1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_BLKDEV_H 3 #define _LINUX_BLKDEV_H 4 5 #include <linux/sched.h> 6 #include <linux/sched/clock.h> 7 #include <linux/major.h> 8 #include <linux/genhd.h> 9 #include <linux/list.h> 10 #include <linux/llist.h> 11 #include <linux/minmax.h> 12 #include <linux/timer.h> 13 #include <linux/workqueue.h> 14 #include <linux/pagemap.h> 15 #include <linux/backing-dev-defs.h> 16 #include <linux/wait.h> 17 #include <linux/mempool.h> 18 #include <linux/pfn.h> 19 #include <linux/bio.h> 20 #include <linux/stringify.h> 21 #include <linux/gfp.h> 22 #include <linux/bsg.h> 23 #include <linux/smp.h> 24 #include <linux/rcupdate.h> 25 #include <linux/percpu-refcount.h> 26 #include <linux/scatterlist.h> 27 #include <linux/blkzoned.h> 28 #include <linux/pm.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_qos; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 struct blk_keyslot_manager; 46 47 #define BLKDEV_MIN_RQ 4 48 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50 /* Must be consistent with blk_mq_poll_stats_bkt() */ 51 #define BLK_MQ_POLL_STATS_BKTS 16 52 53 /* Doing classic polling */ 54 #define BLK_MQ_POLL_CLASSIC -1 55 56 /* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60 #define BLKCG_MAX_POLS 5 61 62 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64 /* 65 * request flags */ 66 typedef __u32 __bitwise req_flags_t; 67 68 /* elevator knows about this request */ 69 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 70 /* drive already may have started this one */ 71 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 72 /* may not be passed by ioscheduler */ 73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 74 /* request for flush sequence */ 75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 76 /* merge of different types, fail separately */ 77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 78 /* track inflight for MQ */ 79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 80 /* don't call prep for this one */ 81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 82 /* set for "ide_preempt" requests and also for requests for which the SCSI 83 "quiesce" state must be ignored. */ 84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 85 /* vaguely specified driver internal error. Ignored by the block layer */ 86 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 87 /* don't warn about errors */ 88 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 89 /* elevator private data attached */ 90 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 91 /* account into disk and partition IO statistics */ 92 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 93 /* request came from our alloc pool */ 94 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 95 /* runtime pm request */ 96 #define RQF_PM ((__force req_flags_t)(1 << 15)) 97 /* on IO scheduler merge hash */ 98 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 99 /* track IO completion time */ 100 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 101 /* Look at ->special_vec for the actual data payload instead of the 102 bio chain. */ 103 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 104 /* The per-zone write lock is held for this request */ 105 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 106 /* already slept for hybrid poll */ 107 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 108 /* ->timeout has been called, don't expire again */ 109 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 110 111 /* flags that prevent us from merging requests: */ 112 #define RQF_NOMERGE_FLAGS \ 113 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 114 115 /* 116 * Request state for blk-mq. 117 */ 118 enum mq_rq_state { 119 MQ_RQ_IDLE = 0, 120 MQ_RQ_IN_FLIGHT = 1, 121 MQ_RQ_COMPLETE = 2, 122 }; 123 124 /* 125 * Try to put the fields that are referenced together in the same cacheline. 126 * 127 * If you modify this structure, make sure to update blk_rq_init() and 128 * especially blk_mq_rq_ctx_init() to take care of the added fields. 129 */ 130 struct request { 131 struct request_queue *q; 132 struct blk_mq_ctx *mq_ctx; 133 struct blk_mq_hw_ctx *mq_hctx; 134 135 unsigned int cmd_flags; /* op and common flags */ 136 req_flags_t rq_flags; 137 138 int tag; 139 int internal_tag; 140 141 /* the following two fields are internal, NEVER access directly */ 142 unsigned int __data_len; /* total data len */ 143 sector_t __sector; /* sector cursor */ 144 145 struct bio *bio; 146 struct bio *biotail; 147 148 struct list_head queuelist; 149 150 /* 151 * The hash is used inside the scheduler, and killed once the 152 * request reaches the dispatch list. The ipi_list is only used 153 * to queue the request for softirq completion, which is long 154 * after the request has been unhashed (and even removed from 155 * the dispatch list). 156 */ 157 union { 158 struct hlist_node hash; /* merge hash */ 159 struct list_head ipi_list; 160 }; 161 162 /* 163 * The rb_node is only used inside the io scheduler, requests 164 * are pruned when moved to the dispatch queue. So let the 165 * completion_data share space with the rb_node. 166 */ 167 union { 168 struct rb_node rb_node; /* sort/lookup */ 169 struct bio_vec special_vec; 170 void *completion_data; 171 int error_count; /* for legacy drivers, don't use */ 172 }; 173 174 /* 175 * Three pointers are available for the IO schedulers, if they need 176 * more they have to dynamically allocate it. Flush requests are 177 * never put on the IO scheduler. So let the flush fields share 178 * space with the elevator data. 179 */ 180 union { 181 struct { 182 struct io_cq *icq; 183 void *priv[2]; 184 } elv; 185 186 struct { 187 unsigned int seq; 188 struct list_head list; 189 rq_end_io_fn *saved_end_io; 190 } flush; 191 }; 192 193 struct gendisk *rq_disk; 194 struct hd_struct *part; 195 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 196 /* Time that the first bio started allocating this request. */ 197 u64 alloc_time_ns; 198 #endif 199 /* Time that this request was allocated for this IO. */ 200 u64 start_time_ns; 201 /* Time that I/O was submitted to the device. */ 202 u64 io_start_time_ns; 203 204 #ifdef CONFIG_BLK_WBT 205 unsigned short wbt_flags; 206 #endif 207 /* 208 * rq sectors used for blk stats. It has the same value 209 * with blk_rq_sectors(rq), except that it never be zeroed 210 * by completion. 211 */ 212 unsigned short stats_sectors; 213 214 /* 215 * Number of scatter-gather DMA addr+len pairs after 216 * physical address coalescing is performed. 217 */ 218 unsigned short nr_phys_segments; 219 220 #if defined(CONFIG_BLK_DEV_INTEGRITY) 221 unsigned short nr_integrity_segments; 222 #endif 223 224 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 225 struct bio_crypt_ctx *crypt_ctx; 226 struct blk_ksm_keyslot *crypt_keyslot; 227 #endif 228 229 unsigned short write_hint; 230 unsigned short ioprio; 231 232 enum mq_rq_state state; 233 refcount_t ref; 234 235 unsigned int timeout; 236 unsigned long deadline; 237 238 union { 239 struct __call_single_data csd; 240 u64 fifo_time; 241 }; 242 243 /* 244 * completion callback. 245 */ 246 rq_end_io_fn *end_io; 247 void *end_io_data; 248 }; 249 250 static inline bool blk_op_is_scsi(unsigned int op) 251 { 252 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT; 253 } 254 255 static inline bool blk_op_is_private(unsigned int op) 256 { 257 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 258 } 259 260 static inline bool blk_rq_is_scsi(struct request *rq) 261 { 262 return blk_op_is_scsi(req_op(rq)); 263 } 264 265 static inline bool blk_rq_is_private(struct request *rq) 266 { 267 return blk_op_is_private(req_op(rq)); 268 } 269 270 static inline bool blk_rq_is_passthrough(struct request *rq) 271 { 272 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 273 } 274 275 static inline bool bio_is_passthrough(struct bio *bio) 276 { 277 unsigned op = bio_op(bio); 278 279 return blk_op_is_scsi(op) || blk_op_is_private(op); 280 } 281 282 static inline unsigned short req_get_ioprio(struct request *req) 283 { 284 return req->ioprio; 285 } 286 287 #include <linux/elevator.h> 288 289 struct blk_queue_ctx; 290 291 struct bio_vec; 292 293 enum blk_eh_timer_return { 294 BLK_EH_DONE, /* drivers has completed the command */ 295 BLK_EH_RESET_TIMER, /* reset timer and try again */ 296 }; 297 298 enum blk_queue_state { 299 Queue_down, 300 Queue_up, 301 }; 302 303 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 304 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 305 306 #define BLK_SCSI_MAX_CMDS (256) 307 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 308 309 /* 310 * Zoned block device models (zoned limit). 311 * 312 * Note: This needs to be ordered from the least to the most severe 313 * restrictions for the inheritance in blk_stack_limits() to work. 314 */ 315 enum blk_zoned_model { 316 BLK_ZONED_NONE = 0, /* Regular block device */ 317 BLK_ZONED_HA, /* Host-aware zoned block device */ 318 BLK_ZONED_HM, /* Host-managed zoned block device */ 319 }; 320 321 struct queue_limits { 322 unsigned long bounce_pfn; 323 unsigned long seg_boundary_mask; 324 unsigned long virt_boundary_mask; 325 326 unsigned int max_hw_sectors; 327 unsigned int max_dev_sectors; 328 unsigned int chunk_sectors; 329 unsigned int max_sectors; 330 unsigned int max_segment_size; 331 unsigned int physical_block_size; 332 unsigned int logical_block_size; 333 unsigned int alignment_offset; 334 unsigned int io_min; 335 unsigned int io_opt; 336 unsigned int max_discard_sectors; 337 unsigned int max_hw_discard_sectors; 338 unsigned int max_write_same_sectors; 339 unsigned int max_write_zeroes_sectors; 340 unsigned int max_zone_append_sectors; 341 unsigned int discard_granularity; 342 unsigned int discard_alignment; 343 344 unsigned short max_segments; 345 unsigned short max_integrity_segments; 346 unsigned short max_discard_segments; 347 348 unsigned char misaligned; 349 unsigned char discard_misaligned; 350 unsigned char raid_partial_stripes_expensive; 351 enum blk_zoned_model zoned; 352 }; 353 354 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 355 void *data); 356 357 void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 358 359 #ifdef CONFIG_BLK_DEV_ZONED 360 361 #define BLK_ALL_ZONES ((unsigned int)-1) 362 int blkdev_report_zones(struct block_device *bdev, sector_t sector, 363 unsigned int nr_zones, report_zones_cb cb, void *data); 364 unsigned int blkdev_nr_zones(struct gendisk *disk); 365 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 366 sector_t sectors, sector_t nr_sectors, 367 gfp_t gfp_mask); 368 int blk_revalidate_disk_zones(struct gendisk *disk, 369 void (*update_driver_data)(struct gendisk *disk)); 370 371 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 372 unsigned int cmd, unsigned long arg); 373 extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 374 unsigned int cmd, unsigned long arg); 375 376 #else /* CONFIG_BLK_DEV_ZONED */ 377 378 static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 379 { 380 return 0; 381 } 382 383 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 384 fmode_t mode, unsigned int cmd, 385 unsigned long arg) 386 { 387 return -ENOTTY; 388 } 389 390 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 391 fmode_t mode, unsigned int cmd, 392 unsigned long arg) 393 { 394 return -ENOTTY; 395 } 396 397 #endif /* CONFIG_BLK_DEV_ZONED */ 398 399 struct request_queue { 400 struct request *last_merge; 401 struct elevator_queue *elevator; 402 403 struct percpu_ref q_usage_counter; 404 405 struct blk_queue_stats *stats; 406 struct rq_qos *rq_qos; 407 408 const struct blk_mq_ops *mq_ops; 409 410 /* sw queues */ 411 struct blk_mq_ctx __percpu *queue_ctx; 412 413 unsigned int queue_depth; 414 415 /* hw dispatch queues */ 416 struct blk_mq_hw_ctx **queue_hw_ctx; 417 unsigned int nr_hw_queues; 418 419 struct backing_dev_info *backing_dev_info; 420 421 /* 422 * The queue owner gets to use this for whatever they like. 423 * ll_rw_blk doesn't touch it. 424 */ 425 void *queuedata; 426 427 /* 428 * various queue flags, see QUEUE_* below 429 */ 430 unsigned long queue_flags; 431 /* 432 * Number of contexts that have called blk_set_pm_only(). If this 433 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are 434 * processed. 435 */ 436 atomic_t pm_only; 437 438 /* 439 * ida allocated id for this queue. Used to index queues from 440 * ioctx. 441 */ 442 int id; 443 444 /* 445 * queue needs bounce pages for pages above this limit 446 */ 447 gfp_t bounce_gfp; 448 449 spinlock_t queue_lock; 450 451 /* 452 * queue kobject 453 */ 454 struct kobject kobj; 455 456 /* 457 * mq queue kobject 458 */ 459 struct kobject *mq_kobj; 460 461 #ifdef CONFIG_BLK_DEV_INTEGRITY 462 struct blk_integrity integrity; 463 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 464 465 #ifdef CONFIG_PM 466 struct device *dev; 467 enum rpm_status rpm_status; 468 unsigned int nr_pending; 469 #endif 470 471 /* 472 * queue settings 473 */ 474 unsigned long nr_requests; /* Max # of requests */ 475 476 unsigned int dma_pad_mask; 477 unsigned int dma_alignment; 478 479 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 480 /* Inline crypto capabilities */ 481 struct blk_keyslot_manager *ksm; 482 #endif 483 484 unsigned int rq_timeout; 485 int poll_nsec; 486 487 struct blk_stat_callback *poll_cb; 488 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 489 490 struct timer_list timeout; 491 struct work_struct timeout_work; 492 493 atomic_t nr_active_requests_shared_sbitmap; 494 495 struct list_head icq_list; 496 #ifdef CONFIG_BLK_CGROUP 497 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 498 struct blkcg_gq *root_blkg; 499 struct list_head blkg_list; 500 #endif 501 502 struct queue_limits limits; 503 504 unsigned int required_elevator_features; 505 506 #ifdef CONFIG_BLK_DEV_ZONED 507 /* 508 * Zoned block device information for request dispatch control. 509 * nr_zones is the total number of zones of the device. This is always 510 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 511 * bits which indicates if a zone is conventional (bit set) or 512 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 513 * bits which indicates if a zone is write locked, that is, if a write 514 * request targeting the zone was dispatched. All three fields are 515 * initialized by the low level device driver (e.g. scsi/sd.c). 516 * Stacking drivers (device mappers) may or may not initialize 517 * these fields. 518 * 519 * Reads of this information must be protected with blk_queue_enter() / 520 * blk_queue_exit(). Modifying this information is only allowed while 521 * no requests are being processed. See also blk_mq_freeze_queue() and 522 * blk_mq_unfreeze_queue(). 523 */ 524 unsigned int nr_zones; 525 unsigned long *conv_zones_bitmap; 526 unsigned long *seq_zones_wlock; 527 unsigned int max_open_zones; 528 unsigned int max_active_zones; 529 #endif /* CONFIG_BLK_DEV_ZONED */ 530 531 /* 532 * sg stuff 533 */ 534 unsigned int sg_timeout; 535 unsigned int sg_reserved_size; 536 int node; 537 struct mutex debugfs_mutex; 538 #ifdef CONFIG_BLK_DEV_IO_TRACE 539 struct blk_trace __rcu *blk_trace; 540 #endif 541 /* 542 * for flush operations 543 */ 544 struct blk_flush_queue *fq; 545 546 struct list_head requeue_list; 547 spinlock_t requeue_lock; 548 struct delayed_work requeue_work; 549 550 struct mutex sysfs_lock; 551 struct mutex sysfs_dir_lock; 552 553 /* 554 * for reusing dead hctx instance in case of updating 555 * nr_hw_queues 556 */ 557 struct list_head unused_hctx_list; 558 spinlock_t unused_hctx_lock; 559 560 int mq_freeze_depth; 561 562 #if defined(CONFIG_BLK_DEV_BSG) 563 struct bsg_class_device bsg_dev; 564 #endif 565 566 #ifdef CONFIG_BLK_DEV_THROTTLING 567 /* Throttle data */ 568 struct throtl_data *td; 569 #endif 570 struct rcu_head rcu_head; 571 wait_queue_head_t mq_freeze_wq; 572 /* 573 * Protect concurrent access to q_usage_counter by 574 * percpu_ref_kill() and percpu_ref_reinit(). 575 */ 576 struct mutex mq_freeze_lock; 577 578 struct blk_mq_tag_set *tag_set; 579 struct list_head tag_set_list; 580 struct bio_set bio_split; 581 582 struct dentry *debugfs_dir; 583 584 #ifdef CONFIG_BLK_DEBUG_FS 585 struct dentry *sched_debugfs_dir; 586 struct dentry *rqos_debugfs_dir; 587 #endif 588 589 bool mq_sysfs_init_done; 590 591 size_t cmd_size; 592 593 #define BLK_MAX_WRITE_HINTS 5 594 u64 write_hints[BLK_MAX_WRITE_HINTS]; 595 }; 596 597 /* Keep blk_queue_flag_name[] in sync with the definitions below */ 598 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 599 #define QUEUE_FLAG_DYING 1 /* queue being torn down */ 600 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 601 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 602 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 603 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 604 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 605 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 606 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 607 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 608 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 609 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 610 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 611 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 612 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 613 #define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 614 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 615 #define QUEUE_FLAG_WC 17 /* Write back caching */ 616 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 617 #define QUEUE_FLAG_DAX 19 /* device supports DAX */ 618 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 619 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 620 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 621 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 622 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 623 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 624 #define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 625 #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 626 #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 627 #define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 628 629 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 630 (1 << QUEUE_FLAG_SAME_COMP) | \ 631 (1 << QUEUE_FLAG_NOWAIT)) 632 633 void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 634 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 635 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 636 637 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 638 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 639 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 640 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 641 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 642 #define blk_queue_noxmerges(q) \ 643 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 644 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 645 #define blk_queue_stable_writes(q) \ 646 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 647 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 648 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 649 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 650 #define blk_queue_zone_resetall(q) \ 651 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 652 #define blk_queue_secure_erase(q) \ 653 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 654 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 655 #define blk_queue_scsi_passthrough(q) \ 656 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 657 #define blk_queue_pci_p2pdma(q) \ 658 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 659 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 660 #define blk_queue_rq_alloc_time(q) \ 661 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 662 #else 663 #define blk_queue_rq_alloc_time(q) false 664 #endif 665 666 #define blk_noretry_request(rq) \ 667 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 668 REQ_FAILFAST_DRIVER)) 669 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 670 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 671 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 672 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 673 #define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 674 675 extern void blk_set_pm_only(struct request_queue *q); 676 extern void blk_clear_pm_only(struct request_queue *q); 677 678 static inline bool blk_account_rq(struct request *rq) 679 { 680 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 681 } 682 683 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 684 685 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 686 687 #define rq_dma_dir(rq) \ 688 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 689 690 #define dma_map_bvec(dev, bv, dir, attrs) \ 691 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 692 (dir), (attrs)) 693 694 static inline bool queue_is_mq(struct request_queue *q) 695 { 696 return q->mq_ops; 697 } 698 699 static inline enum blk_zoned_model 700 blk_queue_zoned_model(struct request_queue *q) 701 { 702 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 703 return q->limits.zoned; 704 return BLK_ZONED_NONE; 705 } 706 707 static inline bool blk_queue_is_zoned(struct request_queue *q) 708 { 709 switch (blk_queue_zoned_model(q)) { 710 case BLK_ZONED_HA: 711 case BLK_ZONED_HM: 712 return true; 713 default: 714 return false; 715 } 716 } 717 718 static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 719 { 720 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 721 } 722 723 #ifdef CONFIG_BLK_DEV_ZONED 724 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 725 { 726 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 727 } 728 729 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 730 sector_t sector) 731 { 732 if (!blk_queue_is_zoned(q)) 733 return 0; 734 return sector >> ilog2(q->limits.chunk_sectors); 735 } 736 737 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 738 sector_t sector) 739 { 740 if (!blk_queue_is_zoned(q)) 741 return false; 742 if (!q->conv_zones_bitmap) 743 return true; 744 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 745 } 746 747 static inline void blk_queue_max_open_zones(struct request_queue *q, 748 unsigned int max_open_zones) 749 { 750 q->max_open_zones = max_open_zones; 751 } 752 753 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 754 { 755 return q->max_open_zones; 756 } 757 758 static inline void blk_queue_max_active_zones(struct request_queue *q, 759 unsigned int max_active_zones) 760 { 761 q->max_active_zones = max_active_zones; 762 } 763 764 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 765 { 766 return q->max_active_zones; 767 } 768 #else /* CONFIG_BLK_DEV_ZONED */ 769 static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 770 { 771 return 0; 772 } 773 static inline bool blk_queue_zone_is_seq(struct request_queue *q, 774 sector_t sector) 775 { 776 return false; 777 } 778 static inline unsigned int blk_queue_zone_no(struct request_queue *q, 779 sector_t sector) 780 { 781 return 0; 782 } 783 static inline unsigned int queue_max_open_zones(const struct request_queue *q) 784 { 785 return 0; 786 } 787 static inline unsigned int queue_max_active_zones(const struct request_queue *q) 788 { 789 return 0; 790 } 791 #endif /* CONFIG_BLK_DEV_ZONED */ 792 793 static inline bool rq_is_sync(struct request *rq) 794 { 795 return op_is_sync(rq->cmd_flags); 796 } 797 798 static inline bool rq_mergeable(struct request *rq) 799 { 800 if (blk_rq_is_passthrough(rq)) 801 return false; 802 803 if (req_op(rq) == REQ_OP_FLUSH) 804 return false; 805 806 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 807 return false; 808 809 if (req_op(rq) == REQ_OP_ZONE_APPEND) 810 return false; 811 812 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 813 return false; 814 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 815 return false; 816 817 return true; 818 } 819 820 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 821 { 822 if (bio_page(a) == bio_page(b) && 823 bio_offset(a) == bio_offset(b)) 824 return true; 825 826 return false; 827 } 828 829 static inline unsigned int blk_queue_depth(struct request_queue *q) 830 { 831 if (q->queue_depth) 832 return q->queue_depth; 833 834 return q->nr_requests; 835 } 836 837 extern unsigned long blk_max_low_pfn, blk_max_pfn; 838 839 /* 840 * standard bounce addresses: 841 * 842 * BLK_BOUNCE_HIGH : bounce all highmem pages 843 * BLK_BOUNCE_ANY : don't bounce anything 844 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 845 */ 846 847 #if BITS_PER_LONG == 32 848 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 849 #else 850 #define BLK_BOUNCE_HIGH -1ULL 851 #endif 852 #define BLK_BOUNCE_ANY (-1ULL) 853 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 854 855 /* 856 * default timeout for SG_IO if none specified 857 */ 858 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 859 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 860 861 struct rq_map_data { 862 struct page **pages; 863 int page_order; 864 int nr_entries; 865 unsigned long offset; 866 int null_mapped; 867 int from_user; 868 }; 869 870 struct req_iterator { 871 struct bvec_iter iter; 872 struct bio *bio; 873 }; 874 875 /* This should not be used directly - use rq_for_each_segment */ 876 #define for_each_bio(_bio) \ 877 for (; _bio; _bio = _bio->bi_next) 878 #define __rq_for_each_bio(_bio, rq) \ 879 if ((rq->bio)) \ 880 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 881 882 #define rq_for_each_segment(bvl, _rq, _iter) \ 883 __rq_for_each_bio(_iter.bio, _rq) \ 884 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 885 886 #define rq_for_each_bvec(bvl, _rq, _iter) \ 887 __rq_for_each_bio(_iter.bio, _rq) \ 888 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 889 890 #define rq_iter_last(bvec, _iter) \ 891 (_iter.bio->bi_next == NULL && \ 892 bio_iter_last(bvec, _iter.iter)) 893 894 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 895 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 896 #endif 897 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 898 extern void rq_flush_dcache_pages(struct request *rq); 899 #else 900 static inline void rq_flush_dcache_pages(struct request *rq) 901 { 902 } 903 #endif 904 905 extern int blk_register_queue(struct gendisk *disk); 906 extern void blk_unregister_queue(struct gendisk *disk); 907 blk_qc_t submit_bio_noacct(struct bio *bio); 908 extern void blk_rq_init(struct request_queue *q, struct request *rq); 909 extern void blk_put_request(struct request *); 910 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 911 blk_mq_req_flags_t flags); 912 extern int blk_lld_busy(struct request_queue *q); 913 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 914 struct bio_set *bs, gfp_t gfp_mask, 915 int (*bio_ctr)(struct bio *, struct bio *, void *), 916 void *data); 917 extern void blk_rq_unprep_clone(struct request *rq); 918 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 919 struct request *rq); 920 extern int blk_rq_append_bio(struct request *rq, struct bio **bio); 921 extern void blk_queue_split(struct bio **); 922 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 923 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 924 unsigned int, void __user *); 925 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 926 unsigned int, void __user *); 927 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 928 struct scsi_ioctl_command __user *); 929 extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 930 extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 931 932 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 933 extern void blk_queue_exit(struct request_queue *q); 934 extern void blk_sync_queue(struct request_queue *q); 935 extern int blk_rq_map_user(struct request_queue *, struct request *, 936 struct rq_map_data *, void __user *, unsigned long, 937 gfp_t); 938 extern int blk_rq_unmap_user(struct bio *); 939 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 940 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 941 struct rq_map_data *, const struct iov_iter *, 942 gfp_t); 943 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 944 struct request *, int); 945 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 946 struct request *, int, rq_end_io_fn *); 947 948 /* Helper to convert REQ_OP_XXX to its string format XXX */ 949 extern const char *blk_op_str(unsigned int op); 950 951 int blk_status_to_errno(blk_status_t status); 952 blk_status_t errno_to_blk_status(int errno); 953 954 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 955 956 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 957 { 958 return bdev->bd_disk->queue; /* this is never NULL */ 959 } 960 961 /* 962 * The basic unit of block I/O is a sector. It is used in a number of contexts 963 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 964 * bytes. Variables of type sector_t represent an offset or size that is a 965 * multiple of 512 bytes. Hence these two constants. 966 */ 967 #ifndef SECTOR_SHIFT 968 #define SECTOR_SHIFT 9 969 #endif 970 #ifndef SECTOR_SIZE 971 #define SECTOR_SIZE (1 << SECTOR_SHIFT) 972 #endif 973 974 /* 975 * blk_rq_pos() : the current sector 976 * blk_rq_bytes() : bytes left in the entire request 977 * blk_rq_cur_bytes() : bytes left in the current segment 978 * blk_rq_err_bytes() : bytes left till the next error boundary 979 * blk_rq_sectors() : sectors left in the entire request 980 * blk_rq_cur_sectors() : sectors left in the current segment 981 * blk_rq_stats_sectors() : sectors of the entire request used for stats 982 */ 983 static inline sector_t blk_rq_pos(const struct request *rq) 984 { 985 return rq->__sector; 986 } 987 988 static inline unsigned int blk_rq_bytes(const struct request *rq) 989 { 990 return rq->__data_len; 991 } 992 993 static inline int blk_rq_cur_bytes(const struct request *rq) 994 { 995 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 996 } 997 998 extern unsigned int blk_rq_err_bytes(const struct request *rq); 999 1000 static inline unsigned int blk_rq_sectors(const struct request *rq) 1001 { 1002 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 1003 } 1004 1005 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1006 { 1007 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 1008 } 1009 1010 static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 1011 { 1012 return rq->stats_sectors; 1013 } 1014 1015 #ifdef CONFIG_BLK_DEV_ZONED 1016 1017 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 1018 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 1019 1020 static inline unsigned int blk_rq_zone_no(struct request *rq) 1021 { 1022 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1023 } 1024 1025 static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1026 { 1027 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1028 } 1029 #endif /* CONFIG_BLK_DEV_ZONED */ 1030 1031 /* 1032 * Some commands like WRITE SAME have a payload or data transfer size which 1033 * is different from the size of the request. Any driver that supports such 1034 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1035 * calculate the data transfer size. 1036 */ 1037 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1038 { 1039 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1040 return rq->special_vec.bv_len; 1041 return blk_rq_bytes(rq); 1042 } 1043 1044 /* 1045 * Return the first full biovec in the request. The caller needs to check that 1046 * there are any bvecs before calling this helper. 1047 */ 1048 static inline struct bio_vec req_bvec(struct request *rq) 1049 { 1050 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1051 return rq->special_vec; 1052 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1053 } 1054 1055 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1056 int op) 1057 { 1058 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1059 return min(q->limits.max_discard_sectors, 1060 UINT_MAX >> SECTOR_SHIFT); 1061 1062 if (unlikely(op == REQ_OP_WRITE_SAME)) 1063 return q->limits.max_write_same_sectors; 1064 1065 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1066 return q->limits.max_write_zeroes_sectors; 1067 1068 return q->limits.max_sectors; 1069 } 1070 1071 /* 1072 * Return maximum size of a request at given offset. Only valid for 1073 * file system requests. 1074 */ 1075 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1076 sector_t offset) 1077 { 1078 unsigned int chunk_sectors = q->limits.chunk_sectors; 1079 1080 if (!chunk_sectors) 1081 return q->limits.max_sectors; 1082 1083 if (likely(is_power_of_2(chunk_sectors))) 1084 chunk_sectors -= offset & (chunk_sectors - 1); 1085 else 1086 chunk_sectors -= sector_div(offset, chunk_sectors); 1087 1088 return min(q->limits.max_sectors, chunk_sectors); 1089 } 1090 1091 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1092 sector_t offset) 1093 { 1094 struct request_queue *q = rq->q; 1095 1096 if (blk_rq_is_passthrough(rq)) 1097 return q->limits.max_hw_sectors; 1098 1099 if (!q->limits.chunk_sectors || 1100 req_op(rq) == REQ_OP_DISCARD || 1101 req_op(rq) == REQ_OP_SECURE_ERASE) 1102 return blk_queue_get_max_sectors(q, req_op(rq)); 1103 1104 return min(blk_max_size_offset(q, offset), 1105 blk_queue_get_max_sectors(q, req_op(rq))); 1106 } 1107 1108 static inline unsigned int blk_rq_count_bios(struct request *rq) 1109 { 1110 unsigned int nr_bios = 0; 1111 struct bio *bio; 1112 1113 __rq_for_each_bio(bio, rq) 1114 nr_bios++; 1115 1116 return nr_bios; 1117 } 1118 1119 void blk_steal_bios(struct bio_list *list, struct request *rq); 1120 1121 /* 1122 * Request completion related functions. 1123 * 1124 * blk_update_request() completes given number of bytes and updates 1125 * the request without completing it. 1126 */ 1127 extern bool blk_update_request(struct request *rq, blk_status_t error, 1128 unsigned int nr_bytes); 1129 1130 extern void blk_abort_request(struct request *); 1131 1132 /* 1133 * Access functions for manipulating queue properties 1134 */ 1135 extern void blk_cleanup_queue(struct request_queue *); 1136 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1137 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1138 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1139 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1140 extern void blk_queue_max_discard_segments(struct request_queue *, 1141 unsigned short); 1142 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1143 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1144 unsigned int max_discard_sectors); 1145 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1146 unsigned int max_write_same_sectors); 1147 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1148 unsigned int max_write_same_sectors); 1149 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1150 extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1151 unsigned int max_zone_append_sectors); 1152 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1153 extern void blk_queue_alignment_offset(struct request_queue *q, 1154 unsigned int alignment); 1155 void blk_queue_update_readahead(struct request_queue *q); 1156 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1157 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1158 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1159 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1160 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1161 extern void blk_set_default_limits(struct queue_limits *lim); 1162 extern void blk_set_stacking_limits(struct queue_limits *lim); 1163 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1164 sector_t offset); 1165 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1166 sector_t offset); 1167 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1168 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1169 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1170 extern void blk_queue_dma_alignment(struct request_queue *, int); 1171 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1172 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1173 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1174 extern void blk_queue_required_elevator_features(struct request_queue *q, 1175 unsigned int features); 1176 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1177 struct device *dev); 1178 1179 /* 1180 * Number of physical segments as sent to the device. 1181 * 1182 * Normally this is the number of discontiguous data segments sent by the 1183 * submitter. But for data-less command like discard we might have no 1184 * actual data segments submitted, but the driver might have to add it's 1185 * own special payload. In that case we still return 1 here so that this 1186 * special payload will be mapped. 1187 */ 1188 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1189 { 1190 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1191 return 1; 1192 return rq->nr_phys_segments; 1193 } 1194 1195 /* 1196 * Number of discard segments (or ranges) the driver needs to fill in. 1197 * Each discard bio merged into a request is counted as one segment. 1198 */ 1199 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1200 { 1201 return max_t(unsigned short, rq->nr_phys_segments, 1); 1202 } 1203 1204 int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1205 struct scatterlist *sglist, struct scatterlist **last_sg); 1206 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1207 struct scatterlist *sglist) 1208 { 1209 struct scatterlist *last_sg = NULL; 1210 1211 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1212 } 1213 extern void blk_dump_rq_flags(struct request *, char *); 1214 1215 bool __must_check blk_get_queue(struct request_queue *); 1216 struct request_queue *blk_alloc_queue(int node_id); 1217 extern void blk_put_queue(struct request_queue *); 1218 extern void blk_set_queue_dying(struct request_queue *); 1219 1220 #ifdef CONFIG_BLOCK 1221 /* 1222 * blk_plug permits building a queue of related requests by holding the I/O 1223 * fragments for a short period. This allows merging of sequential requests 1224 * into single larger request. As the requests are moved from a per-task list to 1225 * the device's request_queue in a batch, this results in improved scalability 1226 * as the lock contention for request_queue lock is reduced. 1227 * 1228 * It is ok not to disable preemption when adding the request to the plug list 1229 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1230 * the plug list when the task sleeps by itself. For details, please see 1231 * schedule() where blk_schedule_flush_plug() is called. 1232 */ 1233 struct blk_plug { 1234 struct list_head mq_list; /* blk-mq requests */ 1235 struct list_head cb_list; /* md requires an unplug callback */ 1236 unsigned short rq_count; 1237 bool multiple_queues; 1238 bool nowait; 1239 }; 1240 #define BLK_MAX_REQUEST_COUNT 16 1241 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1242 1243 struct blk_plug_cb; 1244 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1245 struct blk_plug_cb { 1246 struct list_head list; 1247 blk_plug_cb_fn callback; 1248 void *data; 1249 }; 1250 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1251 void *data, int size); 1252 extern void blk_start_plug(struct blk_plug *); 1253 extern void blk_finish_plug(struct blk_plug *); 1254 extern void blk_flush_plug_list(struct blk_plug *, bool); 1255 1256 static inline void blk_flush_plug(struct task_struct *tsk) 1257 { 1258 struct blk_plug *plug = tsk->plug; 1259 1260 if (plug) 1261 blk_flush_plug_list(plug, false); 1262 } 1263 1264 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1265 { 1266 struct blk_plug *plug = tsk->plug; 1267 1268 if (plug) 1269 blk_flush_plug_list(plug, true); 1270 } 1271 1272 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1273 { 1274 struct blk_plug *plug = tsk->plug; 1275 1276 return plug && 1277 (!list_empty(&plug->mq_list) || 1278 !list_empty(&plug->cb_list)); 1279 } 1280 1281 int blkdev_issue_flush(struct block_device *, gfp_t); 1282 long nr_blockdev_pages(void); 1283 #else /* CONFIG_BLOCK */ 1284 struct blk_plug { 1285 }; 1286 1287 static inline void blk_start_plug(struct blk_plug *plug) 1288 { 1289 } 1290 1291 static inline void blk_finish_plug(struct blk_plug *plug) 1292 { 1293 } 1294 1295 static inline void blk_flush_plug(struct task_struct *task) 1296 { 1297 } 1298 1299 static inline void blk_schedule_flush_plug(struct task_struct *task) 1300 { 1301 } 1302 1303 1304 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1305 { 1306 return false; 1307 } 1308 1309 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask) 1310 { 1311 return 0; 1312 } 1313 1314 static inline long nr_blockdev_pages(void) 1315 { 1316 return 0; 1317 } 1318 #endif /* CONFIG_BLOCK */ 1319 1320 extern void blk_io_schedule(void); 1321 1322 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1323 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1324 1325 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1326 1327 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1328 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1329 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1330 sector_t nr_sects, gfp_t gfp_mask, int flags, 1331 struct bio **biop); 1332 1333 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1334 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1335 1336 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1337 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1338 unsigned flags); 1339 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1340 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1341 1342 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1343 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1344 { 1345 return blkdev_issue_discard(sb->s_bdev, 1346 block << (sb->s_blocksize_bits - 1347 SECTOR_SHIFT), 1348 nr_blocks << (sb->s_blocksize_bits - 1349 SECTOR_SHIFT), 1350 gfp_mask, flags); 1351 } 1352 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1353 sector_t nr_blocks, gfp_t gfp_mask) 1354 { 1355 return blkdev_issue_zeroout(sb->s_bdev, 1356 block << (sb->s_blocksize_bits - 1357 SECTOR_SHIFT), 1358 nr_blocks << (sb->s_blocksize_bits - 1359 SECTOR_SHIFT), 1360 gfp_mask, 0); 1361 } 1362 1363 extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1364 1365 static inline bool bdev_is_partition(struct block_device *bdev) 1366 { 1367 return bdev->bd_partno; 1368 } 1369 1370 enum blk_default_limits { 1371 BLK_MAX_SEGMENTS = 128, 1372 BLK_SAFE_MAX_SECTORS = 255, 1373 BLK_DEF_MAX_SECTORS = 2560, 1374 BLK_MAX_SEGMENT_SIZE = 65536, 1375 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1376 }; 1377 1378 static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1379 { 1380 return q->limits.seg_boundary_mask; 1381 } 1382 1383 static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1384 { 1385 return q->limits.virt_boundary_mask; 1386 } 1387 1388 static inline unsigned int queue_max_sectors(const struct request_queue *q) 1389 { 1390 return q->limits.max_sectors; 1391 } 1392 1393 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1394 { 1395 return q->limits.max_hw_sectors; 1396 } 1397 1398 static inline unsigned short queue_max_segments(const struct request_queue *q) 1399 { 1400 return q->limits.max_segments; 1401 } 1402 1403 static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1404 { 1405 return q->limits.max_discard_segments; 1406 } 1407 1408 static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1409 { 1410 return q->limits.max_segment_size; 1411 } 1412 1413 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1414 { 1415 1416 const struct queue_limits *l = &q->limits; 1417 1418 return min(l->max_zone_append_sectors, l->max_sectors); 1419 } 1420 1421 static inline unsigned queue_logical_block_size(const struct request_queue *q) 1422 { 1423 int retval = 512; 1424 1425 if (q && q->limits.logical_block_size) 1426 retval = q->limits.logical_block_size; 1427 1428 return retval; 1429 } 1430 1431 static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1432 { 1433 return queue_logical_block_size(bdev_get_queue(bdev)); 1434 } 1435 1436 static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1437 { 1438 return q->limits.physical_block_size; 1439 } 1440 1441 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1442 { 1443 return queue_physical_block_size(bdev_get_queue(bdev)); 1444 } 1445 1446 static inline unsigned int queue_io_min(const struct request_queue *q) 1447 { 1448 return q->limits.io_min; 1449 } 1450 1451 static inline int bdev_io_min(struct block_device *bdev) 1452 { 1453 return queue_io_min(bdev_get_queue(bdev)); 1454 } 1455 1456 static inline unsigned int queue_io_opt(const struct request_queue *q) 1457 { 1458 return q->limits.io_opt; 1459 } 1460 1461 static inline int bdev_io_opt(struct block_device *bdev) 1462 { 1463 return queue_io_opt(bdev_get_queue(bdev)); 1464 } 1465 1466 static inline int queue_alignment_offset(const struct request_queue *q) 1467 { 1468 if (q->limits.misaligned) 1469 return -1; 1470 1471 return q->limits.alignment_offset; 1472 } 1473 1474 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1475 { 1476 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1477 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1478 << SECTOR_SHIFT; 1479 1480 return (granularity + lim->alignment_offset - alignment) % granularity; 1481 } 1482 1483 static inline int bdev_alignment_offset(struct block_device *bdev) 1484 { 1485 struct request_queue *q = bdev_get_queue(bdev); 1486 1487 if (q->limits.misaligned) 1488 return -1; 1489 if (bdev_is_partition(bdev)) 1490 return queue_limit_alignment_offset(&q->limits, 1491 bdev->bd_part->start_sect); 1492 return q->limits.alignment_offset; 1493 } 1494 1495 static inline int queue_discard_alignment(const struct request_queue *q) 1496 { 1497 if (q->limits.discard_misaligned) 1498 return -1; 1499 1500 return q->limits.discard_alignment; 1501 } 1502 1503 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1504 { 1505 unsigned int alignment, granularity, offset; 1506 1507 if (!lim->max_discard_sectors) 1508 return 0; 1509 1510 /* Why are these in bytes, not sectors? */ 1511 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1512 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1513 if (!granularity) 1514 return 0; 1515 1516 /* Offset of the partition start in 'granularity' sectors */ 1517 offset = sector_div(sector, granularity); 1518 1519 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1520 offset = (granularity + alignment - offset) % granularity; 1521 1522 /* Turn it back into bytes, gaah */ 1523 return offset << SECTOR_SHIFT; 1524 } 1525 1526 static inline int bdev_discard_alignment(struct block_device *bdev) 1527 { 1528 struct request_queue *q = bdev_get_queue(bdev); 1529 1530 if (bdev_is_partition(bdev)) 1531 return queue_limit_discard_alignment(&q->limits, 1532 bdev->bd_part->start_sect); 1533 return q->limits.discard_alignment; 1534 } 1535 1536 static inline unsigned int bdev_write_same(struct block_device *bdev) 1537 { 1538 struct request_queue *q = bdev_get_queue(bdev); 1539 1540 if (q) 1541 return q->limits.max_write_same_sectors; 1542 1543 return 0; 1544 } 1545 1546 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1547 { 1548 struct request_queue *q = bdev_get_queue(bdev); 1549 1550 if (q) 1551 return q->limits.max_write_zeroes_sectors; 1552 1553 return 0; 1554 } 1555 1556 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1557 { 1558 struct request_queue *q = bdev_get_queue(bdev); 1559 1560 if (q) 1561 return blk_queue_zoned_model(q); 1562 1563 return BLK_ZONED_NONE; 1564 } 1565 1566 static inline bool bdev_is_zoned(struct block_device *bdev) 1567 { 1568 struct request_queue *q = bdev_get_queue(bdev); 1569 1570 if (q) 1571 return blk_queue_is_zoned(q); 1572 1573 return false; 1574 } 1575 1576 static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1577 { 1578 struct request_queue *q = bdev_get_queue(bdev); 1579 1580 if (q) 1581 return blk_queue_zone_sectors(q); 1582 return 0; 1583 } 1584 1585 static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1586 { 1587 struct request_queue *q = bdev_get_queue(bdev); 1588 1589 if (q) 1590 return queue_max_open_zones(q); 1591 return 0; 1592 } 1593 1594 static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1595 { 1596 struct request_queue *q = bdev_get_queue(bdev); 1597 1598 if (q) 1599 return queue_max_active_zones(q); 1600 return 0; 1601 } 1602 1603 static inline int queue_dma_alignment(const struct request_queue *q) 1604 { 1605 return q ? q->dma_alignment : 511; 1606 } 1607 1608 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1609 unsigned int len) 1610 { 1611 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1612 return !(addr & alignment) && !(len & alignment); 1613 } 1614 1615 /* assumes size > 256 */ 1616 static inline unsigned int blksize_bits(unsigned int size) 1617 { 1618 unsigned int bits = 8; 1619 do { 1620 bits++; 1621 size >>= 1; 1622 } while (size > 256); 1623 return bits; 1624 } 1625 1626 static inline unsigned int block_size(struct block_device *bdev) 1627 { 1628 return 1 << bdev->bd_inode->i_blkbits; 1629 } 1630 1631 int kblockd_schedule_work(struct work_struct *work); 1632 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1633 1634 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1635 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1636 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1637 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1638 1639 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1640 1641 enum blk_integrity_flags { 1642 BLK_INTEGRITY_VERIFY = 1 << 0, 1643 BLK_INTEGRITY_GENERATE = 1 << 1, 1644 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1645 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1646 }; 1647 1648 struct blk_integrity_iter { 1649 void *prot_buf; 1650 void *data_buf; 1651 sector_t seed; 1652 unsigned int data_size; 1653 unsigned short interval; 1654 const char *disk_name; 1655 }; 1656 1657 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1658 typedef void (integrity_prepare_fn) (struct request *); 1659 typedef void (integrity_complete_fn) (struct request *, unsigned int); 1660 1661 struct blk_integrity_profile { 1662 integrity_processing_fn *generate_fn; 1663 integrity_processing_fn *verify_fn; 1664 integrity_prepare_fn *prepare_fn; 1665 integrity_complete_fn *complete_fn; 1666 const char *name; 1667 }; 1668 1669 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1670 extern void blk_integrity_unregister(struct gendisk *); 1671 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1672 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1673 struct scatterlist *); 1674 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1675 1676 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1677 { 1678 struct blk_integrity *bi = &disk->queue->integrity; 1679 1680 if (!bi->profile) 1681 return NULL; 1682 1683 return bi; 1684 } 1685 1686 static inline 1687 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1688 { 1689 return blk_get_integrity(bdev->bd_disk); 1690 } 1691 1692 static inline bool 1693 blk_integrity_queue_supports_integrity(struct request_queue *q) 1694 { 1695 return q->integrity.profile; 1696 } 1697 1698 static inline bool blk_integrity_rq(struct request *rq) 1699 { 1700 return rq->cmd_flags & REQ_INTEGRITY; 1701 } 1702 1703 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1704 unsigned int segs) 1705 { 1706 q->limits.max_integrity_segments = segs; 1707 } 1708 1709 static inline unsigned short 1710 queue_max_integrity_segments(const struct request_queue *q) 1711 { 1712 return q->limits.max_integrity_segments; 1713 } 1714 1715 /** 1716 * bio_integrity_intervals - Return number of integrity intervals for a bio 1717 * @bi: blk_integrity profile for device 1718 * @sectors: Size of the bio in 512-byte sectors 1719 * 1720 * Description: The block layer calculates everything in 512 byte 1721 * sectors but integrity metadata is done in terms of the data integrity 1722 * interval size of the storage device. Convert the block layer sectors 1723 * to the appropriate number of integrity intervals. 1724 */ 1725 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1726 unsigned int sectors) 1727 { 1728 return sectors >> (bi->interval_exp - 9); 1729 } 1730 1731 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1732 unsigned int sectors) 1733 { 1734 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1735 } 1736 1737 /* 1738 * Return the first bvec that contains integrity data. Only drivers that are 1739 * limited to a single integrity segment should use this helper. 1740 */ 1741 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1742 { 1743 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1744 return NULL; 1745 return rq->bio->bi_integrity->bip_vec; 1746 } 1747 1748 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1749 1750 struct bio; 1751 struct block_device; 1752 struct gendisk; 1753 struct blk_integrity; 1754 1755 static inline int blk_integrity_rq(struct request *rq) 1756 { 1757 return 0; 1758 } 1759 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1760 struct bio *b) 1761 { 1762 return 0; 1763 } 1764 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1765 struct bio *b, 1766 struct scatterlist *s) 1767 { 1768 return 0; 1769 } 1770 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1771 { 1772 return NULL; 1773 } 1774 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1775 { 1776 return NULL; 1777 } 1778 static inline bool 1779 blk_integrity_queue_supports_integrity(struct request_queue *q) 1780 { 1781 return false; 1782 } 1783 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1784 { 1785 return 0; 1786 } 1787 static inline void blk_integrity_register(struct gendisk *d, 1788 struct blk_integrity *b) 1789 { 1790 } 1791 static inline void blk_integrity_unregister(struct gendisk *d) 1792 { 1793 } 1794 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1795 unsigned int segs) 1796 { 1797 } 1798 static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1799 { 1800 return 0; 1801 } 1802 1803 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1804 unsigned int sectors) 1805 { 1806 return 0; 1807 } 1808 1809 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1810 unsigned int sectors) 1811 { 1812 return 0; 1813 } 1814 1815 static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1816 { 1817 return NULL; 1818 } 1819 1820 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1821 1822 #ifdef CONFIG_BLK_INLINE_ENCRYPTION 1823 1824 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1825 1826 void blk_ksm_unregister(struct request_queue *q); 1827 1828 #else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1829 1830 static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1831 struct request_queue *q) 1832 { 1833 return true; 1834 } 1835 1836 static inline void blk_ksm_unregister(struct request_queue *q) { } 1837 1838 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1839 1840 1841 struct block_device_operations { 1842 blk_qc_t (*submit_bio) (struct bio *bio); 1843 int (*open) (struct block_device *, fmode_t); 1844 void (*release) (struct gendisk *, fmode_t); 1845 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1846 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1847 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1848 unsigned int (*check_events) (struct gendisk *disk, 1849 unsigned int clearing); 1850 void (*unlock_native_capacity) (struct gendisk *); 1851 int (*revalidate_disk) (struct gendisk *); 1852 int (*getgeo)(struct block_device *, struct hd_geometry *); 1853 /* this callback is with swap_lock and sometimes page table lock held */ 1854 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1855 int (*report_zones)(struct gendisk *, sector_t sector, 1856 unsigned int nr_zones, report_zones_cb cb, void *data); 1857 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1858 struct module *owner; 1859 const struct pr_ops *pr_ops; 1860 }; 1861 1862 #ifdef CONFIG_COMPAT 1863 extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1864 unsigned int, unsigned long); 1865 #else 1866 #define blkdev_compat_ptr_ioctl NULL 1867 #endif 1868 1869 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1870 unsigned long); 1871 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1872 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1873 struct writeback_control *); 1874 1875 #ifdef CONFIG_BLK_DEV_ZONED 1876 bool blk_req_needs_zone_write_lock(struct request *rq); 1877 bool blk_req_zone_write_trylock(struct request *rq); 1878 void __blk_req_zone_write_lock(struct request *rq); 1879 void __blk_req_zone_write_unlock(struct request *rq); 1880 1881 static inline void blk_req_zone_write_lock(struct request *rq) 1882 { 1883 if (blk_req_needs_zone_write_lock(rq)) 1884 __blk_req_zone_write_lock(rq); 1885 } 1886 1887 static inline void blk_req_zone_write_unlock(struct request *rq) 1888 { 1889 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1890 __blk_req_zone_write_unlock(rq); 1891 } 1892 1893 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1894 { 1895 return rq->q->seq_zones_wlock && 1896 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1897 } 1898 1899 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1900 { 1901 if (!blk_req_needs_zone_write_lock(rq)) 1902 return true; 1903 return !blk_req_zone_is_write_locked(rq); 1904 } 1905 #else 1906 static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1907 { 1908 return false; 1909 } 1910 1911 static inline void blk_req_zone_write_lock(struct request *rq) 1912 { 1913 } 1914 1915 static inline void blk_req_zone_write_unlock(struct request *rq) 1916 { 1917 } 1918 static inline bool blk_req_zone_is_write_locked(struct request *rq) 1919 { 1920 return false; 1921 } 1922 1923 static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1924 { 1925 return true; 1926 } 1927 #endif /* CONFIG_BLK_DEV_ZONED */ 1928 1929 static inline void blk_wake_io_task(struct task_struct *waiter) 1930 { 1931 /* 1932 * If we're polling, the task itself is doing the completions. For 1933 * that case, we don't need to signal a wakeup, it's enough to just 1934 * mark us as RUNNING. 1935 */ 1936 if (waiter == current) 1937 __set_current_state(TASK_RUNNING); 1938 else 1939 wake_up_process(waiter); 1940 } 1941 1942 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1943 unsigned int op); 1944 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1945 unsigned long start_time); 1946 1947 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, 1948 struct bio *bio); 1949 void part_end_io_acct(struct hd_struct *part, struct bio *bio, 1950 unsigned long start_time); 1951 1952 /** 1953 * bio_start_io_acct - start I/O accounting for bio based drivers 1954 * @bio: bio to start account for 1955 * 1956 * Returns the start time that should be passed back to bio_end_io_acct(). 1957 */ 1958 static inline unsigned long bio_start_io_acct(struct bio *bio) 1959 { 1960 return disk_start_io_acct(bio->bi_disk, bio_sectors(bio), bio_op(bio)); 1961 } 1962 1963 /** 1964 * bio_end_io_acct - end I/O accounting for bio based drivers 1965 * @bio: bio to end account for 1966 * @start: start time returned by bio_start_io_acct() 1967 */ 1968 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1969 { 1970 return disk_end_io_acct(bio->bi_disk, bio_op(bio), start_time); 1971 } 1972 1973 int bdev_read_only(struct block_device *bdev); 1974 int set_blocksize(struct block_device *bdev, int size); 1975 1976 const char *bdevname(struct block_device *bdev, char *buffer); 1977 struct block_device *lookup_bdev(const char *); 1978 1979 void blkdev_show(struct seq_file *seqf, off_t offset); 1980 1981 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1982 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1983 #ifdef CONFIG_BLOCK 1984 #define BLKDEV_MAJOR_MAX 512 1985 #else 1986 #define BLKDEV_MAJOR_MAX 0 1987 #endif 1988 1989 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1990 void *holder); 1991 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1992 int bd_prepare_to_claim(struct block_device *bdev, struct block_device *whole, 1993 void *holder); 1994 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1995 void *holder); 1996 void blkdev_put(struct block_device *bdev, fmode_t mode); 1997 1998 struct block_device *I_BDEV(struct inode *inode); 1999 struct block_device *bdget_part(struct hd_struct *part); 2000 struct block_device *bdgrab(struct block_device *bdev); 2001 void bdput(struct block_device *); 2002 2003 #ifdef CONFIG_BLOCK 2004 void invalidate_bdev(struct block_device *bdev); 2005 int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 2006 loff_t lend); 2007 int sync_blockdev(struct block_device *bdev); 2008 #else 2009 static inline void invalidate_bdev(struct block_device *bdev) 2010 { 2011 } 2012 static inline int truncate_bdev_range(struct block_device *bdev, fmode_t mode, 2013 loff_t lstart, loff_t lend) 2014 { 2015 return 0; 2016 } 2017 static inline int sync_blockdev(struct block_device *bdev) 2018 { 2019 return 0; 2020 } 2021 #endif 2022 int fsync_bdev(struct block_device *bdev); 2023 2024 struct super_block *freeze_bdev(struct block_device *bdev); 2025 int thaw_bdev(struct block_device *bdev, struct super_block *sb); 2026 2027 #endif /* _LINUX_BLKDEV_H */ 2028