xref: /linux-6.15/include/linux/blkdev.h (revision c0c74acb)
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3 
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 
7 #ifdef CONFIG_BLOCK
8 
9 #include <linux/major.h>
10 #include <linux/genhd.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/timer.h>
14 #include <linux/workqueue.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev-defs.h>
17 #include <linux/wait.h>
18 #include <linux/mempool.h>
19 #include <linux/pfn.h>
20 #include <linux/bio.h>
21 #include <linux/stringify.h>
22 #include <linux/gfp.h>
23 #include <linux/bsg.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/scatterlist.h>
28 #include <linux/blkzoned.h>
29 
30 struct module;
31 struct scsi_ioctl_command;
32 
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_wb;
43 
44 #define BLKDEV_MIN_RQ	4
45 #define BLKDEV_MAX_RQ	128	/* Default maximum */
46 
47 /*
48  * Maximum number of blkcg policies allowed to be registered concurrently.
49  * Defined here to simplify include dependency.
50  */
51 #define BLKCG_MAX_POLS		2
52 
53 typedef void (rq_end_io_fn)(struct request *, int);
54 
55 #define BLK_RL_SYNCFULL		(1U << 0)
56 #define BLK_RL_ASYNCFULL	(1U << 1)
57 
58 struct request_list {
59 	struct request_queue	*q;	/* the queue this rl belongs to */
60 #ifdef CONFIG_BLK_CGROUP
61 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
62 #endif
63 	/*
64 	 * count[], starved[], and wait[] are indexed by
65 	 * BLK_RW_SYNC/BLK_RW_ASYNC
66 	 */
67 	int			count[2];
68 	int			starved[2];
69 	mempool_t		*rq_pool;
70 	wait_queue_head_t	wait[2];
71 	unsigned int		flags;
72 };
73 
74 /*
75  * request flags */
76 typedef __u32 __bitwise req_flags_t;
77 
78 /* elevator knows about this request */
79 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
80 /* drive already may have started this one */
81 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
82 /* uses tagged queueing */
83 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
84 /* may not be passed by ioscheduler */
85 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
86 /* request for flush sequence */
87 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
88 /* merge of different types, fail separately */
89 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
90 /* track inflight for MQ */
91 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
92 /* don't call prep for this one */
93 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
94 /* set for "ide_preempt" requests and also for requests for which the SCSI
95    "quiesce" state must be ignored. */
96 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
97 /* contains copies of user pages */
98 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
99 /* vaguely specified driver internal error.  Ignored by the block layer */
100 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
101 /* don't warn about errors */
102 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
103 /* elevator private data attached */
104 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
105 /* account I/O stat */
106 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
107 /* request came from our alloc pool */
108 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
109 /* runtime pm request */
110 #define RQF_PM			((__force req_flags_t)(1 << 15))
111 /* on IO scheduler merge hash */
112 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
113 /* IO stats tracking on */
114 #define RQF_STATS		((__force req_flags_t)(1 << 17))
115 /* Look at ->special_vec for the actual data payload instead of the
116    bio chain. */
117 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
118 
119 /* flags that prevent us from merging requests: */
120 #define RQF_NOMERGE_FLAGS \
121 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
122 
123 /*
124  * Try to put the fields that are referenced together in the same cacheline.
125  *
126  * If you modify this structure, make sure to update blk_rq_init() and
127  * especially blk_mq_rq_ctx_init() to take care of the added fields.
128  */
129 struct request {
130 	struct list_head queuelist;
131 	union {
132 		struct call_single_data csd;
133 		u64 fifo_time;
134 	};
135 
136 	struct request_queue *q;
137 	struct blk_mq_ctx *mq_ctx;
138 
139 	int cpu;
140 	unsigned int cmd_flags;		/* op and common flags */
141 	req_flags_t rq_flags;
142 
143 	int internal_tag;
144 
145 	unsigned long atomic_flags;
146 
147 	/* the following two fields are internal, NEVER access directly */
148 	unsigned int __data_len;	/* total data len */
149 	int tag;
150 	sector_t __sector;		/* sector cursor */
151 
152 	struct bio *bio;
153 	struct bio *biotail;
154 
155 	/*
156 	 * The hash is used inside the scheduler, and killed once the
157 	 * request reaches the dispatch list. The ipi_list is only used
158 	 * to queue the request for softirq completion, which is long
159 	 * after the request has been unhashed (and even removed from
160 	 * the dispatch list).
161 	 */
162 	union {
163 		struct hlist_node hash;	/* merge hash */
164 		struct list_head ipi_list;
165 	};
166 
167 	/*
168 	 * The rb_node is only used inside the io scheduler, requests
169 	 * are pruned when moved to the dispatch queue. So let the
170 	 * completion_data share space with the rb_node.
171 	 */
172 	union {
173 		struct rb_node rb_node;	/* sort/lookup */
174 		struct bio_vec special_vec;
175 		void *completion_data;
176 	};
177 
178 	/*
179 	 * Three pointers are available for the IO schedulers, if they need
180 	 * more they have to dynamically allocate it.  Flush requests are
181 	 * never put on the IO scheduler. So let the flush fields share
182 	 * space with the elevator data.
183 	 */
184 	union {
185 		struct {
186 			struct io_cq		*icq;
187 			void			*priv[2];
188 		} elv;
189 
190 		struct {
191 			unsigned int		seq;
192 			struct list_head	list;
193 			rq_end_io_fn		*saved_end_io;
194 		} flush;
195 	};
196 
197 	struct gendisk *rq_disk;
198 	struct hd_struct *part;
199 	unsigned long start_time;
200 	struct blk_issue_stat issue_stat;
201 #ifdef CONFIG_BLK_CGROUP
202 	struct request_list *rl;		/* rl this rq is alloced from */
203 	unsigned long long start_time_ns;
204 	unsigned long long io_start_time_ns;    /* when passed to hardware */
205 #endif
206 	/* Number of scatter-gather DMA addr+len pairs after
207 	 * physical address coalescing is performed.
208 	 */
209 	unsigned short nr_phys_segments;
210 #if defined(CONFIG_BLK_DEV_INTEGRITY)
211 	unsigned short nr_integrity_segments;
212 #endif
213 
214 	unsigned short ioprio;
215 
216 	void *special;		/* opaque pointer available for LLD use */
217 
218 	int errors;
219 
220 	unsigned int extra_len;	/* length of alignment and padding */
221 
222 	unsigned long deadline;
223 	struct list_head timeout_list;
224 	unsigned int timeout;
225 	int retries;
226 
227 	/*
228 	 * completion callback.
229 	 */
230 	rq_end_io_fn *end_io;
231 	void *end_io_data;
232 
233 	/* for bidi */
234 	struct request *next_rq;
235 };
236 
237 static inline bool blk_rq_is_scsi(struct request *rq)
238 {
239 	return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
240 }
241 
242 static inline bool blk_rq_is_private(struct request *rq)
243 {
244 	return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
245 }
246 
247 static inline bool blk_rq_is_passthrough(struct request *rq)
248 {
249 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
250 }
251 
252 static inline unsigned short req_get_ioprio(struct request *req)
253 {
254 	return req->ioprio;
255 }
256 
257 #include <linux/elevator.h>
258 
259 struct blk_queue_ctx;
260 
261 typedef void (request_fn_proc) (struct request_queue *q);
262 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
263 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
264 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
265 
266 struct bio_vec;
267 typedef void (softirq_done_fn)(struct request *);
268 typedef int (dma_drain_needed_fn)(struct request *);
269 typedef int (lld_busy_fn) (struct request_queue *q);
270 typedef int (bsg_job_fn) (struct bsg_job *);
271 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
272 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
273 
274 enum blk_eh_timer_return {
275 	BLK_EH_NOT_HANDLED,
276 	BLK_EH_HANDLED,
277 	BLK_EH_RESET_TIMER,
278 };
279 
280 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
281 
282 enum blk_queue_state {
283 	Queue_down,
284 	Queue_up,
285 };
286 
287 struct blk_queue_tag {
288 	struct request **tag_index;	/* map of busy tags */
289 	unsigned long *tag_map;		/* bit map of free/busy tags */
290 	int max_depth;			/* what we will send to device */
291 	int real_max_depth;		/* what the array can hold */
292 	atomic_t refcnt;		/* map can be shared */
293 	int alloc_policy;		/* tag allocation policy */
294 	int next_tag;			/* next tag */
295 };
296 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
297 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
298 
299 #define BLK_SCSI_MAX_CMDS	(256)
300 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
301 
302 /*
303  * Zoned block device models (zoned limit).
304  */
305 enum blk_zoned_model {
306 	BLK_ZONED_NONE,	/* Regular block device */
307 	BLK_ZONED_HA,	/* Host-aware zoned block device */
308 	BLK_ZONED_HM,	/* Host-managed zoned block device */
309 };
310 
311 struct queue_limits {
312 	unsigned long		bounce_pfn;
313 	unsigned long		seg_boundary_mask;
314 	unsigned long		virt_boundary_mask;
315 
316 	unsigned int		max_hw_sectors;
317 	unsigned int		max_dev_sectors;
318 	unsigned int		chunk_sectors;
319 	unsigned int		max_sectors;
320 	unsigned int		max_segment_size;
321 	unsigned int		physical_block_size;
322 	unsigned int		alignment_offset;
323 	unsigned int		io_min;
324 	unsigned int		io_opt;
325 	unsigned int		max_discard_sectors;
326 	unsigned int		max_hw_discard_sectors;
327 	unsigned int		max_write_same_sectors;
328 	unsigned int		max_write_zeroes_sectors;
329 	unsigned int		discard_granularity;
330 	unsigned int		discard_alignment;
331 
332 	unsigned short		logical_block_size;
333 	unsigned short		max_segments;
334 	unsigned short		max_integrity_segments;
335 	unsigned short		max_discard_segments;
336 
337 	unsigned char		misaligned;
338 	unsigned char		discard_misaligned;
339 	unsigned char		cluster;
340 	unsigned char		discard_zeroes_data;
341 	unsigned char		raid_partial_stripes_expensive;
342 	enum blk_zoned_model	zoned;
343 };
344 
345 #ifdef CONFIG_BLK_DEV_ZONED
346 
347 struct blk_zone_report_hdr {
348 	unsigned int	nr_zones;
349 	u8		padding[60];
350 };
351 
352 extern int blkdev_report_zones(struct block_device *bdev,
353 			       sector_t sector, struct blk_zone *zones,
354 			       unsigned int *nr_zones, gfp_t gfp_mask);
355 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
356 			      sector_t nr_sectors, gfp_t gfp_mask);
357 
358 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
359 				     unsigned int cmd, unsigned long arg);
360 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
361 				    unsigned int cmd, unsigned long arg);
362 
363 #else /* CONFIG_BLK_DEV_ZONED */
364 
365 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
366 					    fmode_t mode, unsigned int cmd,
367 					    unsigned long arg)
368 {
369 	return -ENOTTY;
370 }
371 
372 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
373 					   fmode_t mode, unsigned int cmd,
374 					   unsigned long arg)
375 {
376 	return -ENOTTY;
377 }
378 
379 #endif /* CONFIG_BLK_DEV_ZONED */
380 
381 struct request_queue {
382 	/*
383 	 * Together with queue_head for cacheline sharing
384 	 */
385 	struct list_head	queue_head;
386 	struct request		*last_merge;
387 	struct elevator_queue	*elevator;
388 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
389 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
390 
391 	struct rq_wb		*rq_wb;
392 
393 	/*
394 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
395 	 * is used, root blkg allocates from @q->root_rl and all other
396 	 * blkgs from their own blkg->rl.  Which one to use should be
397 	 * determined using bio_request_list().
398 	 */
399 	struct request_list	root_rl;
400 
401 	request_fn_proc		*request_fn;
402 	make_request_fn		*make_request_fn;
403 	prep_rq_fn		*prep_rq_fn;
404 	unprep_rq_fn		*unprep_rq_fn;
405 	softirq_done_fn		*softirq_done_fn;
406 	rq_timed_out_fn		*rq_timed_out_fn;
407 	dma_drain_needed_fn	*dma_drain_needed;
408 	lld_busy_fn		*lld_busy_fn;
409 	init_rq_fn		*init_rq_fn;
410 	exit_rq_fn		*exit_rq_fn;
411 
412 	const struct blk_mq_ops	*mq_ops;
413 
414 	unsigned int		*mq_map;
415 
416 	/* sw queues */
417 	struct blk_mq_ctx __percpu	*queue_ctx;
418 	unsigned int		nr_queues;
419 
420 	unsigned int		queue_depth;
421 
422 	/* hw dispatch queues */
423 	struct blk_mq_hw_ctx	**queue_hw_ctx;
424 	unsigned int		nr_hw_queues;
425 
426 	/*
427 	 * Dispatch queue sorting
428 	 */
429 	sector_t		end_sector;
430 	struct request		*boundary_rq;
431 
432 	/*
433 	 * Delayed queue handling
434 	 */
435 	struct delayed_work	delay_work;
436 
437 	struct backing_dev_info	*backing_dev_info;
438 
439 	/*
440 	 * The queue owner gets to use this for whatever they like.
441 	 * ll_rw_blk doesn't touch it.
442 	 */
443 	void			*queuedata;
444 
445 	/*
446 	 * various queue flags, see QUEUE_* below
447 	 */
448 	unsigned long		queue_flags;
449 
450 	/*
451 	 * ida allocated id for this queue.  Used to index queues from
452 	 * ioctx.
453 	 */
454 	int			id;
455 
456 	/*
457 	 * queue needs bounce pages for pages above this limit
458 	 */
459 	gfp_t			bounce_gfp;
460 
461 	/*
462 	 * protects queue structures from reentrancy. ->__queue_lock should
463 	 * _never_ be used directly, it is queue private. always use
464 	 * ->queue_lock.
465 	 */
466 	spinlock_t		__queue_lock;
467 	spinlock_t		*queue_lock;
468 
469 	/*
470 	 * queue kobject
471 	 */
472 	struct kobject kobj;
473 
474 	/*
475 	 * mq queue kobject
476 	 */
477 	struct kobject mq_kobj;
478 
479 #ifdef  CONFIG_BLK_DEV_INTEGRITY
480 	struct blk_integrity integrity;
481 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
482 
483 #ifdef CONFIG_PM
484 	struct device		*dev;
485 	int			rpm_status;
486 	unsigned int		nr_pending;
487 #endif
488 
489 	/*
490 	 * queue settings
491 	 */
492 	unsigned long		nr_requests;	/* Max # of requests */
493 	unsigned int		nr_congestion_on;
494 	unsigned int		nr_congestion_off;
495 	unsigned int		nr_batching;
496 
497 	unsigned int		dma_drain_size;
498 	void			*dma_drain_buffer;
499 	unsigned int		dma_pad_mask;
500 	unsigned int		dma_alignment;
501 
502 	struct blk_queue_tag	*queue_tags;
503 	struct list_head	tag_busy_list;
504 
505 	unsigned int		nr_sorted;
506 	unsigned int		in_flight[2];
507 
508 	struct blk_rq_stat	rq_stats[2];
509 
510 	/*
511 	 * Number of active block driver functions for which blk_drain_queue()
512 	 * must wait. Must be incremented around functions that unlock the
513 	 * queue_lock internally, e.g. scsi_request_fn().
514 	 */
515 	unsigned int		request_fn_active;
516 
517 	unsigned int		rq_timeout;
518 	int			poll_nsec;
519 	struct timer_list	timeout;
520 	struct work_struct	timeout_work;
521 	struct list_head	timeout_list;
522 
523 	struct list_head	icq_list;
524 #ifdef CONFIG_BLK_CGROUP
525 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
526 	struct blkcg_gq		*root_blkg;
527 	struct list_head	blkg_list;
528 #endif
529 
530 	struct queue_limits	limits;
531 
532 	/*
533 	 * sg stuff
534 	 */
535 	unsigned int		sg_timeout;
536 	unsigned int		sg_reserved_size;
537 	int			node;
538 #ifdef CONFIG_BLK_DEV_IO_TRACE
539 	struct blk_trace	*blk_trace;
540 #endif
541 	/*
542 	 * for flush operations
543 	 */
544 	struct blk_flush_queue	*fq;
545 
546 	struct list_head	requeue_list;
547 	spinlock_t		requeue_lock;
548 	struct delayed_work	requeue_work;
549 
550 	struct mutex		sysfs_lock;
551 
552 	int			bypass_depth;
553 	atomic_t		mq_freeze_depth;
554 
555 #if defined(CONFIG_BLK_DEV_BSG)
556 	bsg_job_fn		*bsg_job_fn;
557 	int			bsg_job_size;
558 	struct bsg_class_device bsg_dev;
559 #endif
560 
561 #ifdef CONFIG_BLK_DEV_THROTTLING
562 	/* Throttle data */
563 	struct throtl_data *td;
564 #endif
565 	struct rcu_head		rcu_head;
566 	wait_queue_head_t	mq_freeze_wq;
567 	struct percpu_ref	q_usage_counter;
568 	struct list_head	all_q_node;
569 
570 	struct blk_mq_tag_set	*tag_set;
571 	struct list_head	tag_set_list;
572 	struct bio_set		*bio_split;
573 
574 #ifdef CONFIG_BLK_DEBUG_FS
575 	struct dentry		*debugfs_dir;
576 	struct dentry		*mq_debugfs_dir;
577 #endif
578 
579 	bool			mq_sysfs_init_done;
580 
581 	size_t			cmd_size;
582 	void			*rq_alloc_data;
583 };
584 
585 #define QUEUE_FLAG_QUEUED	1	/* uses generic tag queueing */
586 #define QUEUE_FLAG_STOPPED	2	/* queue is stopped */
587 #define	QUEUE_FLAG_SYNCFULL	3	/* read queue has been filled */
588 #define QUEUE_FLAG_ASYNCFULL	4	/* write queue has been filled */
589 #define QUEUE_FLAG_DYING	5	/* queue being torn down */
590 #define QUEUE_FLAG_BYPASS	6	/* act as dumb FIFO queue */
591 #define QUEUE_FLAG_BIDI		7	/* queue supports bidi requests */
592 #define QUEUE_FLAG_NOMERGES     8	/* disable merge attempts */
593 #define QUEUE_FLAG_SAME_COMP	9	/* complete on same CPU-group */
594 #define QUEUE_FLAG_FAIL_IO     10	/* fake timeout */
595 #define QUEUE_FLAG_STACKABLE   11	/* supports request stacking */
596 #define QUEUE_FLAG_NONROT      12	/* non-rotational device (SSD) */
597 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
598 #define QUEUE_FLAG_IO_STAT     13	/* do IO stats */
599 #define QUEUE_FLAG_DISCARD     14	/* supports DISCARD */
600 #define QUEUE_FLAG_NOXMERGES   15	/* No extended merges */
601 #define QUEUE_FLAG_ADD_RANDOM  16	/* Contributes to random pool */
602 #define QUEUE_FLAG_SECERASE    17	/* supports secure erase */
603 #define QUEUE_FLAG_SAME_FORCE  18	/* force complete on same CPU */
604 #define QUEUE_FLAG_DEAD        19	/* queue tear-down finished */
605 #define QUEUE_FLAG_INIT_DONE   20	/* queue is initialized */
606 #define QUEUE_FLAG_NO_SG_MERGE 21	/* don't attempt to merge SG segments*/
607 #define QUEUE_FLAG_POLL	       22	/* IO polling enabled if set */
608 #define QUEUE_FLAG_WC	       23	/* Write back caching */
609 #define QUEUE_FLAG_FUA	       24	/* device supports FUA writes */
610 #define QUEUE_FLAG_FLUSH_NQ    25	/* flush not queueuable */
611 #define QUEUE_FLAG_DAX         26	/* device supports DAX */
612 #define QUEUE_FLAG_STATS       27	/* track rq completion times */
613 
614 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
615 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
616 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
617 				 (1 << QUEUE_FLAG_ADD_RANDOM))
618 
619 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
620 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
621 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
622 				 (1 << QUEUE_FLAG_POLL))
623 
624 static inline void queue_lockdep_assert_held(struct request_queue *q)
625 {
626 	if (q->queue_lock)
627 		lockdep_assert_held(q->queue_lock);
628 }
629 
630 static inline void queue_flag_set_unlocked(unsigned int flag,
631 					   struct request_queue *q)
632 {
633 	__set_bit(flag, &q->queue_flags);
634 }
635 
636 static inline int queue_flag_test_and_clear(unsigned int flag,
637 					    struct request_queue *q)
638 {
639 	queue_lockdep_assert_held(q);
640 
641 	if (test_bit(flag, &q->queue_flags)) {
642 		__clear_bit(flag, &q->queue_flags);
643 		return 1;
644 	}
645 
646 	return 0;
647 }
648 
649 static inline int queue_flag_test_and_set(unsigned int flag,
650 					  struct request_queue *q)
651 {
652 	queue_lockdep_assert_held(q);
653 
654 	if (!test_bit(flag, &q->queue_flags)) {
655 		__set_bit(flag, &q->queue_flags);
656 		return 0;
657 	}
658 
659 	return 1;
660 }
661 
662 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
663 {
664 	queue_lockdep_assert_held(q);
665 	__set_bit(flag, &q->queue_flags);
666 }
667 
668 static inline void queue_flag_clear_unlocked(unsigned int flag,
669 					     struct request_queue *q)
670 {
671 	__clear_bit(flag, &q->queue_flags);
672 }
673 
674 static inline int queue_in_flight(struct request_queue *q)
675 {
676 	return q->in_flight[0] + q->in_flight[1];
677 }
678 
679 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
680 {
681 	queue_lockdep_assert_held(q);
682 	__clear_bit(flag, &q->queue_flags);
683 }
684 
685 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
686 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
687 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
688 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
689 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
690 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
691 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
692 #define blk_queue_noxmerges(q)	\
693 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
694 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
695 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
696 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
697 #define blk_queue_stackable(q)	\
698 	test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
699 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
700 #define blk_queue_secure_erase(q) \
701 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
702 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
703 
704 #define blk_noretry_request(rq) \
705 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
706 			     REQ_FAILFAST_DRIVER))
707 
708 static inline bool blk_account_rq(struct request *rq)
709 {
710 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
711 }
712 
713 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
714 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
715 /* rq->queuelist of dequeued request must be list_empty() */
716 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
717 
718 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
719 
720 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
721 
722 /*
723  * Driver can handle struct request, if it either has an old style
724  * request_fn defined, or is blk-mq based.
725  */
726 static inline bool queue_is_rq_based(struct request_queue *q)
727 {
728 	return q->request_fn || q->mq_ops;
729 }
730 
731 static inline unsigned int blk_queue_cluster(struct request_queue *q)
732 {
733 	return q->limits.cluster;
734 }
735 
736 static inline enum blk_zoned_model
737 blk_queue_zoned_model(struct request_queue *q)
738 {
739 	return q->limits.zoned;
740 }
741 
742 static inline bool blk_queue_is_zoned(struct request_queue *q)
743 {
744 	switch (blk_queue_zoned_model(q)) {
745 	case BLK_ZONED_HA:
746 	case BLK_ZONED_HM:
747 		return true;
748 	default:
749 		return false;
750 	}
751 }
752 
753 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
754 {
755 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
756 }
757 
758 static inline bool rq_is_sync(struct request *rq)
759 {
760 	return op_is_sync(rq->cmd_flags);
761 }
762 
763 static inline bool blk_rl_full(struct request_list *rl, bool sync)
764 {
765 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
766 
767 	return rl->flags & flag;
768 }
769 
770 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
771 {
772 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
773 
774 	rl->flags |= flag;
775 }
776 
777 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
778 {
779 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
780 
781 	rl->flags &= ~flag;
782 }
783 
784 static inline bool rq_mergeable(struct request *rq)
785 {
786 	if (blk_rq_is_passthrough(rq))
787 		return false;
788 
789 	if (req_op(rq) == REQ_OP_FLUSH)
790 		return false;
791 
792 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
793 		return false;
794 
795 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
796 		return false;
797 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
798 		return false;
799 
800 	return true;
801 }
802 
803 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
804 {
805 	if (bio_data(a) == bio_data(b))
806 		return true;
807 
808 	return false;
809 }
810 
811 static inline unsigned int blk_queue_depth(struct request_queue *q)
812 {
813 	if (q->queue_depth)
814 		return q->queue_depth;
815 
816 	return q->nr_requests;
817 }
818 
819 /*
820  * q->prep_rq_fn return values
821  */
822 enum {
823 	BLKPREP_OK,		/* serve it */
824 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
825 	BLKPREP_DEFER,		/* leave on queue */
826 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
827 };
828 
829 extern unsigned long blk_max_low_pfn, blk_max_pfn;
830 
831 /*
832  * standard bounce addresses:
833  *
834  * BLK_BOUNCE_HIGH	: bounce all highmem pages
835  * BLK_BOUNCE_ANY	: don't bounce anything
836  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
837  */
838 
839 #if BITS_PER_LONG == 32
840 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
841 #else
842 #define BLK_BOUNCE_HIGH		-1ULL
843 #endif
844 #define BLK_BOUNCE_ANY		(-1ULL)
845 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
846 
847 /*
848  * default timeout for SG_IO if none specified
849  */
850 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
851 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
852 
853 #ifdef CONFIG_BOUNCE
854 extern int init_emergency_isa_pool(void);
855 extern void blk_queue_bounce(struct request_queue *q, struct bio **bio);
856 #else
857 static inline int init_emergency_isa_pool(void)
858 {
859 	return 0;
860 }
861 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
862 {
863 }
864 #endif /* CONFIG_MMU */
865 
866 struct rq_map_data {
867 	struct page **pages;
868 	int page_order;
869 	int nr_entries;
870 	unsigned long offset;
871 	int null_mapped;
872 	int from_user;
873 };
874 
875 struct req_iterator {
876 	struct bvec_iter iter;
877 	struct bio *bio;
878 };
879 
880 /* This should not be used directly - use rq_for_each_segment */
881 #define for_each_bio(_bio)		\
882 	for (; _bio; _bio = _bio->bi_next)
883 #define __rq_for_each_bio(_bio, rq)	\
884 	if ((rq->bio))			\
885 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
886 
887 #define rq_for_each_segment(bvl, _rq, _iter)			\
888 	__rq_for_each_bio(_iter.bio, _rq)			\
889 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
890 
891 #define rq_iter_last(bvec, _iter)				\
892 		(_iter.bio->bi_next == NULL &&			\
893 		 bio_iter_last(bvec, _iter.iter))
894 
895 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
896 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
897 #endif
898 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
899 extern void rq_flush_dcache_pages(struct request *rq);
900 #else
901 static inline void rq_flush_dcache_pages(struct request *rq)
902 {
903 }
904 #endif
905 
906 #ifdef CONFIG_PRINTK
907 #define vfs_msg(sb, level, fmt, ...)				\
908 	__vfs_msg(sb, level, fmt, ##__VA_ARGS__)
909 #else
910 #define vfs_msg(sb, level, fmt, ...)				\
911 do {								\
912 	no_printk(fmt, ##__VA_ARGS__);				\
913 	__vfs_msg(sb, "", " ");					\
914 } while (0)
915 #endif
916 
917 extern int blk_register_queue(struct gendisk *disk);
918 extern void blk_unregister_queue(struct gendisk *disk);
919 extern blk_qc_t generic_make_request(struct bio *bio);
920 extern void blk_rq_init(struct request_queue *q, struct request *rq);
921 extern void blk_put_request(struct request *);
922 extern void __blk_put_request(struct request_queue *, struct request *);
923 extern struct request *blk_get_request(struct request_queue *, int, gfp_t);
924 extern void blk_requeue_request(struct request_queue *, struct request *);
925 extern int blk_lld_busy(struct request_queue *q);
926 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
927 			     struct bio_set *bs, gfp_t gfp_mask,
928 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
929 			     void *data);
930 extern void blk_rq_unprep_clone(struct request *rq);
931 extern int blk_insert_cloned_request(struct request_queue *q,
932 				     struct request *rq);
933 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
934 extern void blk_delay_queue(struct request_queue *, unsigned long);
935 extern void blk_queue_split(struct request_queue *, struct bio **,
936 			    struct bio_set *);
937 extern void blk_recount_segments(struct request_queue *, struct bio *);
938 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
939 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
940 			      unsigned int, void __user *);
941 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
942 			  unsigned int, void __user *);
943 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
944 			 struct scsi_ioctl_command __user *);
945 
946 extern int blk_queue_enter(struct request_queue *q, bool nowait);
947 extern void blk_queue_exit(struct request_queue *q);
948 extern void blk_start_queue(struct request_queue *q);
949 extern void blk_start_queue_async(struct request_queue *q);
950 extern void blk_stop_queue(struct request_queue *q);
951 extern void blk_sync_queue(struct request_queue *q);
952 extern void __blk_stop_queue(struct request_queue *q);
953 extern void __blk_run_queue(struct request_queue *q);
954 extern void __blk_run_queue_uncond(struct request_queue *q);
955 extern void blk_run_queue(struct request_queue *);
956 extern void blk_run_queue_async(struct request_queue *q);
957 extern void blk_mq_quiesce_queue(struct request_queue *q);
958 extern int blk_rq_map_user(struct request_queue *, struct request *,
959 			   struct rq_map_data *, void __user *, unsigned long,
960 			   gfp_t);
961 extern int blk_rq_unmap_user(struct bio *);
962 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
963 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
964 			       struct rq_map_data *, const struct iov_iter *,
965 			       gfp_t);
966 extern int blk_execute_rq(struct request_queue *, struct gendisk *,
967 			  struct request *, int);
968 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
969 				  struct request *, int, rq_end_io_fn *);
970 
971 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
972 
973 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
974 {
975 	return bdev->bd_disk->queue;	/* this is never NULL */
976 }
977 
978 /*
979  * blk_rq_pos()			: the current sector
980  * blk_rq_bytes()		: bytes left in the entire request
981  * blk_rq_cur_bytes()		: bytes left in the current segment
982  * blk_rq_err_bytes()		: bytes left till the next error boundary
983  * blk_rq_sectors()		: sectors left in the entire request
984  * blk_rq_cur_sectors()		: sectors left in the current segment
985  */
986 static inline sector_t blk_rq_pos(const struct request *rq)
987 {
988 	return rq->__sector;
989 }
990 
991 static inline unsigned int blk_rq_bytes(const struct request *rq)
992 {
993 	return rq->__data_len;
994 }
995 
996 static inline int blk_rq_cur_bytes(const struct request *rq)
997 {
998 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
999 }
1000 
1001 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1002 
1003 static inline unsigned int blk_rq_sectors(const struct request *rq)
1004 {
1005 	return blk_rq_bytes(rq) >> 9;
1006 }
1007 
1008 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1009 {
1010 	return blk_rq_cur_bytes(rq) >> 9;
1011 }
1012 
1013 /*
1014  * Some commands like WRITE SAME have a payload or data transfer size which
1015  * is different from the size of the request.  Any driver that supports such
1016  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1017  * calculate the data transfer size.
1018  */
1019 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1020 {
1021 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1022 		return rq->special_vec.bv_len;
1023 	return blk_rq_bytes(rq);
1024 }
1025 
1026 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1027 						     int op)
1028 {
1029 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1030 		return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1031 
1032 	if (unlikely(op == REQ_OP_WRITE_SAME))
1033 		return q->limits.max_write_same_sectors;
1034 
1035 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1036 		return q->limits.max_write_zeroes_sectors;
1037 
1038 	return q->limits.max_sectors;
1039 }
1040 
1041 /*
1042  * Return maximum size of a request at given offset. Only valid for
1043  * file system requests.
1044  */
1045 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1046 					       sector_t offset)
1047 {
1048 	if (!q->limits.chunk_sectors)
1049 		return q->limits.max_sectors;
1050 
1051 	return q->limits.chunk_sectors -
1052 			(offset & (q->limits.chunk_sectors - 1));
1053 }
1054 
1055 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1056 						  sector_t offset)
1057 {
1058 	struct request_queue *q = rq->q;
1059 
1060 	if (blk_rq_is_passthrough(rq))
1061 		return q->limits.max_hw_sectors;
1062 
1063 	if (!q->limits.chunk_sectors ||
1064 	    req_op(rq) == REQ_OP_DISCARD ||
1065 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1066 		return blk_queue_get_max_sectors(q, req_op(rq));
1067 
1068 	return min(blk_max_size_offset(q, offset),
1069 			blk_queue_get_max_sectors(q, req_op(rq)));
1070 }
1071 
1072 static inline unsigned int blk_rq_count_bios(struct request *rq)
1073 {
1074 	unsigned int nr_bios = 0;
1075 	struct bio *bio;
1076 
1077 	__rq_for_each_bio(bio, rq)
1078 		nr_bios++;
1079 
1080 	return nr_bios;
1081 }
1082 
1083 /*
1084  * blk_rq_set_prio - associate a request with prio from ioc
1085  * @rq: request of interest
1086  * @ioc: target iocontext
1087  *
1088  * Assocate request prio with ioc prio so request based drivers
1089  * can leverage priority information.
1090  */
1091 static inline void blk_rq_set_prio(struct request *rq, struct io_context *ioc)
1092 {
1093 	if (ioc)
1094 		rq->ioprio = ioc->ioprio;
1095 }
1096 
1097 /*
1098  * Request issue related functions.
1099  */
1100 extern struct request *blk_peek_request(struct request_queue *q);
1101 extern void blk_start_request(struct request *rq);
1102 extern struct request *blk_fetch_request(struct request_queue *q);
1103 
1104 /*
1105  * Request completion related functions.
1106  *
1107  * blk_update_request() completes given number of bytes and updates
1108  * the request without completing it.
1109  *
1110  * blk_end_request() and friends.  __blk_end_request() must be called
1111  * with the request queue spinlock acquired.
1112  *
1113  * Several drivers define their own end_request and call
1114  * blk_end_request() for parts of the original function.
1115  * This prevents code duplication in drivers.
1116  */
1117 extern bool blk_update_request(struct request *rq, int error,
1118 			       unsigned int nr_bytes);
1119 extern void blk_finish_request(struct request *rq, int error);
1120 extern bool blk_end_request(struct request *rq, int error,
1121 			    unsigned int nr_bytes);
1122 extern void blk_end_request_all(struct request *rq, int error);
1123 extern bool blk_end_request_cur(struct request *rq, int error);
1124 extern bool blk_end_request_err(struct request *rq, int error);
1125 extern bool __blk_end_request(struct request *rq, int error,
1126 			      unsigned int nr_bytes);
1127 extern void __blk_end_request_all(struct request *rq, int error);
1128 extern bool __blk_end_request_cur(struct request *rq, int error);
1129 extern bool __blk_end_request_err(struct request *rq, int error);
1130 
1131 extern void blk_complete_request(struct request *);
1132 extern void __blk_complete_request(struct request *);
1133 extern void blk_abort_request(struct request *);
1134 extern void blk_unprep_request(struct request *);
1135 
1136 /*
1137  * Access functions for manipulating queue properties
1138  */
1139 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1140 					spinlock_t *lock, int node_id);
1141 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1142 extern int blk_init_allocated_queue(struct request_queue *);
1143 extern void blk_cleanup_queue(struct request_queue *);
1144 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1145 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1146 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1147 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1148 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1149 extern void blk_queue_max_discard_segments(struct request_queue *,
1150 		unsigned short);
1151 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1152 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1153 		unsigned int max_discard_sectors);
1154 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1155 		unsigned int max_write_same_sectors);
1156 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1157 		unsigned int max_write_same_sectors);
1158 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1159 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1160 extern void blk_queue_alignment_offset(struct request_queue *q,
1161 				       unsigned int alignment);
1162 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1163 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1164 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1165 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1166 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1167 extern void blk_set_default_limits(struct queue_limits *lim);
1168 extern void blk_set_stacking_limits(struct queue_limits *lim);
1169 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1170 			    sector_t offset);
1171 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1172 			    sector_t offset);
1173 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1174 			      sector_t offset);
1175 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1176 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1177 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1178 extern int blk_queue_dma_drain(struct request_queue *q,
1179 			       dma_drain_needed_fn *dma_drain_needed,
1180 			       void *buf, unsigned int size);
1181 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1182 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1183 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1184 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1185 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1186 extern void blk_queue_dma_alignment(struct request_queue *, int);
1187 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1188 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1189 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1190 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1191 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1192 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1193 
1194 /*
1195  * Number of physical segments as sent to the device.
1196  *
1197  * Normally this is the number of discontiguous data segments sent by the
1198  * submitter.  But for data-less command like discard we might have no
1199  * actual data segments submitted, but the driver might have to add it's
1200  * own special payload.  In that case we still return 1 here so that this
1201  * special payload will be mapped.
1202  */
1203 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1204 {
1205 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1206 		return 1;
1207 	return rq->nr_phys_segments;
1208 }
1209 
1210 /*
1211  * Number of discard segments (or ranges) the driver needs to fill in.
1212  * Each discard bio merged into a request is counted as one segment.
1213  */
1214 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1215 {
1216 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1217 }
1218 
1219 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1220 extern void blk_dump_rq_flags(struct request *, char *);
1221 extern long nr_blockdev_pages(void);
1222 
1223 bool __must_check blk_get_queue(struct request_queue *);
1224 struct request_queue *blk_alloc_queue(gfp_t);
1225 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1226 extern void blk_put_queue(struct request_queue *);
1227 extern void blk_set_queue_dying(struct request_queue *);
1228 
1229 /*
1230  * block layer runtime pm functions
1231  */
1232 #ifdef CONFIG_PM
1233 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1234 extern int blk_pre_runtime_suspend(struct request_queue *q);
1235 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1236 extern void blk_pre_runtime_resume(struct request_queue *q);
1237 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1238 extern void blk_set_runtime_active(struct request_queue *q);
1239 #else
1240 static inline void blk_pm_runtime_init(struct request_queue *q,
1241 	struct device *dev) {}
1242 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1243 {
1244 	return -ENOSYS;
1245 }
1246 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1247 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1248 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1249 static inline void blk_set_runtime_active(struct request_queue *q) {}
1250 #endif
1251 
1252 /*
1253  * blk_plug permits building a queue of related requests by holding the I/O
1254  * fragments for a short period. This allows merging of sequential requests
1255  * into single larger request. As the requests are moved from a per-task list to
1256  * the device's request_queue in a batch, this results in improved scalability
1257  * as the lock contention for request_queue lock is reduced.
1258  *
1259  * It is ok not to disable preemption when adding the request to the plug list
1260  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1261  * the plug list when the task sleeps by itself. For details, please see
1262  * schedule() where blk_schedule_flush_plug() is called.
1263  */
1264 struct blk_plug {
1265 	struct list_head list; /* requests */
1266 	struct list_head mq_list; /* blk-mq requests */
1267 	struct list_head cb_list; /* md requires an unplug callback */
1268 };
1269 #define BLK_MAX_REQUEST_COUNT 16
1270 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1271 
1272 struct blk_plug_cb;
1273 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1274 struct blk_plug_cb {
1275 	struct list_head list;
1276 	blk_plug_cb_fn callback;
1277 	void *data;
1278 };
1279 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1280 					     void *data, int size);
1281 extern void blk_start_plug(struct blk_plug *);
1282 extern void blk_finish_plug(struct blk_plug *);
1283 extern void blk_flush_plug_list(struct blk_plug *, bool);
1284 
1285 static inline void blk_flush_plug(struct task_struct *tsk)
1286 {
1287 	struct blk_plug *plug = tsk->plug;
1288 
1289 	if (plug)
1290 		blk_flush_plug_list(plug, false);
1291 }
1292 
1293 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1294 {
1295 	struct blk_plug *plug = tsk->plug;
1296 
1297 	if (plug)
1298 		blk_flush_plug_list(plug, true);
1299 }
1300 
1301 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1302 {
1303 	struct blk_plug *plug = tsk->plug;
1304 
1305 	return plug &&
1306 		(!list_empty(&plug->list) ||
1307 		 !list_empty(&plug->mq_list) ||
1308 		 !list_empty(&plug->cb_list));
1309 }
1310 
1311 /*
1312  * tag stuff
1313  */
1314 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1315 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1316 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1317 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1318 extern void blk_queue_free_tags(struct request_queue *);
1319 extern int blk_queue_resize_tags(struct request_queue *, int);
1320 extern void blk_queue_invalidate_tags(struct request_queue *);
1321 extern struct blk_queue_tag *blk_init_tags(int, int);
1322 extern void blk_free_tags(struct blk_queue_tag *);
1323 
1324 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1325 						int tag)
1326 {
1327 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1328 		return NULL;
1329 	return bqt->tag_index[tag];
1330 }
1331 
1332 
1333 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1334 #define BLKDEV_DISCARD_ZERO	(1 << 1)	/* must reliably zero data */
1335 
1336 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1337 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1338 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1339 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1340 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1341 		struct bio **biop);
1342 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1343 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1344 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1345 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1346 		bool discard);
1347 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1348 		sector_t nr_sects, gfp_t gfp_mask, bool discard);
1349 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1350 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1351 {
1352 	return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1353 				    nr_blocks << (sb->s_blocksize_bits - 9),
1354 				    gfp_mask, flags);
1355 }
1356 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1357 		sector_t nr_blocks, gfp_t gfp_mask)
1358 {
1359 	return blkdev_issue_zeroout(sb->s_bdev,
1360 				    block << (sb->s_blocksize_bits - 9),
1361 				    nr_blocks << (sb->s_blocksize_bits - 9),
1362 				    gfp_mask, true);
1363 }
1364 
1365 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1366 
1367 enum blk_default_limits {
1368 	BLK_MAX_SEGMENTS	= 128,
1369 	BLK_SAFE_MAX_SECTORS	= 255,
1370 	BLK_DEF_MAX_SECTORS	= 2560,
1371 	BLK_MAX_SEGMENT_SIZE	= 65536,
1372 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1373 };
1374 
1375 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1376 
1377 static inline unsigned long queue_bounce_pfn(struct request_queue *q)
1378 {
1379 	return q->limits.bounce_pfn;
1380 }
1381 
1382 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1383 {
1384 	return q->limits.seg_boundary_mask;
1385 }
1386 
1387 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1388 {
1389 	return q->limits.virt_boundary_mask;
1390 }
1391 
1392 static inline unsigned int queue_max_sectors(struct request_queue *q)
1393 {
1394 	return q->limits.max_sectors;
1395 }
1396 
1397 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1398 {
1399 	return q->limits.max_hw_sectors;
1400 }
1401 
1402 static inline unsigned short queue_max_segments(struct request_queue *q)
1403 {
1404 	return q->limits.max_segments;
1405 }
1406 
1407 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1408 {
1409 	return q->limits.max_discard_segments;
1410 }
1411 
1412 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1413 {
1414 	return q->limits.max_segment_size;
1415 }
1416 
1417 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1418 {
1419 	int retval = 512;
1420 
1421 	if (q && q->limits.logical_block_size)
1422 		retval = q->limits.logical_block_size;
1423 
1424 	return retval;
1425 }
1426 
1427 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1428 {
1429 	return queue_logical_block_size(bdev_get_queue(bdev));
1430 }
1431 
1432 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1433 {
1434 	return q->limits.physical_block_size;
1435 }
1436 
1437 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1438 {
1439 	return queue_physical_block_size(bdev_get_queue(bdev));
1440 }
1441 
1442 static inline unsigned int queue_io_min(struct request_queue *q)
1443 {
1444 	return q->limits.io_min;
1445 }
1446 
1447 static inline int bdev_io_min(struct block_device *bdev)
1448 {
1449 	return queue_io_min(bdev_get_queue(bdev));
1450 }
1451 
1452 static inline unsigned int queue_io_opt(struct request_queue *q)
1453 {
1454 	return q->limits.io_opt;
1455 }
1456 
1457 static inline int bdev_io_opt(struct block_device *bdev)
1458 {
1459 	return queue_io_opt(bdev_get_queue(bdev));
1460 }
1461 
1462 static inline int queue_alignment_offset(struct request_queue *q)
1463 {
1464 	if (q->limits.misaligned)
1465 		return -1;
1466 
1467 	return q->limits.alignment_offset;
1468 }
1469 
1470 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1471 {
1472 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1473 	unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1474 
1475 	return (granularity + lim->alignment_offset - alignment) % granularity;
1476 }
1477 
1478 static inline int bdev_alignment_offset(struct block_device *bdev)
1479 {
1480 	struct request_queue *q = bdev_get_queue(bdev);
1481 
1482 	if (q->limits.misaligned)
1483 		return -1;
1484 
1485 	if (bdev != bdev->bd_contains)
1486 		return bdev->bd_part->alignment_offset;
1487 
1488 	return q->limits.alignment_offset;
1489 }
1490 
1491 static inline int queue_discard_alignment(struct request_queue *q)
1492 {
1493 	if (q->limits.discard_misaligned)
1494 		return -1;
1495 
1496 	return q->limits.discard_alignment;
1497 }
1498 
1499 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1500 {
1501 	unsigned int alignment, granularity, offset;
1502 
1503 	if (!lim->max_discard_sectors)
1504 		return 0;
1505 
1506 	/* Why are these in bytes, not sectors? */
1507 	alignment = lim->discard_alignment >> 9;
1508 	granularity = lim->discard_granularity >> 9;
1509 	if (!granularity)
1510 		return 0;
1511 
1512 	/* Offset of the partition start in 'granularity' sectors */
1513 	offset = sector_div(sector, granularity);
1514 
1515 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1516 	offset = (granularity + alignment - offset) % granularity;
1517 
1518 	/* Turn it back into bytes, gaah */
1519 	return offset << 9;
1520 }
1521 
1522 static inline int bdev_discard_alignment(struct block_device *bdev)
1523 {
1524 	struct request_queue *q = bdev_get_queue(bdev);
1525 
1526 	if (bdev != bdev->bd_contains)
1527 		return bdev->bd_part->discard_alignment;
1528 
1529 	return q->limits.discard_alignment;
1530 }
1531 
1532 static inline unsigned int queue_discard_zeroes_data(struct request_queue *q)
1533 {
1534 	if (q->limits.max_discard_sectors && q->limits.discard_zeroes_data == 1)
1535 		return 1;
1536 
1537 	return 0;
1538 }
1539 
1540 static inline unsigned int bdev_discard_zeroes_data(struct block_device *bdev)
1541 {
1542 	return queue_discard_zeroes_data(bdev_get_queue(bdev));
1543 }
1544 
1545 static inline unsigned int bdev_write_same(struct block_device *bdev)
1546 {
1547 	struct request_queue *q = bdev_get_queue(bdev);
1548 
1549 	if (q)
1550 		return q->limits.max_write_same_sectors;
1551 
1552 	return 0;
1553 }
1554 
1555 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1556 {
1557 	struct request_queue *q = bdev_get_queue(bdev);
1558 
1559 	if (q)
1560 		return q->limits.max_write_zeroes_sectors;
1561 
1562 	return 0;
1563 }
1564 
1565 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1566 {
1567 	struct request_queue *q = bdev_get_queue(bdev);
1568 
1569 	if (q)
1570 		return blk_queue_zoned_model(q);
1571 
1572 	return BLK_ZONED_NONE;
1573 }
1574 
1575 static inline bool bdev_is_zoned(struct block_device *bdev)
1576 {
1577 	struct request_queue *q = bdev_get_queue(bdev);
1578 
1579 	if (q)
1580 		return blk_queue_is_zoned(q);
1581 
1582 	return false;
1583 }
1584 
1585 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1586 {
1587 	struct request_queue *q = bdev_get_queue(bdev);
1588 
1589 	if (q)
1590 		return blk_queue_zone_sectors(q);
1591 
1592 	return 0;
1593 }
1594 
1595 static inline int queue_dma_alignment(struct request_queue *q)
1596 {
1597 	return q ? q->dma_alignment : 511;
1598 }
1599 
1600 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1601 				 unsigned int len)
1602 {
1603 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1604 	return !(addr & alignment) && !(len & alignment);
1605 }
1606 
1607 /* assumes size > 256 */
1608 static inline unsigned int blksize_bits(unsigned int size)
1609 {
1610 	unsigned int bits = 8;
1611 	do {
1612 		bits++;
1613 		size >>= 1;
1614 	} while (size > 256);
1615 	return bits;
1616 }
1617 
1618 static inline unsigned int block_size(struct block_device *bdev)
1619 {
1620 	return bdev->bd_block_size;
1621 }
1622 
1623 static inline bool queue_flush_queueable(struct request_queue *q)
1624 {
1625 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1626 }
1627 
1628 typedef struct {struct page *v;} Sector;
1629 
1630 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1631 
1632 static inline void put_dev_sector(Sector p)
1633 {
1634 	put_page(p.v);
1635 }
1636 
1637 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1638 				struct bio_vec *bprv, unsigned int offset)
1639 {
1640 	return offset ||
1641 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1642 }
1643 
1644 /*
1645  * Check if adding a bio_vec after bprv with offset would create a gap in
1646  * the SG list. Most drivers don't care about this, but some do.
1647  */
1648 static inline bool bvec_gap_to_prev(struct request_queue *q,
1649 				struct bio_vec *bprv, unsigned int offset)
1650 {
1651 	if (!queue_virt_boundary(q))
1652 		return false;
1653 	return __bvec_gap_to_prev(q, bprv, offset);
1654 }
1655 
1656 /*
1657  * Check if the two bvecs from two bios can be merged to one segment.
1658  * If yes, no need to check gap between the two bios since the 1st bio
1659  * and the 1st bvec in the 2nd bio can be handled in one segment.
1660  */
1661 static inline bool bios_segs_mergeable(struct request_queue *q,
1662 		struct bio *prev, struct bio_vec *prev_last_bv,
1663 		struct bio_vec *next_first_bv)
1664 {
1665 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1666 		return false;
1667 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1668 		return false;
1669 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1670 			queue_max_segment_size(q))
1671 		return false;
1672 	return true;
1673 }
1674 
1675 static inline bool bio_will_gap(struct request_queue *q,
1676 				struct request *prev_rq,
1677 				struct bio *prev,
1678 				struct bio *next)
1679 {
1680 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1681 		struct bio_vec pb, nb;
1682 
1683 		/*
1684 		 * don't merge if the 1st bio starts with non-zero
1685 		 * offset, otherwise it is quite difficult to respect
1686 		 * sg gap limit. We work hard to merge a huge number of small
1687 		 * single bios in case of mkfs.
1688 		 */
1689 		if (prev_rq)
1690 			bio_get_first_bvec(prev_rq->bio, &pb);
1691 		else
1692 			bio_get_first_bvec(prev, &pb);
1693 		if (pb.bv_offset)
1694 			return true;
1695 
1696 		/*
1697 		 * We don't need to worry about the situation that the
1698 		 * merged segment ends in unaligned virt boundary:
1699 		 *
1700 		 * - if 'pb' ends aligned, the merged segment ends aligned
1701 		 * - if 'pb' ends unaligned, the next bio must include
1702 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1703 		 *   merge with 'pb'
1704 		 */
1705 		bio_get_last_bvec(prev, &pb);
1706 		bio_get_first_bvec(next, &nb);
1707 
1708 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1709 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1710 	}
1711 
1712 	return false;
1713 }
1714 
1715 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1716 {
1717 	return bio_will_gap(req->q, req, req->biotail, bio);
1718 }
1719 
1720 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1721 {
1722 	return bio_will_gap(req->q, NULL, bio, req->bio);
1723 }
1724 
1725 int kblockd_schedule_work(struct work_struct *work);
1726 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1727 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1728 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1729 
1730 #ifdef CONFIG_BLK_CGROUP
1731 /*
1732  * This should not be using sched_clock(). A real patch is in progress
1733  * to fix this up, until that is in place we need to disable preemption
1734  * around sched_clock() in this function and set_io_start_time_ns().
1735  */
1736 static inline void set_start_time_ns(struct request *req)
1737 {
1738 	preempt_disable();
1739 	req->start_time_ns = sched_clock();
1740 	preempt_enable();
1741 }
1742 
1743 static inline void set_io_start_time_ns(struct request *req)
1744 {
1745 	preempt_disable();
1746 	req->io_start_time_ns = sched_clock();
1747 	preempt_enable();
1748 }
1749 
1750 static inline uint64_t rq_start_time_ns(struct request *req)
1751 {
1752         return req->start_time_ns;
1753 }
1754 
1755 static inline uint64_t rq_io_start_time_ns(struct request *req)
1756 {
1757         return req->io_start_time_ns;
1758 }
1759 #else
1760 static inline void set_start_time_ns(struct request *req) {}
1761 static inline void set_io_start_time_ns(struct request *req) {}
1762 static inline uint64_t rq_start_time_ns(struct request *req)
1763 {
1764 	return 0;
1765 }
1766 static inline uint64_t rq_io_start_time_ns(struct request *req)
1767 {
1768 	return 0;
1769 }
1770 #endif
1771 
1772 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1773 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1774 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1775 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1776 
1777 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1778 
1779 enum blk_integrity_flags {
1780 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1781 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1782 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1783 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1784 };
1785 
1786 struct blk_integrity_iter {
1787 	void			*prot_buf;
1788 	void			*data_buf;
1789 	sector_t		seed;
1790 	unsigned int		data_size;
1791 	unsigned short		interval;
1792 	const char		*disk_name;
1793 };
1794 
1795 typedef int (integrity_processing_fn) (struct blk_integrity_iter *);
1796 
1797 struct blk_integrity_profile {
1798 	integrity_processing_fn		*generate_fn;
1799 	integrity_processing_fn		*verify_fn;
1800 	const char			*name;
1801 };
1802 
1803 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1804 extern void blk_integrity_unregister(struct gendisk *);
1805 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1806 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1807 				   struct scatterlist *);
1808 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1809 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1810 				   struct request *);
1811 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1812 				    struct bio *);
1813 
1814 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1815 {
1816 	struct blk_integrity *bi = &disk->queue->integrity;
1817 
1818 	if (!bi->profile)
1819 		return NULL;
1820 
1821 	return bi;
1822 }
1823 
1824 static inline
1825 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1826 {
1827 	return blk_get_integrity(bdev->bd_disk);
1828 }
1829 
1830 static inline bool blk_integrity_rq(struct request *rq)
1831 {
1832 	return rq->cmd_flags & REQ_INTEGRITY;
1833 }
1834 
1835 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1836 						    unsigned int segs)
1837 {
1838 	q->limits.max_integrity_segments = segs;
1839 }
1840 
1841 static inline unsigned short
1842 queue_max_integrity_segments(struct request_queue *q)
1843 {
1844 	return q->limits.max_integrity_segments;
1845 }
1846 
1847 static inline bool integrity_req_gap_back_merge(struct request *req,
1848 						struct bio *next)
1849 {
1850 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1851 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1852 
1853 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1854 				bip_next->bip_vec[0].bv_offset);
1855 }
1856 
1857 static inline bool integrity_req_gap_front_merge(struct request *req,
1858 						 struct bio *bio)
1859 {
1860 	struct bio_integrity_payload *bip = bio_integrity(bio);
1861 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1862 
1863 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1864 				bip_next->bip_vec[0].bv_offset);
1865 }
1866 
1867 #else /* CONFIG_BLK_DEV_INTEGRITY */
1868 
1869 struct bio;
1870 struct block_device;
1871 struct gendisk;
1872 struct blk_integrity;
1873 
1874 static inline int blk_integrity_rq(struct request *rq)
1875 {
1876 	return 0;
1877 }
1878 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1879 					    struct bio *b)
1880 {
1881 	return 0;
1882 }
1883 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1884 					  struct bio *b,
1885 					  struct scatterlist *s)
1886 {
1887 	return 0;
1888 }
1889 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1890 {
1891 	return NULL;
1892 }
1893 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1894 {
1895 	return NULL;
1896 }
1897 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1898 {
1899 	return 0;
1900 }
1901 static inline void blk_integrity_register(struct gendisk *d,
1902 					 struct blk_integrity *b)
1903 {
1904 }
1905 static inline void blk_integrity_unregister(struct gendisk *d)
1906 {
1907 }
1908 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1909 						    unsigned int segs)
1910 {
1911 }
1912 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1913 {
1914 	return 0;
1915 }
1916 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1917 					  struct request *r1,
1918 					  struct request *r2)
1919 {
1920 	return true;
1921 }
1922 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1923 					   struct request *r,
1924 					   struct bio *b)
1925 {
1926 	return true;
1927 }
1928 
1929 static inline bool integrity_req_gap_back_merge(struct request *req,
1930 						struct bio *next)
1931 {
1932 	return false;
1933 }
1934 static inline bool integrity_req_gap_front_merge(struct request *req,
1935 						 struct bio *bio)
1936 {
1937 	return false;
1938 }
1939 
1940 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1941 
1942 /**
1943  * struct blk_dax_ctl - control and output parameters for ->direct_access
1944  * @sector: (input) offset relative to a block_device
1945  * @addr: (output) kernel virtual address for @sector populated by driver
1946  * @pfn: (output) page frame number for @addr populated by driver
1947  * @size: (input) number of bytes requested
1948  */
1949 struct blk_dax_ctl {
1950 	sector_t sector;
1951 	void *addr;
1952 	long size;
1953 	pfn_t pfn;
1954 };
1955 
1956 struct block_device_operations {
1957 	int (*open) (struct block_device *, fmode_t);
1958 	void (*release) (struct gendisk *, fmode_t);
1959 	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1960 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1961 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1962 	long (*direct_access)(struct block_device *, sector_t, void **, pfn_t *,
1963 			long);
1964 	unsigned int (*check_events) (struct gendisk *disk,
1965 				      unsigned int clearing);
1966 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1967 	int (*media_changed) (struct gendisk *);
1968 	void (*unlock_native_capacity) (struct gendisk *);
1969 	int (*revalidate_disk) (struct gendisk *);
1970 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1971 	/* this callback is with swap_lock and sometimes page table lock held */
1972 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1973 	struct module *owner;
1974 	const struct pr_ops *pr_ops;
1975 };
1976 
1977 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1978 				 unsigned long);
1979 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1980 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1981 						struct writeback_control *);
1982 extern long bdev_direct_access(struct block_device *, struct blk_dax_ctl *);
1983 extern int bdev_dax_supported(struct super_block *, int);
1984 extern bool bdev_dax_capable(struct block_device *);
1985 #else /* CONFIG_BLOCK */
1986 
1987 struct block_device;
1988 
1989 /*
1990  * stubs for when the block layer is configured out
1991  */
1992 #define buffer_heads_over_limit 0
1993 
1994 static inline long nr_blockdev_pages(void)
1995 {
1996 	return 0;
1997 }
1998 
1999 struct blk_plug {
2000 };
2001 
2002 static inline void blk_start_plug(struct blk_plug *plug)
2003 {
2004 }
2005 
2006 static inline void blk_finish_plug(struct blk_plug *plug)
2007 {
2008 }
2009 
2010 static inline void blk_flush_plug(struct task_struct *task)
2011 {
2012 }
2013 
2014 static inline void blk_schedule_flush_plug(struct task_struct *task)
2015 {
2016 }
2017 
2018 
2019 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
2020 {
2021 	return false;
2022 }
2023 
2024 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2025 				     sector_t *error_sector)
2026 {
2027 	return 0;
2028 }
2029 
2030 #endif /* CONFIG_BLOCK */
2031 
2032 #endif
2033