1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Portions Copyright (C) 1992 Drew Eckhardt 4 */ 5 #ifndef _LINUX_BLKDEV_H 6 #define _LINUX_BLKDEV_H 7 8 #include <linux/types.h> 9 #include <linux/blk_types.h> 10 #include <linux/device.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/minmax.h> 14 #include <linux/timer.h> 15 #include <linux/workqueue.h> 16 #include <linux/wait.h> 17 #include <linux/bio.h> 18 #include <linux/gfp.h> 19 #include <linux/kdev_t.h> 20 #include <linux/rcupdate.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/blkzoned.h> 23 #include <linux/sched.h> 24 #include <linux/sbitmap.h> 25 #include <linux/srcu.h> 26 #include <linux/uuid.h> 27 #include <linux/xarray.h> 28 29 struct module; 30 struct request_queue; 31 struct elevator_queue; 32 struct blk_trace; 33 struct request; 34 struct sg_io_hdr; 35 struct blkcg_gq; 36 struct blk_flush_queue; 37 struct kiocb; 38 struct pr_ops; 39 struct rq_qos; 40 struct blk_queue_stats; 41 struct blk_stat_callback; 42 struct blk_crypto_profile; 43 44 extern const struct device_type disk_type; 45 extern struct device_type part_type; 46 extern struct class block_class; 47 48 /* Must be consistent with blk_mq_poll_stats_bkt() */ 49 #define BLK_MQ_POLL_STATS_BKTS 16 50 51 /* Doing classic polling */ 52 #define BLK_MQ_POLL_CLASSIC -1 53 54 /* 55 * Maximum number of blkcg policies allowed to be registered concurrently. 56 * Defined here to simplify include dependency. 57 */ 58 #define BLKCG_MAX_POLS 6 59 60 #define DISK_MAX_PARTS 256 61 #define DISK_NAME_LEN 32 62 63 #define PARTITION_META_INFO_VOLNAMELTH 64 64 /* 65 * Enough for the string representation of any kind of UUID plus NULL. 66 * EFI UUID is 36 characters. MSDOS UUID is 11 characters. 67 */ 68 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) 69 70 struct partition_meta_info { 71 char uuid[PARTITION_META_INFO_UUIDLTH]; 72 u8 volname[PARTITION_META_INFO_VOLNAMELTH]; 73 }; 74 75 /** 76 * DOC: genhd capability flags 77 * 78 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to 79 * removable media. When set, the device remains present even when media is not 80 * inserted. Shall not be set for devices which are removed entirely when the 81 * media is removed. 82 * 83 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, 84 * doesn't appear in sysfs, and can't be opened from userspace or using 85 * blkdev_get*. Used for the underlying components of multipath devices. 86 * 87 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not 88 * scan for partitions from add_disk, and users can't add partitions manually. 89 * 90 */ 91 enum { 92 GENHD_FL_REMOVABLE = 1 << 0, 93 GENHD_FL_HIDDEN = 1 << 1, 94 GENHD_FL_NO_PART = 1 << 2, 95 }; 96 97 enum { 98 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ 99 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ 100 }; 101 102 enum { 103 /* Poll even if events_poll_msecs is unset */ 104 DISK_EVENT_FLAG_POLL = 1 << 0, 105 /* Forward events to udev */ 106 DISK_EVENT_FLAG_UEVENT = 1 << 1, 107 /* Block event polling when open for exclusive write */ 108 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, 109 }; 110 111 struct disk_events; 112 struct badblocks; 113 114 struct blk_integrity { 115 const struct blk_integrity_profile *profile; 116 unsigned char flags; 117 unsigned char tuple_size; 118 unsigned char interval_exp; 119 unsigned char tag_size; 120 }; 121 122 struct gendisk { 123 /* 124 * major/first_minor/minors should not be set by any new driver, the 125 * block core will take care of allocating them automatically. 126 */ 127 int major; 128 int first_minor; 129 int minors; 130 131 char disk_name[DISK_NAME_LEN]; /* name of major driver */ 132 133 unsigned short events; /* supported events */ 134 unsigned short event_flags; /* flags related to event processing */ 135 136 struct xarray part_tbl; 137 struct block_device *part0; 138 139 const struct block_device_operations *fops; 140 struct request_queue *queue; 141 void *private_data; 142 143 struct bio_set bio_split; 144 145 int flags; 146 unsigned long state; 147 #define GD_NEED_PART_SCAN 0 148 #define GD_READ_ONLY 1 149 #define GD_DEAD 2 150 #define GD_NATIVE_CAPACITY 3 151 #define GD_ADDED 4 152 #define GD_SUPPRESS_PART_SCAN 5 153 #define GD_OWNS_QUEUE 6 154 155 struct mutex open_mutex; /* open/close mutex */ 156 unsigned open_partitions; /* number of open partitions */ 157 158 struct backing_dev_info *bdi; 159 struct kobject *slave_dir; 160 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 161 struct list_head slave_bdevs; 162 #endif 163 struct timer_rand_state *random; 164 atomic_t sync_io; /* RAID */ 165 struct disk_events *ev; 166 #ifdef CONFIG_BLK_DEV_INTEGRITY 167 struct kobject integrity_kobj; 168 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 169 170 #ifdef CONFIG_BLK_DEV_ZONED 171 /* 172 * Zoned block device information for request dispatch control. 173 * nr_zones is the total number of zones of the device. This is always 174 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 175 * bits which indicates if a zone is conventional (bit set) or 176 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 177 * bits which indicates if a zone is write locked, that is, if a write 178 * request targeting the zone was dispatched. 179 * 180 * Reads of this information must be protected with blk_queue_enter() / 181 * blk_queue_exit(). Modifying this information is only allowed while 182 * no requests are being processed. See also blk_mq_freeze_queue() and 183 * blk_mq_unfreeze_queue(). 184 */ 185 unsigned int nr_zones; 186 unsigned int max_open_zones; 187 unsigned int max_active_zones; 188 unsigned long *conv_zones_bitmap; 189 unsigned long *seq_zones_wlock; 190 #endif /* CONFIG_BLK_DEV_ZONED */ 191 192 #if IS_ENABLED(CONFIG_CDROM) 193 struct cdrom_device_info *cdi; 194 #endif 195 int node_id; 196 struct badblocks *bb; 197 struct lockdep_map lockdep_map; 198 u64 diskseq; 199 200 /* 201 * Independent sector access ranges. This is always NULL for 202 * devices that do not have multiple independent access ranges. 203 */ 204 struct blk_independent_access_ranges *ia_ranges; 205 }; 206 207 static inline bool disk_live(struct gendisk *disk) 208 { 209 return !inode_unhashed(disk->part0->bd_inode); 210 } 211 212 /** 213 * disk_openers - returns how many openers are there for a disk 214 * @disk: disk to check 215 * 216 * This returns the number of openers for a disk. Note that this value is only 217 * stable if disk->open_mutex is held. 218 * 219 * Note: Due to a quirk in the block layer open code, each open partition is 220 * only counted once even if there are multiple openers. 221 */ 222 static inline unsigned int disk_openers(struct gendisk *disk) 223 { 224 return atomic_read(&disk->part0->bd_openers); 225 } 226 227 /* 228 * The gendisk is refcounted by the part0 block_device, and the bd_device 229 * therein is also used for device model presentation in sysfs. 230 */ 231 #define dev_to_disk(device) \ 232 (dev_to_bdev(device)->bd_disk) 233 #define disk_to_dev(disk) \ 234 (&((disk)->part0->bd_device)) 235 236 #if IS_REACHABLE(CONFIG_CDROM) 237 #define disk_to_cdi(disk) ((disk)->cdi) 238 #else 239 #define disk_to_cdi(disk) NULL 240 #endif 241 242 static inline dev_t disk_devt(struct gendisk *disk) 243 { 244 return MKDEV(disk->major, disk->first_minor); 245 } 246 247 static inline int blk_validate_block_size(unsigned long bsize) 248 { 249 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) 250 return -EINVAL; 251 252 return 0; 253 } 254 255 static inline bool blk_op_is_passthrough(blk_opf_t op) 256 { 257 op &= REQ_OP_MASK; 258 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 259 } 260 261 /* 262 * Zoned block device models (zoned limit). 263 * 264 * Note: This needs to be ordered from the least to the most severe 265 * restrictions for the inheritance in blk_stack_limits() to work. 266 */ 267 enum blk_zoned_model { 268 BLK_ZONED_NONE = 0, /* Regular block device */ 269 BLK_ZONED_HA, /* Host-aware zoned block device */ 270 BLK_ZONED_HM, /* Host-managed zoned block device */ 271 }; 272 273 /* 274 * BLK_BOUNCE_NONE: never bounce (default) 275 * BLK_BOUNCE_HIGH: bounce all highmem pages 276 */ 277 enum blk_bounce { 278 BLK_BOUNCE_NONE, 279 BLK_BOUNCE_HIGH, 280 }; 281 282 struct queue_limits { 283 enum blk_bounce bounce; 284 unsigned long seg_boundary_mask; 285 unsigned long virt_boundary_mask; 286 287 unsigned int max_hw_sectors; 288 unsigned int max_dev_sectors; 289 unsigned int chunk_sectors; 290 unsigned int max_sectors; 291 unsigned int max_segment_size; 292 unsigned int physical_block_size; 293 unsigned int logical_block_size; 294 unsigned int alignment_offset; 295 unsigned int io_min; 296 unsigned int io_opt; 297 unsigned int max_discard_sectors; 298 unsigned int max_hw_discard_sectors; 299 unsigned int max_secure_erase_sectors; 300 unsigned int max_write_zeroes_sectors; 301 unsigned int max_zone_append_sectors; 302 unsigned int discard_granularity; 303 unsigned int discard_alignment; 304 unsigned int zone_write_granularity; 305 306 unsigned short max_segments; 307 unsigned short max_integrity_segments; 308 unsigned short max_discard_segments; 309 310 unsigned char misaligned; 311 unsigned char discard_misaligned; 312 unsigned char raid_partial_stripes_expensive; 313 enum blk_zoned_model zoned; 314 315 /* 316 * Drivers that set dma_alignment to less than 511 must be prepared to 317 * handle individual bvec's that are not a multiple of a SECTOR_SIZE 318 * due to possible offsets. 319 */ 320 unsigned int dma_alignment; 321 }; 322 323 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 324 void *data); 325 326 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 327 328 #ifdef CONFIG_BLK_DEV_ZONED 329 330 #define BLK_ALL_ZONES ((unsigned int)-1) 331 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 332 unsigned int nr_zones, report_zones_cb cb, void *data); 333 unsigned int bdev_nr_zones(struct block_device *bdev); 334 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, 335 sector_t sectors, sector_t nr_sectors, 336 gfp_t gfp_mask); 337 int blk_revalidate_disk_zones(struct gendisk *disk, 338 void (*update_driver_data)(struct gendisk *disk)); 339 340 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 341 unsigned int cmd, unsigned long arg); 342 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 343 unsigned int cmd, unsigned long arg); 344 345 #else /* CONFIG_BLK_DEV_ZONED */ 346 347 static inline unsigned int bdev_nr_zones(struct block_device *bdev) 348 { 349 return 0; 350 } 351 352 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 353 fmode_t mode, unsigned int cmd, 354 unsigned long arg) 355 { 356 return -ENOTTY; 357 } 358 359 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 360 fmode_t mode, unsigned int cmd, 361 unsigned long arg) 362 { 363 return -ENOTTY; 364 } 365 366 #endif /* CONFIG_BLK_DEV_ZONED */ 367 368 /* 369 * Independent access ranges: struct blk_independent_access_range describes 370 * a range of contiguous sectors that can be accessed using device command 371 * execution resources that are independent from the resources used for 372 * other access ranges. This is typically found with single-LUN multi-actuator 373 * HDDs where each access range is served by a different set of heads. 374 * The set of independent ranges supported by the device is defined using 375 * struct blk_independent_access_ranges. The independent ranges must not overlap 376 * and must include all sectors within the disk capacity (no sector holes 377 * allowed). 378 * For a device with multiple ranges, requests targeting sectors in different 379 * ranges can be executed in parallel. A request can straddle an access range 380 * boundary. 381 */ 382 struct blk_independent_access_range { 383 struct kobject kobj; 384 sector_t sector; 385 sector_t nr_sectors; 386 }; 387 388 struct blk_independent_access_ranges { 389 struct kobject kobj; 390 bool sysfs_registered; 391 unsigned int nr_ia_ranges; 392 struct blk_independent_access_range ia_range[]; 393 }; 394 395 struct request_queue { 396 struct request *last_merge; 397 struct elevator_queue *elevator; 398 399 struct percpu_ref q_usage_counter; 400 401 struct blk_queue_stats *stats; 402 struct rq_qos *rq_qos; 403 404 const struct blk_mq_ops *mq_ops; 405 406 /* sw queues */ 407 struct blk_mq_ctx __percpu *queue_ctx; 408 409 unsigned int queue_depth; 410 411 /* hw dispatch queues */ 412 struct xarray hctx_table; 413 unsigned int nr_hw_queues; 414 415 /* 416 * The queue owner gets to use this for whatever they like. 417 * ll_rw_blk doesn't touch it. 418 */ 419 void *queuedata; 420 421 /* 422 * various queue flags, see QUEUE_* below 423 */ 424 unsigned long queue_flags; 425 /* 426 * Number of contexts that have called blk_set_pm_only(). If this 427 * counter is above zero then only RQF_PM requests are processed. 428 */ 429 atomic_t pm_only; 430 431 /* 432 * ida allocated id for this queue. Used to index queues from 433 * ioctx. 434 */ 435 int id; 436 437 spinlock_t queue_lock; 438 439 struct gendisk *disk; 440 441 /* 442 * queue kobject 443 */ 444 struct kobject kobj; 445 446 /* 447 * mq queue kobject 448 */ 449 struct kobject *mq_kobj; 450 451 #ifdef CONFIG_BLK_DEV_INTEGRITY 452 struct blk_integrity integrity; 453 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 454 455 #ifdef CONFIG_PM 456 struct device *dev; 457 enum rpm_status rpm_status; 458 #endif 459 460 /* 461 * queue settings 462 */ 463 unsigned long nr_requests; /* Max # of requests */ 464 465 unsigned int dma_pad_mask; 466 467 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 468 struct blk_crypto_profile *crypto_profile; 469 struct kobject *crypto_kobject; 470 #endif 471 472 unsigned int rq_timeout; 473 int poll_nsec; 474 475 struct blk_stat_callback *poll_cb; 476 struct blk_rq_stat *poll_stat; 477 478 struct timer_list timeout; 479 struct work_struct timeout_work; 480 481 atomic_t nr_active_requests_shared_tags; 482 483 struct blk_mq_tags *sched_shared_tags; 484 485 struct list_head icq_list; 486 #ifdef CONFIG_BLK_CGROUP 487 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 488 struct blkcg_gq *root_blkg; 489 struct list_head blkg_list; 490 #endif 491 492 struct queue_limits limits; 493 494 unsigned int required_elevator_features; 495 496 int node; 497 #ifdef CONFIG_BLK_DEV_IO_TRACE 498 struct blk_trace __rcu *blk_trace; 499 #endif 500 /* 501 * for flush operations 502 */ 503 struct blk_flush_queue *fq; 504 505 struct list_head requeue_list; 506 spinlock_t requeue_lock; 507 struct delayed_work requeue_work; 508 509 struct mutex sysfs_lock; 510 struct mutex sysfs_dir_lock; 511 512 /* 513 * for reusing dead hctx instance in case of updating 514 * nr_hw_queues 515 */ 516 struct list_head unused_hctx_list; 517 spinlock_t unused_hctx_lock; 518 519 int mq_freeze_depth; 520 521 #ifdef CONFIG_BLK_DEV_THROTTLING 522 /* Throttle data */ 523 struct throtl_data *td; 524 #endif 525 struct rcu_head rcu_head; 526 wait_queue_head_t mq_freeze_wq; 527 /* 528 * Protect concurrent access to q_usage_counter by 529 * percpu_ref_kill() and percpu_ref_reinit(). 530 */ 531 struct mutex mq_freeze_lock; 532 533 int quiesce_depth; 534 535 struct blk_mq_tag_set *tag_set; 536 struct list_head tag_set_list; 537 538 struct dentry *debugfs_dir; 539 struct dentry *sched_debugfs_dir; 540 struct dentry *rqos_debugfs_dir; 541 /* 542 * Serializes all debugfs metadata operations using the above dentries. 543 */ 544 struct mutex debugfs_mutex; 545 546 bool mq_sysfs_init_done; 547 548 /** 549 * @srcu: Sleepable RCU. Use as lock when type of the request queue 550 * is blocking (BLK_MQ_F_BLOCKING). Must be the last member 551 */ 552 struct srcu_struct srcu[]; 553 }; 554 555 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 556 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 557 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 558 #define QUEUE_FLAG_HAS_SRCU 2 /* SRCU is allocated */ 559 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 560 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 561 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 562 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 563 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 564 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 565 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 566 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 567 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 568 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 569 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 570 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 571 #define QUEUE_FLAG_WC 17 /* Write back caching */ 572 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 573 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 574 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 575 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 576 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 577 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 578 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 579 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 580 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 581 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 582 #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ 583 584 #define QUEUE_FLAG_MQ_DEFAULT ((1UL << QUEUE_FLAG_IO_STAT) | \ 585 (1UL << QUEUE_FLAG_SAME_COMP) | \ 586 (1UL << QUEUE_FLAG_NOWAIT)) 587 588 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 589 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 590 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 591 592 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 593 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 594 #define blk_queue_has_srcu(q) test_bit(QUEUE_FLAG_HAS_SRCU, &(q)->queue_flags) 595 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 596 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 597 #define blk_queue_noxmerges(q) \ 598 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 599 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 600 #define blk_queue_stable_writes(q) \ 601 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 602 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 603 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 604 #define blk_queue_zone_resetall(q) \ 605 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 606 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 607 #define blk_queue_pci_p2pdma(q) \ 608 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 609 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 610 #define blk_queue_rq_alloc_time(q) \ 611 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 612 #else 613 #define blk_queue_rq_alloc_time(q) false 614 #endif 615 616 #define blk_noretry_request(rq) \ 617 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 618 REQ_FAILFAST_DRIVER)) 619 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 620 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 621 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 622 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) 623 624 extern void blk_set_pm_only(struct request_queue *q); 625 extern void blk_clear_pm_only(struct request_queue *q); 626 627 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 628 629 #define dma_map_bvec(dev, bv, dir, attrs) \ 630 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 631 (dir), (attrs)) 632 633 static inline bool queue_is_mq(struct request_queue *q) 634 { 635 return q->mq_ops; 636 } 637 638 #ifdef CONFIG_PM 639 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 640 { 641 return q->rpm_status; 642 } 643 #else 644 static inline enum rpm_status queue_rpm_status(struct request_queue *q) 645 { 646 return RPM_ACTIVE; 647 } 648 #endif 649 650 static inline enum blk_zoned_model 651 blk_queue_zoned_model(struct request_queue *q) 652 { 653 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 654 return q->limits.zoned; 655 return BLK_ZONED_NONE; 656 } 657 658 static inline bool blk_queue_is_zoned(struct request_queue *q) 659 { 660 switch (blk_queue_zoned_model(q)) { 661 case BLK_ZONED_HA: 662 case BLK_ZONED_HM: 663 return true; 664 default: 665 return false; 666 } 667 } 668 669 #ifdef CONFIG_BLK_DEV_ZONED 670 static inline unsigned int disk_nr_zones(struct gendisk *disk) 671 { 672 return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0; 673 } 674 675 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 676 { 677 if (!blk_queue_is_zoned(disk->queue)) 678 return 0; 679 return sector >> ilog2(disk->queue->limits.chunk_sectors); 680 } 681 682 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 683 { 684 if (!blk_queue_is_zoned(disk->queue)) 685 return false; 686 if (!disk->conv_zones_bitmap) 687 return true; 688 return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap); 689 } 690 691 static inline void disk_set_max_open_zones(struct gendisk *disk, 692 unsigned int max_open_zones) 693 { 694 disk->max_open_zones = max_open_zones; 695 } 696 697 static inline void disk_set_max_active_zones(struct gendisk *disk, 698 unsigned int max_active_zones) 699 { 700 disk->max_active_zones = max_active_zones; 701 } 702 703 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 704 { 705 return bdev->bd_disk->max_open_zones; 706 } 707 708 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 709 { 710 return bdev->bd_disk->max_active_zones; 711 } 712 713 #else /* CONFIG_BLK_DEV_ZONED */ 714 static inline unsigned int disk_nr_zones(struct gendisk *disk) 715 { 716 return 0; 717 } 718 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector) 719 { 720 return false; 721 } 722 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) 723 { 724 return 0; 725 } 726 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 727 { 728 return 0; 729 } 730 731 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 732 { 733 return 0; 734 } 735 #endif /* CONFIG_BLK_DEV_ZONED */ 736 737 static inline unsigned int blk_queue_depth(struct request_queue *q) 738 { 739 if (q->queue_depth) 740 return q->queue_depth; 741 742 return q->nr_requests; 743 } 744 745 /* 746 * default timeout for SG_IO if none specified 747 */ 748 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 749 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 750 751 /* This should not be used directly - use rq_for_each_segment */ 752 #define for_each_bio(_bio) \ 753 for (; _bio; _bio = _bio->bi_next) 754 755 int __must_check device_add_disk(struct device *parent, struct gendisk *disk, 756 const struct attribute_group **groups); 757 static inline int __must_check add_disk(struct gendisk *disk) 758 { 759 return device_add_disk(NULL, disk, NULL); 760 } 761 void del_gendisk(struct gendisk *gp); 762 void invalidate_disk(struct gendisk *disk); 763 void set_disk_ro(struct gendisk *disk, bool read_only); 764 void disk_uevent(struct gendisk *disk, enum kobject_action action); 765 766 static inline int get_disk_ro(struct gendisk *disk) 767 { 768 return disk->part0->bd_read_only || 769 test_bit(GD_READ_ONLY, &disk->state); 770 } 771 772 static inline int bdev_read_only(struct block_device *bdev) 773 { 774 return bdev->bd_read_only || get_disk_ro(bdev->bd_disk); 775 } 776 777 bool set_capacity_and_notify(struct gendisk *disk, sector_t size); 778 bool disk_force_media_change(struct gendisk *disk, unsigned int events); 779 780 void add_disk_randomness(struct gendisk *disk) __latent_entropy; 781 void rand_initialize_disk(struct gendisk *disk); 782 783 static inline sector_t get_start_sect(struct block_device *bdev) 784 { 785 return bdev->bd_start_sect; 786 } 787 788 static inline sector_t bdev_nr_sectors(struct block_device *bdev) 789 { 790 return bdev->bd_nr_sectors; 791 } 792 793 static inline loff_t bdev_nr_bytes(struct block_device *bdev) 794 { 795 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; 796 } 797 798 static inline sector_t get_capacity(struct gendisk *disk) 799 { 800 return bdev_nr_sectors(disk->part0); 801 } 802 803 static inline u64 sb_bdev_nr_blocks(struct super_block *sb) 804 { 805 return bdev_nr_sectors(sb->s_bdev) >> 806 (sb->s_blocksize_bits - SECTOR_SHIFT); 807 } 808 809 int bdev_disk_changed(struct gendisk *disk, bool invalidate); 810 811 void put_disk(struct gendisk *disk); 812 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass); 813 814 /** 815 * blk_alloc_disk - allocate a gendisk structure 816 * @node_id: numa node to allocate on 817 * 818 * Allocate and pre-initialize a gendisk structure for use with BIO based 819 * drivers. 820 * 821 * Context: can sleep 822 */ 823 #define blk_alloc_disk(node_id) \ 824 ({ \ 825 static struct lock_class_key __key; \ 826 \ 827 __blk_alloc_disk(node_id, &__key); \ 828 }) 829 830 int __register_blkdev(unsigned int major, const char *name, 831 void (*probe)(dev_t devt)); 832 #define register_blkdev(major, name) \ 833 __register_blkdev(major, name, NULL) 834 void unregister_blkdev(unsigned int major, const char *name); 835 836 bool bdev_check_media_change(struct block_device *bdev); 837 int __invalidate_device(struct block_device *bdev, bool kill_dirty); 838 void set_capacity(struct gendisk *disk, sector_t size); 839 840 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED 841 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); 842 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); 843 int bd_register_pending_holders(struct gendisk *disk); 844 #else 845 static inline int bd_link_disk_holder(struct block_device *bdev, 846 struct gendisk *disk) 847 { 848 return 0; 849 } 850 static inline void bd_unlink_disk_holder(struct block_device *bdev, 851 struct gendisk *disk) 852 { 853 } 854 static inline int bd_register_pending_holders(struct gendisk *disk) 855 { 856 return 0; 857 } 858 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ 859 860 dev_t part_devt(struct gendisk *disk, u8 partno); 861 void inc_diskseq(struct gendisk *disk); 862 dev_t blk_lookup_devt(const char *name, int partno); 863 void blk_request_module(dev_t devt); 864 865 extern int blk_register_queue(struct gendisk *disk); 866 extern void blk_unregister_queue(struct gendisk *disk); 867 void submit_bio_noacct(struct bio *bio); 868 struct bio *bio_split_to_limits(struct bio *bio); 869 870 extern int blk_lld_busy(struct request_queue *q); 871 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 872 extern void blk_queue_exit(struct request_queue *q); 873 extern void blk_sync_queue(struct request_queue *q); 874 875 /* Helper to convert REQ_OP_XXX to its string format XXX */ 876 extern const char *blk_op_str(enum req_op op); 877 878 int blk_status_to_errno(blk_status_t status); 879 blk_status_t errno_to_blk_status(int errno); 880 881 /* only poll the hardware once, don't continue until a completion was found */ 882 #define BLK_POLL_ONESHOT (1 << 0) 883 /* do not sleep to wait for the expected completion time */ 884 #define BLK_POLL_NOSLEEP (1 << 1) 885 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); 886 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 887 unsigned int flags); 888 889 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 890 { 891 return bdev->bd_queue; /* this is never NULL */ 892 } 893 894 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 895 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 896 897 static inline unsigned int bio_zone_no(struct bio *bio) 898 { 899 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 900 } 901 902 static inline unsigned int bio_zone_is_seq(struct bio *bio) 903 { 904 return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); 905 } 906 907 /* 908 * Return how much of the chunk is left to be used for I/O at a given offset. 909 */ 910 static inline unsigned int blk_chunk_sectors_left(sector_t offset, 911 unsigned int chunk_sectors) 912 { 913 if (unlikely(!is_power_of_2(chunk_sectors))) 914 return chunk_sectors - sector_div(offset, chunk_sectors); 915 return chunk_sectors - (offset & (chunk_sectors - 1)); 916 } 917 918 /* 919 * Access functions for manipulating queue properties 920 */ 921 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 922 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 923 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 924 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 925 extern void blk_queue_max_discard_segments(struct request_queue *, 926 unsigned short); 927 void blk_queue_max_secure_erase_sectors(struct request_queue *q, 928 unsigned int max_sectors); 929 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 930 extern void blk_queue_max_discard_sectors(struct request_queue *q, 931 unsigned int max_discard_sectors); 932 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 933 unsigned int max_write_same_sectors); 934 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 935 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 936 unsigned int max_zone_append_sectors); 937 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 938 void blk_queue_zone_write_granularity(struct request_queue *q, 939 unsigned int size); 940 extern void blk_queue_alignment_offset(struct request_queue *q, 941 unsigned int alignment); 942 void disk_update_readahead(struct gendisk *disk); 943 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 944 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 945 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 946 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 947 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 948 extern void blk_set_stacking_limits(struct queue_limits *lim); 949 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 950 sector_t offset); 951 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 952 sector_t offset); 953 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 954 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 955 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 956 extern void blk_queue_dma_alignment(struct request_queue *, int); 957 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 958 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 959 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 960 961 struct blk_independent_access_ranges * 962 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); 963 void disk_set_independent_access_ranges(struct gendisk *disk, 964 struct blk_independent_access_ranges *iars); 965 966 /* 967 * Elevator features for blk_queue_required_elevator_features: 968 */ 969 /* Supports zoned block devices sequential write constraint */ 970 #define ELEVATOR_F_ZBD_SEQ_WRITE (1U << 0) 971 972 extern void blk_queue_required_elevator_features(struct request_queue *q, 973 unsigned int features); 974 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 975 struct device *dev); 976 977 bool __must_check blk_get_queue(struct request_queue *); 978 extern void blk_put_queue(struct request_queue *); 979 980 void blk_mark_disk_dead(struct gendisk *disk); 981 982 #ifdef CONFIG_BLOCK 983 /* 984 * blk_plug permits building a queue of related requests by holding the I/O 985 * fragments for a short period. This allows merging of sequential requests 986 * into single larger request. As the requests are moved from a per-task list to 987 * the device's request_queue in a batch, this results in improved scalability 988 * as the lock contention for request_queue lock is reduced. 989 * 990 * It is ok not to disable preemption when adding the request to the plug list 991 * or when attempting a merge. For details, please see schedule() where 992 * blk_flush_plug() is called. 993 */ 994 struct blk_plug { 995 struct request *mq_list; /* blk-mq requests */ 996 997 /* if ios_left is > 1, we can batch tag/rq allocations */ 998 struct request *cached_rq; 999 unsigned short nr_ios; 1000 1001 unsigned short rq_count; 1002 1003 bool multiple_queues; 1004 bool has_elevator; 1005 bool nowait; 1006 1007 struct list_head cb_list; /* md requires an unplug callback */ 1008 }; 1009 1010 struct blk_plug_cb; 1011 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1012 struct blk_plug_cb { 1013 struct list_head list; 1014 blk_plug_cb_fn callback; 1015 void *data; 1016 }; 1017 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1018 void *data, int size); 1019 extern void blk_start_plug(struct blk_plug *); 1020 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); 1021 extern void blk_finish_plug(struct blk_plug *); 1022 1023 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); 1024 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1025 { 1026 if (plug) 1027 __blk_flush_plug(plug, async); 1028 } 1029 1030 int blkdev_issue_flush(struct block_device *bdev); 1031 long nr_blockdev_pages(void); 1032 #else /* CONFIG_BLOCK */ 1033 struct blk_plug { 1034 }; 1035 1036 static inline void blk_start_plug_nr_ios(struct blk_plug *plug, 1037 unsigned short nr_ios) 1038 { 1039 } 1040 1041 static inline void blk_start_plug(struct blk_plug *plug) 1042 { 1043 } 1044 1045 static inline void blk_finish_plug(struct blk_plug *plug) 1046 { 1047 } 1048 1049 static inline void blk_flush_plug(struct blk_plug *plug, bool async) 1050 { 1051 } 1052 1053 static inline int blkdev_issue_flush(struct block_device *bdev) 1054 { 1055 return 0; 1056 } 1057 1058 static inline long nr_blockdev_pages(void) 1059 { 1060 return 0; 1061 } 1062 #endif /* CONFIG_BLOCK */ 1063 1064 extern void blk_io_schedule(void); 1065 1066 int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1067 sector_t nr_sects, gfp_t gfp_mask); 1068 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1069 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); 1070 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, 1071 sector_t nr_sects, gfp_t gfp); 1072 1073 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1074 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1075 1076 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1077 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1078 unsigned flags); 1079 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1080 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1081 1082 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1083 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1084 { 1085 return blkdev_issue_discard(sb->s_bdev, 1086 block << (sb->s_blocksize_bits - 1087 SECTOR_SHIFT), 1088 nr_blocks << (sb->s_blocksize_bits - 1089 SECTOR_SHIFT), 1090 gfp_mask); 1091 } 1092 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1093 sector_t nr_blocks, gfp_t gfp_mask) 1094 { 1095 return blkdev_issue_zeroout(sb->s_bdev, 1096 block << (sb->s_blocksize_bits - 1097 SECTOR_SHIFT), 1098 nr_blocks << (sb->s_blocksize_bits - 1099 SECTOR_SHIFT), 1100 gfp_mask, 0); 1101 } 1102 1103 static inline bool bdev_is_partition(struct block_device *bdev) 1104 { 1105 return bdev->bd_partno; 1106 } 1107 1108 enum blk_default_limits { 1109 BLK_MAX_SEGMENTS = 128, 1110 BLK_SAFE_MAX_SECTORS = 255, 1111 BLK_DEF_MAX_SECTORS = 2560, 1112 BLK_MAX_SEGMENT_SIZE = 65536, 1113 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1114 }; 1115 1116 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1117 { 1118 return q->limits.seg_boundary_mask; 1119 } 1120 1121 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1122 { 1123 return q->limits.virt_boundary_mask; 1124 } 1125 1126 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1127 { 1128 return q->limits.max_sectors; 1129 } 1130 1131 static inline unsigned int queue_max_bytes(struct request_queue *q) 1132 { 1133 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; 1134 } 1135 1136 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1137 { 1138 return q->limits.max_hw_sectors; 1139 } 1140 1141 static inline unsigned short queue_max_segments(const struct request_queue *q) 1142 { 1143 return q->limits.max_segments; 1144 } 1145 1146 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1147 { 1148 return q->limits.max_discard_segments; 1149 } 1150 1151 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1152 { 1153 return q->limits.max_segment_size; 1154 } 1155 1156 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1157 { 1158 1159 const struct queue_limits *l = &q->limits; 1160 1161 return min(l->max_zone_append_sectors, l->max_sectors); 1162 } 1163 1164 static inline unsigned int 1165 bdev_max_zone_append_sectors(struct block_device *bdev) 1166 { 1167 return queue_max_zone_append_sectors(bdev_get_queue(bdev)); 1168 } 1169 1170 static inline unsigned int bdev_max_segments(struct block_device *bdev) 1171 { 1172 return queue_max_segments(bdev_get_queue(bdev)); 1173 } 1174 1175 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1176 { 1177 int retval = 512; 1178 1179 if (q && q->limits.logical_block_size) 1180 retval = q->limits.logical_block_size; 1181 1182 return retval; 1183 } 1184 1185 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1186 { 1187 return queue_logical_block_size(bdev_get_queue(bdev)); 1188 } 1189 1190 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1191 { 1192 return q->limits.physical_block_size; 1193 } 1194 1195 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1196 { 1197 return queue_physical_block_size(bdev_get_queue(bdev)); 1198 } 1199 1200 static inline unsigned int queue_io_min(const struct request_queue *q) 1201 { 1202 return q->limits.io_min; 1203 } 1204 1205 static inline int bdev_io_min(struct block_device *bdev) 1206 { 1207 return queue_io_min(bdev_get_queue(bdev)); 1208 } 1209 1210 static inline unsigned int queue_io_opt(const struct request_queue *q) 1211 { 1212 return q->limits.io_opt; 1213 } 1214 1215 static inline int bdev_io_opt(struct block_device *bdev) 1216 { 1217 return queue_io_opt(bdev_get_queue(bdev)); 1218 } 1219 1220 static inline unsigned int 1221 queue_zone_write_granularity(const struct request_queue *q) 1222 { 1223 return q->limits.zone_write_granularity; 1224 } 1225 1226 static inline unsigned int 1227 bdev_zone_write_granularity(struct block_device *bdev) 1228 { 1229 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1230 } 1231 1232 int bdev_alignment_offset(struct block_device *bdev); 1233 unsigned int bdev_discard_alignment(struct block_device *bdev); 1234 1235 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) 1236 { 1237 return bdev_get_queue(bdev)->limits.max_discard_sectors; 1238 } 1239 1240 static inline unsigned int bdev_discard_granularity(struct block_device *bdev) 1241 { 1242 return bdev_get_queue(bdev)->limits.discard_granularity; 1243 } 1244 1245 static inline unsigned int 1246 bdev_max_secure_erase_sectors(struct block_device *bdev) 1247 { 1248 return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; 1249 } 1250 1251 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1252 { 1253 struct request_queue *q = bdev_get_queue(bdev); 1254 1255 if (q) 1256 return q->limits.max_write_zeroes_sectors; 1257 1258 return 0; 1259 } 1260 1261 static inline bool bdev_nonrot(struct block_device *bdev) 1262 { 1263 return blk_queue_nonrot(bdev_get_queue(bdev)); 1264 } 1265 1266 static inline bool bdev_stable_writes(struct block_device *bdev) 1267 { 1268 return test_bit(QUEUE_FLAG_STABLE_WRITES, 1269 &bdev_get_queue(bdev)->queue_flags); 1270 } 1271 1272 static inline bool bdev_write_cache(struct block_device *bdev) 1273 { 1274 return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags); 1275 } 1276 1277 static inline bool bdev_fua(struct block_device *bdev) 1278 { 1279 return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags); 1280 } 1281 1282 static inline bool bdev_nowait(struct block_device *bdev) 1283 { 1284 return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags); 1285 } 1286 1287 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1288 { 1289 struct request_queue *q = bdev_get_queue(bdev); 1290 1291 if (q) 1292 return blk_queue_zoned_model(q); 1293 1294 return BLK_ZONED_NONE; 1295 } 1296 1297 static inline bool bdev_is_zoned(struct block_device *bdev) 1298 { 1299 struct request_queue *q = bdev_get_queue(bdev); 1300 1301 if (q) 1302 return blk_queue_is_zoned(q); 1303 1304 return false; 1305 } 1306 1307 static inline bool bdev_op_is_zoned_write(struct block_device *bdev, 1308 blk_opf_t op) 1309 { 1310 if (!bdev_is_zoned(bdev)) 1311 return false; 1312 1313 return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES; 1314 } 1315 1316 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1317 { 1318 struct request_queue *q = bdev_get_queue(bdev); 1319 1320 if (!blk_queue_is_zoned(q)) 1321 return 0; 1322 return q->limits.chunk_sectors; 1323 } 1324 1325 static inline int queue_dma_alignment(const struct request_queue *q) 1326 { 1327 return q ? q->limits.dma_alignment : 511; 1328 } 1329 1330 static inline unsigned int bdev_dma_alignment(struct block_device *bdev) 1331 { 1332 return queue_dma_alignment(bdev_get_queue(bdev)); 1333 } 1334 1335 static inline bool bdev_iter_is_aligned(struct block_device *bdev, 1336 struct iov_iter *iter) 1337 { 1338 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), 1339 bdev_logical_block_size(bdev) - 1); 1340 } 1341 1342 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1343 unsigned int len) 1344 { 1345 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1346 return !(addr & alignment) && !(len & alignment); 1347 } 1348 1349 /* assumes size > 256 */ 1350 static inline unsigned int blksize_bits(unsigned int size) 1351 { 1352 unsigned int bits = 8; 1353 do { 1354 bits++; 1355 size >>= 1; 1356 } while (size > 256); 1357 return bits; 1358 } 1359 1360 static inline unsigned int block_size(struct block_device *bdev) 1361 { 1362 return 1 << bdev->bd_inode->i_blkbits; 1363 } 1364 1365 int kblockd_schedule_work(struct work_struct *work); 1366 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1367 1368 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1369 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1370 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1371 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1372 1373 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1374 1375 bool blk_crypto_register(struct blk_crypto_profile *profile, 1376 struct request_queue *q); 1377 1378 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1379 1380 static inline bool blk_crypto_register(struct blk_crypto_profile *profile, 1381 struct request_queue *q) 1382 { 1383 return true; 1384 } 1385 1386 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1387 1388 enum blk_unique_id { 1389 /* these match the Designator Types specified in SPC */ 1390 BLK_UID_T10 = 1, 1391 BLK_UID_EUI64 = 2, 1392 BLK_UID_NAA = 3, 1393 }; 1394 1395 #define NFL4_UFLG_MASK 0x0000003F 1396 1397 struct block_device_operations { 1398 void (*submit_bio)(struct bio *bio); 1399 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, 1400 unsigned int flags); 1401 int (*open) (struct block_device *, fmode_t); 1402 void (*release) (struct gendisk *, fmode_t); 1403 int (*rw_page)(struct block_device *, sector_t, struct page *, enum req_op); 1404 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1405 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1406 unsigned int (*check_events) (struct gendisk *disk, 1407 unsigned int clearing); 1408 void (*unlock_native_capacity) (struct gendisk *); 1409 int (*getgeo)(struct block_device *, struct hd_geometry *); 1410 int (*set_read_only)(struct block_device *bdev, bool ro); 1411 void (*free_disk)(struct gendisk *disk); 1412 /* this callback is with swap_lock and sometimes page table lock held */ 1413 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1414 int (*report_zones)(struct gendisk *, sector_t sector, 1415 unsigned int nr_zones, report_zones_cb cb, void *data); 1416 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1417 /* returns the length of the identifier or a negative errno: */ 1418 int (*get_unique_id)(struct gendisk *disk, u8 id[16], 1419 enum blk_unique_id id_type); 1420 struct module *owner; 1421 const struct pr_ops *pr_ops; 1422 1423 /* 1424 * Special callback for probing GPT entry at a given sector. 1425 * Needed by Android devices, used by GPT scanner and MMC blk 1426 * driver. 1427 */ 1428 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); 1429 }; 1430 1431 #ifdef CONFIG_COMPAT 1432 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1433 unsigned int, unsigned long); 1434 #else 1435 #define blkdev_compat_ptr_ioctl NULL 1436 #endif 1437 1438 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1439 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1440 struct writeback_control *); 1441 1442 static inline void blk_wake_io_task(struct task_struct *waiter) 1443 { 1444 /* 1445 * If we're polling, the task itself is doing the completions. For 1446 * that case, we don't need to signal a wakeup, it's enough to just 1447 * mark us as RUNNING. 1448 */ 1449 if (waiter == current) 1450 __set_current_state(TASK_RUNNING); 1451 else 1452 wake_up_process(waiter); 1453 } 1454 1455 unsigned long bdev_start_io_acct(struct block_device *bdev, 1456 unsigned int sectors, enum req_op op, 1457 unsigned long start_time); 1458 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 1459 unsigned long start_time); 1460 1461 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time); 1462 unsigned long bio_start_io_acct(struct bio *bio); 1463 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1464 struct block_device *orig_bdev); 1465 1466 /** 1467 * bio_end_io_acct - end I/O accounting for bio based drivers 1468 * @bio: bio to end account for 1469 * @start_time: start time returned by bio_start_io_acct() 1470 */ 1471 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1472 { 1473 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1474 } 1475 1476 int bdev_read_only(struct block_device *bdev); 1477 int set_blocksize(struct block_device *bdev, int size); 1478 1479 int lookup_bdev(const char *pathname, dev_t *dev); 1480 1481 void blkdev_show(struct seq_file *seqf, off_t offset); 1482 1483 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1484 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1485 #ifdef CONFIG_BLOCK 1486 #define BLKDEV_MAJOR_MAX 512 1487 #else 1488 #define BLKDEV_MAJOR_MAX 0 1489 #endif 1490 1491 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1492 void *holder); 1493 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1494 int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1495 void bd_abort_claiming(struct block_device *bdev, void *holder); 1496 void blkdev_put(struct block_device *bdev, fmode_t mode); 1497 1498 /* just for blk-cgroup, don't use elsewhere */ 1499 struct block_device *blkdev_get_no_open(dev_t dev); 1500 void blkdev_put_no_open(struct block_device *bdev); 1501 1502 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1503 void bdev_add(struct block_device *bdev, dev_t dev); 1504 struct block_device *I_BDEV(struct inode *inode); 1505 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1506 loff_t lend); 1507 1508 #ifdef CONFIG_BLOCK 1509 void invalidate_bdev(struct block_device *bdev); 1510 int sync_blockdev(struct block_device *bdev); 1511 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); 1512 int sync_blockdev_nowait(struct block_device *bdev); 1513 void sync_bdevs(bool wait); 1514 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat); 1515 void printk_all_partitions(void); 1516 #else 1517 static inline void invalidate_bdev(struct block_device *bdev) 1518 { 1519 } 1520 static inline int sync_blockdev(struct block_device *bdev) 1521 { 1522 return 0; 1523 } 1524 static inline int sync_blockdev_nowait(struct block_device *bdev) 1525 { 1526 return 0; 1527 } 1528 static inline void sync_bdevs(bool wait) 1529 { 1530 } 1531 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat) 1532 { 1533 } 1534 static inline void printk_all_partitions(void) 1535 { 1536 } 1537 #endif /* CONFIG_BLOCK */ 1538 1539 int fsync_bdev(struct block_device *bdev); 1540 1541 int freeze_bdev(struct block_device *bdev); 1542 int thaw_bdev(struct block_device *bdev); 1543 1544 struct io_comp_batch { 1545 struct request *req_list; 1546 bool need_ts; 1547 void (*complete)(struct io_comp_batch *); 1548 }; 1549 1550 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } 1551 1552 #endif /* _LINUX_BLKDEV_H */ 1553