disk, and users can't add partitions manually.
84  *
85  */
86 enum {
87 	GENHD_FL_REMOVABLE			= 1 << 0,
88 	GENHD_FL_HIDDEN				= 1 << 1,
89 	GENHD_FL_NO_PART			= 1 << 2,
90 };
91 
92 enum {
93 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
94 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
95 };
96 
97 enum {
98 	/* Poll even if events_poll_msecs is unset */
99 	DISK_EVENT_FLAG_POLL			= 1 << 0,
100 	/* Forward events to udev */
101 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
102 	/* Block event polling when open for exclusive write */
103 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
104 };
105 
106 struct disk_events;
107 struct badblocks;
108 
109 enum blk_integrity_checksum {
110 	BLK_INTEGRITY_CSUM_NONE		= 0,
111 	BLK_INTEGRITY_CSUM_IP		= 1,
112 	BLK_INTEGRITY_CSUM_CRC		= 2,
113 	BLK_INTEGRITY_CSUM_CRC64	= 3,
114 } __packed ;
115 
116 struct blk_integrity {
117 	unsigned char				flags;
118 	enum blk_integrity_checksum		csum_type;
119 	unsigned char				tuple_size;
120 	unsigned char				pi_offset;
121 	unsigned char				interval_exp;
122 	unsigned char				tag_size;
123 };
124 
125 typedef unsigned int __bitwise blk_mode_t;
126 
127 /* open for reading */
128 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES	((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN	((__force blk_mode_t)(1 << 6))
141 
142 struct gendisk {
143 	/*
144 	 * major/first_minor/minors should not be set by any new driver, the
145 	 * block core will take care of allocating them automatically.
146 	 */
147 	int major;
148 	int first_minor;
149 	int minors;
150 
151 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
152 
153 	unsigned short events;		/* supported events */
154 	unsigned short event_flags;	/* flags related to event processing */
155 
156 	struct xarray part_tbl;
157 	struct block_device *part0;
158 
159 	const struct block_device_operations *fops;
160 	struct request_queue *queue;
161 	void *private_data;
162 
163 	struct bio_set bio_split;
164 
165 	int flags;
166 	unsigned long state;
167 #define GD_NEED_PART_SCAN		0
168 #define GD_READ_ONLY			1
169 #define GD_DEAD				2
170 #define GD_NATIVE_CAPACITY		3
171 #define GD_ADDED			4
172 #define GD_SUPPRESS_PART_SCAN		5
173 #define GD_OWNS_QUEUE			6
174 
175 	struct mutex open_mutex;	/* open/close mutex */
176 	unsigned open_partitions;	/* number of open partitions */
177 
178 	struct backing_dev_info	*bdi;
179 	struct kobject queue_kobj;	/* the queue/ directory */
180 	struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 	struct list_head slave_bdevs;
183 #endif
184 	struct timer_rand_state *random;
185 	atomic_t sync_io;		/* RAID */
186 	struct disk_events *ev;
187 
188 #ifdef CONFIG_BLK_DEV_ZONED
189 	/*
190 	 * Zoned block device information. Reads of this information must be
191 	 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
192 	 * information is only allowed while no requests are being processed.
193 	 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
194 	 */
195 	unsigned int		nr_zones;
196 	unsigned int		zone_capacity;
197 	unsigned int		last_zone_capacity;
198 	unsigned long __rcu	*conv_zones_bitmap;
199 	unsigned int            zone_wplugs_hash_bits;
200 	spinlock_t              zone_wplugs_lock;
201 	struct mempool_s	*zone_wplugs_pool;
202 	struct hlist_head       *zone_wplugs_hash;
203 	struct workqueue_struct *zone_wplugs_wq;
204 #endif /* CONFIG_BLK_DEV_ZONED */
205 
206 #if IS_ENABLED(CONFIG_CDROM)
207 	struct cdrom_device_info *cdi;
208 #endif
209 	int node_id;
210 	struct badblocks *bb;
211 	struct lockdep_map lockdep_map;
212 	u64 diskseq;
213 	blk_mode_t open_mode;
214 
215 	/*
216 	 * Independent sector access ranges. This is always NULL for
217 	 * devices that do not have multiple independent access ranges.
218 	 */
219 	struct blk_independent_access_ranges *ia_ranges;
220 };
221 
222 /**
223  * disk_openers - returns how many openers are there for a disk
224  * @disk: disk to check
225  *
226  * This returns the number of openers for a disk.  Note that this value is only
227  * stable if disk->open_mutex is held.
228  *
229  * Note: Due to a quirk in the block layer open code, each open partition is
230  * only counted once even if there are multiple openers.
231  */
232 static inline unsigned int disk_openers(struct gendisk *disk)
233 {
234 	return atomic_read(&disk->part0->bd_openers);
235 }
236 
237 /**
238  * disk_has_partscan - return %true if partition scanning is enabled on a disk
239  * @disk: disk to check
240  *
241  * Returns %true if partitions scanning is enabled for @disk, or %false if
242  * partition scanning is disabled either permanently or temporarily.
243  */
244 static inline bool disk_has_partscan(struct gendisk *disk)
245 {
246 	return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
247 		!test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
248 }
249 
250 /*
251  * The gendisk is refcounted by the part0 block_device, and the bd_device
252  * therein is also used for device model presentation in sysfs.
253  */
254 #define dev_to_disk(device) \
255 	(dev_to_bdev(device)->bd_disk)
256 #define disk_to_dev(disk) \
257 	(&((disk)->part0->bd_device))
258 
259 #if IS_REACHABLE(CONFIG_CDROM)
260 #define disk_to_cdi(disk)	((disk)->cdi)
261 #else
262 #define disk_to_cdi(disk)	NULL
263 #endif
264 
265 static inline dev_t disk_devt(struct gendisk *disk)
266 {
267 	return MKDEV(disk->major, disk->first_minor);
268 }
269 
270 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
271 static inline int blk_validate_block_size(unsigned long bsize)
272 {
273 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
274 		return -EINVAL;
275 
276 	return 0;
277 }
278 
279 static inline bool blk_op_is_passthrough(blk_opf_t op)
280 {
281 	op &= REQ_OP_MASK;
282 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
283 }
284 
285 /* flags set by the driver in queue_limits.features */
286 typedef unsigned int __bitwise blk_features_t;
287 
288 /* supports a volatile write cache */
289 #define BLK_FEAT_WRITE_CACHE		((__force blk_features_t)(1u << 0))
290 
291 /* supports passing on the FUA bit */
292 #define BLK_FEAT_FUA			((__force blk_features_t)(1u << 1))
293 
294 /* rotational device (hard drive or floppy) */
295 #define BLK_FEAT_ROTATIONAL		((__force blk_features_t)(1u << 2))
296 
297 /* contributes to the random number pool */
298 #define BLK_FEAT_ADD_RANDOM		((__force blk_features_t)(1u << 3))
299 
300 /* do disk/partitions IO accounting */
301 #define BLK_FEAT_IO_STAT		((__force blk_features_t)(1u << 4))
302 
303 /* don't modify data until writeback is done */
304 #define BLK_FEAT_STABLE_WRITES		((__force blk_features_t)(1u << 5))
305 
306 /* always completes in submit context */
307 #define BLK_FEAT_SYNCHRONOUS		((__force blk_features_t)(1u << 6))
308 
309 /* supports REQ_NOWAIT */
310 #define BLK_FEAT_NOWAIT			((__force blk_features_t)(1u << 7))
311 
312 /* supports DAX */
313 #define BLK_FEAT_DAX			((__force blk_features_t)(1u << 8))
314 
315 /* supports I/O polling */
316 #define BLK_FEAT_POLL			((__force blk_features_t)(1u << 9))
317 
318 /* is a zoned device */
319 #define BLK_FEAT_ZONED			((__force blk_features_t)(1u << 10))
320 
321 /* supports PCI(e) p2p requests */
322 #define BLK_FEAT_PCI_P2PDMA		((__force blk_features_t)(1u << 12))
323 
324 /* skip this queue in blk_mq_(un)quiesce_tagset */
325 #define BLK_FEAT_SKIP_TAGSET_QUIESCE	((__force blk_features_t)(1u << 13))
326 
327 /* bounce all highmem pages */
328 #define BLK_FEAT_BOUNCE_HIGH		((__force blk_features_t)(1u << 14))
329 
330 /* undocumented magic for bcache */
331 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
332 	((__force blk_features_t)(1u << 15))
333 
334 /* atomic writes enabled */
335 #define BLK_FEAT_ATOMIC_WRITES \
336 	((__force blk_features_t)(1u << 16))
337 
338 /*
339  * Flags automatically inherited when stacking limits.
340  */
341 #define BLK_FEAT_INHERIT_MASK \
342 	(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
343 	 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
344 	 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
345 
346 /* internal flags in queue_limits.flags */
347 typedef unsigned int __bitwise blk_flags_t;
348 
349 /* do not send FLUSH/FUA commands despite advertising a write cache */
350 #define BLK_FLAG_WRITE_CACHE_DISABLED	((__force blk_flags_t)(1u << 0))
351 
352 /* I/O topology is misaligned */
353 #define BLK_FLAG_MISALIGNED		((__force blk_flags_t)(1u << 1))
354 
355 /* passthrough command IO accounting */
356 #define BLK_FLAG_IOSTATS_PASSTHROUGH	((__force blk_flags_t)(1u << 2))
357 
358 struct queue_limits {
359 	blk_features_t		features;
360 	blk_flags_t		flags;
361 	unsigned long		seg_boundary_mask;
362 	unsigned long		virt_boundary_mask;
363 
364 	unsigned int		max_hw_sectors;
365 	unsigned int		max_dev_sectors;
366 	unsigned int		chunk_sectors;
367 	unsigned int		max_sectors;
368 	unsigned int		max_user_sectors;
369 	unsigned int		max_segment_size;
370 	unsigned int		physical_block_size;
371 	unsigned int		logical_block_size;
372 	unsigned int		alignment_offset;
373 	unsigned int		io_min;
374 	unsigned int		io_opt;
375 	unsigned int		max_discard_sectors;
376 	unsigned int		max_hw_discard_sectors;
377 	unsigned int		max_user_discard_sectors;
378 	unsigned int		max_secure_erase_sectors;
379 	unsigned int		max_write_zeroes_sectors;
380 	unsigned int		max_hw_zone_append_sectors;
381 	unsigned int		max_zone_append_sectors;
382 	unsigned int		discard_granularity;
383 	unsigned int		discard_alignment;
384 	unsigned int		zone_write_granularity;
385 
386 	/* atomic write limits */
387 	unsigned int		atomic_write_hw_max;
388 	unsigned int		atomic_write_max_sectors;
389 	unsigned int		atomic_write_hw_boundary;
390 	unsigned int		atomic_write_boundary_sectors;
391 	unsigned int		atomic_write_hw_unit_min;
392 	unsigned int		atomic_write_unit_min;
393 	unsigned int		atomic_write_hw_unit_max;
394 	unsigned int		atomic_write_unit_max;
395 
396 	unsigned short		max_segments;
397 	unsigned short		max_integrity_segments;
398 	unsigned short		max_discard_segments;
399 
400 	unsigned int		max_open_zones;
401 	unsigned int		max_active_zones;
402 
403 	/*
404 	 * Drivers that set dma_alignment to less than 511 must be prepared to
405 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
406 	 * due to possible offsets.
407 	 */
408 	unsigned int		dma_alignment;
409 	unsigned int		dma_pad_mask;
410 
411 	struct blk_integrity	integrity;
412 };
413 
414 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
415 			       void *data);
416 
417 #define BLK_ALL_ZONES  ((unsigned int)-1)
418 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
419 		unsigned int nr_zones, report_zones_cb cb, void *data);
420 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
421 		sector_t sectors, sector_t nr_sectors);
422 int blk_revalidate_disk_zones(struct gendisk *disk);
423 
424 /*
425  * Independent access ranges: struct blk_independent_access_range describes
426  * a range of contiguous sectors that can be accessed using device command
427  * execution resources that are independent from the resources used for
428  * other access ranges. This is typically found with single-LUN multi-actuator
429  * HDDs where each access range is served by a different set of heads.
430  * The set of independent ranges supported by the device is defined using
431  * struct blk_independent_access_ranges. The independent ranges must not overlap
432  * and must include all sectors within the disk capacity (no sector holes
433  * allowed).
434  * For a device with multiple ranges, requests targeting sectors in different
435  * ranges can be executed in parallel. A request can straddle an access range
436  * boundary.
437  */
438 struct blk_independent_access_range {
439 	struct kobject		kobj;
440 	sector_t		sector;
441 	sector_t		nr_sectors;
442 };
443 
444 struct blk_independent_access_ranges {
445 	struct kobject				kobj;
446 	bool					sysfs_registered;
447 	unsigned int				nr_ia_ranges;
448 	struct blk_independent_access_range	ia_range[];
449 };
450 
451 struct request_queue {
452 	/*
453 	 * The queue owner gets to use this for whatever they like.
454 	 * ll_rw_blk doesn't touch it.
455 	 */
456 	void			*queuedata;
457 
458 	struct elevator_queue	*elevator;
459 
460 	const struct blk_mq_ops	*mq_ops;
461 
462 	/* sw queues */
463 	struct blk_mq_ctx __percpu	*queue_ctx;
464 
465 	/*
466 	 * various queue flags, see QUEUE_* below
467 	 */
468 	unsigned long		queue_flags;
469 
470 	unsigned int		rq_timeout;
471 
472 	unsigned int		queue_depth;
473 
474 	refcount_t		refs;
475 
476 	/* hw dispatch queues */
477 	unsigned int		nr_hw_queues;
478 	struct xarray		hctx_table;
479 
480 	struct percpu_ref	q_usage_counter;
481 	struct lock_class_key	io_lock_cls_key;
482 	struct lockdep_map	io_lockdep_map;
483 
484 	struct lock_class_key	q_lock_cls_key;
485 	struct lockdep_map	q_lockdep_map;
486 
487 	struct request		*last_merge;
488 
489 	spinlock_t		queue_lock;
490 
491 	int			quiesce_depth;
492 
493 	struct gendisk		*disk;
494 
495 	/*
496 	 * mq queue kobject
497 	 */
498 	struct kobject *mq_kobj;
499 
500 	struct queue_limits	limits;
501 
502 #ifdef CONFIG_PM
503 	struct device		*dev;
504 	enum rpm_status		rpm_status;
505 #endif
506 
507 	/*
508 	 * Number of contexts that have called blk_set_pm_only(). If this
509 	 * counter is above zero then only RQF_PM requests are processed.
510 	 */
511 	atomic_t		pm_only;
512 
513 	struct blk_queue_stats	*stats;
514 	struct rq_qos		*rq_qos;
515 	struct mutex		rq_qos_mutex;
516 
517 	/*
518 	 * ida allocated id for this queue.  Used to index queues from
519 	 * ioctx.
520 	 */
521 	int			id;
522 
523 	/*
524 	 * queue settings
525 	 */
526 	unsigned long		nr_requests;	/* Max # of requests */
527 
528 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
529 	struct blk_crypto_profile *crypto_profile;
530 	struct kobject *crypto_kobject;
531 #endif
532 
533 	struct timer_list	timeout;
534 	struct work_struct	timeout_work;
535 
536 	atomic_t		nr_active_requests_shared_tags;
537 
538 	struct blk_mq_tags	*sched_shared_tags;
539 
540 	struct list_head	icq_list;
541 #ifdef CONFIG_BLK_CGROUP
542 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
543 	struct blkcg_gq		*root_blkg;
544 	struct list_head	blkg_list;
545 	struct mutex		blkcg_mutex;
546 #endif
547 
548 	int			node;
549 
550 	spinlock_t		requeue_lock;
551 	struct list_head	requeue_list;
552 	struct delayed_work	requeue_work;
553 
554 #ifdef CONFIG_BLK_DEV_IO_TRACE
555 	struct blk_trace __rcu	*blk_trace;
556 #endif
557 	/*
558 	 * for flush operations
559 	 */
560 	struct blk_flush_queue	*fq;
561 	struct list_head	flush_list;
562 
563 	struct mutex		sysfs_lock;
564 	struct mutex		limits_lock;
565 
566 	/*
567 	 * for reusing dead hctx instance in case of updating
568 	 * nr_hw_queues
569 	 */
570 	struct list_head	unused_hctx_list;
571 	spinlock_t		unused_hctx_lock;
572 
573 	int			mq_freeze_depth;
574 
575 #ifdef CONFIG_BLK_DEV_THROTTLING
576 	/* Throttle data */
577 	struct throtl_data *td;
578 #endif
579 	struct rcu_head		rcu_head;
580 #ifdef CONFIG_LOCKDEP
581 	struct task_struct	*mq_freeze_owner;
582 	int			mq_freeze_owner_depth;
583 	/*
584 	 * Records disk & queue state in current context, used in unfreeze
585 	 * queue
586 	 */
587 	bool			mq_freeze_disk_dead;
588 	bool			mq_freeze_queue_dying;
589 #endif
590 	wait_queue_head_t	mq_freeze_wq;
591 	/*
592 	 * Protect concurrent access to q_usage_counter by
593 	 * percpu_ref_kill() and percpu_ref_reinit().
594 	 */
595 	struct mutex		mq_freeze_lock;
596 
597 	struct blk_mq_tag_set	*tag_set;
598 	struct list_head	tag_set_list;
599 
600 	struct dentry		*debugfs_dir;
601 	struct dentry		*sched_debugfs_dir;
602 	struct dentry		*rqos_debugfs_dir;
603 	/*
604 	 * Serializes all debugfs metadata operations using the above dentries.
605 	 */
606 	struct mutex		debugfs_mutex;
607 };
608 
609 /* Keep blk_queue_flag_name[] in sync with the definitions below */
610 enum {
611 	QUEUE_FLAG_DYING,		/* queue being torn down */
612 	QUEUE_FLAG_NOMERGES,		/* disable merge attempts */
613 	QUEUE_FLAG_SAME_COMP,		/* complete on same CPU-group */
614 	QUEUE_FLAG_FAIL_IO,		/* fake timeout */
615 	QUEUE_FLAG_NOXMERGES,		/* No extended merges */
616 	QUEUE_FLAG_SAME_FORCE,		/* force complete on same CPU */
617 	QUEUE_FLAG_INIT_DONE,		/* queue is initialized */
618 	QUEUE_FLAG_STATS,		/* track IO start and completion times */
619 	QUEUE_FLAG_REGISTERED,		/* queue has been registered to a disk */
620 	QUEUE_FLAG_QUIESCED,		/* queue has been quiesced */
621 	QUEUE_FLAG_RQ_ALLOC_TIME,	/* record rq->alloc_time_ns */
622 	QUEUE_FLAG_HCTX_ACTIVE,		/* at least one blk-mq hctx is active */
623 	QUEUE_FLAG_SQ_SCHED,		/* single queue style io dispatch */
624 	QUEUE_FLAG_MAX
625 };
626 
627 #define QUEUE_FLAG_MQ_DEFAULT	(1UL << QUEUE_FLAG_SAME_COMP)
628 
629 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
630 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
631 
632 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
633 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
634 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
635 #define blk_queue_noxmerges(q)	\
636 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
637 #define blk_queue_nonrot(q)	(!((q)->limits.features & BLK_FEAT_ROTATIONAL))
638 #define blk_queue_io_stat(q)	((q)->limits.features & BLK_FEAT_IO_STAT)
639 #define blk_queue_passthrough_stat(q)	\
640 	((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
641 #define blk_queue_dax(q)	((q)->limits.features & BLK_FEAT_DAX)
642 #define blk_queue_pci_p2pdma(q)	((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
643 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
644 #define blk_queue_rq_alloc_time(q)	\
645 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
646 #else
647 #define blk_queue_rq_alloc_time(q)	false
648 #endif
649 
650 #define blk_noretry_request(rq) \
651 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
652 			     REQ_FAILFAST_DRIVER))
653 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
654 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
655 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
656 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
657 #define blk_queue_skip_tagset_quiesce(q) \
658 	((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
659 
660 extern void blk_set_pm_only(struct request_queue *q);
661 extern void blk_clear_pm_only(struct request_queue *q);
662 
663 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
664 
665 #define dma_map_bvec(dev, bv, dir, attrs) \
666 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
667 	(dir), (attrs))
668 
669 static inline bool queue_is_mq(struct request_queue *q)
670 {
671 	return q->mq_ops;
672 }
673 
674 #ifdef CONFIG_PM
675 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
676 {
677 	return q->rpm_status;
678 }
679 #else
680 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
681 {
682 	return RPM_ACTIVE;
683 }
684 #endif
685 
686 static inline bool blk_queue_is_zoned(struct request_queue *q)
687 {
688 	return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
689 		(q->limits.features & BLK_FEAT_ZONED);
690 }
691 
692 #ifdef CONFIG_BLK_DEV_ZONED
693 static inline unsigned int disk_nr_zones(struct gendisk *disk)
694 {
695 	return disk->nr_zones;
696 }
697 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
698 #else /* CONFIG_BLK_DEV_ZONED */
699 static inline unsigned int disk_nr_zones(struct gendisk *disk)
700 {
701 	return 0;
702 }
703 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
704 {
705 	return false;
706 }
707 #endif /* CONFIG_BLK_DEV_ZONED */
708 
709 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
710 {
711 	if (!blk_queue_is_zoned(disk->queue))
712 		return 0;
713 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
714 }
715 
716 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
717 {
718 	return disk_nr_zones(bdev->bd_disk);
719 }
720 
721 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
722 {
723 	return bdev->bd_disk->queue->limits.max_open_zones;
724 }
725 
726 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
727 {
728 	return bdev->bd_disk->queue->limits.max_active_zones;
729 }
730 
731 static inline unsigned int blk_queue_depth(struct request_queue *q)
732 {
733 	if (q->queue_depth)
734 		return q->queue_depth;
735 
736 	return q->nr_requests;
737 }
738 
739 /*
740  * default timeout for SG_IO if none specified
741  */
742 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
743 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
744 
745 /* This should not be used directly - use rq_for_each_segment */
746 #define for_each_bio(_bio)		\
747 	for (; _bio; _bio = _bio->bi_next)
748 
749 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
750 				 const struct attribute_group **groups,
751 				 struct fwnode_handle *fwnode);
752 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
753 				 const struct attribute_group **groups);
754 static inline int __must_check add_disk(struct gendisk *disk)
755 {
756 	return device_add_disk(NULL, disk, NULL);
757 }
758 void del_gendisk(struct gendisk *gp);
759 void invalidate_disk(struct gendisk *disk);
760 void set_disk_ro(struct gendisk *disk, bool read_only);
761 void disk_uevent(struct gendisk *disk, enum kobject_action action);
762 
763 static inline u8 bdev_partno(const struct block_device *bdev)
764 {
765 	return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
766 }
767 
768 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
769 {
770 	return atomic_read(&bdev->__bd_flags) & flag;
771 }
772 
773 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
774 {
775 	atomic_or(flag, &bdev->__bd_flags);
776 }
777 
778 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
779 {
780 	atomic_andnot(flag, &bdev->__bd_flags);
781 }
782 
783 static inline bool get_disk_ro(struct gendisk *disk)
784 {
785 	return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
786 		test_bit(GD_READ_ONLY, &disk->state);
787 }
788 
789 static inline bool bdev_read_only(struct block_device *bdev)
790 {
791 	return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
792 }
793 
794 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
795 void disk_force_media_change(struct gendisk *disk);
796 void bdev_mark_dead(struct block_device *bdev, bool surprise);
797 
798 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
799 void rand_initialize_disk(struct gendisk *disk);
800 
801 static inline sector_t get_start_sect(struct block_device *bdev)
802 {
803 	return bdev->bd_start_sect;
804 }
805 
806 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
807 {
808 	return bdev->bd_nr_sectors;
809 }
810 
811 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
812 {
813 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
814 }
815 
816 static inline sector_t get_capacity(struct gendisk *disk)
817 {
818 	return bdev_nr_sectors(disk->part0);
819 }
820 
821 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
822 {
823 	return bdev_nr_sectors(sb->s_bdev) >>
824 		(sb->s_blocksize_bits - SECTOR_SHIFT);
825 }
826 
827 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
828 
829 void put_disk(struct gendisk *disk);
830 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
831 		struct lock_class_key *lkclass);
832 
833 /**
834  * blk_alloc_disk - allocate a gendisk structure
835  * @lim: queue limits to be used for this disk.
836  * @node_id: numa node to allocate on
837  *
838  * Allocate and pre-initialize a gendisk structure for use with BIO based
839  * drivers.
840  *
841  * Returns an ERR_PTR on error, else the allocated disk.
842  *
843  * Context: can sleep
844  */
845 #define blk_alloc_disk(lim, node_id)					\
846 ({									\
847 	static struct lock_class_key __key;				\
848 									\
849 	__blk_alloc_disk(lim, node_id, &__key);				\
850 })
851 
852 int __register_blkdev(unsigned int major, const char *name,
853 		void (*probe)(dev_t devt));
854 #define register_blkdev(major, name) \
855 	__register_blkdev(major, name, NULL)
856 void unregister_blkdev(unsigned int major, const char *name);
857 
858 bool disk_check_media_change(struct gendisk *disk);
859 void set_capacity(struct gendisk *disk, sector_t size);
860 
861 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
862 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
863 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
864 #else
865 static inline int bd_link_disk_holder(struct block_device *bdev,
866 				      struct gendisk *disk)
867 {
868 	return 0;
869 }
870 static inline void bd_unlink_disk_holder(struct block_device *bdev,
871 					 struct gendisk *disk)
872 {
873 }
874 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
875 
876 dev_t part_devt(struct gendisk *disk, u8 partno);
877 void inc_diskseq(struct gendisk *disk);
878 void blk_request_module(dev_t devt);
879 
880 extern int blk_register_queue(struct gendisk *disk);
881 extern void blk_unregister_queue(struct gendisk *disk);
882 void submit_bio_noacct(struct bio *bio);
883 struct bio *bio_split_to_limits(struct bio *bio);
884 
885 extern int blk_lld_busy(struct request_queue *q);
886 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
887 extern void blk_queue_exit(struct request_queue *q);
888 extern void blk_sync_queue(struct request_queue *q);
889 
890 /* Helper to convert REQ_OP_XXX to its string format XXX */
891 extern const char *blk_op_str(enum req_op op);
892 
893 int blk_status_to_errno(blk_status_t status);
894 blk_status_t errno_to_blk_status(int errno);
895 const char *blk_status_to_str(blk_status_t status);
896 
897 /* only poll the hardware once, don't continue until a completion was found */
898 #define BLK_POLL_ONESHOT		(1 << 0)
899 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
900 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
901 			unsigned int flags);
902 
903 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
904 {
905 	return bdev->bd_queue;	/* this is never NULL */
906 }
907 
908 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
909 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
910 
911 static inline unsigned int bio_zone_no(struct bio *bio)
912 {
913 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
914 }
915 
916 static inline bool bio_straddles_zones(struct bio *bio)
917 {
918 	return bio_sectors(bio) &&
919 		bio_zone_no(bio) !=
920 		disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
921 }
922 
923 /*
924  * Return how much within the boundary is left to be used for I/O at a given
925  * offset.
926  */
927 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
928 		unsigned int boundary_sectors)
929 {
930 	if (unlikely(!is_power_of_2(boundary_sectors)))
931 		return boundary_sectors - sector_div(offset, boundary_sectors);
932 	return boundary_sectors - (offset & (boundary_sectors - 1));
933 }
934 
935 /**
936  * queue_limits_start_update - start an atomic update of queue limits
937  * @q:		queue to update
938  *
939  * This functions starts an atomic update of the queue limits.  It takes a lock
940  * to prevent other updates and returns a snapshot of the current limits that
941  * the caller can modify.  The caller must call queue_limits_commit_update()
942  * to finish the update.
943  *
944  * Context: process context.
945  */
946 static inline struct queue_limits
947 queue_limits_start_update(struct request_queue *q)
948 {
949 	mutex_lock(&q->limits_lock);
950 	return q->limits;
951 }
952 int queue_limits_commit_update_frozen(struct request_queue *q,
953 		struct queue_limits *lim);
954 int queue_limits_commit_update(struct request_queue *q,
955 		struct queue_limits *lim);
956 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
957 int blk_validate_limits(struct queue_limits *lim);
958 
959 /**
960  * queue_limits_cancel_update - cancel an atomic update of queue limits
961  * @q:		queue to update
962  *
963  * This functions cancels an atomic update of the queue limits started by
964  * queue_limits_start_update() and should be used when an error occurs after
965  * starting update.
966  */
967 static inline void queue_limits_cancel_update(struct request_queue *q)
968 {
969 	mutex_unlock(&q->limits_lock);
970 }
971 
972 /*
973  * These helpers are for drivers that have sloppy feature negotiation and might
974  * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
975  * completion handler when the device returned an indicator that the respective
976  * feature is not actually supported.  They are racy and the driver needs to
977  * cope with that.  Try to avoid this scheme if you can.
978  */
979 static inline void blk_queue_disable_discard(struct request_queue *q)
980 {
981 	q->limits.max_discard_sectors = 0;
982 }
983 
984 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
985 {
986 	q->limits.max_secure_erase_sectors = 0;
987 }
988 
989 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
990 {
991 	q->limits.max_write_zeroes_sectors = 0;
992 }
993 
994 /*
995  * Access functions for manipulating queue properties
996  */
997 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
998 extern void blk_set_stacking_limits(struct queue_limits *lim);
999 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1000 			    sector_t offset);
1001 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1002 		sector_t offset, const char *pfx);
1003 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1004 
1005 struct blk_independent_access_ranges *
1006 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1007 void disk_set_independent_access_ranges(struct gendisk *disk,
1008 				struct blk_independent_access_ranges *iars);
1009 
1010 bool __must_check blk_get_queue(struct request_queue *);
1011 extern void blk_put_queue(struct request_queue *);
1012 
1013 void blk_mark_disk_dead(struct gendisk *disk);
1014 
1015 struct rq_list {
1016 	struct request *head;
1017 	struct request *tail;
1018 };
1019 
1020 #ifdef CONFIG_BLOCK
1021 /*
1022  * blk_plug permits building a queue of related requests by holding the I/O
1023  * fragments for a short period. This allows merging of sequential requests
1024  * into single larger request. As the requests are moved from a per-task list to
1025  * the device's request_queue in a batch, this results in improved scalability
1026  * as the lock contention for request_queue lock is reduced.
1027  *
1028  * It is ok not to disable preemption when adding the request to the plug list
1029  * or when attempting a merge. For details, please see schedule() where
1030  * blk_flush_plug() is called.
1031  */
1032 struct blk_plug {
1033 	struct rq_list mq_list; /* blk-mq requests */
1034 
1035 	/* if ios_left is > 1, we can batch tag/rq allocations */
1036 	struct rq_list cached_rqs;
1037 	u64 cur_ktime;
1038 	unsigned short nr_ios;
1039 
1040 	unsigned short rq_count;
1041 
1042 	bool multiple_queues;
1043 	bool has_elevator;
1044 
1045 	struct list_head cb_list; /* md requires an unplug callback */
1046 };
1047 
1048 struct blk_plug_cb;
1049 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1050 struct blk_plug_cb {
1051 	struct list_head list;
1052 	blk_plug_cb_fn callback;
1053 	void *data;
1054 };
1055 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1056 					     void *data, int size);
1057 extern void blk_start_plug(struct blk_plug *);
1058 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1059 extern void blk_finish_plug(struct blk_plug *);
1060 
1061 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
1062 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1063 {
1064 	if (plug)
1065 		__blk_flush_plug(plug, async);
1066 }
1067 
1068 /*
1069  * tsk == current here
1070  */
1071 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1072 {
1073 	struct blk_plug *plug = tsk->plug;
1074 
1075 	if (plug)
1076 		plug->cur_ktime = 0;
1077 	current->flags &= ~PF_BLOCK_TS;
1078 }
1079 
1080 int blkdev_issue_flush(struct block_device *bdev);
1081 long nr_blockdev_pages(void);
1082 #else /* CONFIG_BLOCK */
1083 struct blk_plug {
1084 };
1085 
1086 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1087 					 unsigned short nr_ios)
1088 {
1089 }
1090 
1091 static inline void blk_start_plug(struct blk_plug *plug)
1092 {
1093 }
1094 
1095 static inline void blk_finish_plug(struct blk_plug *plug)
1096 {
1097 }
1098 
1099 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1100 {
1101 }
1102 
1103 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1104 {
1105 }
1106 
1107 static inline int blkdev_issue_flush(struct block_device *bdev)
1108 {
1109 	return 0;
1110 }
1111 
1112 static inline long nr_blockdev_pages(void)
1113 {
1114 	return 0;
1115 }
1116 #endif /* CONFIG_BLOCK */
1117 
1118 extern void blk_io_schedule(void);
1119 
1120 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1121 		sector_t nr_sects, gfp_t gfp_mask);
1122 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1123 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1124 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1125 		sector_t nr_sects, gfp_t gfp);
1126 
1127 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1128 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1129 #define BLKDEV_ZERO_KILLABLE	(1 << 2)  /* interruptible by fatal signals */
1130 
1131 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1132 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1133 		unsigned flags);
1134 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1135 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1136 
1137 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1138 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1139 {
1140 	return blkdev_issue_discard(sb->s_bdev,
1141 				    block << (sb->s_blocksize_bits -
1142 					      SECTOR_SHIFT),
1143 				    nr_blocks << (sb->s_blocksize_bits -
1144 						  SECTOR_SHIFT),
1145 				    gfp_mask);
1146 }
1147 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1148 		sector_t nr_blocks, gfp_t gfp_mask)
1149 {
1150 	return blkdev_issue_zeroout(sb->s_bdev,
1151 				    block << (sb->s_blocksize_bits -
1152 					      SECTOR_SHIFT),
1153 				    nr_blocks << (sb->s_blocksize_bits -
1154 						  SECTOR_SHIFT),
1155 				    gfp_mask, 0);
1156 }
1157 
1158 static inline bool bdev_is_partition(struct block_device *bdev)
1159 {
1160 	return bdev_partno(bdev) != 0;
1161 }
1162 
1163 enum blk_default_limits {
1164 	BLK_MAX_SEGMENTS	= 128,
1165 	BLK_SAFE_MAX_SECTORS	= 255,
1166 	BLK_MAX_SEGMENT_SIZE	= 65536,
1167 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1168 };
1169 
1170 /*
1171  * Default upper limit for the software max_sectors limit used for
1172  * regular file system I/O.  This can be increased through sysfs.
1173  *
1174  * Not to be confused with the max_hw_sector limit that is entirely
1175  * controlled by the driver, usually based on hardware limits.
1176  */
1177 #define BLK_DEF_MAX_SECTORS_CAP	2560u
1178 
1179 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1180 {
1181 	return &bdev_get_queue(bdev)->limits;
1182 }
1183 
1184 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1185 {
1186 	return q->limits.seg_boundary_mask;
1187 }
1188 
1189 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1190 {
1191 	return q->limits.virt_boundary_mask;
1192 }
1193 
1194 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1195 {
1196 	return q->limits.max_sectors;
1197 }
1198 
1199 static inline unsigned int queue_max_bytes(struct request_queue *q)
1200 {
1201 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1202 }
1203 
1204 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1205 {
1206 	return q->limits.max_hw_sectors;
1207 }
1208 
1209 static inline unsigned short queue_max_segments(const struct request_queue *q)
1210 {
1211 	return q->limits.max_segments;
1212 }
1213 
1214 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1215 {
1216 	return q->limits.max_discard_segments;
1217 }
1218 
1219 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1220 {
1221 	return q->limits.max_segment_size;
1222 }
1223 
1224 static inline bool queue_emulates_zone_append(struct request_queue *q)
1225 {
1226 	return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1227 }
1228 
1229 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1230 {
1231 	return queue_emulates_zone_append(bdev_get_queue(bdev));
1232 }
1233 
1234 static inline unsigned int
1235 bdev_max_zone_append_sectors(struct block_device *bdev)
1236 {
1237 	return bdev_limits(bdev)->max_zone_append_sectors;
1238 }
1239 
1240 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1241 {
1242 	return queue_max_segments(bdev_get_queue(bdev));
1243 }
1244 
1245 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1246 {
1247 	return q->limits.logical_block_size;
1248 }
1249 
1250 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1251 {
1252 	return queue_logical_block_size(bdev_get_queue(bdev));
1253 }
1254 
1255 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1256 {
1257 	return q->limits.physical_block_size;
1258 }
1259 
1260 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1261 {
1262 	return queue_physical_block_size(bdev_get_queue(bdev));
1263 }
1264 
1265 static inline unsigned int queue_io_min(const struct request_queue *q)
1266 {
1267 	return q->limits.io_min;
1268 }
1269 
1270 static inline unsigned int bdev_io_min(struct block_device *bdev)
1271 {
1272 	return queue_io_min(bdev_get_queue(bdev));
1273 }
1274 
1275 static inline unsigned int queue_io_opt(const struct request_queue *q)
1276 {
1277 	return q->limits.io_opt;
1278 }
1279 
1280 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1281 {
1282 	return queue_io_opt(bdev_get_queue(bdev));
1283 }
1284 
1285 static inline unsigned int
1286 queue_zone_write_granularity(const struct request_queue *q)
1287 {
1288 	return q->limits.zone_write_granularity;
1289 }
1290 
1291 static inline unsigned int
1292 bdev_zone_write_granularity(struct block_device *bdev)
1293 {
1294 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1295 }
1296 
1297 int bdev_alignment_offset(struct block_device *bdev);
1298 unsigned int bdev_discard_alignment(struct block_device *bdev);
1299 
1300 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1301 {
1302 	return bdev_limits(bdev)->max_discard_sectors;
1303 }
1304 
1305 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1306 {
1307 	return bdev_limits(bdev)->discard_granularity;
1308 }
1309 
1310 static inline unsigned int
1311 bdev_max_secure_erase_sectors(struct block_device *bdev)
1312 {
1313 	return bdev_limits(bdev)->max_secure_erase_sectors;
1314 }
1315 
1316 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1317 {
1318 	return bdev_limits(bdev)->max_write_zeroes_sectors;
1319 }
1320 
1321 static inline bool bdev_nonrot(struct block_device *bdev)
1322 {
1323 	return blk_queue_nonrot(bdev_get_queue(bdev));
1324 }
1325 
1326 static inline bool bdev_synchronous(struct block_device *bdev)
1327 {
1328 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1329 }
1330 
1331 static inline bool bdev_stable_writes(struct block_device *bdev)
1332 {
1333 	struct request_queue *q = bdev_get_queue(bdev);
1334 
1335 	if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1336 	    q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1337 		return true;
1338 	return q->limits.features & BLK_FEAT_STABLE_WRITES;
1339 }
1340 
1341 static inline bool blk_queue_write_cache(struct request_queue *q)
1342 {
1343 	return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1344 		!(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1345 }
1346 
1347 static inline bool bdev_write_cache(struct block_device *bdev)
1348 {
1349 	return blk_queue_write_cache(bdev_get_queue(bdev));
1350 }
1351 
1352 static inline bool bdev_fua(struct block_device *bdev)
1353 {
1354 	return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1355 }
1356 
1357 static inline bool bdev_nowait(struct block_device *bdev)
1358 {
1359 	return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1360 }
1361 
1362 static inline bool bdev_is_zoned(struct block_device *bdev)
1363 {
1364 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1365 }
1366 
1367 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1368 {
1369 	return disk_zone_no(bdev->bd_disk, sec);
1370 }
1371 
1372 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1373 {
1374 	struct request_queue *q = bdev_get_queue(bdev);
1375 
1376 	if (!blk_queue_is_zoned(q))
1377 		return 0;
1378 	return q->limits.chunk_sectors;
1379 }
1380 
1381 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1382 						   sector_t sector)
1383 {
1384 	return sector & (bdev_zone_sectors(bdev) - 1);
1385 }
1386 
1387 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1388 {
1389 	return bdev_offset_from_zone_start(bio->bi_bdev,
1390 					   bio->bi_iter.bi_sector);
1391 }
1392 
1393 static inline bool bdev_is_zone_start(struct block_device *bdev,
1394 				      sector_t sector)
1395 {
1396 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1397 }
1398 
1399 /**
1400  * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1401  * @bdev:	block device to check
1402  * @sector:	sector number
1403  *
1404  * Check if @sector on @bdev is contained in a sequential write required zone.
1405  */
1406 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1407 {
1408 	bool is_seq = false;
1409 
1410 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1411 	if (bdev_is_zoned(bdev)) {
1412 		struct gendisk *disk = bdev->bd_disk;
1413 		unsigned long *bitmap;
1414 
1415 		rcu_read_lock();
1416 		bitmap = rcu_dereference(disk->conv_zones_bitmap);
1417 		is_seq = !bitmap ||
1418 			!test_bit(disk_zone_no(disk, sector), bitmap);
1419 		rcu_read_unlock();
1420 	}
1421 #endif
1422 
1423 	return is_seq;
1424 }
1425 
1426 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1427 			   sector_t nr_sects, gfp_t gfp_mask);
1428 
1429 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1430 {
1431 	return q->limits.dma_alignment;
1432 }
1433 
1434 static inline unsigned int
1435 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1436 {
1437 	return q->limits.atomic_write_unit_max;
1438 }
1439 
1440 static inline unsigned int
1441 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1442 {
1443 	return q->limits.atomic_write_unit_min;
1444 }
1445 
1446 static inline unsigned int
1447 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1448 {
1449 	return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1450 }
1451 
1452 static inline unsigned int
1453 queue_atomic_write_max_bytes(const struct request_queue *q)
1454 {
1455 	return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1456 }
1457 
1458 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1459 {
1460 	return queue_dma_alignment(bdev_get_queue(bdev));
1461 }
1462 
1463 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1464 					struct iov_iter *iter)
1465 {
1466 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1467 				   bdev_logical_block_size(bdev) - 1);
1468 }
1469 
1470 static inline unsigned int
1471 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1472 {
1473 	return lim->dma_alignment | lim->dma_pad_mask;
1474 }
1475 
1476 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1477 				 unsigned int len)
1478 {
1479 	unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1480 
1481 	return !(addr & alignment) && !(len & alignment);
1482 }
1483 
1484 /* assumes size > 256 */
1485 static inline unsigned int blksize_bits(unsigned int size)
1486 {
1487 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1488 }
1489 
1490 int kblockd_schedule_work(struct work_struct *work);
1491 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1492 
1493 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1494 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1495 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1496 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1497 
1498 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1499 
1500 bool blk_crypto_register(struct blk_crypto_profile *profile,
1501 			 struct request_queue *q);
1502 
1503 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1504 
1505 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1506 				       struct request_queue *q)
1507 {
1508 	return true;
1509 }
1510 
1511 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1512 
1513 enum blk_unique_id {
1514 	/* these match the Designator Types specified in SPC */
1515 	BLK_UID_T10	= 1,
1516 	BLK_UID_EUI64	= 2,
1517 	BLK_UID_NAA	= 3,
1518 };
1519 
1520 struct block_device_operations {
1521 	void (*submit_bio)(struct bio *bio);
1522 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1523 			unsigned int flags);
1524 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1525 	void (*release)(struct gendisk *disk);
1526 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1527 			unsigned cmd, unsigned long arg);
1528 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1529 			unsigned cmd, unsigned long arg);
1530 	unsigned int (*check_events) (struct gendisk *disk,
1531 				      unsigned int clearing);
1532 	void (*unlock_native_capacity) (struct gendisk *);
1533 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1534 	int (*set_read_only)(struct block_device *bdev, bool ro);
1535 	void (*free_disk)(struct gendisk *disk);
1536 	/* this callback is with swap_lock and sometimes page table lock held */
1537 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1538 	int (*report_zones)(struct gendisk *, sector_t sector,
1539 			unsigned int nr_zones, report_zones_cb cb, void *data);
1540 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1541 	/* returns the length of the identifier or a negative errno: */
1542 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1543 			enum blk_unique_id id_type);
1544 	struct module *owner;
1545 	const struct pr_ops *pr_ops;
1546 
1547 	/*
1548 	 * Special callback for probing GPT entry at a given sector.
1549 	 * Needed by Android devices, used by GPT scanner and MMC blk
1550 	 * driver.
1551 	 */
1552 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1553 };
1554 
1555 #ifdef CONFIG_COMPAT
1556 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1557 				      unsigned int, unsigned long);
1558 #else
1559 #define blkdev_compat_ptr_ioctl NULL
1560 #endif
1561 
1562 static inline void blk_wake_io_task(struct task_struct *waiter)
1563 {
1564 	/*
1565 	 * If we're polling, the task itself is doing the completions. For
1566 	 * that case, we don't need to signal a wakeup, it's enough to just
1567 	 * mark us as RUNNING.
1568 	 */
1569 	if (waiter == current)
1570 		__set_current_state(TASK_RUNNING);
1571 	else
1572 		wake_up_process(waiter);
1573 }
1574 
1575 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1576 				 unsigned long start_time);
1577 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1578 		      unsigned int sectors, unsigned long start_time);
1579 
1580 unsigned long bio_start_io_acct(struct bio *bio);
1581 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1582 		struct block_device *orig_bdev);
1583 
1584 /**
1585  * bio_end_io_acct - end I/O accounting for bio based drivers
1586  * @bio:	bio to end account for
1587  * @start_time:	start time returned by bio_start_io_acct()
1588  */
1589 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1590 {
1591 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1592 }
1593 
1594 int set_blocksize(struct file *file, int size);
1595 
1596 int lookup_bdev(const char *pathname, dev_t *dev);
1597 
1598 void blkdev_show(struct seq_file *seqf, off_t offset);
1599 
1600 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1601 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1602 #ifdef CONFIG_BLOCK
1603 #define BLKDEV_MAJOR_MAX	512
1604 #else
1605 #define BLKDEV_MAJOR_MAX	0
1606 #endif
1607 
1608 struct blk_holder_ops {
1609 	void (*mark_dead)(struct block_device *bdev, bool surprise);
1610 
1611 	/*
1612 	 * Sync the file system mounted on the block device.
1613 	 */
1614 	void (*sync)(struct block_device *bdev);
1615 
1616 	/*
1617 	 * Freeze the file system mounted on the block device.
1618 	 */
1619 	int (*freeze)(struct block_device *bdev);
1620 
1621 	/*
1622 	 * Thaw the file system mounted on the block device.
1623 	 */
1624 	int (*thaw)(struct block_device *bdev);
1625 };
1626 
1627 /*
1628  * For filesystems using @fs_holder_ops, the @holder argument passed to
1629  * helpers used to open and claim block devices via
1630  * bd_prepare_to_claim() must point to a superblock.
1631  */
1632 extern const struct blk_holder_ops fs_holder_ops;
1633 
1634 /*
1635  * Return the correct open flags for blkdev_get_by_* for super block flags
1636  * as stored in sb->s_flags.
1637  */
1638 #define sb_open_mode(flags) \
1639 	(BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1640 	 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1641 
1642 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1643 		const struct blk_holder_ops *hops);
1644 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1645 		void *holder, const struct blk_holder_ops *hops);
1646 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1647 		const struct blk_holder_ops *hops);
1648 void bd_abort_claiming(struct block_device *bdev, void *holder);
1649 
1650 /* just for blk-cgroup, don't use elsewhere */
1651 struct block_device *blkdev_get_no_open(dev_t dev);
1652 void blkdev_put_no_open(struct block_device *bdev);
1653 
1654 struct block_device *I_BDEV(struct inode *inode);
1655 struct block_device *file_bdev(struct file *bdev_file);
1656 bool disk_live(struct gendisk *disk);
1657 unsigned int block_size(struct block_device *bdev);
1658 
1659 #ifdef CONFIG_BLOCK
1660 void invalidate_bdev(struct block_device *bdev);
1661 int sync_blockdev(struct block_device *bdev);
1662 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1663 int sync_blockdev_nowait(struct block_device *bdev);
1664 void sync_bdevs(bool wait);
1665 void bdev_statx(struct path *, struct kstat *, u32);
1666 void printk_all_partitions(void);
1667 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1668 #else
1669 static inline void invalidate_bdev(struct block_device *bdev)
1670 {
1671 }
1672 static inline int sync_blockdev(struct block_device *bdev)
1673 {
1674 	return 0;
1675 }
1676 static inline int sync_blockdev_nowait(struct block_device *bdev)
1677 {
1678 	return 0;
1679 }
1680 static inline void sync_bdevs(bool wait)
1681 {
1682 }
1683 static inline void bdev_statx(struct path *path, struct kstat *stat,
1684 				u32 request_mask)
1685 {
1686 }
1687 static inline void printk_all_partitions(void)
1688 {
1689 }
1690 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1691 {
1692 	return -EINVAL;
1693 }
1694 #endif /* CONFIG_BLOCK */
1695 
1696 int bdev_freeze(struct block_device *bdev);
1697 int bdev_thaw(struct block_device *bdev);
1698 void bdev_fput(struct file *bdev_file);
1699 
1700 struct io_comp_batch {
1701 	struct rq_list req_list;
1702 	bool need_ts;
1703 	void (*complete)(struct io_comp_batch *);
1704 };
1705 
1706 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1707 						struct queue_limits *limits)
1708 {
1709 	unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1710 				limits->atomic_write_hw_boundary);
1711 
1712 	return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1713 }
1714 
1715 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1716 {
1717 	struct request_queue *bd_queue = bdev->bd_queue;
1718 	struct queue_limits *limits = &bd_queue->limits;
1719 
1720 	if (!limits->atomic_write_unit_min)
1721 		return false;
1722 
1723 	if (bdev_is_partition(bdev))
1724 		return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1725 							limits);
1726 
1727 	return true;
1728 }
1729 
1730 static inline unsigned int
1731 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1732 {
1733 	if (!bdev_can_atomic_write(bdev))
1734 		return 0;
1735 	return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1736 }
1737 
1738 static inline unsigned int
1739 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1740 {
1741 	if (!bdev_can_atomic_write(bdev))
1742 		return 0;
1743 	return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1744 }
1745 
1746 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1747 
1748 #endif /* _LINUX_BLKDEV_H */
1749