xref: /linux-6.15/include/linux/blkdev.h (revision c8177aba)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4 
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/major.h>
8 #include <linux/genhd.h>
9 #include <linux/list.h>
10 #include <linux/llist.h>
11 #include <linux/minmax.h>
12 #include <linux/timer.h>
13 #include <linux/workqueue.h>
14 #include <linux/pagemap.h>
15 #include <linux/backing-dev-defs.h>
16 #include <linux/wait.h>
17 #include <linux/mempool.h>
18 #include <linux/pfn.h>
19 #include <linux/bio.h>
20 #include <linux/stringify.h>
21 #include <linux/gfp.h>
22 #include <linux/bsg.h>
23 #include <linux/smp.h>
24 #include <linux/rcupdate.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/scatterlist.h>
27 #include <linux/blkzoned.h>
28 #include <linux/pm.h>
29 
30 struct module;
31 struct scsi_ioctl_command;
32 
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_qos;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 struct blk_keyslot_manager;
46 
47 #define BLKDEV_MIN_RQ	4
48 #define BLKDEV_MAX_RQ	128	/* Default maximum */
49 
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52 
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55 
56 /*
57  * Maximum number of blkcg policies allowed to be registered concurrently.
58  * Defined here to simplify include dependency.
59  */
60 #define BLKCG_MAX_POLS		5
61 
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63 
64 /*
65  * request flags */
66 typedef __u32 __bitwise req_flags_t;
67 
68 /* elevator knows about this request */
69 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
82 /* vaguely specified driver internal error.  Ignored by the block layer */
83 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
84 /* don't warn about errors */
85 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
86 /* elevator private data attached */
87 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
88 /* account into disk and partition IO statistics */
89 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
90 /* request came from our alloc pool */
91 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
92 /* runtime pm request */
93 #define RQF_PM			((__force req_flags_t)(1 << 15))
94 /* on IO scheduler merge hash */
95 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
96 /* track IO completion time */
97 #define RQF_STATS		((__force req_flags_t)(1 << 17))
98 /* Look at ->special_vec for the actual data payload instead of the
99    bio chain. */
100 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
101 /* The per-zone write lock is held for this request */
102 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
103 /* already slept for hybrid poll */
104 #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
105 /* ->timeout has been called, don't expire again */
106 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
107 
108 /* flags that prevent us from merging requests: */
109 #define RQF_NOMERGE_FLAGS \
110 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
111 
112 /*
113  * Request state for blk-mq.
114  */
115 enum mq_rq_state {
116 	MQ_RQ_IDLE		= 0,
117 	MQ_RQ_IN_FLIGHT		= 1,
118 	MQ_RQ_COMPLETE		= 2,
119 };
120 
121 /*
122  * Try to put the fields that are referenced together in the same cacheline.
123  *
124  * If you modify this structure, make sure to update blk_rq_init() and
125  * especially blk_mq_rq_ctx_init() to take care of the added fields.
126  */
127 struct request {
128 	struct request_queue *q;
129 	struct blk_mq_ctx *mq_ctx;
130 	struct blk_mq_hw_ctx *mq_hctx;
131 
132 	unsigned int cmd_flags;		/* op and common flags */
133 	req_flags_t rq_flags;
134 
135 	int tag;
136 	int internal_tag;
137 
138 	/* the following two fields are internal, NEVER access directly */
139 	unsigned int __data_len;	/* total data len */
140 	sector_t __sector;		/* sector cursor */
141 
142 	struct bio *bio;
143 	struct bio *biotail;
144 
145 	struct list_head queuelist;
146 
147 	/*
148 	 * The hash is used inside the scheduler, and killed once the
149 	 * request reaches the dispatch list. The ipi_list is only used
150 	 * to queue the request for softirq completion, which is long
151 	 * after the request has been unhashed (and even removed from
152 	 * the dispatch list).
153 	 */
154 	union {
155 		struct hlist_node hash;	/* merge hash */
156 		struct list_head ipi_list;
157 	};
158 
159 	/*
160 	 * The rb_node is only used inside the io scheduler, requests
161 	 * are pruned when moved to the dispatch queue. So let the
162 	 * completion_data share space with the rb_node.
163 	 */
164 	union {
165 		struct rb_node rb_node;	/* sort/lookup */
166 		struct bio_vec special_vec;
167 		void *completion_data;
168 		int error_count; /* for legacy drivers, don't use */
169 	};
170 
171 	/*
172 	 * Three pointers are available for the IO schedulers, if they need
173 	 * more they have to dynamically allocate it.  Flush requests are
174 	 * never put on the IO scheduler. So let the flush fields share
175 	 * space with the elevator data.
176 	 */
177 	union {
178 		struct {
179 			struct io_cq		*icq;
180 			void			*priv[2];
181 		} elv;
182 
183 		struct {
184 			unsigned int		seq;
185 			struct list_head	list;
186 			rq_end_io_fn		*saved_end_io;
187 		} flush;
188 	};
189 
190 	struct gendisk *rq_disk;
191 	struct block_device *part;
192 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
193 	/* Time that the first bio started allocating this request. */
194 	u64 alloc_time_ns;
195 #endif
196 	/* Time that this request was allocated for this IO. */
197 	u64 start_time_ns;
198 	/* Time that I/O was submitted to the device. */
199 	u64 io_start_time_ns;
200 
201 #ifdef CONFIG_BLK_WBT
202 	unsigned short wbt_flags;
203 #endif
204 	/*
205 	 * rq sectors used for blk stats. It has the same value
206 	 * with blk_rq_sectors(rq), except that it never be zeroed
207 	 * by completion.
208 	 */
209 	unsigned short stats_sectors;
210 
211 	/*
212 	 * Number of scatter-gather DMA addr+len pairs after
213 	 * physical address coalescing is performed.
214 	 */
215 	unsigned short nr_phys_segments;
216 
217 #if defined(CONFIG_BLK_DEV_INTEGRITY)
218 	unsigned short nr_integrity_segments;
219 #endif
220 
221 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
222 	struct bio_crypt_ctx *crypt_ctx;
223 	struct blk_ksm_keyslot *crypt_keyslot;
224 #endif
225 
226 	unsigned short write_hint;
227 	unsigned short ioprio;
228 
229 	enum mq_rq_state state;
230 	refcount_t ref;
231 
232 	unsigned int timeout;
233 	unsigned long deadline;
234 
235 	union {
236 		struct __call_single_data csd;
237 		u64 fifo_time;
238 	};
239 
240 	/*
241 	 * completion callback.
242 	 */
243 	rq_end_io_fn *end_io;
244 	void *end_io_data;
245 };
246 
247 static inline bool blk_op_is_scsi(unsigned int op)
248 {
249 	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
250 }
251 
252 static inline bool blk_op_is_private(unsigned int op)
253 {
254 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
255 }
256 
257 static inline bool blk_rq_is_scsi(struct request *rq)
258 {
259 	return blk_op_is_scsi(req_op(rq));
260 }
261 
262 static inline bool blk_rq_is_private(struct request *rq)
263 {
264 	return blk_op_is_private(req_op(rq));
265 }
266 
267 static inline bool blk_rq_is_passthrough(struct request *rq)
268 {
269 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
270 }
271 
272 static inline bool bio_is_passthrough(struct bio *bio)
273 {
274 	unsigned op = bio_op(bio);
275 
276 	return blk_op_is_scsi(op) || blk_op_is_private(op);
277 }
278 
279 static inline unsigned short req_get_ioprio(struct request *req)
280 {
281 	return req->ioprio;
282 }
283 
284 #include <linux/elevator.h>
285 
286 struct blk_queue_ctx;
287 
288 struct bio_vec;
289 
290 enum blk_eh_timer_return {
291 	BLK_EH_DONE,		/* drivers has completed the command */
292 	BLK_EH_RESET_TIMER,	/* reset timer and try again */
293 };
294 
295 enum blk_queue_state {
296 	Queue_down,
297 	Queue_up,
298 };
299 
300 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
301 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
302 
303 #define BLK_SCSI_MAX_CMDS	(256)
304 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
305 
306 /*
307  * Zoned block device models (zoned limit).
308  *
309  * Note: This needs to be ordered from the least to the most severe
310  * restrictions for the inheritance in blk_stack_limits() to work.
311  */
312 enum blk_zoned_model {
313 	BLK_ZONED_NONE = 0,	/* Regular block device */
314 	BLK_ZONED_HA,		/* Host-aware zoned block device */
315 	BLK_ZONED_HM,		/* Host-managed zoned block device */
316 };
317 
318 struct queue_limits {
319 	unsigned long		bounce_pfn;
320 	unsigned long		seg_boundary_mask;
321 	unsigned long		virt_boundary_mask;
322 
323 	unsigned int		max_hw_sectors;
324 	unsigned int		max_dev_sectors;
325 	unsigned int		chunk_sectors;
326 	unsigned int		max_sectors;
327 	unsigned int		max_segment_size;
328 	unsigned int		physical_block_size;
329 	unsigned int		logical_block_size;
330 	unsigned int		alignment_offset;
331 	unsigned int		io_min;
332 	unsigned int		io_opt;
333 	unsigned int		max_discard_sectors;
334 	unsigned int		max_hw_discard_sectors;
335 	unsigned int		max_write_same_sectors;
336 	unsigned int		max_write_zeroes_sectors;
337 	unsigned int		max_zone_append_sectors;
338 	unsigned int		discard_granularity;
339 	unsigned int		discard_alignment;
340 
341 	unsigned short		max_segments;
342 	unsigned short		max_integrity_segments;
343 	unsigned short		max_discard_segments;
344 
345 	unsigned char		misaligned;
346 	unsigned char		discard_misaligned;
347 	unsigned char		raid_partial_stripes_expensive;
348 	enum blk_zoned_model	zoned;
349 };
350 
351 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
352 			       void *data);
353 
354 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
355 
356 #ifdef CONFIG_BLK_DEV_ZONED
357 
358 #define BLK_ALL_ZONES  ((unsigned int)-1)
359 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
360 			unsigned int nr_zones, report_zones_cb cb, void *data);
361 unsigned int blkdev_nr_zones(struct gendisk *disk);
362 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op,
363 			    sector_t sectors, sector_t nr_sectors,
364 			    gfp_t gfp_mask);
365 int blk_revalidate_disk_zones(struct gendisk *disk,
366 			      void (*update_driver_data)(struct gendisk *disk));
367 
368 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
369 				     unsigned int cmd, unsigned long arg);
370 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode,
371 				  unsigned int cmd, unsigned long arg);
372 
373 #else /* CONFIG_BLK_DEV_ZONED */
374 
375 static inline unsigned int blkdev_nr_zones(struct gendisk *disk)
376 {
377 	return 0;
378 }
379 
380 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
381 					    fmode_t mode, unsigned int cmd,
382 					    unsigned long arg)
383 {
384 	return -ENOTTY;
385 }
386 
387 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
388 					 fmode_t mode, unsigned int cmd,
389 					 unsigned long arg)
390 {
391 	return -ENOTTY;
392 }
393 
394 #endif /* CONFIG_BLK_DEV_ZONED */
395 
396 struct request_queue {
397 	struct request		*last_merge;
398 	struct elevator_queue	*elevator;
399 
400 	struct percpu_ref	q_usage_counter;
401 
402 	struct blk_queue_stats	*stats;
403 	struct rq_qos		*rq_qos;
404 
405 	const struct blk_mq_ops	*mq_ops;
406 
407 	/* sw queues */
408 	struct blk_mq_ctx __percpu	*queue_ctx;
409 
410 	unsigned int		queue_depth;
411 
412 	/* hw dispatch queues */
413 	struct blk_mq_hw_ctx	**queue_hw_ctx;
414 	unsigned int		nr_hw_queues;
415 
416 	struct backing_dev_info	*backing_dev_info;
417 
418 	/*
419 	 * The queue owner gets to use this for whatever they like.
420 	 * ll_rw_blk doesn't touch it.
421 	 */
422 	void			*queuedata;
423 
424 	/*
425 	 * various queue flags, see QUEUE_* below
426 	 */
427 	unsigned long		queue_flags;
428 	/*
429 	 * Number of contexts that have called blk_set_pm_only(). If this
430 	 * counter is above zero then only RQF_PM requests are processed.
431 	 */
432 	atomic_t		pm_only;
433 
434 	/*
435 	 * ida allocated id for this queue.  Used to index queues from
436 	 * ioctx.
437 	 */
438 	int			id;
439 
440 	/*
441 	 * queue needs bounce pages for pages above this limit
442 	 */
443 	gfp_t			bounce_gfp;
444 
445 	spinlock_t		queue_lock;
446 
447 	/*
448 	 * queue kobject
449 	 */
450 	struct kobject kobj;
451 
452 	/*
453 	 * mq queue kobject
454 	 */
455 	struct kobject *mq_kobj;
456 
457 #ifdef  CONFIG_BLK_DEV_INTEGRITY
458 	struct blk_integrity integrity;
459 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
460 
461 #ifdef CONFIG_PM
462 	struct device		*dev;
463 	enum rpm_status		rpm_status;
464 	unsigned int		nr_pending;
465 #endif
466 
467 	/*
468 	 * queue settings
469 	 */
470 	unsigned long		nr_requests;	/* Max # of requests */
471 
472 	unsigned int		dma_pad_mask;
473 	unsigned int		dma_alignment;
474 
475 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
476 	/* Inline crypto capabilities */
477 	struct blk_keyslot_manager *ksm;
478 #endif
479 
480 	unsigned int		rq_timeout;
481 	int			poll_nsec;
482 
483 	struct blk_stat_callback	*poll_cb;
484 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
485 
486 	struct timer_list	timeout;
487 	struct work_struct	timeout_work;
488 
489 	atomic_t		nr_active_requests_shared_sbitmap;
490 
491 	struct list_head	icq_list;
492 #ifdef CONFIG_BLK_CGROUP
493 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
494 	struct blkcg_gq		*root_blkg;
495 	struct list_head	blkg_list;
496 #endif
497 
498 	struct queue_limits	limits;
499 
500 	unsigned int		required_elevator_features;
501 
502 #ifdef CONFIG_BLK_DEV_ZONED
503 	/*
504 	 * Zoned block device information for request dispatch control.
505 	 * nr_zones is the total number of zones of the device. This is always
506 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
507 	 * bits which indicates if a zone is conventional (bit set) or
508 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
509 	 * bits which indicates if a zone is write locked, that is, if a write
510 	 * request targeting the zone was dispatched. All three fields are
511 	 * initialized by the low level device driver (e.g. scsi/sd.c).
512 	 * Stacking drivers (device mappers) may or may not initialize
513 	 * these fields.
514 	 *
515 	 * Reads of this information must be protected with blk_queue_enter() /
516 	 * blk_queue_exit(). Modifying this information is only allowed while
517 	 * no requests are being processed. See also blk_mq_freeze_queue() and
518 	 * blk_mq_unfreeze_queue().
519 	 */
520 	unsigned int		nr_zones;
521 	unsigned long		*conv_zones_bitmap;
522 	unsigned long		*seq_zones_wlock;
523 	unsigned int		max_open_zones;
524 	unsigned int		max_active_zones;
525 #endif /* CONFIG_BLK_DEV_ZONED */
526 
527 	/*
528 	 * sg stuff
529 	 */
530 	unsigned int		sg_timeout;
531 	unsigned int		sg_reserved_size;
532 	int			node;
533 	struct mutex		debugfs_mutex;
534 #ifdef CONFIG_BLK_DEV_IO_TRACE
535 	struct blk_trace __rcu	*blk_trace;
536 #endif
537 	/*
538 	 * for flush operations
539 	 */
540 	struct blk_flush_queue	*fq;
541 
542 	struct list_head	requeue_list;
543 	spinlock_t		requeue_lock;
544 	struct delayed_work	requeue_work;
545 
546 	struct mutex		sysfs_lock;
547 	struct mutex		sysfs_dir_lock;
548 
549 	/*
550 	 * for reusing dead hctx instance in case of updating
551 	 * nr_hw_queues
552 	 */
553 	struct list_head	unused_hctx_list;
554 	spinlock_t		unused_hctx_lock;
555 
556 	int			mq_freeze_depth;
557 
558 #if defined(CONFIG_BLK_DEV_BSG)
559 	struct bsg_class_device bsg_dev;
560 #endif
561 
562 #ifdef CONFIG_BLK_DEV_THROTTLING
563 	/* Throttle data */
564 	struct throtl_data *td;
565 #endif
566 	struct rcu_head		rcu_head;
567 	wait_queue_head_t	mq_freeze_wq;
568 	/*
569 	 * Protect concurrent access to q_usage_counter by
570 	 * percpu_ref_kill() and percpu_ref_reinit().
571 	 */
572 	struct mutex		mq_freeze_lock;
573 
574 	struct blk_mq_tag_set	*tag_set;
575 	struct list_head	tag_set_list;
576 	struct bio_set		bio_split;
577 
578 	struct dentry		*debugfs_dir;
579 
580 #ifdef CONFIG_BLK_DEBUG_FS
581 	struct dentry		*sched_debugfs_dir;
582 	struct dentry		*rqos_debugfs_dir;
583 #endif
584 
585 	bool			mq_sysfs_init_done;
586 
587 	size_t			cmd_size;
588 
589 #define BLK_MAX_WRITE_HINTS	5
590 	u64			write_hints[BLK_MAX_WRITE_HINTS];
591 };
592 
593 /* Keep blk_queue_flag_name[] in sync with the definitions below */
594 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
595 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
596 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
597 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
598 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
599 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
600 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
601 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
602 #define QUEUE_FLAG_DISCARD	8	/* supports DISCARD */
603 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
604 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
605 #define QUEUE_FLAG_SECERASE	11	/* supports secure erase */
606 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
607 #define QUEUE_FLAG_DEAD		13	/* queue tear-down finished */
608 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
609 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
610 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
611 #define QUEUE_FLAG_WC		17	/* Write back caching */
612 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
613 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
614 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
615 #define QUEUE_FLAG_POLL_STATS	21	/* collecting stats for hybrid polling */
616 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
617 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23	/* queue supports SCSI commands */
618 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
619 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
620 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
621 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
622 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
623 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
624 
625 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
626 				 (1 << QUEUE_FLAG_SAME_COMP) |		\
627 				 (1 << QUEUE_FLAG_NOWAIT))
628 
629 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
630 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
631 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
632 
633 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
634 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
635 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
636 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
637 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
638 #define blk_queue_noxmerges(q)	\
639 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
640 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
641 #define blk_queue_stable_writes(q) \
642 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
643 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
644 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
645 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
646 #define blk_queue_zone_resetall(q)	\
647 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
648 #define blk_queue_secure_erase(q) \
649 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
650 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
651 #define blk_queue_scsi_passthrough(q)	\
652 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
653 #define blk_queue_pci_p2pdma(q)	\
654 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
655 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
656 #define blk_queue_rq_alloc_time(q)	\
657 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
658 #else
659 #define blk_queue_rq_alloc_time(q)	false
660 #endif
661 
662 #define blk_noretry_request(rq) \
663 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
664 			     REQ_FAILFAST_DRIVER))
665 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
666 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
667 #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
668 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
669 #define blk_queue_nowait(q)	test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags)
670 
671 extern void blk_set_pm_only(struct request_queue *q);
672 extern void blk_clear_pm_only(struct request_queue *q);
673 
674 static inline bool blk_account_rq(struct request *rq)
675 {
676 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
677 }
678 
679 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
680 
681 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
682 
683 #define rq_dma_dir(rq) \
684 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
685 
686 #define dma_map_bvec(dev, bv, dir, attrs) \
687 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
688 	(dir), (attrs))
689 
690 static inline bool queue_is_mq(struct request_queue *q)
691 {
692 	return q->mq_ops;
693 }
694 
695 #ifdef CONFIG_PM
696 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
697 {
698 	return q->rpm_status;
699 }
700 #else
701 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
702 {
703 	return RPM_ACTIVE;
704 }
705 #endif
706 
707 static inline enum blk_zoned_model
708 blk_queue_zoned_model(struct request_queue *q)
709 {
710 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
711 		return q->limits.zoned;
712 	return BLK_ZONED_NONE;
713 }
714 
715 static inline bool blk_queue_is_zoned(struct request_queue *q)
716 {
717 	switch (blk_queue_zoned_model(q)) {
718 	case BLK_ZONED_HA:
719 	case BLK_ZONED_HM:
720 		return true;
721 	default:
722 		return false;
723 	}
724 }
725 
726 static inline sector_t blk_queue_zone_sectors(struct request_queue *q)
727 {
728 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
729 }
730 
731 #ifdef CONFIG_BLK_DEV_ZONED
732 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
733 {
734 	return blk_queue_is_zoned(q) ? q->nr_zones : 0;
735 }
736 
737 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
738 					     sector_t sector)
739 {
740 	if (!blk_queue_is_zoned(q))
741 		return 0;
742 	return sector >> ilog2(q->limits.chunk_sectors);
743 }
744 
745 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
746 					 sector_t sector)
747 {
748 	if (!blk_queue_is_zoned(q))
749 		return false;
750 	if (!q->conv_zones_bitmap)
751 		return true;
752 	return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap);
753 }
754 
755 static inline void blk_queue_max_open_zones(struct request_queue *q,
756 		unsigned int max_open_zones)
757 {
758 	q->max_open_zones = max_open_zones;
759 }
760 
761 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
762 {
763 	return q->max_open_zones;
764 }
765 
766 static inline void blk_queue_max_active_zones(struct request_queue *q,
767 		unsigned int max_active_zones)
768 {
769 	q->max_active_zones = max_active_zones;
770 }
771 
772 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
773 {
774 	return q->max_active_zones;
775 }
776 #else /* CONFIG_BLK_DEV_ZONED */
777 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
778 {
779 	return 0;
780 }
781 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
782 					 sector_t sector)
783 {
784 	return false;
785 }
786 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
787 					     sector_t sector)
788 {
789 	return 0;
790 }
791 static inline unsigned int queue_max_open_zones(const struct request_queue *q)
792 {
793 	return 0;
794 }
795 static inline unsigned int queue_max_active_zones(const struct request_queue *q)
796 {
797 	return 0;
798 }
799 #endif /* CONFIG_BLK_DEV_ZONED */
800 
801 static inline bool rq_is_sync(struct request *rq)
802 {
803 	return op_is_sync(rq->cmd_flags);
804 }
805 
806 static inline bool rq_mergeable(struct request *rq)
807 {
808 	if (blk_rq_is_passthrough(rq))
809 		return false;
810 
811 	if (req_op(rq) == REQ_OP_FLUSH)
812 		return false;
813 
814 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
815 		return false;
816 
817 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
818 		return false;
819 
820 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
821 		return false;
822 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
823 		return false;
824 
825 	return true;
826 }
827 
828 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
829 {
830 	if (bio_page(a) == bio_page(b) &&
831 	    bio_offset(a) == bio_offset(b))
832 		return true;
833 
834 	return false;
835 }
836 
837 static inline unsigned int blk_queue_depth(struct request_queue *q)
838 {
839 	if (q->queue_depth)
840 		return q->queue_depth;
841 
842 	return q->nr_requests;
843 }
844 
845 extern unsigned long blk_max_low_pfn, blk_max_pfn;
846 
847 /*
848  * standard bounce addresses:
849  *
850  * BLK_BOUNCE_HIGH	: bounce all highmem pages
851  * BLK_BOUNCE_ANY	: don't bounce anything
852  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
853  */
854 
855 #if BITS_PER_LONG == 32
856 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
857 #else
858 #define BLK_BOUNCE_HIGH		-1ULL
859 #endif
860 #define BLK_BOUNCE_ANY		(-1ULL)
861 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
862 
863 /*
864  * default timeout for SG_IO if none specified
865  */
866 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
867 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
868 
869 struct rq_map_data {
870 	struct page **pages;
871 	int page_order;
872 	int nr_entries;
873 	unsigned long offset;
874 	int null_mapped;
875 	int from_user;
876 };
877 
878 struct req_iterator {
879 	struct bvec_iter iter;
880 	struct bio *bio;
881 };
882 
883 /* This should not be used directly - use rq_for_each_segment */
884 #define for_each_bio(_bio)		\
885 	for (; _bio; _bio = _bio->bi_next)
886 #define __rq_for_each_bio(_bio, rq)	\
887 	if ((rq->bio))			\
888 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
889 
890 #define rq_for_each_segment(bvl, _rq, _iter)			\
891 	__rq_for_each_bio(_iter.bio, _rq)			\
892 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
893 
894 #define rq_for_each_bvec(bvl, _rq, _iter)			\
895 	__rq_for_each_bio(_iter.bio, _rq)			\
896 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
897 
898 #define rq_iter_last(bvec, _iter)				\
899 		(_iter.bio->bi_next == NULL &&			\
900 		 bio_iter_last(bvec, _iter.iter))
901 
902 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
903 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
904 #endif
905 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
906 extern void rq_flush_dcache_pages(struct request *rq);
907 #else
908 static inline void rq_flush_dcache_pages(struct request *rq)
909 {
910 }
911 #endif
912 
913 extern int blk_register_queue(struct gendisk *disk);
914 extern void blk_unregister_queue(struct gendisk *disk);
915 blk_qc_t submit_bio_noacct(struct bio *bio);
916 extern void blk_rq_init(struct request_queue *q, struct request *rq);
917 extern void blk_put_request(struct request *);
918 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
919 				       blk_mq_req_flags_t flags);
920 extern int blk_lld_busy(struct request_queue *q);
921 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
922 			     struct bio_set *bs, gfp_t gfp_mask,
923 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
924 			     void *data);
925 extern void blk_rq_unprep_clone(struct request *rq);
926 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
927 				     struct request *rq);
928 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
929 extern void blk_queue_split(struct bio **);
930 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
931 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
932 			      unsigned int, void __user *);
933 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
934 			  unsigned int, void __user *);
935 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
936 			 struct scsi_ioctl_command __user *);
937 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp);
938 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp);
939 
940 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
941 extern void blk_queue_exit(struct request_queue *q);
942 extern void blk_sync_queue(struct request_queue *q);
943 extern int blk_rq_map_user(struct request_queue *, struct request *,
944 			   struct rq_map_data *, void __user *, unsigned long,
945 			   gfp_t);
946 extern int blk_rq_unmap_user(struct bio *);
947 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
948 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
949 			       struct rq_map_data *, const struct iov_iter *,
950 			       gfp_t);
951 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
952 			  struct request *, int);
953 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
954 				  struct request *, int, rq_end_io_fn *);
955 
956 /* Helper to convert REQ_OP_XXX to its string format XXX */
957 extern const char *blk_op_str(unsigned int op);
958 
959 int blk_status_to_errno(blk_status_t status);
960 blk_status_t errno_to_blk_status(int errno);
961 
962 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
963 
964 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
965 {
966 	return bdev->bd_disk->queue;	/* this is never NULL */
967 }
968 
969 /*
970  * The basic unit of block I/O is a sector. It is used in a number of contexts
971  * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
972  * bytes. Variables of type sector_t represent an offset or size that is a
973  * multiple of 512 bytes. Hence these two constants.
974  */
975 #ifndef SECTOR_SHIFT
976 #define SECTOR_SHIFT 9
977 #endif
978 #ifndef SECTOR_SIZE
979 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
980 #endif
981 
982 /*
983  * blk_rq_pos()			: the current sector
984  * blk_rq_bytes()		: bytes left in the entire request
985  * blk_rq_cur_bytes()		: bytes left in the current segment
986  * blk_rq_err_bytes()		: bytes left till the next error boundary
987  * blk_rq_sectors()		: sectors left in the entire request
988  * blk_rq_cur_sectors()		: sectors left in the current segment
989  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
990  */
991 static inline sector_t blk_rq_pos(const struct request *rq)
992 {
993 	return rq->__sector;
994 }
995 
996 static inline unsigned int blk_rq_bytes(const struct request *rq)
997 {
998 	return rq->__data_len;
999 }
1000 
1001 static inline int blk_rq_cur_bytes(const struct request *rq)
1002 {
1003 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1004 }
1005 
1006 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1007 
1008 static inline unsigned int blk_rq_sectors(const struct request *rq)
1009 {
1010 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1011 }
1012 
1013 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1014 {
1015 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1016 }
1017 
1018 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1019 {
1020 	return rq->stats_sectors;
1021 }
1022 
1023 #ifdef CONFIG_BLK_DEV_ZONED
1024 
1025 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
1026 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
1027 
1028 static inline unsigned int blk_rq_zone_no(struct request *rq)
1029 {
1030 	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
1031 }
1032 
1033 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1034 {
1035 	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
1036 }
1037 #endif /* CONFIG_BLK_DEV_ZONED */
1038 
1039 /*
1040  * Some commands like WRITE SAME have a payload or data transfer size which
1041  * is different from the size of the request.  Any driver that supports such
1042  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1043  * calculate the data transfer size.
1044  */
1045 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1046 {
1047 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1048 		return rq->special_vec.bv_len;
1049 	return blk_rq_bytes(rq);
1050 }
1051 
1052 /*
1053  * Return the first full biovec in the request.  The caller needs to check that
1054  * there are any bvecs before calling this helper.
1055  */
1056 static inline struct bio_vec req_bvec(struct request *rq)
1057 {
1058 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1059 		return rq->special_vec;
1060 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1061 }
1062 
1063 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1064 						     int op)
1065 {
1066 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1067 		return min(q->limits.max_discard_sectors,
1068 			   UINT_MAX >> SECTOR_SHIFT);
1069 
1070 	if (unlikely(op == REQ_OP_WRITE_SAME))
1071 		return q->limits.max_write_same_sectors;
1072 
1073 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1074 		return q->limits.max_write_zeroes_sectors;
1075 
1076 	return q->limits.max_sectors;
1077 }
1078 
1079 /*
1080  * Return maximum size of a request at given offset. Only valid for
1081  * file system requests.
1082  */
1083 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1084 					       sector_t offset,
1085 					       unsigned int chunk_sectors)
1086 {
1087 	if (!chunk_sectors) {
1088 		if (q->limits.chunk_sectors)
1089 			chunk_sectors = q->limits.chunk_sectors;
1090 		else
1091 			return q->limits.max_sectors;
1092 	}
1093 
1094 	if (likely(is_power_of_2(chunk_sectors)))
1095 		chunk_sectors -= offset & (chunk_sectors - 1);
1096 	else
1097 		chunk_sectors -= sector_div(offset, chunk_sectors);
1098 
1099 	return min(q->limits.max_sectors, chunk_sectors);
1100 }
1101 
1102 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1103 						  sector_t offset)
1104 {
1105 	struct request_queue *q = rq->q;
1106 
1107 	if (blk_rq_is_passthrough(rq))
1108 		return q->limits.max_hw_sectors;
1109 
1110 	if (!q->limits.chunk_sectors ||
1111 	    req_op(rq) == REQ_OP_DISCARD ||
1112 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1113 		return blk_queue_get_max_sectors(q, req_op(rq));
1114 
1115 	return min(blk_max_size_offset(q, offset, 0),
1116 			blk_queue_get_max_sectors(q, req_op(rq)));
1117 }
1118 
1119 static inline unsigned int blk_rq_count_bios(struct request *rq)
1120 {
1121 	unsigned int nr_bios = 0;
1122 	struct bio *bio;
1123 
1124 	__rq_for_each_bio(bio, rq)
1125 		nr_bios++;
1126 
1127 	return nr_bios;
1128 }
1129 
1130 void blk_steal_bios(struct bio_list *list, struct request *rq);
1131 
1132 /*
1133  * Request completion related functions.
1134  *
1135  * blk_update_request() completes given number of bytes and updates
1136  * the request without completing it.
1137  */
1138 extern bool blk_update_request(struct request *rq, blk_status_t error,
1139 			       unsigned int nr_bytes);
1140 
1141 extern void blk_abort_request(struct request *);
1142 
1143 /*
1144  * Access functions for manipulating queue properties
1145  */
1146 extern void blk_cleanup_queue(struct request_queue *);
1147 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1148 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1149 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1150 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1151 extern void blk_queue_max_discard_segments(struct request_queue *,
1152 		unsigned short);
1153 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1154 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1155 		unsigned int max_discard_sectors);
1156 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1157 		unsigned int max_write_same_sectors);
1158 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1159 		unsigned int max_write_same_sectors);
1160 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
1161 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
1162 		unsigned int max_zone_append_sectors);
1163 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1164 extern void blk_queue_alignment_offset(struct request_queue *q,
1165 				       unsigned int alignment);
1166 void blk_queue_update_readahead(struct request_queue *q);
1167 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1168 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1169 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1170 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1171 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1172 extern void blk_set_default_limits(struct queue_limits *lim);
1173 extern void blk_set_stacking_limits(struct queue_limits *lim);
1174 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1175 			    sector_t offset);
1176 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1177 			      sector_t offset);
1178 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1179 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1180 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1181 extern void blk_queue_dma_alignment(struct request_queue *, int);
1182 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1183 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1184 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1185 extern void blk_queue_required_elevator_features(struct request_queue *q,
1186 						 unsigned int features);
1187 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
1188 					      struct device *dev);
1189 
1190 /*
1191  * Number of physical segments as sent to the device.
1192  *
1193  * Normally this is the number of discontiguous data segments sent by the
1194  * submitter.  But for data-less command like discard we might have no
1195  * actual data segments submitted, but the driver might have to add it's
1196  * own special payload.  In that case we still return 1 here so that this
1197  * special payload will be mapped.
1198  */
1199 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1200 {
1201 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1202 		return 1;
1203 	return rq->nr_phys_segments;
1204 }
1205 
1206 /*
1207  * Number of discard segments (or ranges) the driver needs to fill in.
1208  * Each discard bio merged into a request is counted as one segment.
1209  */
1210 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1211 {
1212 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1213 }
1214 
1215 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1216 		struct scatterlist *sglist, struct scatterlist **last_sg);
1217 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1218 		struct scatterlist *sglist)
1219 {
1220 	struct scatterlist *last_sg = NULL;
1221 
1222 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1223 }
1224 extern void blk_dump_rq_flags(struct request *, char *);
1225 
1226 bool __must_check blk_get_queue(struct request_queue *);
1227 struct request_queue *blk_alloc_queue(int node_id);
1228 extern void blk_put_queue(struct request_queue *);
1229 extern void blk_set_queue_dying(struct request_queue *);
1230 
1231 #ifdef CONFIG_BLOCK
1232 /*
1233  * blk_plug permits building a queue of related requests by holding the I/O
1234  * fragments for a short period. This allows merging of sequential requests
1235  * into single larger request. As the requests are moved from a per-task list to
1236  * the device's request_queue in a batch, this results in improved scalability
1237  * as the lock contention for request_queue lock is reduced.
1238  *
1239  * It is ok not to disable preemption when adding the request to the plug list
1240  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1241  * the plug list when the task sleeps by itself. For details, please see
1242  * schedule() where blk_schedule_flush_plug() is called.
1243  */
1244 struct blk_plug {
1245 	struct list_head mq_list; /* blk-mq requests */
1246 	struct list_head cb_list; /* md requires an unplug callback */
1247 	unsigned short rq_count;
1248 	bool multiple_queues;
1249 	bool nowait;
1250 };
1251 #define BLK_MAX_REQUEST_COUNT 16
1252 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1253 
1254 struct blk_plug_cb;
1255 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1256 struct blk_plug_cb {
1257 	struct list_head list;
1258 	blk_plug_cb_fn callback;
1259 	void *data;
1260 };
1261 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1262 					     void *data, int size);
1263 extern void blk_start_plug(struct blk_plug *);
1264 extern void blk_finish_plug(struct blk_plug *);
1265 extern void blk_flush_plug_list(struct blk_plug *, bool);
1266 
1267 static inline void blk_flush_plug(struct task_struct *tsk)
1268 {
1269 	struct blk_plug *plug = tsk->plug;
1270 
1271 	if (plug)
1272 		blk_flush_plug_list(plug, false);
1273 }
1274 
1275 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1276 {
1277 	struct blk_plug *plug = tsk->plug;
1278 
1279 	if (plug)
1280 		blk_flush_plug_list(plug, true);
1281 }
1282 
1283 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1284 {
1285 	struct blk_plug *plug = tsk->plug;
1286 
1287 	return plug &&
1288 		 (!list_empty(&plug->mq_list) ||
1289 		 !list_empty(&plug->cb_list));
1290 }
1291 
1292 int blkdev_issue_flush(struct block_device *, gfp_t);
1293 long nr_blockdev_pages(void);
1294 #else /* CONFIG_BLOCK */
1295 struct blk_plug {
1296 };
1297 
1298 static inline void blk_start_plug(struct blk_plug *plug)
1299 {
1300 }
1301 
1302 static inline void blk_finish_plug(struct blk_plug *plug)
1303 {
1304 }
1305 
1306 static inline void blk_flush_plug(struct task_struct *task)
1307 {
1308 }
1309 
1310 static inline void blk_schedule_flush_plug(struct task_struct *task)
1311 {
1312 }
1313 
1314 
1315 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1316 {
1317 	return false;
1318 }
1319 
1320 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
1321 {
1322 	return 0;
1323 }
1324 
1325 static inline long nr_blockdev_pages(void)
1326 {
1327 	return 0;
1328 }
1329 #endif /* CONFIG_BLOCK */
1330 
1331 extern void blk_io_schedule(void);
1332 
1333 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1334 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1335 
1336 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1337 
1338 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1339 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1340 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1341 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1342 		struct bio **biop);
1343 
1344 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1345 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1346 
1347 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1348 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1349 		unsigned flags);
1350 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1351 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1352 
1353 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1354 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1355 {
1356 	return blkdev_issue_discard(sb->s_bdev,
1357 				    block << (sb->s_blocksize_bits -
1358 					      SECTOR_SHIFT),
1359 				    nr_blocks << (sb->s_blocksize_bits -
1360 						  SECTOR_SHIFT),
1361 				    gfp_mask, flags);
1362 }
1363 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1364 		sector_t nr_blocks, gfp_t gfp_mask)
1365 {
1366 	return blkdev_issue_zeroout(sb->s_bdev,
1367 				    block << (sb->s_blocksize_bits -
1368 					      SECTOR_SHIFT),
1369 				    nr_blocks << (sb->s_blocksize_bits -
1370 						  SECTOR_SHIFT),
1371 				    gfp_mask, 0);
1372 }
1373 
1374 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1375 
1376 static inline bool bdev_is_partition(struct block_device *bdev)
1377 {
1378 	return bdev->bd_partno;
1379 }
1380 
1381 enum blk_default_limits {
1382 	BLK_MAX_SEGMENTS	= 128,
1383 	BLK_SAFE_MAX_SECTORS	= 255,
1384 	BLK_DEF_MAX_SECTORS	= 2560,
1385 	BLK_MAX_SEGMENT_SIZE	= 65536,
1386 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1387 };
1388 
1389 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1390 {
1391 	return q->limits.seg_boundary_mask;
1392 }
1393 
1394 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1395 {
1396 	return q->limits.virt_boundary_mask;
1397 }
1398 
1399 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1400 {
1401 	return q->limits.max_sectors;
1402 }
1403 
1404 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1405 {
1406 	return q->limits.max_hw_sectors;
1407 }
1408 
1409 static inline unsigned short queue_max_segments(const struct request_queue *q)
1410 {
1411 	return q->limits.max_segments;
1412 }
1413 
1414 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1415 {
1416 	return q->limits.max_discard_segments;
1417 }
1418 
1419 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1420 {
1421 	return q->limits.max_segment_size;
1422 }
1423 
1424 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1425 {
1426 
1427 	const struct queue_limits *l = &q->limits;
1428 
1429 	return min(l->max_zone_append_sectors, l->max_sectors);
1430 }
1431 
1432 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1433 {
1434 	int retval = 512;
1435 
1436 	if (q && q->limits.logical_block_size)
1437 		retval = q->limits.logical_block_size;
1438 
1439 	return retval;
1440 }
1441 
1442 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1443 {
1444 	return queue_logical_block_size(bdev_get_queue(bdev));
1445 }
1446 
1447 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1448 {
1449 	return q->limits.physical_block_size;
1450 }
1451 
1452 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1453 {
1454 	return queue_physical_block_size(bdev_get_queue(bdev));
1455 }
1456 
1457 static inline unsigned int queue_io_min(const struct request_queue *q)
1458 {
1459 	return q->limits.io_min;
1460 }
1461 
1462 static inline int bdev_io_min(struct block_device *bdev)
1463 {
1464 	return queue_io_min(bdev_get_queue(bdev));
1465 }
1466 
1467 static inline unsigned int queue_io_opt(const struct request_queue *q)
1468 {
1469 	return q->limits.io_opt;
1470 }
1471 
1472 static inline int bdev_io_opt(struct block_device *bdev)
1473 {
1474 	return queue_io_opt(bdev_get_queue(bdev));
1475 }
1476 
1477 static inline int queue_alignment_offset(const struct request_queue *q)
1478 {
1479 	if (q->limits.misaligned)
1480 		return -1;
1481 
1482 	return q->limits.alignment_offset;
1483 }
1484 
1485 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1486 {
1487 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1488 	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1489 		<< SECTOR_SHIFT;
1490 
1491 	return (granularity + lim->alignment_offset - alignment) % granularity;
1492 }
1493 
1494 static inline int bdev_alignment_offset(struct block_device *bdev)
1495 {
1496 	struct request_queue *q = bdev_get_queue(bdev);
1497 
1498 	if (q->limits.misaligned)
1499 		return -1;
1500 	if (bdev_is_partition(bdev))
1501 		return queue_limit_alignment_offset(&q->limits,
1502 				bdev->bd_start_sect);
1503 	return q->limits.alignment_offset;
1504 }
1505 
1506 static inline int queue_discard_alignment(const struct request_queue *q)
1507 {
1508 	if (q->limits.discard_misaligned)
1509 		return -1;
1510 
1511 	return q->limits.discard_alignment;
1512 }
1513 
1514 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1515 {
1516 	unsigned int alignment, granularity, offset;
1517 
1518 	if (!lim->max_discard_sectors)
1519 		return 0;
1520 
1521 	/* Why are these in bytes, not sectors? */
1522 	alignment = lim->discard_alignment >> SECTOR_SHIFT;
1523 	granularity = lim->discard_granularity >> SECTOR_SHIFT;
1524 	if (!granularity)
1525 		return 0;
1526 
1527 	/* Offset of the partition start in 'granularity' sectors */
1528 	offset = sector_div(sector, granularity);
1529 
1530 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1531 	offset = (granularity + alignment - offset) % granularity;
1532 
1533 	/* Turn it back into bytes, gaah */
1534 	return offset << SECTOR_SHIFT;
1535 }
1536 
1537 static inline int bdev_discard_alignment(struct block_device *bdev)
1538 {
1539 	struct request_queue *q = bdev_get_queue(bdev);
1540 
1541 	if (bdev_is_partition(bdev))
1542 		return queue_limit_discard_alignment(&q->limits,
1543 				bdev->bd_start_sect);
1544 	return q->limits.discard_alignment;
1545 }
1546 
1547 static inline unsigned int bdev_write_same(struct block_device *bdev)
1548 {
1549 	struct request_queue *q = bdev_get_queue(bdev);
1550 
1551 	if (q)
1552 		return q->limits.max_write_same_sectors;
1553 
1554 	return 0;
1555 }
1556 
1557 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1558 {
1559 	struct request_queue *q = bdev_get_queue(bdev);
1560 
1561 	if (q)
1562 		return q->limits.max_write_zeroes_sectors;
1563 
1564 	return 0;
1565 }
1566 
1567 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1568 {
1569 	struct request_queue *q = bdev_get_queue(bdev);
1570 
1571 	if (q)
1572 		return blk_queue_zoned_model(q);
1573 
1574 	return BLK_ZONED_NONE;
1575 }
1576 
1577 static inline bool bdev_is_zoned(struct block_device *bdev)
1578 {
1579 	struct request_queue *q = bdev_get_queue(bdev);
1580 
1581 	if (q)
1582 		return blk_queue_is_zoned(q);
1583 
1584 	return false;
1585 }
1586 
1587 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1588 {
1589 	struct request_queue *q = bdev_get_queue(bdev);
1590 
1591 	if (q)
1592 		return blk_queue_zone_sectors(q);
1593 	return 0;
1594 }
1595 
1596 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
1597 {
1598 	struct request_queue *q = bdev_get_queue(bdev);
1599 
1600 	if (q)
1601 		return queue_max_open_zones(q);
1602 	return 0;
1603 }
1604 
1605 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
1606 {
1607 	struct request_queue *q = bdev_get_queue(bdev);
1608 
1609 	if (q)
1610 		return queue_max_active_zones(q);
1611 	return 0;
1612 }
1613 
1614 static inline int queue_dma_alignment(const struct request_queue *q)
1615 {
1616 	return q ? q->dma_alignment : 511;
1617 }
1618 
1619 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1620 				 unsigned int len)
1621 {
1622 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1623 	return !(addr & alignment) && !(len & alignment);
1624 }
1625 
1626 /* assumes size > 256 */
1627 static inline unsigned int blksize_bits(unsigned int size)
1628 {
1629 	unsigned int bits = 8;
1630 	do {
1631 		bits++;
1632 		size >>= 1;
1633 	} while (size > 256);
1634 	return bits;
1635 }
1636 
1637 static inline unsigned int block_size(struct block_device *bdev)
1638 {
1639 	return 1 << bdev->bd_inode->i_blkbits;
1640 }
1641 
1642 int kblockd_schedule_work(struct work_struct *work);
1643 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1644 
1645 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1646 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1647 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1648 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1649 
1650 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1651 
1652 enum blk_integrity_flags {
1653 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1654 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1655 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1656 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1657 };
1658 
1659 struct blk_integrity_iter {
1660 	void			*prot_buf;
1661 	void			*data_buf;
1662 	sector_t		seed;
1663 	unsigned int		data_size;
1664 	unsigned short		interval;
1665 	const char		*disk_name;
1666 };
1667 
1668 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1669 typedef void (integrity_prepare_fn) (struct request *);
1670 typedef void (integrity_complete_fn) (struct request *, unsigned int);
1671 
1672 struct blk_integrity_profile {
1673 	integrity_processing_fn		*generate_fn;
1674 	integrity_processing_fn		*verify_fn;
1675 	integrity_prepare_fn		*prepare_fn;
1676 	integrity_complete_fn		*complete_fn;
1677 	const char			*name;
1678 };
1679 
1680 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1681 extern void blk_integrity_unregister(struct gendisk *);
1682 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1683 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1684 				   struct scatterlist *);
1685 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1686 
1687 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1688 {
1689 	struct blk_integrity *bi = &disk->queue->integrity;
1690 
1691 	if (!bi->profile)
1692 		return NULL;
1693 
1694 	return bi;
1695 }
1696 
1697 static inline
1698 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1699 {
1700 	return blk_get_integrity(bdev->bd_disk);
1701 }
1702 
1703 static inline bool
1704 blk_integrity_queue_supports_integrity(struct request_queue *q)
1705 {
1706 	return q->integrity.profile;
1707 }
1708 
1709 static inline bool blk_integrity_rq(struct request *rq)
1710 {
1711 	return rq->cmd_flags & REQ_INTEGRITY;
1712 }
1713 
1714 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1715 						    unsigned int segs)
1716 {
1717 	q->limits.max_integrity_segments = segs;
1718 }
1719 
1720 static inline unsigned short
1721 queue_max_integrity_segments(const struct request_queue *q)
1722 {
1723 	return q->limits.max_integrity_segments;
1724 }
1725 
1726 /**
1727  * bio_integrity_intervals - Return number of integrity intervals for a bio
1728  * @bi:		blk_integrity profile for device
1729  * @sectors:	Size of the bio in 512-byte sectors
1730  *
1731  * Description: The block layer calculates everything in 512 byte
1732  * sectors but integrity metadata is done in terms of the data integrity
1733  * interval size of the storage device.  Convert the block layer sectors
1734  * to the appropriate number of integrity intervals.
1735  */
1736 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1737 						   unsigned int sectors)
1738 {
1739 	return sectors >> (bi->interval_exp - 9);
1740 }
1741 
1742 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1743 					       unsigned int sectors)
1744 {
1745 	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1746 }
1747 
1748 /*
1749  * Return the first bvec that contains integrity data.  Only drivers that are
1750  * limited to a single integrity segment should use this helper.
1751  */
1752 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1753 {
1754 	if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1))
1755 		return NULL;
1756 	return rq->bio->bi_integrity->bip_vec;
1757 }
1758 
1759 #else /* CONFIG_BLK_DEV_INTEGRITY */
1760 
1761 struct bio;
1762 struct block_device;
1763 struct gendisk;
1764 struct blk_integrity;
1765 
1766 static inline int blk_integrity_rq(struct request *rq)
1767 {
1768 	return 0;
1769 }
1770 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1771 					    struct bio *b)
1772 {
1773 	return 0;
1774 }
1775 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1776 					  struct bio *b,
1777 					  struct scatterlist *s)
1778 {
1779 	return 0;
1780 }
1781 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1782 {
1783 	return NULL;
1784 }
1785 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1786 {
1787 	return NULL;
1788 }
1789 static inline bool
1790 blk_integrity_queue_supports_integrity(struct request_queue *q)
1791 {
1792 	return false;
1793 }
1794 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1795 {
1796 	return 0;
1797 }
1798 static inline void blk_integrity_register(struct gendisk *d,
1799 					 struct blk_integrity *b)
1800 {
1801 }
1802 static inline void blk_integrity_unregister(struct gendisk *d)
1803 {
1804 }
1805 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1806 						    unsigned int segs)
1807 {
1808 }
1809 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q)
1810 {
1811 	return 0;
1812 }
1813 
1814 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1815 						   unsigned int sectors)
1816 {
1817 	return 0;
1818 }
1819 
1820 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1821 					       unsigned int sectors)
1822 {
1823 	return 0;
1824 }
1825 
1826 static inline struct bio_vec *rq_integrity_vec(struct request *rq)
1827 {
1828 	return NULL;
1829 }
1830 
1831 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1832 
1833 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1834 
1835 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q);
1836 
1837 void blk_ksm_unregister(struct request_queue *q);
1838 
1839 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1840 
1841 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm,
1842 				    struct request_queue *q)
1843 {
1844 	return true;
1845 }
1846 
1847 static inline void blk_ksm_unregister(struct request_queue *q) { }
1848 
1849 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1850 
1851 
1852 struct block_device_operations {
1853 	blk_qc_t (*submit_bio) (struct bio *bio);
1854 	int (*open) (struct block_device *, fmode_t);
1855 	void (*release) (struct gendisk *, fmode_t);
1856 	int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1857 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1858 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1859 	unsigned int (*check_events) (struct gendisk *disk,
1860 				      unsigned int clearing);
1861 	void (*unlock_native_capacity) (struct gendisk *);
1862 	int (*revalidate_disk) (struct gendisk *);
1863 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1864 	int (*set_read_only)(struct block_device *bdev, bool ro);
1865 	/* this callback is with swap_lock and sometimes page table lock held */
1866 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1867 	int (*report_zones)(struct gendisk *, sector_t sector,
1868 			unsigned int nr_zones, report_zones_cb cb, void *data);
1869 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1870 	struct module *owner;
1871 	const struct pr_ops *pr_ops;
1872 };
1873 
1874 #ifdef CONFIG_COMPAT
1875 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t,
1876 				      unsigned int, unsigned long);
1877 #else
1878 #define blkdev_compat_ptr_ioctl NULL
1879 #endif
1880 
1881 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1882 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1883 						struct writeback_control *);
1884 
1885 #ifdef CONFIG_BLK_DEV_ZONED
1886 bool blk_req_needs_zone_write_lock(struct request *rq);
1887 bool blk_req_zone_write_trylock(struct request *rq);
1888 void __blk_req_zone_write_lock(struct request *rq);
1889 void __blk_req_zone_write_unlock(struct request *rq);
1890 
1891 static inline void blk_req_zone_write_lock(struct request *rq)
1892 {
1893 	if (blk_req_needs_zone_write_lock(rq))
1894 		__blk_req_zone_write_lock(rq);
1895 }
1896 
1897 static inline void blk_req_zone_write_unlock(struct request *rq)
1898 {
1899 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1900 		__blk_req_zone_write_unlock(rq);
1901 }
1902 
1903 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1904 {
1905 	return rq->q->seq_zones_wlock &&
1906 		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1907 }
1908 
1909 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1910 {
1911 	if (!blk_req_needs_zone_write_lock(rq))
1912 		return true;
1913 	return !blk_req_zone_is_write_locked(rq);
1914 }
1915 #else
1916 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1917 {
1918 	return false;
1919 }
1920 
1921 static inline void blk_req_zone_write_lock(struct request *rq)
1922 {
1923 }
1924 
1925 static inline void blk_req_zone_write_unlock(struct request *rq)
1926 {
1927 }
1928 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1929 {
1930 	return false;
1931 }
1932 
1933 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1934 {
1935 	return true;
1936 }
1937 #endif /* CONFIG_BLK_DEV_ZONED */
1938 
1939 static inline void blk_wake_io_task(struct task_struct *waiter)
1940 {
1941 	/*
1942 	 * If we're polling, the task itself is doing the completions. For
1943 	 * that case, we don't need to signal a wakeup, it's enough to just
1944 	 * mark us as RUNNING.
1945 	 */
1946 	if (waiter == current)
1947 		__set_current_state(TASK_RUNNING);
1948 	else
1949 		wake_up_process(waiter);
1950 }
1951 
1952 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1953 		unsigned int op);
1954 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1955 		unsigned long start_time);
1956 
1957 unsigned long part_start_io_acct(struct gendisk *disk,
1958 		struct block_device **part, struct bio *bio);
1959 void part_end_io_acct(struct block_device *part, struct bio *bio,
1960 		      unsigned long start_time);
1961 
1962 /**
1963  * bio_start_io_acct - start I/O accounting for bio based drivers
1964  * @bio:	bio to start account for
1965  *
1966  * Returns the start time that should be passed back to bio_end_io_acct().
1967  */
1968 static inline unsigned long bio_start_io_acct(struct bio *bio)
1969 {
1970 	return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio));
1971 }
1972 
1973 /**
1974  * bio_end_io_acct - end I/O accounting for bio based drivers
1975  * @bio:	bio to end account for
1976  * @start:	start time returned by bio_start_io_acct()
1977  */
1978 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1979 {
1980 	return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time);
1981 }
1982 
1983 int bdev_read_only(struct block_device *bdev);
1984 int set_blocksize(struct block_device *bdev, int size);
1985 
1986 const char *bdevname(struct block_device *bdev, char *buffer);
1987 int lookup_bdev(const char *pathname, dev_t *dev);
1988 
1989 void blkdev_show(struct seq_file *seqf, off_t offset);
1990 
1991 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1992 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1993 #ifdef CONFIG_BLOCK
1994 #define BLKDEV_MAJOR_MAX	512
1995 #else
1996 #define BLKDEV_MAJOR_MAX	0
1997 #endif
1998 
1999 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
2000 		void *holder);
2001 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder);
2002 int bd_prepare_to_claim(struct block_device *bdev, void *holder);
2003 void bd_abort_claiming(struct block_device *bdev, void *holder);
2004 void blkdev_put(struct block_device *bdev, fmode_t mode);
2005 
2006 /* just for blk-cgroup, don't use elsewhere */
2007 struct block_device *blkdev_get_no_open(dev_t dev);
2008 void blkdev_put_no_open(struct block_device *bdev);
2009 
2010 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
2011 void bdev_add(struct block_device *bdev, dev_t dev);
2012 struct block_device *I_BDEV(struct inode *inode);
2013 struct block_device *bdgrab(struct block_device *bdev);
2014 void bdput(struct block_device *);
2015 
2016 #ifdef CONFIG_BLOCK
2017 void invalidate_bdev(struct block_device *bdev);
2018 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart,
2019 			loff_t lend);
2020 int sync_blockdev(struct block_device *bdev);
2021 #else
2022 static inline void invalidate_bdev(struct block_device *bdev)
2023 {
2024 }
2025 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode,
2026 				      loff_t lstart, loff_t lend)
2027 {
2028 	return 0;
2029 }
2030 static inline int sync_blockdev(struct block_device *bdev)
2031 {
2032 	return 0;
2033 }
2034 #endif
2035 int fsync_bdev(struct block_device *bdev);
2036 
2037 int freeze_bdev(struct block_device *bdev);
2038 int thaw_bdev(struct block_device *bdev);
2039 
2040 #endif /* _LINUX_BLKDEV_H */
2041