1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/srcu.h> 26 #include <linux/uuid.h> 27 #include <linux/xarray.h> 28 29 struct module; 30 struct request_queue; 31 struct elevator_queue; 32 struct blk_trace; 33 struct request; 34 struct sg_io_hdr; 35 struct blkcg_gq; 36 struct blk_flush_queue; 37 struct kiocb; 38 struct pr_ops; 39 struct rq_qos; 40 struct blk_queue_stats; 41 struct blk_stat_callback; 42 struct blk_crypto_profile; 43 44 extern const struct device_type disk_type; 45 extern struct device_type part_type; 46 extern struct class block_class; 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 6 59 60 #define DISK_MAX_PARTS 256 61 #define DISK_NAME_LEN 32 62 63 #define PARTITION_META_INFO_VOLNAMELTH 64 64 /* 65 * Enough for the string representation of any kind of UUID plus NULL. 66 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 67 */ 68 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 69 70 struct partition_meta_info { 71 char uuid[PARTITION_META_INFO_UUIDLTH]; 72 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 73 }; 74 75 /** 76 * DOC: genhd capability flags 77 * 78 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 79 * removable media. When set, the device remains present even when media is not 80 * inserted. Shall not be set for devices which are removed entirely when the 81 * media is removed. 82 * 83 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 84 * doesn't appear in sysfs, and can't be opened from userspace or using 85 * blkdev_get*. Used for the underlying components of multipath devices. 86 * 87 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 88 * scan for partitions from add_disk, and users can't add partitions manually. 89 * 90 */ 91 enum { 92 GENHD_FL_REMOVABLE = 1 << 0, 93 GENHD_FL_HIDDEN = 1 << 1, 94 GENHD_FL_NO_PART = 1 << 2, 95 }; 96 97 enum { 98 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 99 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 100 }; 101 102 enum { 103 /* Poll even if events_poll_msecs is unset */ 104 DISK_EVENT_FLAG_POLL = 1 << 0, 105 /* Forward events to udev */ 106 DISK_EVENT_FLAG_UEVENT = 1 << 1, 107 /* Block event polling when open for exclusive write */ 108 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 109 }; 110 111 struct disk_events; 112 struct badblocks; 113 114 struct blk_integrity { 115 const struct blk_integrity_profile *profile; 116 unsigned char flags; 117 unsigned char tuple_size; 118 unsigned char interval_exp; 119 unsigned char tag_size; 120 }; 121 122 struct gendisk { 123 /* 124 * major/first_minor/minors should not be set by any new driver, the 125 * block core will take care of allocating them automatically. 126 */ 127 int major; 128 int first_minor; 129 int minors; 130 131 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 132 133 unsigned short events; /* supported events */ 134 unsigned short event_flags; /* flags related to event processing */ 135 136 struct xarray part_tbl; 137 struct block_device *part0; 138 139 const struct block_device_operations *fops; 140 struct request_queue *queue; 141 void *private_data; 142 143 int flags; 144 unsigned long state; 145 #define GD_NEED_PART_SCAN 0 146 #define GD_READ_ONLY 1 147 #define GD_DEAD 2 148 #define GD_NATIVE_CAPACITY 3 149 #define GD_ADDED 4 150 151 struct mutex open_mutex; /* open/close mutex */ 152 unsigned open_partitions; /* number of open partitions */ 153 154 struct backing_dev_info *bdi; 155 struct kobject *slave_dir; 156 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 157 struct list_head slave_bdevs; 158 #endif 159 struct timer_rand_state *random; 160 atomic_t sync_io; /* RAID */ 161 struct disk_events *ev; 162 #ifdef CONFIG_BLK_DEV_INTEGRITY 163 struct kobject integrity_kobj; 164 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 165 #if IS_ENABLED(CONFIG_CDROM) 166 struct cdrom_device_info *cdi; 167 #endif 168 int node_id; 169 struct badblocks *bb; 170 struct lockdep_map lockdep_map; 171 u64 diskseq; 172 }; 173 174 static inline bool disk_live(struct gendisk *disk) 175 { 176 return !inode_unhashed(disk->part0->bd_inode); 177 } 178 179 /* 180 * The gendisk is refcounted by the part0 block_device, and the bd_device 181 * therein is also used for device model presentation in sysfs. 182 */ 183 #define dev_to_disk(device) \ 184 (dev_to_bdev(device)->bd_disk) 185 #define disk_to_dev(disk) \ 186 (&((disk)->part0->bd_device)) 187 188 #if IS_REACHABLE(CONFIG_CDROM) 189 #define disk_to_cdi(disk) ((disk)->cdi) 190 #else 191 #define disk_to_cdi(disk) NULL 192 #endif 193 194 static inline dev_t disk_devt(struct gendisk *disk) 195 { 196 return MKDEV(disk->major, disk->first_minor); 197 } 198 199 static inline int blk_validate_block_size(unsigned long bsize) 200 { 201 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 202 return -EINVAL; 203 204 return 0; 205 } 206 207 static inline bool blk_op_is_passthrough(unsigned int op) 208 { 209 op &= REQ_OP_MASK; 210 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 211 } 212 213 /* 214 * Zoned block device models (zoned limit). 215 * 216 * Note: This needs to be ordered from the least to the most severe 217 * restrictions for the inheritance in blk_stack_limits() to work. 218 */ 219 enum blk_zoned_model { 220 BLK_ZONED_NONE = 0, /* Regular block device */ 221 BLK_ZONED_HA, /* Host-aware zoned block device */ 222 BLK_ZONED_HM, /* Host-managed zoned block device */ 223 }; 224 225 /* 226 * BLK_BOUNCE_NONE: never bounce (default) 227 * BLK_BOUNCE_HIGH: bounce all highmem pages 228 */ 229 enum blk_bounce { 230 BLK_BOUNCE_NONE, 231 BLK_BOUNCE_HIGH, 232 }; 233 234 struct queue_limits { 235 enum blk_bounce bounce; 236 unsigned long seg_boundary_mask; 237 unsigned long virt_boundary_mask; 238 239 unsigned int max_hw_sectors; 240 unsigned int max_dev_sectors; 241 unsigned int chunk_sectors; 242 unsigned int max_sectors; 243 unsigned int max_segment_size; 244 unsigned int physical_block_size; 245 unsigned int logical_block_size; 246 unsigned int alignment_offset; 247 unsigned int io_min; 248 unsigned int io_opt; 249 unsigned int max_discard_sectors; 250 unsigned int max_hw_discard_sectors; 251 unsigned int max_write_same_sectors; 252 unsigned int max_write_zeroes_sectors; 253 unsigned int max_zone_append_sectors; 254 unsigned int discard_granularity; 255 unsigned int discard_alignment; 256 unsigned int zone_write_granularity; 257 258 unsigned short max_segments; 259 unsigned short max_integrity_segments; 260 unsigned short max_discard_segments; 261 262 unsigned char misaligned; 263 unsigned char discard_misaligned; 264 unsigned char raid_partial_stripes_expensive; 265 enum blk_zoned_model zoned; 266 }; 267 268 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 269 void *data); 270 271 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 272 273 #ifdef CONFIG_BLK_DEV_ZONED 274 275 #define BLK_ALL_ZONES ((unsigned int)-1) 276 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 277 unsigned int nr_zones, report_zones_cb cb, void *data); 278 unsigned int blkdev_nr_zones(struct gendisk *disk); 279 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 280 sector_t sectors, sector_t nr_sectors, 281 gfp_t gfp_mask); 282 int blk_revalidate_disk_zones(struct gendisk *disk, 283 void (*update_driver_data)(struct gendisk *disk)); 284 285 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 286 unsigned int cmd, unsigned long arg); 287 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 288 unsigned int cmd, unsigned long arg); 289 290 #else /* CONFIG_BLK_DEV_ZONED */ 291 292 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 293 { 294 return 0; 295 } 296 297 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 298 fmode_t mode, unsigned int cmd, 299 unsigned long arg) 300 { 301 return -ENOTTY; 302 } 303 304 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 305 fmode_t mode, unsigned int cmd, 306 unsigned long arg) 307 { 308 return -ENOTTY; 309 } 310 311 #endif /* CONFIG_BLK_DEV_ZONED */ 312 313 /* 314 * Independent access ranges: struct blk_independent_access_range describes 315 * a range of contiguous sectors that can be accessed using device command 316 * execution resources that are independent from the resources used for 317 * other access ranges. This is typically found with single-LUN multi-actuator 318 * HDDs where each access range is served by a different set of heads. 319 * The set of independent ranges supported by the device is defined using 320 * struct blk_independent_access_ranges. The independent ranges must not overlap 321 * and must include all sectors within the disk capacity (no sector holes 322 * allowed). 323 * For a device with multiple ranges, requests targeting sectors in different 324 * ranges can be executed in parallel. A request can straddle an access range 325 * boundary. 326 */ 327 struct blk_independent_access_range { 328 struct kobject kobj; 329 struct request_queue *queue; 330 sector_t sector; 331 sector_t nr_sectors; 332 }; 333 334 struct blk_independent_access_ranges { 335 struct kobject kobj; 336 bool sysfs_registered; 337 unsigned int nr_ia_ranges; 338 struct blk_independent_access_range ia_range[]; 339 }; 340 341 struct request_queue { 342 struct request *last_merge; 343 struct elevator_queue *elevator; 344 345 struct percpu_ref q_usage_counter; 346 347 struct blk_queue_stats *stats; 348 struct rq_qos *rq_qos; 349 350 const struct blk_mq_ops *mq_ops; 351 352 /* sw queues */ 353 struct blk_mq_ctx __percpu *queue_ctx; 354 355 unsigned int queue_depth; 356 357 /* hw dispatch queues */ 358 struct xarray hctx_table; 359 unsigned int nr_hw_queues; 360 361 /* 362 * The queue owner gets to use this for whatever they like. 363 * ll_rw_blk doesn't touch it. 364 */ 365 void *queuedata; 366 367 /* 368 * various queue flags, see QUEUE_* below 369 */ 370 unsigned long queue_flags; 371 /* 372 * Number of contexts that have called blk_set_pm_only(). If this 373 * counter is above zero then only RQF_PM requests are processed. 374 */ 375 atomic_t pm_only; 376 377 /* 378 * ida allocated id for this queue. Used to index queues from 379 * ioctx. 380 */ 381 int id; 382 383 spinlock_t queue_lock; 384 385 struct gendisk *disk; 386 387 /* 388 * queue kobject 389 */ 390 struct kobject kobj; 391 392 /* 393 * mq queue kobject 394 */ 395 struct kobject *mq_kobj; 396 397 #ifdef CONFIG_BLK_DEV_INTEGRITY 398 struct blk_integrity integrity; 399 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 400 401 #ifdef CONFIG_PM 402 struct device *dev; 403 enum rpm_status rpm_status; 404 #endif 405 406 /* 407 * queue settings 408 */ 409 unsigned long nr_requests; /* Max # of requests */ 410 411 unsigned int dma_pad_mask; 412 unsigned int dma_alignment; 413 414 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 415 struct blk_crypto_profile *crypto_profile; 416 struct kobject *crypto_kobject; 417 #endif 418 419 unsigned int rq_timeout; 420 int poll_nsec; 421 422 struct blk_stat_callback *poll_cb; 423 struct blk_rq_stat *poll_stat; 424 425 struct timer_list timeout; 426 struct work_struct timeout_work; 427 428 atomic_t nr_active_requests_shared_tags; 429 430 struct blk_mq_tags *sched_shared_tags; 431 432 struct list_head icq_list; 433 #ifdef CONFIG_BLK_CGROUP 434 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 435 struct blkcg_gq *root_blkg; 436 struct list_head blkg_list; 437 #endif 438 439 struct queue_limits limits; 440 441 unsigned int required_elevator_features; 442 443 #ifdef CONFIG_BLK_DEV_ZONED 444 /* 445 * Zoned block device information for request dispatch control. 446 * nr_zones is the total number of zones of the device. This is always 447 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 448 * bits which indicates if a zone is conventional (bit set) or 449 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 450 * bits which indicates if a zone is write locked, that is, if a write 451 * request targeting the zone was dispatched. All three fields are 452 * initialized by the low level device driver (e.g. scsi/sd.c). 453 * Stacking drivers (device mappers) may or may not initialize 454 * these fields. 455 * 456 * Reads of this information must be protected with blk_queue_enter() / 457 * blk_queue_exit(). Modifying this information is only allowed while 458 * no requests are being processed. See also blk_mq_freeze_queue() and 459 * blk_mq_unfreeze_queue(). 460 */ 461 unsigned int nr_zones; 462 unsigned long *conv_zones_bitmap; 463 unsigned long *seq_zones_wlock; 464 unsigned int max_open_zones; 465 unsigned int max_active_zones; 466 #endif /* CONFIG_BLK_DEV_ZONED */ 467 468 int node; 469 struct mutex debugfs_mutex; 470 #ifdef CONFIG_BLK_DEV_IO_TRACE 471 struct blk_trace __rcu *blk_trace; 472 #endif 473 /* 474 * for flush operations 475 */ 476 struct blk_flush_queue *fq; 477 478 struct list_head requeue_list; 479 spinlock_t requeue_lock; 480 struct delayed_work requeue_work; 481 482 struct mutex sysfs_lock; 483 struct mutex sysfs_dir_lock; 484 485 /* 486 * for reusing dead hctx instance in case of updating 487 * nr_hw_queues 488 */ 489 struct list_head unused_hctx_list; 490 spinlock_t unused_hctx_lock; 491 492 int mq_freeze_depth; 493 494 #ifdef CONFIG_BLK_DEV_THROTTLING 495 /* Throttle data */ 496 struct throtl_data *td; 497 #endif 498 struct rcu_head rcu_head; 499 wait_queue_head_t mq_freeze_wq; 500 /* 501 * Protect concurrent access to q_usage_counter by 502 * percpu_ref_kill() and percpu_ref_reinit(). 503 */ 504 struct mutex mq_freeze_lock; 505 506 int quiesce_depth; 507 508 struct blk_mq_tag_set *tag_set; 509 struct list_head tag_set_list; 510 struct bio_set bio_split; 511 512 struct dentry *debugfs_dir; 513 514 #ifdef CONFIG_BLK_DEBUG_FS 515 struct dentry *sched_debugfs_dir; 516 struct dentry *rqos_debugfs_dir; 517 #endif 518 519 bool mq_sysfs_init_done; 520 521 #define BLK_MAX_WRITE_HINTS 5 522 u64 write_hints[BLK_MAX_WRITE_HINTS]; 523 524 /* 525 * Independent sector access ranges. This is always NULL for 526 * devices that do not have multiple independent access ranges. 527 */ 528 struct blk_independent_access_ranges *ia_ranges; 529 530 /** 531 * @srcu: Sleepable RCU. Use as lock when type of the request queue 532 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member 533 */ 534 struct srcu_struct srcu[]; 535 }; 536 537 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 538 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 539 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 540 #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */ 541 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 542 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 543 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 544 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 545 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 546 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 547 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 548 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 549 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 550 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 551 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 552 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 553 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 554 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 555 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 556 #define QUEUE_FLAG_WC 17 /* Write back caching */ 557 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 558 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 559 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 560 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 561 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 562 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 563 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 564 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 565 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 566 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 567 568 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 569 (1 << QUEUE_FLAG_SAME_COMP) | \ 570 (1 << QUEUE_FLAG_NOWAIT)) 571 572 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 573 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 574 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 575 576 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 577 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 578 #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags) 579 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 580 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 581 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 582 #define blk_queue_noxmerges(q) \ 583 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 584 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 585 #define blk_queue_stable_writes(q) \ 586 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 587 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 588 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 589 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 590 #define blk_queue_zone_resetall(q) \ 591 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 592 #define blk_queue_secure_erase(q) \ 593 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 594 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 595 #define blk_queue_pci_p2pdma(q) \ 596 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 597 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 598 #define blk_queue_rq_alloc_time(q) \ 599 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 600 #else 601 #define blk_queue_rq_alloc_time(q) false 602 #endif 603 604 #define blk_noretry_request(rq) \ 605 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 606 REQ_FAILFAST_DRIVER)) 607 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 608 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 609 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 610 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 611 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 612 613 extern void blk_set_pm_only(struct request_queue *q); 614 extern void blk_clear_pm_only(struct request_queue *q); 615 616 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 617 618 #define dma_map_bvec(dev, bv, dir, attrs) \ 619 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 620 (dir), (attrs)) 621 622 static inline bool queue_is_mq(struct request_queue *q) 623 { 624 return q->mq_ops; 625 } 626 627 #ifdef CONFIG_PM 628 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 629 { 630 return q->rpm_status; 631 } 632 #else 633 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 634 { 635 return RPM_ACTIVE; 636 } 637 #endif 638 639 static inline enum blk_zoned_model 640 blk_queue_zoned_model(struct request_queue *q) 641 { 642 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 643 return q->limits.zoned; 644 return BLK_ZONED_NONE; 645 } 646 647 static inline bool blk_queue_is_zoned(struct request_queue *q) 648 { 649 switch (blk_queue_zoned_model(q)) { 650 case BLK_ZONED_HA: 651 case BLK_ZONED_HM: 652 return true; 653 default: 654 return false; 655 } 656 } 657 658 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 659 { 660 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 661 } 662 663 #ifdef CONFIG_BLK_DEV_ZONED 664 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 665 { 666 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 667 } 668 669 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 670 sector_t sector) 671 { 672 if (!blk_queue_is_zoned(q)) 673 return 0; 674 return sector >> ilog2(q->limits.chunk_sectors); 675 } 676 677 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 678 sector_t sector) 679 { 680 if (!blk_queue_is_zoned(q)) 681 return false; 682 if (!q->conv_zones_bitmap) 683 return true; 684 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 685 } 686 687 static inline void blk_queue_max_open_zones(struct request_queue *q, 688 unsigned int max_open_zones) 689 { 690 q->max_open_zones = max_open_zones; 691 } 692 693 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 694 { 695 return q->max_open_zones; 696 } 697 698 static inline void blk_queue_max_active_zones(struct request_queue *q, 699 unsigned int max_active_zones) 700 { 701 q->max_active_zones = max_active_zones; 702 } 703 704 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 705 { 706 return q->max_active_zones; 707 } 708 #else /* CONFIG_BLK_DEV_ZONED */ 709 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 710 { 711 return 0; 712 } 713 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 714 sector_t sector) 715 { 716 return false; 717 } 718 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 719 sector_t sector) 720 { 721 return 0; 722 } 723 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 724 { 725 return 0; 726 } 727 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 728 { 729 return 0; 730 } 731 #endif /* CONFIG_BLK_DEV_ZONED */ 732 733 static inline unsigned int blk_queue_depth(struct request_queue *q) 734 { 735 if (q->queue_depth) 736 return q->queue_depth; 737 738 return q->nr_requests; 739 } 740 741 /* 742 * default timeout for SG_IO if none specified 743 */ 744 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 745 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 746 747 /* This should not be used directly - use rq_for_each_segment */ 748 #define for_each_bio(_bio) \ 749 for (; _bio; _bio = _bio->bi_next) 750 751 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 752 const struct attribute_group **groups); 753 static inline int __must_check add_disk(struct gendisk *disk) 754 { 755 return device_add_disk(NULL, disk, NULL); 756 } 757 void del_gendisk(struct gendisk *gp); 758 void invalidate_disk(struct gendisk *disk); 759 void set_disk_ro(struct gendisk *disk, bool read_only); 760 void disk_uevent(struct gendisk *disk, enum kobject_action action); 761 762 static inline int get_disk_ro(struct gendisk *disk) 763 { 764 return disk->part0->bd_read_only || 765 test_bit(GD_READ_ONLY, &disk->state); 766 } 767 768 static inline int bdev_read_only(struct block_device *bdev) 769 { 770 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 771 } 772 773 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 774 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 775 776 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 777 void rand_initialize_disk(struct gendisk *disk); 778 779 static inline sector_t get_start_sect(struct block_device *bdev) 780 { 781 return bdev->bd_start_sect; 782 } 783 784 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 785 { 786 return bdev->bd_nr_sectors; 787 } 788 789 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 790 { 791 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 792 } 793 794 static inline sector_t get_capacity(struct gendisk *disk) 795 { 796 return bdev_nr_sectors(disk->part0); 797 } 798 799 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 800 { 801 return bdev_nr_sectors(sb->s_bdev) >> 802 (sb->s_blocksize_bits - SECTOR_SHIFT); 803 } 804 805 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 806 807 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id, 808 struct lock_class_key *lkclass); 809 void put_disk(struct gendisk *disk); 810 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 811 812 /** 813 * blk_alloc_disk - allocate a gendisk structure 814 * @node_id: numa node to allocate on 815 * 816 * Allocate and pre-initialize a gendisk structure for use with BIO based 817 * drivers. 818 * 819 * Context: can sleep 820 */ 821 #define blk_alloc_disk(node_id) \ 822 ({ \ 823 static struct lock_class_key __key; \ 824 \ 825 __blk_alloc_disk(node_id, &__key); \ 826 }) 827 void blk_cleanup_disk(struct gendisk *disk); 828 829 int __register_blkdev(unsigned int major, const char *name, 830 void (*probe)(dev_t devt)); 831 #define register_blkdev(major, name) \ 832 __register_blkdev(major, name, NULL) 833 void unregister_blkdev(unsigned int major, const char *name); 834 835 bool bdev_check_media_change(struct block_device *bdev); 836 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 837 void set_capacity(struct gendisk *disk, sector_t size); 838 839 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 840 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 841 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 842 int bd_register_pending_holders(struct gendisk *disk); 843 #else 844 static inline int bd_link_disk_holder(struct block_device *bdev, 845 struct gendisk *disk) 846 { 847 return 0; 848 } 849 static inline void bd_unlink_disk_holder(struct block_device *bdev, 850 struct gendisk *disk) 851 { 852 } 853 static inline int bd_register_pending_holders(struct gendisk *disk) 854 { 855 return 0; 856 } 857 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 858 859 dev_t part_devt(struct gendisk *disk, u8 partno); 860 void inc_diskseq(struct gendisk *disk); 861 dev_t blk_lookup_devt(const char *name, int partno); 862 void blk_request_module(dev_t devt); 863 864 extern int blk_register_queue(struct gendisk *disk); 865 extern void blk_unregister_queue(struct gendisk *disk); 866 void submit_bio_noacct(struct bio *bio); 867 868 extern int blk_lld_busy(struct request_queue *q); 869 extern void blk_queue_split(struct bio **); 870 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 871 extern void blk_queue_exit(struct request_queue *q); 872 extern void blk_sync_queue(struct request_queue *q); 873 874 /* Helper to convert REQ_OP_XXX to its string format XXX */ 875 extern const char *blk_op_str(unsigned int op); 876 877 int blk_status_to_errno(blk_status_t status); 878 blk_status_t errno_to_blk_status(int errno); 879 880 /* only poll the hardware once, don't continue until a completion was found */ 881 #define BLK_POLL_ONESHOT (1 << 0) 882 /* do not sleep to wait for the expected completion time */ 883 #define BLK_POLL_NOSLEEP (1 << 1) 884 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 885 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 886 unsigned int flags); 887 888 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 889 { 890 return bdev->bd_queue; /* this is never NULL */ 891 } 892 893 #ifdef CONFIG_BLK_DEV_ZONED 894 895 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 896 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 897 898 static inline unsigned int bio_zone_no(struct bio *bio) 899 { 900 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 901 bio->bi_iter.bi_sector); 902 } 903 904 static inline unsigned int bio_zone_is_seq(struct bio *bio) 905 { 906 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 907 bio->bi_iter.bi_sector); 908 } 909 #endif /* CONFIG_BLK_DEV_ZONED */ 910 911 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 912 int op) 913 { 914 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 915 return min(q->limits.max_discard_sectors, 916 UINT_MAX >> SECTOR_SHIFT); 917 918 if (unlikely(op == REQ_OP_WRITE_SAME)) 919 return q->limits.max_write_same_sectors; 920 921 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 922 return q->limits.max_write_zeroes_sectors; 923 924 return q->limits.max_sectors; 925 } 926 927 /* 928 * Return maximum size of a request at given offset. Only valid for 929 * file system requests. 930 */ 931 static inline unsigned int blk_max_size_offset(struct request_queue *q, 932 sector_t offset, 933 unsigned int chunk_sectors) 934 { 935 if (!chunk_sectors) { 936 if (q->limits.chunk_sectors) 937 chunk_sectors = q->limits.chunk_sectors; 938 else 939 return q->limits.max_sectors; 940 } 941 942 if (likely(is_power_of_2(chunk_sectors))) 943 chunk_sectors -= offset & (chunk_sectors - 1); 944 else 945 chunk_sectors -= sector_div(offset, chunk_sectors); 946 947 return min(q->limits.max_sectors, chunk_sectors); 948 } 949 950 /* 951 * Access functions for manipulating queue properties 952 */ 953 extern void blk_cleanup_queue(struct request_queue *); 954 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 955 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 956 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 957 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 958 extern void blk_queue_max_discard_segments(struct request_queue *, 959 unsigned short); 960 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 961 extern void blk_queue_max_discard_sectors(struct request_queue *q, 962 unsigned int max_discard_sectors); 963 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 964 unsigned int max_write_same_sectors); 965 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 966 unsigned int max_write_same_sectors); 967 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 968 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 969 unsigned int max_zone_append_sectors); 970 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 971 void blk_queue_zone_write_granularity(struct request_queue *q, 972 unsigned int size); 973 extern void blk_queue_alignment_offset(struct request_queue *q, 974 unsigned int alignment); 975 void disk_update_readahead(struct gendisk *disk); 976 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 977 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 978 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 979 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 980 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 981 extern void blk_set_default_limits(struct queue_limits *lim); 982 extern void blk_set_stacking_limits(struct queue_limits *lim); 983 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 984 sector_t offset); 985 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 986 sector_t offset); 987 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 988 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 989 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 990 extern void blk_queue_dma_alignment(struct request_queue *, int); 991 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 992 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 993 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 994 995 struct blk_independent_access_ranges * 996 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 997 void disk_set_independent_access_ranges(struct gendisk *disk, 998 struct blk_independent_access_ranges *iars); 999 1000 /* 1001 * Elevator features for blk_queue_required_elevator_features: 1002 */ 1003 /* Supports zoned block devices sequential write constraint */ 1004 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 1005 /* Supports scheduling on multiple hardware queues */ 1006 #define ELEVATOR_F_MQ_AWARE (1U << 1) 1007 1008 extern void blk_queue_required_elevator_features(struct request_queue *q, 1009 unsigned int features); 1010 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1011 struct device *dev); 1012 1013 bool __must_check blk_get_queue(struct request_queue *); 1014 extern void blk_put_queue(struct request_queue *); 1015 1016 void blk_mark_disk_dead(struct gendisk *disk); 1017 1018 #ifdef CONFIG_BLOCK 1019 /* 1020 * blk_plug permits building a queue of related requests by holding the I/O 1021 * fragments for a short period. This allows merging of sequential requests 1022 * into single larger request. As the requests are moved from a per-task list to 1023 * the device's request_queue in a batch, this results in improved scalability 1024 * as the lock contention for request_queue lock is reduced. 1025 * 1026 * It is ok not to disable preemption when adding the request to the plug list 1027 * or when attempting a merge. For details, please see schedule() where 1028 * blk_flush_plug() is called. 1029 */ 1030 struct blk_plug { 1031 struct request *mq_list; /* blk-mq requests */ 1032 1033 /* if ios_left is > 1, we can batch tag/rq allocations */ 1034 struct request *cached_rq; 1035 unsigned short nr_ios; 1036 1037 unsigned short rq_count; 1038 1039 bool multiple_queues; 1040 bool has_elevator; 1041 bool nowait; 1042 1043 struct list_head cb_list; /* md requires an unplug callback */ 1044 }; 1045 1046 struct blk_plug_cb; 1047 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1048 struct blk_plug_cb { 1049 struct list_head list; 1050 blk_plug_cb_fn callback; 1051 void *data; 1052 }; 1053 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1054 void *data, int size); 1055 extern void blk_start_plug(struct blk_plug *); 1056 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1057 extern void blk_finish_plug(struct blk_plug *); 1058 1059 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1060 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1061 { 1062 if (plug) 1063 __blk_flush_plug(plug, async); 1064 } 1065 1066 int blkdev_issue_flush(struct block_device *bdev); 1067 long nr_blockdev_pages(void); 1068 #else /* CONFIG_BLOCK */ 1069 struct blk_plug { 1070 }; 1071 1072 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1073 unsigned short nr_ios) 1074 { 1075 } 1076 1077 static inline void blk_start_plug(struct blk_plug *plug) 1078 { 1079 } 1080 1081 static inline void blk_finish_plug(struct blk_plug *plug) 1082 { 1083 } 1084 1085 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1086 { 1087 } 1088 1089 static inline int blkdev_issue_flush(struct block_device *bdev) 1090 { 1091 return 0; 1092 } 1093 1094 static inline long nr_blockdev_pages(void) 1095 { 1096 return 0; 1097 } 1098 #endif /* CONFIG_BLOCK */ 1099 1100 extern void blk_io_schedule(void); 1101 1102 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1103 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1104 1105 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1106 1107 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1108 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1109 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1110 sector_t nr_sects, gfp_t gfp_mask, int flags, 1111 struct bio **biop); 1112 1113 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1114 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1115 1116 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1117 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1118 unsigned flags); 1119 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1120 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1121 1122 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1123 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1124 { 1125 return blkdev_issue_discard(sb->s_bdev, 1126 block << (sb->s_blocksize_bits - 1127 SECTOR_SHIFT), 1128 nr_blocks << (sb->s_blocksize_bits - 1129 SECTOR_SHIFT), 1130 gfp_mask, flags); 1131 } 1132 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1133 sector_t nr_blocks, gfp_t gfp_mask) 1134 { 1135 return blkdev_issue_zeroout(sb->s_bdev, 1136 block << (sb->s_blocksize_bits - 1137 SECTOR_SHIFT), 1138 nr_blocks << (sb->s_blocksize_bits - 1139 SECTOR_SHIFT), 1140 gfp_mask, 0); 1141 } 1142 1143 static inline bool bdev_is_partition(struct block_device *bdev) 1144 { 1145 return bdev->bd_partno; 1146 } 1147 1148 enum blk_default_limits { 1149 BLK_MAX_SEGMENTS = 128, 1150 BLK_SAFE_MAX_SECTORS = 255, 1151 BLK_DEF_MAX_SECTORS = 2560, 1152 BLK_MAX_SEGMENT_SIZE = 65536, 1153 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1154 }; 1155 1156 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1157 { 1158 return q->limits.seg_boundary_mask; 1159 } 1160 1161 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1162 { 1163 return q->limits.virt_boundary_mask; 1164 } 1165 1166 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1167 { 1168 return q->limits.max_sectors; 1169 } 1170 1171 static inline unsigned int queue_max_bytes(struct request_queue *q) 1172 { 1173 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1174 } 1175 1176 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1177 { 1178 return q->limits.max_hw_sectors; 1179 } 1180 1181 static inline unsigned short queue_max_segments(const struct request_queue *q) 1182 { 1183 return q->limits.max_segments; 1184 } 1185 1186 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1187 { 1188 return q->limits.max_discard_segments; 1189 } 1190 1191 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1192 { 1193 return q->limits.max_segment_size; 1194 } 1195 1196 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1197 { 1198 1199 const struct queue_limits *l = &q->limits; 1200 1201 return min(l->max_zone_append_sectors, l->max_sectors); 1202 } 1203 1204 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1205 { 1206 int retval = 512; 1207 1208 if (q && q->limits.logical_block_size) 1209 retval = q->limits.logical_block_size; 1210 1211 return retval; 1212 } 1213 1214 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1215 { 1216 return queue_logical_block_size(bdev_get_queue(bdev)); 1217 } 1218 1219 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1220 { 1221 return q->limits.physical_block_size; 1222 } 1223 1224 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1225 { 1226 return queue_physical_block_size(bdev_get_queue(bdev)); 1227 } 1228 1229 static inline unsigned int queue_io_min(const struct request_queue *q) 1230 { 1231 return q->limits.io_min; 1232 } 1233 1234 static inline int bdev_io_min(struct block_device *bdev) 1235 { 1236 return queue_io_min(bdev_get_queue(bdev)); 1237 } 1238 1239 static inline unsigned int queue_io_opt(const struct request_queue *q) 1240 { 1241 return q->limits.io_opt; 1242 } 1243 1244 static inline int bdev_io_opt(struct block_device *bdev) 1245 { 1246 return queue_io_opt(bdev_get_queue(bdev)); 1247 } 1248 1249 static inline unsigned int 1250 queue_zone_write_granularity(const struct request_queue *q) 1251 { 1252 return q->limits.zone_write_granularity; 1253 } 1254 1255 static inline unsigned int 1256 bdev_zone_write_granularity(struct block_device *bdev) 1257 { 1258 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1259 } 1260 1261 static inline int queue_alignment_offset(const struct request_queue *q) 1262 { 1263 if (q->limits.misaligned) 1264 return -1; 1265 1266 return q->limits.alignment_offset; 1267 } 1268 1269 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1270 { 1271 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1272 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1273 << SECTOR_SHIFT; 1274 1275 return (granularity + lim->alignment_offset - alignment) % granularity; 1276 } 1277 1278 static inline int bdev_alignment_offset(struct block_device *bdev) 1279 { 1280 struct request_queue *q = bdev_get_queue(bdev); 1281 1282 if (q->limits.misaligned) 1283 return -1; 1284 if (bdev_is_partition(bdev)) 1285 return queue_limit_alignment_offset(&q->limits, 1286 bdev->bd_start_sect); 1287 return q->limits.alignment_offset; 1288 } 1289 1290 static inline int queue_discard_alignment(const struct request_queue *q) 1291 { 1292 if (q->limits.discard_misaligned) 1293 return -1; 1294 1295 return q->limits.discard_alignment; 1296 } 1297 1298 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1299 { 1300 unsigned int alignment, granularity, offset; 1301 1302 if (!lim->max_discard_sectors) 1303 return 0; 1304 1305 /* Why are these in bytes, not sectors? */ 1306 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1307 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1308 if (!granularity) 1309 return 0; 1310 1311 /* Offset of the partition start in 'granularity' sectors */ 1312 offset = sector_div(sector, granularity); 1313 1314 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1315 offset = (granularity + alignment - offset) % granularity; 1316 1317 /* Turn it back into bytes, gaah */ 1318 return offset << SECTOR_SHIFT; 1319 } 1320 1321 static inline int bdev_discard_alignment(struct block_device *bdev) 1322 { 1323 struct request_queue *q = bdev_get_queue(bdev); 1324 1325 if (bdev_is_partition(bdev)) 1326 return queue_limit_discard_alignment(&q->limits, 1327 bdev->bd_start_sect); 1328 return q->limits.discard_alignment; 1329 } 1330 1331 static inline unsigned int bdev_write_same(struct block_device *bdev) 1332 { 1333 struct request_queue *q = bdev_get_queue(bdev); 1334 1335 if (q) 1336 return q->limits.max_write_same_sectors; 1337 1338 return 0; 1339 } 1340 1341 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1342 { 1343 struct request_queue *q = bdev_get_queue(bdev); 1344 1345 if (q) 1346 return q->limits.max_write_zeroes_sectors; 1347 1348 return 0; 1349 } 1350 1351 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1352 { 1353 struct request_queue *q = bdev_get_queue(bdev); 1354 1355 if (q) 1356 return blk_queue_zoned_model(q); 1357 1358 return BLK_ZONED_NONE; 1359 } 1360 1361 static inline bool bdev_is_zoned(struct block_device *bdev) 1362 { 1363 struct request_queue *q = bdev_get_queue(bdev); 1364 1365 if (q) 1366 return blk_queue_is_zoned(q); 1367 1368 return false; 1369 } 1370 1371 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1372 { 1373 struct request_queue *q = bdev_get_queue(bdev); 1374 1375 if (q) 1376 return blk_queue_zone_sectors(q); 1377 return 0; 1378 } 1379 1380 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1381 { 1382 struct request_queue *q = bdev_get_queue(bdev); 1383 1384 if (q) 1385 return queue_max_open_zones(q); 1386 return 0; 1387 } 1388 1389 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1390 { 1391 struct request_queue *q = bdev_get_queue(bdev); 1392 1393 if (q) 1394 return queue_max_active_zones(q); 1395 return 0; 1396 } 1397 1398 static inline int queue_dma_alignment(const struct request_queue *q) 1399 { 1400 return q ? q->dma_alignment : 511; 1401 } 1402 1403 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1404 unsigned int len) 1405 { 1406 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1407 return !(addr & alignment) && !(len & alignment); 1408 } 1409 1410 /* assumes size > 256 */ 1411 static inline unsigned int blksize_bits(unsigned int size) 1412 { 1413 unsigned int bits = 8; 1414 do { 1415 bits++; 1416 size >>= 1; 1417 } while (size > 256); 1418 return bits; 1419 } 1420 1421 static inline unsigned int block_size(struct block_device *bdev) 1422 { 1423 return 1 << bdev->bd_inode->i_blkbits; 1424 } 1425 1426 int kblockd_schedule_work(struct work_struct *work); 1427 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1428 1429 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1430 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1431 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1432 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1433 1434 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1435 1436 bool blk_crypto_register(struct blk_crypto_profile *profile, 1437 struct request_queue *q); 1438 1439 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1440 1441 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1442 struct request_queue *q) 1443 { 1444 return true; 1445 } 1446 1447 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1448 1449 enum blk_unique_id { 1450 /* these match the Designator Types specified in SPC */ 1451 BLK_UID_T10 = 1, 1452 BLK_UID_EUI64 = 2, 1453 BLK_UID_NAA = 3, 1454 }; 1455 1456 #define NFL4_UFLG_MASK 0x0000003F 1457 1458 struct block_device_operations { 1459 void (*submit_bio)(struct bio *bio); 1460 int (*open) (struct block_device *, fmode_t); 1461 void (*release) (struct gendisk *, fmode_t); 1462 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1463 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1464 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1465 unsigned int (*check_events) (struct gendisk *disk, 1466 unsigned int clearing); 1467 void (*unlock_native_capacity) (struct gendisk *); 1468 int (*getgeo)(struct block_device *, struct hd_geometry *); 1469 int (*set_read_only)(struct block_device *bdev, bool ro); 1470 void (*free_disk)(struct gendisk *disk); 1471 /* this callback is with swap_lock and sometimes page table lock held */ 1472 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1473 int (*report_zones)(struct gendisk *, sector_t sector, 1474 unsigned int nr_zones, report_zones_cb cb, void *data); 1475 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1476 /* returns the length of the identifier or a negative errno: */ 1477 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1478 enum blk_unique_id id_type); 1479 struct module *owner; 1480 const struct pr_ops *pr_ops; 1481 1482 /* 1483 * Special callback for probing GPT entry at a given sector. 1484 * Needed by Android devices, used by GPT scanner and MMC blk 1485 * driver. 1486 */ 1487 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1488 }; 1489 1490 #ifdef CONFIG_COMPAT 1491 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1492 unsigned int, unsigned long); 1493 #else 1494 #define blkdev_compat_ptr_ioctl NULL 1495 #endif 1496 1497 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1498 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1499 struct writeback_control *); 1500 1501 static inline void blk_wake_io_task(struct task_struct *waiter) 1502 { 1503 /* 1504 * If we're polling, the task itself is doing the completions. For 1505 * that case, we don't need to signal a wakeup, it's enough to just 1506 * mark us as RUNNING. 1507 */ 1508 if (waiter == current) 1509 __set_current_state(TASK_RUNNING); 1510 else 1511 wake_up_process(waiter); 1512 } 1513 1514 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1515 unsigned int op); 1516 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1517 unsigned long start_time); 1518 1519 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time); 1520 unsigned long bio_start_io_acct(struct bio *bio); 1521 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1522 struct block_device *orig_bdev); 1523 1524 /** 1525 * bio_end_io_acct - end I/O accounting for bio based drivers 1526 * @bio: bio to end account for 1527 * @start_time: start time returned by bio_start_io_acct() 1528 */ 1529 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1530 { 1531 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1532 } 1533 1534 int bdev_read_only(struct block_device *bdev); 1535 int set_blocksize(struct block_device *bdev, int size); 1536 1537 const char *bdevname(struct block_device *bdev, char *buffer); 1538 int lookup_bdev(const char *pathname, dev_t *dev); 1539 1540 void blkdev_show(struct seq_file *seqf, off_t offset); 1541 1542 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1543 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1544 #ifdef CONFIG_BLOCK 1545 #define BLKDEV_MAJOR_MAX 512 1546 #else 1547 #define BLKDEV_MAJOR_MAX 0 1548 #endif 1549 1550 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1551 void *holder); 1552 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1553 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1554 void bd_abort_claiming(struct block_device *bdev, void *holder); 1555 void blkdev_put(struct block_device *bdev, fmode_t mode); 1556 1557 /* just for blk-cgroup, don't use elsewhere */ 1558 struct block_device *blkdev_get_no_open(dev_t dev); 1559 void blkdev_put_no_open(struct block_device *bdev); 1560 1561 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1562 void bdev_add(struct block_device *bdev, dev_t dev); 1563 struct block_device *I_BDEV(struct inode *inode); 1564 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1565 loff_t lend); 1566 1567 #ifdef CONFIG_BLOCK 1568 void invalidate_bdev(struct block_device *bdev); 1569 int sync_blockdev(struct block_device *bdev); 1570 int sync_blockdev_nowait(struct block_device *bdev); 1571 void sync_bdevs(bool wait); 1572 void printk_all_partitions(void); 1573 #else 1574 static inline void invalidate_bdev(struct block_device *bdev) 1575 { 1576 } 1577 static inline int sync_blockdev(struct block_device *bdev) 1578 { 1579 return 0; 1580 } 1581 static inline int sync_blockdev_nowait(struct block_device *bdev) 1582 { 1583 return 0; 1584 } 1585 static inline void sync_bdevs(bool wait) 1586 { 1587 } 1588 static inline void printk_all_partitions(void) 1589 { 1590 } 1591 #endif /* CONFIG_BLOCK */ 1592 1593 int fsync_bdev(struct block_device *bdev); 1594 1595 int freeze_bdev(struct block_device *bdev); 1596 int thaw_bdev(struct block_device *bdev); 1597 1598 struct io_comp_batch { 1599 struct request *req_list; 1600 bool need_ts; 1601 void (*complete)(struct io_comp_batch *); 1602 }; 1603 1604 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1605 1606 #endif /* _LINUX_BLKDEV_H */ 1607