1 #ifndef _LINUX_BLKDEV_H 2 #define _LINUX_BLKDEV_H 3 4 #include <linux/sched.h> 5 #include <linux/sched/clock.h> 6 7 #ifdef CONFIG_BLOCK 8 9 #include <linux/major.h> 10 #include <linux/genhd.h> 11 #include <linux/list.h> 12 #include <linux/llist.h> 13 #include <linux/timer.h> 14 #include <linux/workqueue.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev-defs.h> 17 #include <linux/wait.h> 18 #include <linux/mempool.h> 19 #include <linux/pfn.h> 20 #include <linux/bio.h> 21 #include <linux/stringify.h> 22 #include <linux/gfp.h> 23 #include <linux/bsg.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate.h> 26 #include <linux/percpu-refcount.h> 27 #include <linux/scatterlist.h> 28 #include <linux/blkzoned.h> 29 30 struct module; 31 struct scsi_ioctl_command; 32 33 struct request_queue; 34 struct elevator_queue; 35 struct blk_trace; 36 struct request; 37 struct sg_io_hdr; 38 struct bsg_job; 39 struct blkcg_gq; 40 struct blk_flush_queue; 41 struct pr_ops; 42 struct rq_wb; 43 struct blk_queue_stats; 44 struct blk_stat_callback; 45 46 #define BLKDEV_MIN_RQ 4 47 #define BLKDEV_MAX_RQ 128 /* Default maximum */ 48 49 /* Must be consisitent with blk_mq_poll_stats_bkt() */ 50 #define BLK_MQ_POLL_STATS_BKTS 16 51 52 /* 53 * Maximum number of blkcg policies allowed to be registered concurrently. 54 * Defined here to simplify include dependency. 55 */ 56 #define BLKCG_MAX_POLS 3 57 58 typedef void (rq_end_io_fn)(struct request *, blk_status_t); 59 60 #define BLK_RL_SYNCFULL (1U << 0) 61 #define BLK_RL_ASYNCFULL (1U << 1) 62 63 struct request_list { 64 struct request_queue *q; /* the queue this rl belongs to */ 65 #ifdef CONFIG_BLK_CGROUP 66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */ 67 #endif 68 /* 69 * count[], starved[], and wait[] are indexed by 70 * BLK_RW_SYNC/BLK_RW_ASYNC 71 */ 72 int count[2]; 73 int starved[2]; 74 mempool_t *rq_pool; 75 wait_queue_head_t wait[2]; 76 unsigned int flags; 77 }; 78 79 /* 80 * request flags */ 81 typedef __u32 __bitwise req_flags_t; 82 83 /* elevator knows about this request */ 84 #define RQF_SORTED ((__force req_flags_t)(1 << 0)) 85 /* drive already may have started this one */ 86 #define RQF_STARTED ((__force req_flags_t)(1 << 1)) 87 /* uses tagged queueing */ 88 #define RQF_QUEUED ((__force req_flags_t)(1 << 2)) 89 /* may not be passed by ioscheduler */ 90 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 91 /* request for flush sequence */ 92 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 93 /* merge of different types, fail separately */ 94 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 95 /* track inflight for MQ */ 96 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 97 /* don't call prep for this one */ 98 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 99 /* set for "ide_preempt" requests and also for requests for which the SCSI 100 "quiesce" state must be ignored. */ 101 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8)) 102 /* contains copies of user pages */ 103 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9)) 104 /* vaguely specified driver internal error. Ignored by the block layer */ 105 #define RQF_FAILED ((__force req_flags_t)(1 << 10)) 106 /* don't warn about errors */ 107 #define RQF_QUIET ((__force req_flags_t)(1 << 11)) 108 /* elevator private data attached */ 109 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 110 /* account I/O stat */ 111 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 112 /* request came from our alloc pool */ 113 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14)) 114 /* runtime pm request */ 115 #define RQF_PM ((__force req_flags_t)(1 << 15)) 116 /* on IO scheduler merge hash */ 117 #define RQF_HASHED ((__force req_flags_t)(1 << 16)) 118 /* IO stats tracking on */ 119 #define RQF_STATS ((__force req_flags_t)(1 << 17)) 120 /* Look at ->special_vec for the actual data payload instead of the 121 bio chain. */ 122 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 123 124 /* flags that prevent us from merging requests: */ 125 #define RQF_NOMERGE_FLAGS \ 126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 127 128 /* 129 * Try to put the fields that are referenced together in the same cacheline. 130 * 131 * If you modify this structure, make sure to update blk_rq_init() and 132 * especially blk_mq_rq_ctx_init() to take care of the added fields. 133 */ 134 struct request { 135 struct list_head queuelist; 136 union { 137 struct call_single_data csd; 138 u64 fifo_time; 139 }; 140 141 struct request_queue *q; 142 struct blk_mq_ctx *mq_ctx; 143 144 int cpu; 145 unsigned int cmd_flags; /* op and common flags */ 146 req_flags_t rq_flags; 147 148 int internal_tag; 149 150 unsigned long atomic_flags; 151 152 /* the following two fields are internal, NEVER access directly */ 153 unsigned int __data_len; /* total data len */ 154 int tag; 155 sector_t __sector; /* sector cursor */ 156 157 struct bio *bio; 158 struct bio *biotail; 159 160 /* 161 * The hash is used inside the scheduler, and killed once the 162 * request reaches the dispatch list. The ipi_list is only used 163 * to queue the request for softirq completion, which is long 164 * after the request has been unhashed (and even removed from 165 * the dispatch list). 166 */ 167 union { 168 struct hlist_node hash; /* merge hash */ 169 struct list_head ipi_list; 170 }; 171 172 /* 173 * The rb_node is only used inside the io scheduler, requests 174 * are pruned when moved to the dispatch queue. So let the 175 * completion_data share space with the rb_node. 176 */ 177 union { 178 struct rb_node rb_node; /* sort/lookup */ 179 struct bio_vec special_vec; 180 void *completion_data; 181 int error_count; /* for legacy drivers, don't use */ 182 }; 183 184 /* 185 * Three pointers are available for the IO schedulers, if they need 186 * more they have to dynamically allocate it. Flush requests are 187 * never put on the IO scheduler. So let the flush fields share 188 * space with the elevator data. 189 */ 190 union { 191 struct { 192 struct io_cq *icq; 193 void *priv[2]; 194 } elv; 195 196 struct { 197 unsigned int seq; 198 struct list_head list; 199 rq_end_io_fn *saved_end_io; 200 } flush; 201 }; 202 203 struct gendisk *rq_disk; 204 struct hd_struct *part; 205 unsigned long start_time; 206 struct blk_issue_stat issue_stat; 207 #ifdef CONFIG_BLK_CGROUP 208 struct request_list *rl; /* rl this rq is alloced from */ 209 unsigned long long start_time_ns; 210 unsigned long long io_start_time_ns; /* when passed to hardware */ 211 #endif 212 /* Number of scatter-gather DMA addr+len pairs after 213 * physical address coalescing is performed. 214 */ 215 unsigned short nr_phys_segments; 216 #if defined(CONFIG_BLK_DEV_INTEGRITY) 217 unsigned short nr_integrity_segments; 218 #endif 219 220 unsigned short ioprio; 221 222 unsigned int timeout; 223 224 void *special; /* opaque pointer available for LLD use */ 225 226 unsigned int extra_len; /* length of alignment and padding */ 227 228 unsigned short write_hint; 229 230 unsigned long deadline; 231 struct list_head timeout_list; 232 233 /* 234 * completion callback. 235 */ 236 rq_end_io_fn *end_io; 237 void *end_io_data; 238 239 /* for bidi */ 240 struct request *next_rq; 241 }; 242 243 static inline bool blk_rq_is_scsi(struct request *rq) 244 { 245 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT; 246 } 247 248 static inline bool blk_rq_is_private(struct request *rq) 249 { 250 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT; 251 } 252 253 static inline bool blk_rq_is_passthrough(struct request *rq) 254 { 255 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq); 256 } 257 258 static inline unsigned short req_get_ioprio(struct request *req) 259 { 260 return req->ioprio; 261 } 262 263 #include <linux/elevator.h> 264 265 struct blk_queue_ctx; 266 267 typedef void (request_fn_proc) (struct request_queue *q); 268 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio); 269 typedef int (prep_rq_fn) (struct request_queue *, struct request *); 270 typedef void (unprep_rq_fn) (struct request_queue *, struct request *); 271 272 struct bio_vec; 273 typedef void (softirq_done_fn)(struct request *); 274 typedef int (dma_drain_needed_fn)(struct request *); 275 typedef int (lld_busy_fn) (struct request_queue *q); 276 typedef int (bsg_job_fn) (struct bsg_job *); 277 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t); 278 typedef void (exit_rq_fn)(struct request_queue *, struct request *); 279 280 enum blk_eh_timer_return { 281 BLK_EH_NOT_HANDLED, 282 BLK_EH_HANDLED, 283 BLK_EH_RESET_TIMER, 284 }; 285 286 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *); 287 288 enum blk_queue_state { 289 Queue_down, 290 Queue_up, 291 }; 292 293 struct blk_queue_tag { 294 struct request **tag_index; /* map of busy tags */ 295 unsigned long *tag_map; /* bit map of free/busy tags */ 296 int max_depth; /* what we will send to device */ 297 int real_max_depth; /* what the array can hold */ 298 atomic_t refcnt; /* map can be shared */ 299 int alloc_policy; /* tag allocation policy */ 300 int next_tag; /* next tag */ 301 }; 302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 304 305 #define BLK_SCSI_MAX_CMDS (256) 306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 307 308 /* 309 * Zoned block device models (zoned limit). 310 */ 311 enum blk_zoned_model { 312 BLK_ZONED_NONE, /* Regular block device */ 313 BLK_ZONED_HA, /* Host-aware zoned block device */ 314 BLK_ZONED_HM, /* Host-managed zoned block device */ 315 }; 316 317 struct queue_limits { 318 unsigned long bounce_pfn; 319 unsigned long seg_boundary_mask; 320 unsigned long virt_boundary_mask; 321 322 unsigned int max_hw_sectors; 323 unsigned int max_dev_sectors; 324 unsigned int chunk_sectors; 325 unsigned int max_sectors; 326 unsigned int max_segment_size; 327 unsigned int physical_block_size; 328 unsigned int alignment_offset; 329 unsigned int io_min; 330 unsigned int io_opt; 331 unsigned int max_discard_sectors; 332 unsigned int max_hw_discard_sectors; 333 unsigned int max_write_same_sectors; 334 unsigned int max_write_zeroes_sectors; 335 unsigned int discard_granularity; 336 unsigned int discard_alignment; 337 338 unsigned short logical_block_size; 339 unsigned short max_segments; 340 unsigned short max_integrity_segments; 341 unsigned short max_discard_segments; 342 343 unsigned char misaligned; 344 unsigned char discard_misaligned; 345 unsigned char cluster; 346 unsigned char raid_partial_stripes_expensive; 347 enum blk_zoned_model zoned; 348 }; 349 350 #ifdef CONFIG_BLK_DEV_ZONED 351 352 struct blk_zone_report_hdr { 353 unsigned int nr_zones; 354 u8 padding[60]; 355 }; 356 357 extern int blkdev_report_zones(struct block_device *bdev, 358 sector_t sector, struct blk_zone *zones, 359 unsigned int *nr_zones, gfp_t gfp_mask); 360 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors, 361 sector_t nr_sectors, gfp_t gfp_mask); 362 363 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 364 unsigned int cmd, unsigned long arg); 365 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode, 366 unsigned int cmd, unsigned long arg); 367 368 #else /* CONFIG_BLK_DEV_ZONED */ 369 370 static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 371 fmode_t mode, unsigned int cmd, 372 unsigned long arg) 373 { 374 return -ENOTTY; 375 } 376 377 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev, 378 fmode_t mode, unsigned int cmd, 379 unsigned long arg) 380 { 381 return -ENOTTY; 382 } 383 384 #endif /* CONFIG_BLK_DEV_ZONED */ 385 386 struct request_queue { 387 /* 388 * Together with queue_head for cacheline sharing 389 */ 390 struct list_head queue_head; 391 struct request *last_merge; 392 struct elevator_queue *elevator; 393 int nr_rqs[2]; /* # allocated [a]sync rqs */ 394 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */ 395 396 atomic_t shared_hctx_restart; 397 398 struct blk_queue_stats *stats; 399 struct rq_wb *rq_wb; 400 401 /* 402 * If blkcg is not used, @q->root_rl serves all requests. If blkcg 403 * is used, root blkg allocates from @q->root_rl and all other 404 * blkgs from their own blkg->rl. Which one to use should be 405 * determined using bio_request_list(). 406 */ 407 struct request_list root_rl; 408 409 request_fn_proc *request_fn; 410 make_request_fn *make_request_fn; 411 prep_rq_fn *prep_rq_fn; 412 unprep_rq_fn *unprep_rq_fn; 413 softirq_done_fn *softirq_done_fn; 414 rq_timed_out_fn *rq_timed_out_fn; 415 dma_drain_needed_fn *dma_drain_needed; 416 lld_busy_fn *lld_busy_fn; 417 /* Called just after a request is allocated */ 418 init_rq_fn *init_rq_fn; 419 /* Called just before a request is freed */ 420 exit_rq_fn *exit_rq_fn; 421 /* Called from inside blk_get_request() */ 422 void (*initialize_rq_fn)(struct request *rq); 423 424 const struct blk_mq_ops *mq_ops; 425 426 unsigned int *mq_map; 427 428 /* sw queues */ 429 struct blk_mq_ctx __percpu *queue_ctx; 430 unsigned int nr_queues; 431 432 unsigned int queue_depth; 433 434 /* hw dispatch queues */ 435 struct blk_mq_hw_ctx **queue_hw_ctx; 436 unsigned int nr_hw_queues; 437 438 /* 439 * Dispatch queue sorting 440 */ 441 sector_t end_sector; 442 struct request *boundary_rq; 443 444 /* 445 * Delayed queue handling 446 */ 447 struct delayed_work delay_work; 448 449 struct backing_dev_info *backing_dev_info; 450 451 /* 452 * The queue owner gets to use this for whatever they like. 453 * ll_rw_blk doesn't touch it. 454 */ 455 void *queuedata; 456 457 /* 458 * various queue flags, see QUEUE_* below 459 */ 460 unsigned long queue_flags; 461 462 /* 463 * ida allocated id for this queue. Used to index queues from 464 * ioctx. 465 */ 466 int id; 467 468 /* 469 * queue needs bounce pages for pages above this limit 470 */ 471 gfp_t bounce_gfp; 472 473 /* 474 * protects queue structures from reentrancy. ->__queue_lock should 475 * _never_ be used directly, it is queue private. always use 476 * ->queue_lock. 477 */ 478 spinlock_t __queue_lock; 479 spinlock_t *queue_lock; 480 481 /* 482 * queue kobject 483 */ 484 struct kobject kobj; 485 486 /* 487 * mq queue kobject 488 */ 489 struct kobject mq_kobj; 490 491 #ifdef CONFIG_BLK_DEV_INTEGRITY 492 struct blk_integrity integrity; 493 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 494 495 #ifdef CONFIG_PM 496 struct device *dev; 497 int rpm_status; 498 unsigned int nr_pending; 499 #endif 500 501 /* 502 * queue settings 503 */ 504 unsigned long nr_requests; /* Max # of requests */ 505 unsigned int nr_congestion_on; 506 unsigned int nr_congestion_off; 507 unsigned int nr_batching; 508 509 unsigned int dma_drain_size; 510 void *dma_drain_buffer; 511 unsigned int dma_pad_mask; 512 unsigned int dma_alignment; 513 514 struct blk_queue_tag *queue_tags; 515 struct list_head tag_busy_list; 516 517 unsigned int nr_sorted; 518 unsigned int in_flight[2]; 519 520 /* 521 * Number of active block driver functions for which blk_drain_queue() 522 * must wait. Must be incremented around functions that unlock the 523 * queue_lock internally, e.g. scsi_request_fn(). 524 */ 525 unsigned int request_fn_active; 526 527 unsigned int rq_timeout; 528 int poll_nsec; 529 530 struct blk_stat_callback *poll_cb; 531 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 532 533 struct timer_list timeout; 534 struct work_struct timeout_work; 535 struct list_head timeout_list; 536 537 struct list_head icq_list; 538 #ifdef CONFIG_BLK_CGROUP 539 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 540 struct blkcg_gq *root_blkg; 541 struct list_head blkg_list; 542 #endif 543 544 struct queue_limits limits; 545 546 /* 547 * sg stuff 548 */ 549 unsigned int sg_timeout; 550 unsigned int sg_reserved_size; 551 int node; 552 #ifdef CONFIG_BLK_DEV_IO_TRACE 553 struct blk_trace *blk_trace; 554 #endif 555 /* 556 * for flush operations 557 */ 558 struct blk_flush_queue *fq; 559 560 struct list_head requeue_list; 561 spinlock_t requeue_lock; 562 struct delayed_work requeue_work; 563 564 struct mutex sysfs_lock; 565 566 int bypass_depth; 567 atomic_t mq_freeze_depth; 568 569 #if defined(CONFIG_BLK_DEV_BSG) 570 bsg_job_fn *bsg_job_fn; 571 int bsg_job_size; 572 struct bsg_class_device bsg_dev; 573 #endif 574 575 #ifdef CONFIG_BLK_DEV_THROTTLING 576 /* Throttle data */ 577 struct throtl_data *td; 578 #endif 579 struct rcu_head rcu_head; 580 wait_queue_head_t mq_freeze_wq; 581 struct percpu_ref q_usage_counter; 582 struct list_head all_q_node; 583 584 struct blk_mq_tag_set *tag_set; 585 struct list_head tag_set_list; 586 struct bio_set *bio_split; 587 588 #ifdef CONFIG_BLK_DEBUG_FS 589 struct dentry *debugfs_dir; 590 struct dentry *sched_debugfs_dir; 591 #endif 592 593 bool mq_sysfs_init_done; 594 595 size_t cmd_size; 596 void *rq_alloc_data; 597 598 struct work_struct release_work; 599 600 #define BLK_MAX_WRITE_HINTS 5 601 u64 write_hints[BLK_MAX_WRITE_HINTS]; 602 }; 603 604 #define QUEUE_FLAG_QUEUED 1 /* uses generic tag queueing */ 605 #define QUEUE_FLAG_STOPPED 2 /* queue is stopped */ 606 #define QUEUE_FLAG_SYNCFULL 3 /* read queue has been filled */ 607 #define QUEUE_FLAG_ASYNCFULL 4 /* write queue has been filled */ 608 #define QUEUE_FLAG_DYING 5 /* queue being torn down */ 609 #define QUEUE_FLAG_BYPASS 6 /* act as dumb FIFO queue */ 610 #define QUEUE_FLAG_BIDI 7 /* queue supports bidi requests */ 611 #define QUEUE_FLAG_NOMERGES 8 /* disable merge attempts */ 612 #define QUEUE_FLAG_SAME_COMP 9 /* complete on same CPU-group */ 613 #define QUEUE_FLAG_FAIL_IO 10 /* fake timeout */ 614 #define QUEUE_FLAG_STACKABLE 11 /* supports request stacking */ 615 #define QUEUE_FLAG_NONROT 12 /* non-rotational device (SSD) */ 616 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 617 #define QUEUE_FLAG_IO_STAT 13 /* do IO stats */ 618 #define QUEUE_FLAG_DISCARD 14 /* supports DISCARD */ 619 #define QUEUE_FLAG_NOXMERGES 15 /* No extended merges */ 620 #define QUEUE_FLAG_ADD_RANDOM 16 /* Contributes to random pool */ 621 #define QUEUE_FLAG_SECERASE 17 /* supports secure erase */ 622 #define QUEUE_FLAG_SAME_FORCE 18 /* force complete on same CPU */ 623 #define QUEUE_FLAG_DEAD 19 /* queue tear-down finished */ 624 #define QUEUE_FLAG_INIT_DONE 20 /* queue is initialized */ 625 #define QUEUE_FLAG_NO_SG_MERGE 21 /* don't attempt to merge SG segments*/ 626 #define QUEUE_FLAG_POLL 22 /* IO polling enabled if set */ 627 #define QUEUE_FLAG_WC 23 /* Write back caching */ 628 #define QUEUE_FLAG_FUA 24 /* device supports FUA writes */ 629 #define QUEUE_FLAG_FLUSH_NQ 25 /* flush not queueuable */ 630 #define QUEUE_FLAG_DAX 26 /* device supports DAX */ 631 #define QUEUE_FLAG_STATS 27 /* track rq completion times */ 632 #define QUEUE_FLAG_POLL_STATS 28 /* collecting stats for hybrid polling */ 633 #define QUEUE_FLAG_REGISTERED 29 /* queue has been registered to a disk */ 634 #define QUEUE_FLAG_SCSI_PASSTHROUGH 30 /* queue supports SCSI commands */ 635 #define QUEUE_FLAG_QUIESCED 31 /* queue has been quiesced */ 636 637 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 638 (1 << QUEUE_FLAG_STACKABLE) | \ 639 (1 << QUEUE_FLAG_SAME_COMP) | \ 640 (1 << QUEUE_FLAG_ADD_RANDOM)) 641 642 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 643 (1 << QUEUE_FLAG_STACKABLE) | \ 644 (1 << QUEUE_FLAG_SAME_COMP) | \ 645 (1 << QUEUE_FLAG_POLL)) 646 647 /* 648 * @q->queue_lock is set while a queue is being initialized. Since we know 649 * that no other threads access the queue object before @q->queue_lock has 650 * been set, it is safe to manipulate queue flags without holding the 651 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and 652 * blk_init_allocated_queue(). 653 */ 654 static inline void queue_lockdep_assert_held(struct request_queue *q) 655 { 656 if (q->queue_lock) 657 lockdep_assert_held(q->queue_lock); 658 } 659 660 static inline void queue_flag_set_unlocked(unsigned int flag, 661 struct request_queue *q) 662 { 663 __set_bit(flag, &q->queue_flags); 664 } 665 666 static inline int queue_flag_test_and_clear(unsigned int flag, 667 struct request_queue *q) 668 { 669 queue_lockdep_assert_held(q); 670 671 if (test_bit(flag, &q->queue_flags)) { 672 __clear_bit(flag, &q->queue_flags); 673 return 1; 674 } 675 676 return 0; 677 } 678 679 static inline int queue_flag_test_and_set(unsigned int flag, 680 struct request_queue *q) 681 { 682 queue_lockdep_assert_held(q); 683 684 if (!test_bit(flag, &q->queue_flags)) { 685 __set_bit(flag, &q->queue_flags); 686 return 0; 687 } 688 689 return 1; 690 } 691 692 static inline void queue_flag_set(unsigned int flag, struct request_queue *q) 693 { 694 queue_lockdep_assert_held(q); 695 __set_bit(flag, &q->queue_flags); 696 } 697 698 static inline void queue_flag_clear_unlocked(unsigned int flag, 699 struct request_queue *q) 700 { 701 __clear_bit(flag, &q->queue_flags); 702 } 703 704 static inline int queue_in_flight(struct request_queue *q) 705 { 706 return q->in_flight[0] + q->in_flight[1]; 707 } 708 709 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q) 710 { 711 queue_lockdep_assert_held(q); 712 __clear_bit(flag, &q->queue_flags); 713 } 714 715 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags) 716 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 717 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 718 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 719 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags) 720 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 721 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 722 #define blk_queue_noxmerges(q) \ 723 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 724 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 725 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 726 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 727 #define blk_queue_stackable(q) \ 728 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags) 729 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 730 #define blk_queue_secure_erase(q) \ 731 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 732 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 733 #define blk_queue_scsi_passthrough(q) \ 734 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 735 736 #define blk_noretry_request(rq) \ 737 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 738 REQ_FAILFAST_DRIVER)) 739 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 740 741 static inline bool blk_account_rq(struct request *rq) 742 { 743 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq); 744 } 745 746 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1) 747 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL) 748 /* rq->queuelist of dequeued request must be list_empty() */ 749 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist)) 750 751 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 752 753 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 754 755 /* 756 * Driver can handle struct request, if it either has an old style 757 * request_fn defined, or is blk-mq based. 758 */ 759 static inline bool queue_is_rq_based(struct request_queue *q) 760 { 761 return q->request_fn || q->mq_ops; 762 } 763 764 static inline unsigned int blk_queue_cluster(struct request_queue *q) 765 { 766 return q->limits.cluster; 767 } 768 769 static inline enum blk_zoned_model 770 blk_queue_zoned_model(struct request_queue *q) 771 { 772 return q->limits.zoned; 773 } 774 775 static inline bool blk_queue_is_zoned(struct request_queue *q) 776 { 777 switch (blk_queue_zoned_model(q)) { 778 case BLK_ZONED_HA: 779 case BLK_ZONED_HM: 780 return true; 781 default: 782 return false; 783 } 784 } 785 786 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q) 787 { 788 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 789 } 790 791 static inline bool rq_is_sync(struct request *rq) 792 { 793 return op_is_sync(rq->cmd_flags); 794 } 795 796 static inline bool blk_rl_full(struct request_list *rl, bool sync) 797 { 798 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 799 800 return rl->flags & flag; 801 } 802 803 static inline void blk_set_rl_full(struct request_list *rl, bool sync) 804 { 805 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 806 807 rl->flags |= flag; 808 } 809 810 static inline void blk_clear_rl_full(struct request_list *rl, bool sync) 811 { 812 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL; 813 814 rl->flags &= ~flag; 815 } 816 817 static inline bool rq_mergeable(struct request *rq) 818 { 819 if (blk_rq_is_passthrough(rq)) 820 return false; 821 822 if (req_op(rq) == REQ_OP_FLUSH) 823 return false; 824 825 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 826 return false; 827 828 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 829 return false; 830 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 831 return false; 832 833 return true; 834 } 835 836 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 837 { 838 if (bio_page(a) == bio_page(b) && 839 bio_offset(a) == bio_offset(b)) 840 return true; 841 842 return false; 843 } 844 845 static inline unsigned int blk_queue_depth(struct request_queue *q) 846 { 847 if (q->queue_depth) 848 return q->queue_depth; 849 850 return q->nr_requests; 851 } 852 853 /* 854 * q->prep_rq_fn return values 855 */ 856 enum { 857 BLKPREP_OK, /* serve it */ 858 BLKPREP_KILL, /* fatal error, kill, return -EIO */ 859 BLKPREP_DEFER, /* leave on queue */ 860 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */ 861 }; 862 863 extern unsigned long blk_max_low_pfn, blk_max_pfn; 864 865 /* 866 * standard bounce addresses: 867 * 868 * BLK_BOUNCE_HIGH : bounce all highmem pages 869 * BLK_BOUNCE_ANY : don't bounce anything 870 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary 871 */ 872 873 #if BITS_PER_LONG == 32 874 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT) 875 #else 876 #define BLK_BOUNCE_HIGH -1ULL 877 #endif 878 #define BLK_BOUNCE_ANY (-1ULL) 879 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24)) 880 881 /* 882 * default timeout for SG_IO if none specified 883 */ 884 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 885 #define BLK_MIN_SG_TIMEOUT (7 * HZ) 886 887 struct rq_map_data { 888 struct page **pages; 889 int page_order; 890 int nr_entries; 891 unsigned long offset; 892 int null_mapped; 893 int from_user; 894 }; 895 896 struct req_iterator { 897 struct bvec_iter iter; 898 struct bio *bio; 899 }; 900 901 /* This should not be used directly - use rq_for_each_segment */ 902 #define for_each_bio(_bio) \ 903 for (; _bio; _bio = _bio->bi_next) 904 #define __rq_for_each_bio(_bio, rq) \ 905 if ((rq->bio)) \ 906 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 907 908 #define rq_for_each_segment(bvl, _rq, _iter) \ 909 __rq_for_each_bio(_iter.bio, _rq) \ 910 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 911 912 #define rq_iter_last(bvec, _iter) \ 913 (_iter.bio->bi_next == NULL && \ 914 bio_iter_last(bvec, _iter.iter)) 915 916 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 917 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 918 #endif 919 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 920 extern void rq_flush_dcache_pages(struct request *rq); 921 #else 922 static inline void rq_flush_dcache_pages(struct request *rq) 923 { 924 } 925 #endif 926 927 #ifdef CONFIG_PRINTK 928 #define vfs_msg(sb, level, fmt, ...) \ 929 __vfs_msg(sb, level, fmt, ##__VA_ARGS__) 930 #else 931 #define vfs_msg(sb, level, fmt, ...) \ 932 do { \ 933 no_printk(fmt, ##__VA_ARGS__); \ 934 __vfs_msg(sb, "", " "); \ 935 } while (0) 936 #endif 937 938 extern int blk_register_queue(struct gendisk *disk); 939 extern void blk_unregister_queue(struct gendisk *disk); 940 extern blk_qc_t generic_make_request(struct bio *bio); 941 extern void blk_rq_init(struct request_queue *q, struct request *rq); 942 extern void blk_init_request_from_bio(struct request *req, struct bio *bio); 943 extern void blk_put_request(struct request *); 944 extern void __blk_put_request(struct request_queue *, struct request *); 945 extern struct request *blk_get_request(struct request_queue *, unsigned int op, 946 gfp_t gfp_mask); 947 extern void blk_requeue_request(struct request_queue *, struct request *); 948 extern int blk_lld_busy(struct request_queue *q); 949 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 950 struct bio_set *bs, gfp_t gfp_mask, 951 int (*bio_ctr)(struct bio *, struct bio *, void *), 952 void *data); 953 extern void blk_rq_unprep_clone(struct request *rq); 954 extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 955 struct request *rq); 956 extern int blk_rq_append_bio(struct request *rq, struct bio *bio); 957 extern void blk_delay_queue(struct request_queue *, unsigned long); 958 extern void blk_queue_split(struct request_queue *, struct bio **); 959 extern void blk_recount_segments(struct request_queue *, struct bio *); 960 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 961 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 962 unsigned int, void __user *); 963 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 964 unsigned int, void __user *); 965 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 966 struct scsi_ioctl_command __user *); 967 968 extern int blk_queue_enter(struct request_queue *q, bool nowait); 969 extern void blk_queue_exit(struct request_queue *q); 970 extern void blk_start_queue(struct request_queue *q); 971 extern void blk_start_queue_async(struct request_queue *q); 972 extern void blk_stop_queue(struct request_queue *q); 973 extern void blk_sync_queue(struct request_queue *q); 974 extern void __blk_stop_queue(struct request_queue *q); 975 extern void __blk_run_queue(struct request_queue *q); 976 extern void __blk_run_queue_uncond(struct request_queue *q); 977 extern void blk_run_queue(struct request_queue *); 978 extern void blk_run_queue_async(struct request_queue *q); 979 extern int blk_rq_map_user(struct request_queue *, struct request *, 980 struct rq_map_data *, void __user *, unsigned long, 981 gfp_t); 982 extern int blk_rq_unmap_user(struct bio *); 983 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 984 extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 985 struct rq_map_data *, const struct iov_iter *, 986 gfp_t); 987 extern void blk_execute_rq(struct request_queue *, struct gendisk *, 988 struct request *, int); 989 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *, 990 struct request *, int, rq_end_io_fn *); 991 992 int blk_status_to_errno(blk_status_t status); 993 blk_status_t errno_to_blk_status(int errno); 994 995 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); 996 997 static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 998 { 999 return bdev->bd_disk->queue; /* this is never NULL */ 1000 } 1001 1002 /* 1003 * blk_rq_pos() : the current sector 1004 * blk_rq_bytes() : bytes left in the entire request 1005 * blk_rq_cur_bytes() : bytes left in the current segment 1006 * blk_rq_err_bytes() : bytes left till the next error boundary 1007 * blk_rq_sectors() : sectors left in the entire request 1008 * blk_rq_cur_sectors() : sectors left in the current segment 1009 */ 1010 static inline sector_t blk_rq_pos(const struct request *rq) 1011 { 1012 return rq->__sector; 1013 } 1014 1015 static inline unsigned int blk_rq_bytes(const struct request *rq) 1016 { 1017 return rq->__data_len; 1018 } 1019 1020 static inline int blk_rq_cur_bytes(const struct request *rq) 1021 { 1022 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 1023 } 1024 1025 extern unsigned int blk_rq_err_bytes(const struct request *rq); 1026 1027 static inline unsigned int blk_rq_sectors(const struct request *rq) 1028 { 1029 return blk_rq_bytes(rq) >> 9; 1030 } 1031 1032 static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 1033 { 1034 return blk_rq_cur_bytes(rq) >> 9; 1035 } 1036 1037 /* 1038 * Some commands like WRITE SAME have a payload or data transfer size which 1039 * is different from the size of the request. Any driver that supports such 1040 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1041 * calculate the data transfer size. 1042 */ 1043 static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1044 { 1045 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1046 return rq->special_vec.bv_len; 1047 return blk_rq_bytes(rq); 1048 } 1049 1050 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1051 int op) 1052 { 1053 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1054 return min(q->limits.max_discard_sectors, UINT_MAX >> 9); 1055 1056 if (unlikely(op == REQ_OP_WRITE_SAME)) 1057 return q->limits.max_write_same_sectors; 1058 1059 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1060 return q->limits.max_write_zeroes_sectors; 1061 1062 return q->limits.max_sectors; 1063 } 1064 1065 /* 1066 * Return maximum size of a request at given offset. Only valid for 1067 * file system requests. 1068 */ 1069 static inline unsigned int blk_max_size_offset(struct request_queue *q, 1070 sector_t offset) 1071 { 1072 if (!q->limits.chunk_sectors) 1073 return q->limits.max_sectors; 1074 1075 return q->limits.chunk_sectors - 1076 (offset & (q->limits.chunk_sectors - 1)); 1077 } 1078 1079 static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1080 sector_t offset) 1081 { 1082 struct request_queue *q = rq->q; 1083 1084 if (blk_rq_is_passthrough(rq)) 1085 return q->limits.max_hw_sectors; 1086 1087 if (!q->limits.chunk_sectors || 1088 req_op(rq) == REQ_OP_DISCARD || 1089 req_op(rq) == REQ_OP_SECURE_ERASE) 1090 return blk_queue_get_max_sectors(q, req_op(rq)); 1091 1092 return min(blk_max_size_offset(q, offset), 1093 blk_queue_get_max_sectors(q, req_op(rq))); 1094 } 1095 1096 static inline unsigned int blk_rq_count_bios(struct request *rq) 1097 { 1098 unsigned int nr_bios = 0; 1099 struct bio *bio; 1100 1101 __rq_for_each_bio(bio, rq) 1102 nr_bios++; 1103 1104 return nr_bios; 1105 } 1106 1107 /* 1108 * Request issue related functions. 1109 */ 1110 extern struct request *blk_peek_request(struct request_queue *q); 1111 extern void blk_start_request(struct request *rq); 1112 extern struct request *blk_fetch_request(struct request_queue *q); 1113 1114 /* 1115 * Request completion related functions. 1116 * 1117 * blk_update_request() completes given number of bytes and updates 1118 * the request without completing it. 1119 * 1120 * blk_end_request() and friends. __blk_end_request() must be called 1121 * with the request queue spinlock acquired. 1122 * 1123 * Several drivers define their own end_request and call 1124 * blk_end_request() for parts of the original function. 1125 * This prevents code duplication in drivers. 1126 */ 1127 extern bool blk_update_request(struct request *rq, blk_status_t error, 1128 unsigned int nr_bytes); 1129 extern void blk_finish_request(struct request *rq, blk_status_t error); 1130 extern bool blk_end_request(struct request *rq, blk_status_t error, 1131 unsigned int nr_bytes); 1132 extern void blk_end_request_all(struct request *rq, blk_status_t error); 1133 extern bool __blk_end_request(struct request *rq, blk_status_t error, 1134 unsigned int nr_bytes); 1135 extern void __blk_end_request_all(struct request *rq, blk_status_t error); 1136 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error); 1137 1138 extern void blk_complete_request(struct request *); 1139 extern void __blk_complete_request(struct request *); 1140 extern void blk_abort_request(struct request *); 1141 extern void blk_unprep_request(struct request *); 1142 1143 /* 1144 * Access functions for manipulating queue properties 1145 */ 1146 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn, 1147 spinlock_t *lock, int node_id); 1148 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *); 1149 extern int blk_init_allocated_queue(struct request_queue *); 1150 extern void blk_cleanup_queue(struct request_queue *); 1151 extern void blk_queue_make_request(struct request_queue *, make_request_fn *); 1152 extern void blk_queue_bounce_limit(struct request_queue *, u64); 1153 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1154 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1155 extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1156 extern void blk_queue_max_discard_segments(struct request_queue *, 1157 unsigned short); 1158 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1159 extern void blk_queue_max_discard_sectors(struct request_queue *q, 1160 unsigned int max_discard_sectors); 1161 extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1162 unsigned int max_write_same_sectors); 1163 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1164 unsigned int max_write_same_sectors); 1165 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short); 1166 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1167 extern void blk_queue_alignment_offset(struct request_queue *q, 1168 unsigned int alignment); 1169 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1170 extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1171 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1172 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1173 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1174 extern void blk_set_default_limits(struct queue_limits *lim); 1175 extern void blk_set_stacking_limits(struct queue_limits *lim); 1176 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1177 sector_t offset); 1178 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev, 1179 sector_t offset); 1180 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1181 sector_t offset); 1182 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b); 1183 extern void blk_queue_dma_pad(struct request_queue *, unsigned int); 1184 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1185 extern int blk_queue_dma_drain(struct request_queue *q, 1186 dma_drain_needed_fn *dma_drain_needed, 1187 void *buf, unsigned int size); 1188 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn); 1189 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1190 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1191 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn); 1192 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn); 1193 extern void blk_queue_dma_alignment(struct request_queue *, int); 1194 extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1195 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *); 1196 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *); 1197 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1198 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable); 1199 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1200 1201 /* 1202 * Number of physical segments as sent to the device. 1203 * 1204 * Normally this is the number of discontiguous data segments sent by the 1205 * submitter. But for data-less command like discard we might have no 1206 * actual data segments submitted, but the driver might have to add it's 1207 * own special payload. In that case we still return 1 here so that this 1208 * special payload will be mapped. 1209 */ 1210 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1211 { 1212 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1213 return 1; 1214 return rq->nr_phys_segments; 1215 } 1216 1217 /* 1218 * Number of discard segments (or ranges) the driver needs to fill in. 1219 * Each discard bio merged into a request is counted as one segment. 1220 */ 1221 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1222 { 1223 return max_t(unsigned short, rq->nr_phys_segments, 1); 1224 } 1225 1226 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *); 1227 extern void blk_dump_rq_flags(struct request *, char *); 1228 extern long nr_blockdev_pages(void); 1229 1230 bool __must_check blk_get_queue(struct request_queue *); 1231 struct request_queue *blk_alloc_queue(gfp_t); 1232 struct request_queue *blk_alloc_queue_node(gfp_t, int); 1233 extern void blk_put_queue(struct request_queue *); 1234 extern void blk_set_queue_dying(struct request_queue *); 1235 1236 /* 1237 * block layer runtime pm functions 1238 */ 1239 #ifdef CONFIG_PM 1240 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev); 1241 extern int blk_pre_runtime_suspend(struct request_queue *q); 1242 extern void blk_post_runtime_suspend(struct request_queue *q, int err); 1243 extern void blk_pre_runtime_resume(struct request_queue *q); 1244 extern void blk_post_runtime_resume(struct request_queue *q, int err); 1245 extern void blk_set_runtime_active(struct request_queue *q); 1246 #else 1247 static inline void blk_pm_runtime_init(struct request_queue *q, 1248 struct device *dev) {} 1249 static inline int blk_pre_runtime_suspend(struct request_queue *q) 1250 { 1251 return -ENOSYS; 1252 } 1253 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {} 1254 static inline void blk_pre_runtime_resume(struct request_queue *q) {} 1255 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {} 1256 static inline void blk_set_runtime_active(struct request_queue *q) {} 1257 #endif 1258 1259 /* 1260 * blk_plug permits building a queue of related requests by holding the I/O 1261 * fragments for a short period. This allows merging of sequential requests 1262 * into single larger request. As the requests are moved from a per-task list to 1263 * the device's request_queue in a batch, this results in improved scalability 1264 * as the lock contention for request_queue lock is reduced. 1265 * 1266 * It is ok not to disable preemption when adding the request to the plug list 1267 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1268 * the plug list when the task sleeps by itself. For details, please see 1269 * schedule() where blk_schedule_flush_plug() is called. 1270 */ 1271 struct blk_plug { 1272 struct list_head list; /* requests */ 1273 struct list_head mq_list; /* blk-mq requests */ 1274 struct list_head cb_list; /* md requires an unplug callback */ 1275 }; 1276 #define BLK_MAX_REQUEST_COUNT 16 1277 #define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1278 1279 struct blk_plug_cb; 1280 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1281 struct blk_plug_cb { 1282 struct list_head list; 1283 blk_plug_cb_fn callback; 1284 void *data; 1285 }; 1286 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1287 void *data, int size); 1288 extern void blk_start_plug(struct blk_plug *); 1289 extern void blk_finish_plug(struct blk_plug *); 1290 extern void blk_flush_plug_list(struct blk_plug *, bool); 1291 1292 static inline void blk_flush_plug(struct task_struct *tsk) 1293 { 1294 struct blk_plug *plug = tsk->plug; 1295 1296 if (plug) 1297 blk_flush_plug_list(plug, false); 1298 } 1299 1300 static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1301 { 1302 struct blk_plug *plug = tsk->plug; 1303 1304 if (plug) 1305 blk_flush_plug_list(plug, true); 1306 } 1307 1308 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1309 { 1310 struct blk_plug *plug = tsk->plug; 1311 1312 return plug && 1313 (!list_empty(&plug->list) || 1314 !list_empty(&plug->mq_list) || 1315 !list_empty(&plug->cb_list)); 1316 } 1317 1318 /* 1319 * tag stuff 1320 */ 1321 extern int blk_queue_start_tag(struct request_queue *, struct request *); 1322 extern struct request *blk_queue_find_tag(struct request_queue *, int); 1323 extern void blk_queue_end_tag(struct request_queue *, struct request *); 1324 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int); 1325 extern void blk_queue_free_tags(struct request_queue *); 1326 extern int blk_queue_resize_tags(struct request_queue *, int); 1327 extern void blk_queue_invalidate_tags(struct request_queue *); 1328 extern struct blk_queue_tag *blk_init_tags(int, int); 1329 extern void blk_free_tags(struct blk_queue_tag *); 1330 1331 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt, 1332 int tag) 1333 { 1334 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) 1335 return NULL; 1336 return bqt->tag_index[tag]; 1337 } 1338 1339 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *); 1340 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1341 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1342 1343 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1344 1345 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1346 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1347 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1348 sector_t nr_sects, gfp_t gfp_mask, int flags, 1349 struct bio **biop); 1350 1351 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1352 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1353 1354 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1355 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1356 unsigned flags); 1357 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1358 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1359 1360 static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1361 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1362 { 1363 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9), 1364 nr_blocks << (sb->s_blocksize_bits - 9), 1365 gfp_mask, flags); 1366 } 1367 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1368 sector_t nr_blocks, gfp_t gfp_mask) 1369 { 1370 return blkdev_issue_zeroout(sb->s_bdev, 1371 block << (sb->s_blocksize_bits - 9), 1372 nr_blocks << (sb->s_blocksize_bits - 9), 1373 gfp_mask, 0); 1374 } 1375 1376 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm); 1377 1378 enum blk_default_limits { 1379 BLK_MAX_SEGMENTS = 128, 1380 BLK_SAFE_MAX_SECTORS = 255, 1381 BLK_DEF_MAX_SECTORS = 2560, 1382 BLK_MAX_SEGMENT_SIZE = 65536, 1383 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1384 }; 1385 1386 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist) 1387 1388 static inline unsigned long queue_segment_boundary(struct request_queue *q) 1389 { 1390 return q->limits.seg_boundary_mask; 1391 } 1392 1393 static inline unsigned long queue_virt_boundary(struct request_queue *q) 1394 { 1395 return q->limits.virt_boundary_mask; 1396 } 1397 1398 static inline unsigned int queue_max_sectors(struct request_queue *q) 1399 { 1400 return q->limits.max_sectors; 1401 } 1402 1403 static inline unsigned int queue_max_hw_sectors(struct request_queue *q) 1404 { 1405 return q->limits.max_hw_sectors; 1406 } 1407 1408 static inline unsigned short queue_max_segments(struct request_queue *q) 1409 { 1410 return q->limits.max_segments; 1411 } 1412 1413 static inline unsigned short queue_max_discard_segments(struct request_queue *q) 1414 { 1415 return q->limits.max_discard_segments; 1416 } 1417 1418 static inline unsigned int queue_max_segment_size(struct request_queue *q) 1419 { 1420 return q->limits.max_segment_size; 1421 } 1422 1423 static inline unsigned short queue_logical_block_size(struct request_queue *q) 1424 { 1425 int retval = 512; 1426 1427 if (q && q->limits.logical_block_size) 1428 retval = q->limits.logical_block_size; 1429 1430 return retval; 1431 } 1432 1433 static inline unsigned short bdev_logical_block_size(struct block_device *bdev) 1434 { 1435 return queue_logical_block_size(bdev_get_queue(bdev)); 1436 } 1437 1438 static inline unsigned int queue_physical_block_size(struct request_queue *q) 1439 { 1440 return q->limits.physical_block_size; 1441 } 1442 1443 static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1444 { 1445 return queue_physical_block_size(bdev_get_queue(bdev)); 1446 } 1447 1448 static inline unsigned int queue_io_min(struct request_queue *q) 1449 { 1450 return q->limits.io_min; 1451 } 1452 1453 static inline int bdev_io_min(struct block_device *bdev) 1454 { 1455 return queue_io_min(bdev_get_queue(bdev)); 1456 } 1457 1458 static inline unsigned int queue_io_opt(struct request_queue *q) 1459 { 1460 return q->limits.io_opt; 1461 } 1462 1463 static inline int bdev_io_opt(struct block_device *bdev) 1464 { 1465 return queue_io_opt(bdev_get_queue(bdev)); 1466 } 1467 1468 static inline int queue_alignment_offset(struct request_queue *q) 1469 { 1470 if (q->limits.misaligned) 1471 return -1; 1472 1473 return q->limits.alignment_offset; 1474 } 1475 1476 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1477 { 1478 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1479 unsigned int alignment = sector_div(sector, granularity >> 9) << 9; 1480 1481 return (granularity + lim->alignment_offset - alignment) % granularity; 1482 } 1483 1484 static inline int bdev_alignment_offset(struct block_device *bdev) 1485 { 1486 struct request_queue *q = bdev_get_queue(bdev); 1487 1488 if (q->limits.misaligned) 1489 return -1; 1490 1491 if (bdev != bdev->bd_contains) 1492 return bdev->bd_part->alignment_offset; 1493 1494 return q->limits.alignment_offset; 1495 } 1496 1497 static inline int queue_discard_alignment(struct request_queue *q) 1498 { 1499 if (q->limits.discard_misaligned) 1500 return -1; 1501 1502 return q->limits.discard_alignment; 1503 } 1504 1505 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1506 { 1507 unsigned int alignment, granularity, offset; 1508 1509 if (!lim->max_discard_sectors) 1510 return 0; 1511 1512 /* Why are these in bytes, not sectors? */ 1513 alignment = lim->discard_alignment >> 9; 1514 granularity = lim->discard_granularity >> 9; 1515 if (!granularity) 1516 return 0; 1517 1518 /* Offset of the partition start in 'granularity' sectors */ 1519 offset = sector_div(sector, granularity); 1520 1521 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1522 offset = (granularity + alignment - offset) % granularity; 1523 1524 /* Turn it back into bytes, gaah */ 1525 return offset << 9; 1526 } 1527 1528 static inline int bdev_discard_alignment(struct block_device *bdev) 1529 { 1530 struct request_queue *q = bdev_get_queue(bdev); 1531 1532 if (bdev != bdev->bd_contains) 1533 return bdev->bd_part->discard_alignment; 1534 1535 return q->limits.discard_alignment; 1536 } 1537 1538 static inline unsigned int bdev_write_same(struct block_device *bdev) 1539 { 1540 struct request_queue *q = bdev_get_queue(bdev); 1541 1542 if (q) 1543 return q->limits.max_write_same_sectors; 1544 1545 return 0; 1546 } 1547 1548 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1549 { 1550 struct request_queue *q = bdev_get_queue(bdev); 1551 1552 if (q) 1553 return q->limits.max_write_zeroes_sectors; 1554 1555 return 0; 1556 } 1557 1558 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1559 { 1560 struct request_queue *q = bdev_get_queue(bdev); 1561 1562 if (q) 1563 return blk_queue_zoned_model(q); 1564 1565 return BLK_ZONED_NONE; 1566 } 1567 1568 static inline bool bdev_is_zoned(struct block_device *bdev) 1569 { 1570 struct request_queue *q = bdev_get_queue(bdev); 1571 1572 if (q) 1573 return blk_queue_is_zoned(q); 1574 1575 return false; 1576 } 1577 1578 static inline unsigned int bdev_zone_sectors(struct block_device *bdev) 1579 { 1580 struct request_queue *q = bdev_get_queue(bdev); 1581 1582 if (q) 1583 return blk_queue_zone_sectors(q); 1584 1585 return 0; 1586 } 1587 1588 static inline int queue_dma_alignment(struct request_queue *q) 1589 { 1590 return q ? q->dma_alignment : 511; 1591 } 1592 1593 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1594 unsigned int len) 1595 { 1596 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1597 return !(addr & alignment) && !(len & alignment); 1598 } 1599 1600 /* assumes size > 256 */ 1601 static inline unsigned int blksize_bits(unsigned int size) 1602 { 1603 unsigned int bits = 8; 1604 do { 1605 bits++; 1606 size >>= 1; 1607 } while (size > 256); 1608 return bits; 1609 } 1610 1611 static inline unsigned int block_size(struct block_device *bdev) 1612 { 1613 return bdev->bd_block_size; 1614 } 1615 1616 static inline bool queue_flush_queueable(struct request_queue *q) 1617 { 1618 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags); 1619 } 1620 1621 typedef struct {struct page *v;} Sector; 1622 1623 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *); 1624 1625 static inline void put_dev_sector(Sector p) 1626 { 1627 put_page(p.v); 1628 } 1629 1630 static inline bool __bvec_gap_to_prev(struct request_queue *q, 1631 struct bio_vec *bprv, unsigned int offset) 1632 { 1633 return offset || 1634 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 1635 } 1636 1637 /* 1638 * Check if adding a bio_vec after bprv with offset would create a gap in 1639 * the SG list. Most drivers don't care about this, but some do. 1640 */ 1641 static inline bool bvec_gap_to_prev(struct request_queue *q, 1642 struct bio_vec *bprv, unsigned int offset) 1643 { 1644 if (!queue_virt_boundary(q)) 1645 return false; 1646 return __bvec_gap_to_prev(q, bprv, offset); 1647 } 1648 1649 /* 1650 * Check if the two bvecs from two bios can be merged to one segment. 1651 * If yes, no need to check gap between the two bios since the 1st bio 1652 * and the 1st bvec in the 2nd bio can be handled in one segment. 1653 */ 1654 static inline bool bios_segs_mergeable(struct request_queue *q, 1655 struct bio *prev, struct bio_vec *prev_last_bv, 1656 struct bio_vec *next_first_bv) 1657 { 1658 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv)) 1659 return false; 1660 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv)) 1661 return false; 1662 if (prev->bi_seg_back_size + next_first_bv->bv_len > 1663 queue_max_segment_size(q)) 1664 return false; 1665 return true; 1666 } 1667 1668 static inline bool bio_will_gap(struct request_queue *q, 1669 struct request *prev_rq, 1670 struct bio *prev, 1671 struct bio *next) 1672 { 1673 if (bio_has_data(prev) && queue_virt_boundary(q)) { 1674 struct bio_vec pb, nb; 1675 1676 /* 1677 * don't merge if the 1st bio starts with non-zero 1678 * offset, otherwise it is quite difficult to respect 1679 * sg gap limit. We work hard to merge a huge number of small 1680 * single bios in case of mkfs. 1681 */ 1682 if (prev_rq) 1683 bio_get_first_bvec(prev_rq->bio, &pb); 1684 else 1685 bio_get_first_bvec(prev, &pb); 1686 if (pb.bv_offset) 1687 return true; 1688 1689 /* 1690 * We don't need to worry about the situation that the 1691 * merged segment ends in unaligned virt boundary: 1692 * 1693 * - if 'pb' ends aligned, the merged segment ends aligned 1694 * - if 'pb' ends unaligned, the next bio must include 1695 * one single bvec of 'nb', otherwise the 'nb' can't 1696 * merge with 'pb' 1697 */ 1698 bio_get_last_bvec(prev, &pb); 1699 bio_get_first_bvec(next, &nb); 1700 1701 if (!bios_segs_mergeable(q, prev, &pb, &nb)) 1702 return __bvec_gap_to_prev(q, &pb, nb.bv_offset); 1703 } 1704 1705 return false; 1706 } 1707 1708 static inline bool req_gap_back_merge(struct request *req, struct bio *bio) 1709 { 1710 return bio_will_gap(req->q, req, req->biotail, bio); 1711 } 1712 1713 static inline bool req_gap_front_merge(struct request *req, struct bio *bio) 1714 { 1715 return bio_will_gap(req->q, NULL, bio, req->bio); 1716 } 1717 1718 int kblockd_schedule_work(struct work_struct *work); 1719 int kblockd_schedule_work_on(int cpu, struct work_struct *work); 1720 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay); 1721 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1722 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1723 1724 #ifdef CONFIG_BLK_CGROUP 1725 /* 1726 * This should not be using sched_clock(). A real patch is in progress 1727 * to fix this up, until that is in place we need to disable preemption 1728 * around sched_clock() in this function and set_io_start_time_ns(). 1729 */ 1730 static inline void set_start_time_ns(struct request *req) 1731 { 1732 preempt_disable(); 1733 req->start_time_ns = sched_clock(); 1734 preempt_enable(); 1735 } 1736 1737 static inline void set_io_start_time_ns(struct request *req) 1738 { 1739 preempt_disable(); 1740 req->io_start_time_ns = sched_clock(); 1741 preempt_enable(); 1742 } 1743 1744 static inline uint64_t rq_start_time_ns(struct request *req) 1745 { 1746 return req->start_time_ns; 1747 } 1748 1749 static inline uint64_t rq_io_start_time_ns(struct request *req) 1750 { 1751 return req->io_start_time_ns; 1752 } 1753 #else 1754 static inline void set_start_time_ns(struct request *req) {} 1755 static inline void set_io_start_time_ns(struct request *req) {} 1756 static inline uint64_t rq_start_time_ns(struct request *req) 1757 { 1758 return 0; 1759 } 1760 static inline uint64_t rq_io_start_time_ns(struct request *req) 1761 { 1762 return 0; 1763 } 1764 #endif 1765 1766 #define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1767 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1768 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1769 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1770 1771 #if defined(CONFIG_BLK_DEV_INTEGRITY) 1772 1773 enum blk_integrity_flags { 1774 BLK_INTEGRITY_VERIFY = 1 << 0, 1775 BLK_INTEGRITY_GENERATE = 1 << 1, 1776 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1777 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1778 }; 1779 1780 struct blk_integrity_iter { 1781 void *prot_buf; 1782 void *data_buf; 1783 sector_t seed; 1784 unsigned int data_size; 1785 unsigned short interval; 1786 const char *disk_name; 1787 }; 1788 1789 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1790 1791 struct blk_integrity_profile { 1792 integrity_processing_fn *generate_fn; 1793 integrity_processing_fn *verify_fn; 1794 const char *name; 1795 }; 1796 1797 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1798 extern void blk_integrity_unregister(struct gendisk *); 1799 extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1800 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1801 struct scatterlist *); 1802 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1803 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *, 1804 struct request *); 1805 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *, 1806 struct bio *); 1807 1808 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1809 { 1810 struct blk_integrity *bi = &disk->queue->integrity; 1811 1812 if (!bi->profile) 1813 return NULL; 1814 1815 return bi; 1816 } 1817 1818 static inline 1819 struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1820 { 1821 return blk_get_integrity(bdev->bd_disk); 1822 } 1823 1824 static inline bool blk_integrity_rq(struct request *rq) 1825 { 1826 return rq->cmd_flags & REQ_INTEGRITY; 1827 } 1828 1829 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1830 unsigned int segs) 1831 { 1832 q->limits.max_integrity_segments = segs; 1833 } 1834 1835 static inline unsigned short 1836 queue_max_integrity_segments(struct request_queue *q) 1837 { 1838 return q->limits.max_integrity_segments; 1839 } 1840 1841 static inline bool integrity_req_gap_back_merge(struct request *req, 1842 struct bio *next) 1843 { 1844 struct bio_integrity_payload *bip = bio_integrity(req->bio); 1845 struct bio_integrity_payload *bip_next = bio_integrity(next); 1846 1847 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1848 bip_next->bip_vec[0].bv_offset); 1849 } 1850 1851 static inline bool integrity_req_gap_front_merge(struct request *req, 1852 struct bio *bio) 1853 { 1854 struct bio_integrity_payload *bip = bio_integrity(bio); 1855 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 1856 1857 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 1858 bip_next->bip_vec[0].bv_offset); 1859 } 1860 1861 #else /* CONFIG_BLK_DEV_INTEGRITY */ 1862 1863 struct bio; 1864 struct block_device; 1865 struct gendisk; 1866 struct blk_integrity; 1867 1868 static inline int blk_integrity_rq(struct request *rq) 1869 { 1870 return 0; 1871 } 1872 static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1873 struct bio *b) 1874 { 1875 return 0; 1876 } 1877 static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1878 struct bio *b, 1879 struct scatterlist *s) 1880 { 1881 return 0; 1882 } 1883 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1884 { 1885 return NULL; 1886 } 1887 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1888 { 1889 return NULL; 1890 } 1891 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1892 { 1893 return 0; 1894 } 1895 static inline void blk_integrity_register(struct gendisk *d, 1896 struct blk_integrity *b) 1897 { 1898 } 1899 static inline void blk_integrity_unregister(struct gendisk *d) 1900 { 1901 } 1902 static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1903 unsigned int segs) 1904 { 1905 } 1906 static inline unsigned short queue_max_integrity_segments(struct request_queue *q) 1907 { 1908 return 0; 1909 } 1910 static inline bool blk_integrity_merge_rq(struct request_queue *rq, 1911 struct request *r1, 1912 struct request *r2) 1913 { 1914 return true; 1915 } 1916 static inline bool blk_integrity_merge_bio(struct request_queue *rq, 1917 struct request *r, 1918 struct bio *b) 1919 { 1920 return true; 1921 } 1922 1923 static inline bool integrity_req_gap_back_merge(struct request *req, 1924 struct bio *next) 1925 { 1926 return false; 1927 } 1928 static inline bool integrity_req_gap_front_merge(struct request *req, 1929 struct bio *bio) 1930 { 1931 return false; 1932 } 1933 1934 #endif /* CONFIG_BLK_DEV_INTEGRITY */ 1935 1936 struct block_device_operations { 1937 int (*open) (struct block_device *, fmode_t); 1938 void (*release) (struct gendisk *, fmode_t); 1939 int (*rw_page)(struct block_device *, sector_t, struct page *, bool); 1940 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1941 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1942 unsigned int (*check_events) (struct gendisk *disk, 1943 unsigned int clearing); 1944 /* ->media_changed() is DEPRECATED, use ->check_events() instead */ 1945 int (*media_changed) (struct gendisk *); 1946 void (*unlock_native_capacity) (struct gendisk *); 1947 int (*revalidate_disk) (struct gendisk *); 1948 int (*getgeo)(struct block_device *, struct hd_geometry *); 1949 /* this callback is with swap_lock and sometimes page table lock held */ 1950 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1951 struct module *owner; 1952 const struct pr_ops *pr_ops; 1953 }; 1954 1955 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int, 1956 unsigned long); 1957 extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1958 extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1959 struct writeback_control *); 1960 #else /* CONFIG_BLOCK */ 1961 1962 struct block_device; 1963 1964 /* 1965 * stubs for when the block layer is configured out 1966 */ 1967 #define buffer_heads_over_limit 0 1968 1969 static inline long nr_blockdev_pages(void) 1970 { 1971 return 0; 1972 } 1973 1974 struct blk_plug { 1975 }; 1976 1977 static inline void blk_start_plug(struct blk_plug *plug) 1978 { 1979 } 1980 1981 static inline void blk_finish_plug(struct blk_plug *plug) 1982 { 1983 } 1984 1985 static inline void blk_flush_plug(struct task_struct *task) 1986 { 1987 } 1988 1989 static inline void blk_schedule_flush_plug(struct task_struct *task) 1990 { 1991 } 1992 1993 1994 static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1995 { 1996 return false; 1997 } 1998 1999 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 2000 sector_t *error_sector) 2001 { 2002 return 0; 2003 } 2004 2005 #endif /* CONFIG_BLOCK */ 2006 2007 #endif 2008