xref: /linux-6.15/include/linux/blkdev.h (revision bbb03029)
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3 
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6 
7 #ifdef CONFIG_BLOCK
8 
9 #include <linux/major.h>
10 #include <linux/genhd.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/timer.h>
14 #include <linux/workqueue.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev-defs.h>
17 #include <linux/wait.h>
18 #include <linux/mempool.h>
19 #include <linux/pfn.h>
20 #include <linux/bio.h>
21 #include <linux/stringify.h>
22 #include <linux/gfp.h>
23 #include <linux/bsg.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/scatterlist.h>
28 #include <linux/blkzoned.h>
29 
30 struct module;
31 struct scsi_ioctl_command;
32 
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_wb;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45 
46 #define BLKDEV_MIN_RQ	4
47 #define BLKDEV_MAX_RQ	128	/* Default maximum */
48 
49 /* Must be consisitent with blk_mq_poll_stats_bkt() */
50 #define BLK_MQ_POLL_STATS_BKTS 16
51 
52 /*
53  * Maximum number of blkcg policies allowed to be registered concurrently.
54  * Defined here to simplify include dependency.
55  */
56 #define BLKCG_MAX_POLS		3
57 
58 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
59 
60 #define BLK_RL_SYNCFULL		(1U << 0)
61 #define BLK_RL_ASYNCFULL	(1U << 1)
62 
63 struct request_list {
64 	struct request_queue	*q;	/* the queue this rl belongs to */
65 #ifdef CONFIG_BLK_CGROUP
66 	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
67 #endif
68 	/*
69 	 * count[], starved[], and wait[] are indexed by
70 	 * BLK_RW_SYNC/BLK_RW_ASYNC
71 	 */
72 	int			count[2];
73 	int			starved[2];
74 	mempool_t		*rq_pool;
75 	wait_queue_head_t	wait[2];
76 	unsigned int		flags;
77 };
78 
79 /*
80  * request flags */
81 typedef __u32 __bitwise req_flags_t;
82 
83 /* elevator knows about this request */
84 #define RQF_SORTED		((__force req_flags_t)(1 << 0))
85 /* drive already may have started this one */
86 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
87 /* uses tagged queueing */
88 #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
89 /* may not be passed by ioscheduler */
90 #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
91 /* request for flush sequence */
92 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
93 /* merge of different types, fail separately */
94 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
95 /* track inflight for MQ */
96 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
97 /* don't call prep for this one */
98 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
99 /* set for "ide_preempt" requests and also for requests for which the SCSI
100    "quiesce" state must be ignored. */
101 #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
102 /* contains copies of user pages */
103 #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
104 /* vaguely specified driver internal error.  Ignored by the block layer */
105 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
106 /* don't warn about errors */
107 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
108 /* elevator private data attached */
109 #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
110 /* account I/O stat */
111 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
112 /* request came from our alloc pool */
113 #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
114 /* runtime pm request */
115 #define RQF_PM			((__force req_flags_t)(1 << 15))
116 /* on IO scheduler merge hash */
117 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
118 /* IO stats tracking on */
119 #define RQF_STATS		((__force req_flags_t)(1 << 17))
120 /* Look at ->special_vec for the actual data payload instead of the
121    bio chain. */
122 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
123 
124 /* flags that prevent us from merging requests: */
125 #define RQF_NOMERGE_FLAGS \
126 	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
127 
128 /*
129  * Try to put the fields that are referenced together in the same cacheline.
130  *
131  * If you modify this structure, make sure to update blk_rq_init() and
132  * especially blk_mq_rq_ctx_init() to take care of the added fields.
133  */
134 struct request {
135 	struct list_head queuelist;
136 	union {
137 		struct call_single_data csd;
138 		u64 fifo_time;
139 	};
140 
141 	struct request_queue *q;
142 	struct blk_mq_ctx *mq_ctx;
143 
144 	int cpu;
145 	unsigned int cmd_flags;		/* op and common flags */
146 	req_flags_t rq_flags;
147 
148 	int internal_tag;
149 
150 	unsigned long atomic_flags;
151 
152 	/* the following two fields are internal, NEVER access directly */
153 	unsigned int __data_len;	/* total data len */
154 	int tag;
155 	sector_t __sector;		/* sector cursor */
156 
157 	struct bio *bio;
158 	struct bio *biotail;
159 
160 	/*
161 	 * The hash is used inside the scheduler, and killed once the
162 	 * request reaches the dispatch list. The ipi_list is only used
163 	 * to queue the request for softirq completion, which is long
164 	 * after the request has been unhashed (and even removed from
165 	 * the dispatch list).
166 	 */
167 	union {
168 		struct hlist_node hash;	/* merge hash */
169 		struct list_head ipi_list;
170 	};
171 
172 	/*
173 	 * The rb_node is only used inside the io scheduler, requests
174 	 * are pruned when moved to the dispatch queue. So let the
175 	 * completion_data share space with the rb_node.
176 	 */
177 	union {
178 		struct rb_node rb_node;	/* sort/lookup */
179 		struct bio_vec special_vec;
180 		void *completion_data;
181 		int error_count; /* for legacy drivers, don't use */
182 	};
183 
184 	/*
185 	 * Three pointers are available for the IO schedulers, if they need
186 	 * more they have to dynamically allocate it.  Flush requests are
187 	 * never put on the IO scheduler. So let the flush fields share
188 	 * space with the elevator data.
189 	 */
190 	union {
191 		struct {
192 			struct io_cq		*icq;
193 			void			*priv[2];
194 		} elv;
195 
196 		struct {
197 			unsigned int		seq;
198 			struct list_head	list;
199 			rq_end_io_fn		*saved_end_io;
200 		} flush;
201 	};
202 
203 	struct gendisk *rq_disk;
204 	struct hd_struct *part;
205 	unsigned long start_time;
206 	struct blk_issue_stat issue_stat;
207 #ifdef CONFIG_BLK_CGROUP
208 	struct request_list *rl;		/* rl this rq is alloced from */
209 	unsigned long long start_time_ns;
210 	unsigned long long io_start_time_ns;    /* when passed to hardware */
211 #endif
212 	/* Number of scatter-gather DMA addr+len pairs after
213 	 * physical address coalescing is performed.
214 	 */
215 	unsigned short nr_phys_segments;
216 #if defined(CONFIG_BLK_DEV_INTEGRITY)
217 	unsigned short nr_integrity_segments;
218 #endif
219 
220 	unsigned short ioprio;
221 
222 	unsigned int timeout;
223 
224 	void *special;		/* opaque pointer available for LLD use */
225 
226 	unsigned int extra_len;	/* length of alignment and padding */
227 
228 	unsigned short write_hint;
229 
230 	unsigned long deadline;
231 	struct list_head timeout_list;
232 
233 	/*
234 	 * completion callback.
235 	 */
236 	rq_end_io_fn *end_io;
237 	void *end_io_data;
238 
239 	/* for bidi */
240 	struct request *next_rq;
241 };
242 
243 static inline bool blk_rq_is_scsi(struct request *rq)
244 {
245 	return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
246 }
247 
248 static inline bool blk_rq_is_private(struct request *rq)
249 {
250 	return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
251 }
252 
253 static inline bool blk_rq_is_passthrough(struct request *rq)
254 {
255 	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
256 }
257 
258 static inline unsigned short req_get_ioprio(struct request *req)
259 {
260 	return req->ioprio;
261 }
262 
263 #include <linux/elevator.h>
264 
265 struct blk_queue_ctx;
266 
267 typedef void (request_fn_proc) (struct request_queue *q);
268 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
269 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
270 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
271 
272 struct bio_vec;
273 typedef void (softirq_done_fn)(struct request *);
274 typedef int (dma_drain_needed_fn)(struct request *);
275 typedef int (lld_busy_fn) (struct request_queue *q);
276 typedef int (bsg_job_fn) (struct bsg_job *);
277 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
278 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
279 
280 enum blk_eh_timer_return {
281 	BLK_EH_NOT_HANDLED,
282 	BLK_EH_HANDLED,
283 	BLK_EH_RESET_TIMER,
284 };
285 
286 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
287 
288 enum blk_queue_state {
289 	Queue_down,
290 	Queue_up,
291 };
292 
293 struct blk_queue_tag {
294 	struct request **tag_index;	/* map of busy tags */
295 	unsigned long *tag_map;		/* bit map of free/busy tags */
296 	int max_depth;			/* what we will send to device */
297 	int real_max_depth;		/* what the array can hold */
298 	atomic_t refcnt;		/* map can be shared */
299 	int alloc_policy;		/* tag allocation policy */
300 	int next_tag;			/* next tag */
301 };
302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
304 
305 #define BLK_SCSI_MAX_CMDS	(256)
306 #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
307 
308 /*
309  * Zoned block device models (zoned limit).
310  */
311 enum blk_zoned_model {
312 	BLK_ZONED_NONE,	/* Regular block device */
313 	BLK_ZONED_HA,	/* Host-aware zoned block device */
314 	BLK_ZONED_HM,	/* Host-managed zoned block device */
315 };
316 
317 struct queue_limits {
318 	unsigned long		bounce_pfn;
319 	unsigned long		seg_boundary_mask;
320 	unsigned long		virt_boundary_mask;
321 
322 	unsigned int		max_hw_sectors;
323 	unsigned int		max_dev_sectors;
324 	unsigned int		chunk_sectors;
325 	unsigned int		max_sectors;
326 	unsigned int		max_segment_size;
327 	unsigned int		physical_block_size;
328 	unsigned int		alignment_offset;
329 	unsigned int		io_min;
330 	unsigned int		io_opt;
331 	unsigned int		max_discard_sectors;
332 	unsigned int		max_hw_discard_sectors;
333 	unsigned int		max_write_same_sectors;
334 	unsigned int		max_write_zeroes_sectors;
335 	unsigned int		discard_granularity;
336 	unsigned int		discard_alignment;
337 
338 	unsigned short		logical_block_size;
339 	unsigned short		max_segments;
340 	unsigned short		max_integrity_segments;
341 	unsigned short		max_discard_segments;
342 
343 	unsigned char		misaligned;
344 	unsigned char		discard_misaligned;
345 	unsigned char		cluster;
346 	unsigned char		raid_partial_stripes_expensive;
347 	enum blk_zoned_model	zoned;
348 };
349 
350 #ifdef CONFIG_BLK_DEV_ZONED
351 
352 struct blk_zone_report_hdr {
353 	unsigned int	nr_zones;
354 	u8		padding[60];
355 };
356 
357 extern int blkdev_report_zones(struct block_device *bdev,
358 			       sector_t sector, struct blk_zone *zones,
359 			       unsigned int *nr_zones, gfp_t gfp_mask);
360 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
361 			      sector_t nr_sectors, gfp_t gfp_mask);
362 
363 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
364 				     unsigned int cmd, unsigned long arg);
365 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
366 				    unsigned int cmd, unsigned long arg);
367 
368 #else /* CONFIG_BLK_DEV_ZONED */
369 
370 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
371 					    fmode_t mode, unsigned int cmd,
372 					    unsigned long arg)
373 {
374 	return -ENOTTY;
375 }
376 
377 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
378 					   fmode_t mode, unsigned int cmd,
379 					   unsigned long arg)
380 {
381 	return -ENOTTY;
382 }
383 
384 #endif /* CONFIG_BLK_DEV_ZONED */
385 
386 struct request_queue {
387 	/*
388 	 * Together with queue_head for cacheline sharing
389 	 */
390 	struct list_head	queue_head;
391 	struct request		*last_merge;
392 	struct elevator_queue	*elevator;
393 	int			nr_rqs[2];	/* # allocated [a]sync rqs */
394 	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
395 
396 	atomic_t		shared_hctx_restart;
397 
398 	struct blk_queue_stats	*stats;
399 	struct rq_wb		*rq_wb;
400 
401 	/*
402 	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
403 	 * is used, root blkg allocates from @q->root_rl and all other
404 	 * blkgs from their own blkg->rl.  Which one to use should be
405 	 * determined using bio_request_list().
406 	 */
407 	struct request_list	root_rl;
408 
409 	request_fn_proc		*request_fn;
410 	make_request_fn		*make_request_fn;
411 	prep_rq_fn		*prep_rq_fn;
412 	unprep_rq_fn		*unprep_rq_fn;
413 	softirq_done_fn		*softirq_done_fn;
414 	rq_timed_out_fn		*rq_timed_out_fn;
415 	dma_drain_needed_fn	*dma_drain_needed;
416 	lld_busy_fn		*lld_busy_fn;
417 	/* Called just after a request is allocated */
418 	init_rq_fn		*init_rq_fn;
419 	/* Called just before a request is freed */
420 	exit_rq_fn		*exit_rq_fn;
421 	/* Called from inside blk_get_request() */
422 	void (*initialize_rq_fn)(struct request *rq);
423 
424 	const struct blk_mq_ops	*mq_ops;
425 
426 	unsigned int		*mq_map;
427 
428 	/* sw queues */
429 	struct blk_mq_ctx __percpu	*queue_ctx;
430 	unsigned int		nr_queues;
431 
432 	unsigned int		queue_depth;
433 
434 	/* hw dispatch queues */
435 	struct blk_mq_hw_ctx	**queue_hw_ctx;
436 	unsigned int		nr_hw_queues;
437 
438 	/*
439 	 * Dispatch queue sorting
440 	 */
441 	sector_t		end_sector;
442 	struct request		*boundary_rq;
443 
444 	/*
445 	 * Delayed queue handling
446 	 */
447 	struct delayed_work	delay_work;
448 
449 	struct backing_dev_info	*backing_dev_info;
450 
451 	/*
452 	 * The queue owner gets to use this for whatever they like.
453 	 * ll_rw_blk doesn't touch it.
454 	 */
455 	void			*queuedata;
456 
457 	/*
458 	 * various queue flags, see QUEUE_* below
459 	 */
460 	unsigned long		queue_flags;
461 
462 	/*
463 	 * ida allocated id for this queue.  Used to index queues from
464 	 * ioctx.
465 	 */
466 	int			id;
467 
468 	/*
469 	 * queue needs bounce pages for pages above this limit
470 	 */
471 	gfp_t			bounce_gfp;
472 
473 	/*
474 	 * protects queue structures from reentrancy. ->__queue_lock should
475 	 * _never_ be used directly, it is queue private. always use
476 	 * ->queue_lock.
477 	 */
478 	spinlock_t		__queue_lock;
479 	spinlock_t		*queue_lock;
480 
481 	/*
482 	 * queue kobject
483 	 */
484 	struct kobject kobj;
485 
486 	/*
487 	 * mq queue kobject
488 	 */
489 	struct kobject mq_kobj;
490 
491 #ifdef  CONFIG_BLK_DEV_INTEGRITY
492 	struct blk_integrity integrity;
493 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
494 
495 #ifdef CONFIG_PM
496 	struct device		*dev;
497 	int			rpm_status;
498 	unsigned int		nr_pending;
499 #endif
500 
501 	/*
502 	 * queue settings
503 	 */
504 	unsigned long		nr_requests;	/* Max # of requests */
505 	unsigned int		nr_congestion_on;
506 	unsigned int		nr_congestion_off;
507 	unsigned int		nr_batching;
508 
509 	unsigned int		dma_drain_size;
510 	void			*dma_drain_buffer;
511 	unsigned int		dma_pad_mask;
512 	unsigned int		dma_alignment;
513 
514 	struct blk_queue_tag	*queue_tags;
515 	struct list_head	tag_busy_list;
516 
517 	unsigned int		nr_sorted;
518 	unsigned int		in_flight[2];
519 
520 	/*
521 	 * Number of active block driver functions for which blk_drain_queue()
522 	 * must wait. Must be incremented around functions that unlock the
523 	 * queue_lock internally, e.g. scsi_request_fn().
524 	 */
525 	unsigned int		request_fn_active;
526 
527 	unsigned int		rq_timeout;
528 	int			poll_nsec;
529 
530 	struct blk_stat_callback	*poll_cb;
531 	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
532 
533 	struct timer_list	timeout;
534 	struct work_struct	timeout_work;
535 	struct list_head	timeout_list;
536 
537 	struct list_head	icq_list;
538 #ifdef CONFIG_BLK_CGROUP
539 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
540 	struct blkcg_gq		*root_blkg;
541 	struct list_head	blkg_list;
542 #endif
543 
544 	struct queue_limits	limits;
545 
546 	/*
547 	 * sg stuff
548 	 */
549 	unsigned int		sg_timeout;
550 	unsigned int		sg_reserved_size;
551 	int			node;
552 #ifdef CONFIG_BLK_DEV_IO_TRACE
553 	struct blk_trace	*blk_trace;
554 #endif
555 	/*
556 	 * for flush operations
557 	 */
558 	struct blk_flush_queue	*fq;
559 
560 	struct list_head	requeue_list;
561 	spinlock_t		requeue_lock;
562 	struct delayed_work	requeue_work;
563 
564 	struct mutex		sysfs_lock;
565 
566 	int			bypass_depth;
567 	atomic_t		mq_freeze_depth;
568 
569 #if defined(CONFIG_BLK_DEV_BSG)
570 	bsg_job_fn		*bsg_job_fn;
571 	int			bsg_job_size;
572 	struct bsg_class_device bsg_dev;
573 #endif
574 
575 #ifdef CONFIG_BLK_DEV_THROTTLING
576 	/* Throttle data */
577 	struct throtl_data *td;
578 #endif
579 	struct rcu_head		rcu_head;
580 	wait_queue_head_t	mq_freeze_wq;
581 	struct percpu_ref	q_usage_counter;
582 	struct list_head	all_q_node;
583 
584 	struct blk_mq_tag_set	*tag_set;
585 	struct list_head	tag_set_list;
586 	struct bio_set		*bio_split;
587 
588 #ifdef CONFIG_BLK_DEBUG_FS
589 	struct dentry		*debugfs_dir;
590 	struct dentry		*sched_debugfs_dir;
591 #endif
592 
593 	bool			mq_sysfs_init_done;
594 
595 	size_t			cmd_size;
596 	void			*rq_alloc_data;
597 
598 	struct work_struct	release_work;
599 
600 #define BLK_MAX_WRITE_HINTS	5
601 	u64			write_hints[BLK_MAX_WRITE_HINTS];
602 };
603 
604 #define QUEUE_FLAG_QUEUED	1	/* uses generic tag queueing */
605 #define QUEUE_FLAG_STOPPED	2	/* queue is stopped */
606 #define	QUEUE_FLAG_SYNCFULL	3	/* read queue has been filled */
607 #define QUEUE_FLAG_ASYNCFULL	4	/* write queue has been filled */
608 #define QUEUE_FLAG_DYING	5	/* queue being torn down */
609 #define QUEUE_FLAG_BYPASS	6	/* act as dumb FIFO queue */
610 #define QUEUE_FLAG_BIDI		7	/* queue supports bidi requests */
611 #define QUEUE_FLAG_NOMERGES     8	/* disable merge attempts */
612 #define QUEUE_FLAG_SAME_COMP	9	/* complete on same CPU-group */
613 #define QUEUE_FLAG_FAIL_IO     10	/* fake timeout */
614 #define QUEUE_FLAG_STACKABLE   11	/* supports request stacking */
615 #define QUEUE_FLAG_NONROT      12	/* non-rotational device (SSD) */
616 #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
617 #define QUEUE_FLAG_IO_STAT     13	/* do IO stats */
618 #define QUEUE_FLAG_DISCARD     14	/* supports DISCARD */
619 #define QUEUE_FLAG_NOXMERGES   15	/* No extended merges */
620 #define QUEUE_FLAG_ADD_RANDOM  16	/* Contributes to random pool */
621 #define QUEUE_FLAG_SECERASE    17	/* supports secure erase */
622 #define QUEUE_FLAG_SAME_FORCE  18	/* force complete on same CPU */
623 #define QUEUE_FLAG_DEAD        19	/* queue tear-down finished */
624 #define QUEUE_FLAG_INIT_DONE   20	/* queue is initialized */
625 #define QUEUE_FLAG_NO_SG_MERGE 21	/* don't attempt to merge SG segments*/
626 #define QUEUE_FLAG_POLL	       22	/* IO polling enabled if set */
627 #define QUEUE_FLAG_WC	       23	/* Write back caching */
628 #define QUEUE_FLAG_FUA	       24	/* device supports FUA writes */
629 #define QUEUE_FLAG_FLUSH_NQ    25	/* flush not queueuable */
630 #define QUEUE_FLAG_DAX         26	/* device supports DAX */
631 #define QUEUE_FLAG_STATS       27	/* track rq completion times */
632 #define QUEUE_FLAG_POLL_STATS  28	/* collecting stats for hybrid polling */
633 #define QUEUE_FLAG_REGISTERED  29	/* queue has been registered to a disk */
634 #define QUEUE_FLAG_SCSI_PASSTHROUGH 30	/* queue supports SCSI commands */
635 #define QUEUE_FLAG_QUIESCED    31	/* queue has been quiesced */
636 
637 #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
638 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
639 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
640 				 (1 << QUEUE_FLAG_ADD_RANDOM))
641 
642 #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
643 				 (1 << QUEUE_FLAG_STACKABLE)	|	\
644 				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
645 				 (1 << QUEUE_FLAG_POLL))
646 
647 /*
648  * @q->queue_lock is set while a queue is being initialized. Since we know
649  * that no other threads access the queue object before @q->queue_lock has
650  * been set, it is safe to manipulate queue flags without holding the
651  * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
652  * blk_init_allocated_queue().
653  */
654 static inline void queue_lockdep_assert_held(struct request_queue *q)
655 {
656 	if (q->queue_lock)
657 		lockdep_assert_held(q->queue_lock);
658 }
659 
660 static inline void queue_flag_set_unlocked(unsigned int flag,
661 					   struct request_queue *q)
662 {
663 	__set_bit(flag, &q->queue_flags);
664 }
665 
666 static inline int queue_flag_test_and_clear(unsigned int flag,
667 					    struct request_queue *q)
668 {
669 	queue_lockdep_assert_held(q);
670 
671 	if (test_bit(flag, &q->queue_flags)) {
672 		__clear_bit(flag, &q->queue_flags);
673 		return 1;
674 	}
675 
676 	return 0;
677 }
678 
679 static inline int queue_flag_test_and_set(unsigned int flag,
680 					  struct request_queue *q)
681 {
682 	queue_lockdep_assert_held(q);
683 
684 	if (!test_bit(flag, &q->queue_flags)) {
685 		__set_bit(flag, &q->queue_flags);
686 		return 0;
687 	}
688 
689 	return 1;
690 }
691 
692 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
693 {
694 	queue_lockdep_assert_held(q);
695 	__set_bit(flag, &q->queue_flags);
696 }
697 
698 static inline void queue_flag_clear_unlocked(unsigned int flag,
699 					     struct request_queue *q)
700 {
701 	__clear_bit(flag, &q->queue_flags);
702 }
703 
704 static inline int queue_in_flight(struct request_queue *q)
705 {
706 	return q->in_flight[0] + q->in_flight[1];
707 }
708 
709 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
710 {
711 	queue_lockdep_assert_held(q);
712 	__clear_bit(flag, &q->queue_flags);
713 }
714 
715 #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
716 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
717 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
718 #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
719 #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
720 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
721 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
722 #define blk_queue_noxmerges(q)	\
723 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
724 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
725 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
726 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
727 #define blk_queue_stackable(q)	\
728 	test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
729 #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
730 #define blk_queue_secure_erase(q) \
731 	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
732 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
733 #define blk_queue_scsi_passthrough(q)	\
734 	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
735 
736 #define blk_noretry_request(rq) \
737 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
738 			     REQ_FAILFAST_DRIVER))
739 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
740 
741 static inline bool blk_account_rq(struct request *rq)
742 {
743 	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
744 }
745 
746 #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
747 #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
748 /* rq->queuelist of dequeued request must be list_empty() */
749 #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
750 
751 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
752 
753 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
754 
755 /*
756  * Driver can handle struct request, if it either has an old style
757  * request_fn defined, or is blk-mq based.
758  */
759 static inline bool queue_is_rq_based(struct request_queue *q)
760 {
761 	return q->request_fn || q->mq_ops;
762 }
763 
764 static inline unsigned int blk_queue_cluster(struct request_queue *q)
765 {
766 	return q->limits.cluster;
767 }
768 
769 static inline enum blk_zoned_model
770 blk_queue_zoned_model(struct request_queue *q)
771 {
772 	return q->limits.zoned;
773 }
774 
775 static inline bool blk_queue_is_zoned(struct request_queue *q)
776 {
777 	switch (blk_queue_zoned_model(q)) {
778 	case BLK_ZONED_HA:
779 	case BLK_ZONED_HM:
780 		return true;
781 	default:
782 		return false;
783 	}
784 }
785 
786 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
787 {
788 	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
789 }
790 
791 static inline bool rq_is_sync(struct request *rq)
792 {
793 	return op_is_sync(rq->cmd_flags);
794 }
795 
796 static inline bool blk_rl_full(struct request_list *rl, bool sync)
797 {
798 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
799 
800 	return rl->flags & flag;
801 }
802 
803 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
804 {
805 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
806 
807 	rl->flags |= flag;
808 }
809 
810 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
811 {
812 	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
813 
814 	rl->flags &= ~flag;
815 }
816 
817 static inline bool rq_mergeable(struct request *rq)
818 {
819 	if (blk_rq_is_passthrough(rq))
820 		return false;
821 
822 	if (req_op(rq) == REQ_OP_FLUSH)
823 		return false;
824 
825 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
826 		return false;
827 
828 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
829 		return false;
830 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
831 		return false;
832 
833 	return true;
834 }
835 
836 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
837 {
838 	if (bio_page(a) == bio_page(b) &&
839 	    bio_offset(a) == bio_offset(b))
840 		return true;
841 
842 	return false;
843 }
844 
845 static inline unsigned int blk_queue_depth(struct request_queue *q)
846 {
847 	if (q->queue_depth)
848 		return q->queue_depth;
849 
850 	return q->nr_requests;
851 }
852 
853 /*
854  * q->prep_rq_fn return values
855  */
856 enum {
857 	BLKPREP_OK,		/* serve it */
858 	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
859 	BLKPREP_DEFER,		/* leave on queue */
860 	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
861 };
862 
863 extern unsigned long blk_max_low_pfn, blk_max_pfn;
864 
865 /*
866  * standard bounce addresses:
867  *
868  * BLK_BOUNCE_HIGH	: bounce all highmem pages
869  * BLK_BOUNCE_ANY	: don't bounce anything
870  * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
871  */
872 
873 #if BITS_PER_LONG == 32
874 #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
875 #else
876 #define BLK_BOUNCE_HIGH		-1ULL
877 #endif
878 #define BLK_BOUNCE_ANY		(-1ULL)
879 #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
880 
881 /*
882  * default timeout for SG_IO if none specified
883  */
884 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
885 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
886 
887 struct rq_map_data {
888 	struct page **pages;
889 	int page_order;
890 	int nr_entries;
891 	unsigned long offset;
892 	int null_mapped;
893 	int from_user;
894 };
895 
896 struct req_iterator {
897 	struct bvec_iter iter;
898 	struct bio *bio;
899 };
900 
901 /* This should not be used directly - use rq_for_each_segment */
902 #define for_each_bio(_bio)		\
903 	for (; _bio; _bio = _bio->bi_next)
904 #define __rq_for_each_bio(_bio, rq)	\
905 	if ((rq->bio))			\
906 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
907 
908 #define rq_for_each_segment(bvl, _rq, _iter)			\
909 	__rq_for_each_bio(_iter.bio, _rq)			\
910 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
911 
912 #define rq_iter_last(bvec, _iter)				\
913 		(_iter.bio->bi_next == NULL &&			\
914 		 bio_iter_last(bvec, _iter.iter))
915 
916 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
917 # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
918 #endif
919 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
920 extern void rq_flush_dcache_pages(struct request *rq);
921 #else
922 static inline void rq_flush_dcache_pages(struct request *rq)
923 {
924 }
925 #endif
926 
927 #ifdef CONFIG_PRINTK
928 #define vfs_msg(sb, level, fmt, ...)				\
929 	__vfs_msg(sb, level, fmt, ##__VA_ARGS__)
930 #else
931 #define vfs_msg(sb, level, fmt, ...)				\
932 do {								\
933 	no_printk(fmt, ##__VA_ARGS__);				\
934 	__vfs_msg(sb, "", " ");					\
935 } while (0)
936 #endif
937 
938 extern int blk_register_queue(struct gendisk *disk);
939 extern void blk_unregister_queue(struct gendisk *disk);
940 extern blk_qc_t generic_make_request(struct bio *bio);
941 extern void blk_rq_init(struct request_queue *q, struct request *rq);
942 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
943 extern void blk_put_request(struct request *);
944 extern void __blk_put_request(struct request_queue *, struct request *);
945 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
946 				       gfp_t gfp_mask);
947 extern void blk_requeue_request(struct request_queue *, struct request *);
948 extern int blk_lld_busy(struct request_queue *q);
949 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
950 			     struct bio_set *bs, gfp_t gfp_mask,
951 			     int (*bio_ctr)(struct bio *, struct bio *, void *),
952 			     void *data);
953 extern void blk_rq_unprep_clone(struct request *rq);
954 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
955 				     struct request *rq);
956 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
957 extern void blk_delay_queue(struct request_queue *, unsigned long);
958 extern void blk_queue_split(struct request_queue *, struct bio **);
959 extern void blk_recount_segments(struct request_queue *, struct bio *);
960 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
961 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
962 			      unsigned int, void __user *);
963 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
964 			  unsigned int, void __user *);
965 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
966 			 struct scsi_ioctl_command __user *);
967 
968 extern int blk_queue_enter(struct request_queue *q, bool nowait);
969 extern void blk_queue_exit(struct request_queue *q);
970 extern void blk_start_queue(struct request_queue *q);
971 extern void blk_start_queue_async(struct request_queue *q);
972 extern void blk_stop_queue(struct request_queue *q);
973 extern void blk_sync_queue(struct request_queue *q);
974 extern void __blk_stop_queue(struct request_queue *q);
975 extern void __blk_run_queue(struct request_queue *q);
976 extern void __blk_run_queue_uncond(struct request_queue *q);
977 extern void blk_run_queue(struct request_queue *);
978 extern void blk_run_queue_async(struct request_queue *q);
979 extern int blk_rq_map_user(struct request_queue *, struct request *,
980 			   struct rq_map_data *, void __user *, unsigned long,
981 			   gfp_t);
982 extern int blk_rq_unmap_user(struct bio *);
983 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
984 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
985 			       struct rq_map_data *, const struct iov_iter *,
986 			       gfp_t);
987 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
988 			  struct request *, int);
989 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
990 				  struct request *, int, rq_end_io_fn *);
991 
992 int blk_status_to_errno(blk_status_t status);
993 blk_status_t errno_to_blk_status(int errno);
994 
995 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
996 
997 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
998 {
999 	return bdev->bd_disk->queue;	/* this is never NULL */
1000 }
1001 
1002 /*
1003  * blk_rq_pos()			: the current sector
1004  * blk_rq_bytes()		: bytes left in the entire request
1005  * blk_rq_cur_bytes()		: bytes left in the current segment
1006  * blk_rq_err_bytes()		: bytes left till the next error boundary
1007  * blk_rq_sectors()		: sectors left in the entire request
1008  * blk_rq_cur_sectors()		: sectors left in the current segment
1009  */
1010 static inline sector_t blk_rq_pos(const struct request *rq)
1011 {
1012 	return rq->__sector;
1013 }
1014 
1015 static inline unsigned int blk_rq_bytes(const struct request *rq)
1016 {
1017 	return rq->__data_len;
1018 }
1019 
1020 static inline int blk_rq_cur_bytes(const struct request *rq)
1021 {
1022 	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1023 }
1024 
1025 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1026 
1027 static inline unsigned int blk_rq_sectors(const struct request *rq)
1028 {
1029 	return blk_rq_bytes(rq) >> 9;
1030 }
1031 
1032 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1033 {
1034 	return blk_rq_cur_bytes(rq) >> 9;
1035 }
1036 
1037 /*
1038  * Some commands like WRITE SAME have a payload or data transfer size which
1039  * is different from the size of the request.  Any driver that supports such
1040  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1041  * calculate the data transfer size.
1042  */
1043 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1044 {
1045 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1046 		return rq->special_vec.bv_len;
1047 	return blk_rq_bytes(rq);
1048 }
1049 
1050 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1051 						     int op)
1052 {
1053 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1054 		return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1055 
1056 	if (unlikely(op == REQ_OP_WRITE_SAME))
1057 		return q->limits.max_write_same_sectors;
1058 
1059 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
1060 		return q->limits.max_write_zeroes_sectors;
1061 
1062 	return q->limits.max_sectors;
1063 }
1064 
1065 /*
1066  * Return maximum size of a request at given offset. Only valid for
1067  * file system requests.
1068  */
1069 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1070 					       sector_t offset)
1071 {
1072 	if (!q->limits.chunk_sectors)
1073 		return q->limits.max_sectors;
1074 
1075 	return q->limits.chunk_sectors -
1076 			(offset & (q->limits.chunk_sectors - 1));
1077 }
1078 
1079 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1080 						  sector_t offset)
1081 {
1082 	struct request_queue *q = rq->q;
1083 
1084 	if (blk_rq_is_passthrough(rq))
1085 		return q->limits.max_hw_sectors;
1086 
1087 	if (!q->limits.chunk_sectors ||
1088 	    req_op(rq) == REQ_OP_DISCARD ||
1089 	    req_op(rq) == REQ_OP_SECURE_ERASE)
1090 		return blk_queue_get_max_sectors(q, req_op(rq));
1091 
1092 	return min(blk_max_size_offset(q, offset),
1093 			blk_queue_get_max_sectors(q, req_op(rq)));
1094 }
1095 
1096 static inline unsigned int blk_rq_count_bios(struct request *rq)
1097 {
1098 	unsigned int nr_bios = 0;
1099 	struct bio *bio;
1100 
1101 	__rq_for_each_bio(bio, rq)
1102 		nr_bios++;
1103 
1104 	return nr_bios;
1105 }
1106 
1107 /*
1108  * Request issue related functions.
1109  */
1110 extern struct request *blk_peek_request(struct request_queue *q);
1111 extern void blk_start_request(struct request *rq);
1112 extern struct request *blk_fetch_request(struct request_queue *q);
1113 
1114 /*
1115  * Request completion related functions.
1116  *
1117  * blk_update_request() completes given number of bytes and updates
1118  * the request without completing it.
1119  *
1120  * blk_end_request() and friends.  __blk_end_request() must be called
1121  * with the request queue spinlock acquired.
1122  *
1123  * Several drivers define their own end_request and call
1124  * blk_end_request() for parts of the original function.
1125  * This prevents code duplication in drivers.
1126  */
1127 extern bool blk_update_request(struct request *rq, blk_status_t error,
1128 			       unsigned int nr_bytes);
1129 extern void blk_finish_request(struct request *rq, blk_status_t error);
1130 extern bool blk_end_request(struct request *rq, blk_status_t error,
1131 			    unsigned int nr_bytes);
1132 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1133 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1134 			      unsigned int nr_bytes);
1135 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1136 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1137 
1138 extern void blk_complete_request(struct request *);
1139 extern void __blk_complete_request(struct request *);
1140 extern void blk_abort_request(struct request *);
1141 extern void blk_unprep_request(struct request *);
1142 
1143 /*
1144  * Access functions for manipulating queue properties
1145  */
1146 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1147 					spinlock_t *lock, int node_id);
1148 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1149 extern int blk_init_allocated_queue(struct request_queue *);
1150 extern void blk_cleanup_queue(struct request_queue *);
1151 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1152 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1153 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1154 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1155 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1156 extern void blk_queue_max_discard_segments(struct request_queue *,
1157 		unsigned short);
1158 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1159 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1160 		unsigned int max_discard_sectors);
1161 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1162 		unsigned int max_write_same_sectors);
1163 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1164 		unsigned int max_write_same_sectors);
1165 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1166 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1167 extern void blk_queue_alignment_offset(struct request_queue *q,
1168 				       unsigned int alignment);
1169 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1170 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1171 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1172 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1173 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1174 extern void blk_set_default_limits(struct queue_limits *lim);
1175 extern void blk_set_stacking_limits(struct queue_limits *lim);
1176 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1177 			    sector_t offset);
1178 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1179 			    sector_t offset);
1180 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1181 			      sector_t offset);
1182 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1183 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1184 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1185 extern int blk_queue_dma_drain(struct request_queue *q,
1186 			       dma_drain_needed_fn *dma_drain_needed,
1187 			       void *buf, unsigned int size);
1188 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1189 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1190 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1191 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1192 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1193 extern void blk_queue_dma_alignment(struct request_queue *, int);
1194 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1195 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1196 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1197 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1198 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1199 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1200 
1201 /*
1202  * Number of physical segments as sent to the device.
1203  *
1204  * Normally this is the number of discontiguous data segments sent by the
1205  * submitter.  But for data-less command like discard we might have no
1206  * actual data segments submitted, but the driver might have to add it's
1207  * own special payload.  In that case we still return 1 here so that this
1208  * special payload will be mapped.
1209  */
1210 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1211 {
1212 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1213 		return 1;
1214 	return rq->nr_phys_segments;
1215 }
1216 
1217 /*
1218  * Number of discard segments (or ranges) the driver needs to fill in.
1219  * Each discard bio merged into a request is counted as one segment.
1220  */
1221 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1222 {
1223 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1224 }
1225 
1226 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1227 extern void blk_dump_rq_flags(struct request *, char *);
1228 extern long nr_blockdev_pages(void);
1229 
1230 bool __must_check blk_get_queue(struct request_queue *);
1231 struct request_queue *blk_alloc_queue(gfp_t);
1232 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1233 extern void blk_put_queue(struct request_queue *);
1234 extern void blk_set_queue_dying(struct request_queue *);
1235 
1236 /*
1237  * block layer runtime pm functions
1238  */
1239 #ifdef CONFIG_PM
1240 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1241 extern int blk_pre_runtime_suspend(struct request_queue *q);
1242 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1243 extern void blk_pre_runtime_resume(struct request_queue *q);
1244 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1245 extern void blk_set_runtime_active(struct request_queue *q);
1246 #else
1247 static inline void blk_pm_runtime_init(struct request_queue *q,
1248 	struct device *dev) {}
1249 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1250 {
1251 	return -ENOSYS;
1252 }
1253 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1254 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1255 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1256 static inline void blk_set_runtime_active(struct request_queue *q) {}
1257 #endif
1258 
1259 /*
1260  * blk_plug permits building a queue of related requests by holding the I/O
1261  * fragments for a short period. This allows merging of sequential requests
1262  * into single larger request. As the requests are moved from a per-task list to
1263  * the device's request_queue in a batch, this results in improved scalability
1264  * as the lock contention for request_queue lock is reduced.
1265  *
1266  * It is ok not to disable preemption when adding the request to the plug list
1267  * or when attempting a merge, because blk_schedule_flush_list() will only flush
1268  * the plug list when the task sleeps by itself. For details, please see
1269  * schedule() where blk_schedule_flush_plug() is called.
1270  */
1271 struct blk_plug {
1272 	struct list_head list; /* requests */
1273 	struct list_head mq_list; /* blk-mq requests */
1274 	struct list_head cb_list; /* md requires an unplug callback */
1275 };
1276 #define BLK_MAX_REQUEST_COUNT 16
1277 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1278 
1279 struct blk_plug_cb;
1280 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1281 struct blk_plug_cb {
1282 	struct list_head list;
1283 	blk_plug_cb_fn callback;
1284 	void *data;
1285 };
1286 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1287 					     void *data, int size);
1288 extern void blk_start_plug(struct blk_plug *);
1289 extern void blk_finish_plug(struct blk_plug *);
1290 extern void blk_flush_plug_list(struct blk_plug *, bool);
1291 
1292 static inline void blk_flush_plug(struct task_struct *tsk)
1293 {
1294 	struct blk_plug *plug = tsk->plug;
1295 
1296 	if (plug)
1297 		blk_flush_plug_list(plug, false);
1298 }
1299 
1300 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1301 {
1302 	struct blk_plug *plug = tsk->plug;
1303 
1304 	if (plug)
1305 		blk_flush_plug_list(plug, true);
1306 }
1307 
1308 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1309 {
1310 	struct blk_plug *plug = tsk->plug;
1311 
1312 	return plug &&
1313 		(!list_empty(&plug->list) ||
1314 		 !list_empty(&plug->mq_list) ||
1315 		 !list_empty(&plug->cb_list));
1316 }
1317 
1318 /*
1319  * tag stuff
1320  */
1321 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1322 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1323 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1324 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1325 extern void blk_queue_free_tags(struct request_queue *);
1326 extern int blk_queue_resize_tags(struct request_queue *, int);
1327 extern void blk_queue_invalidate_tags(struct request_queue *);
1328 extern struct blk_queue_tag *blk_init_tags(int, int);
1329 extern void blk_free_tags(struct blk_queue_tag *);
1330 
1331 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1332 						int tag)
1333 {
1334 	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1335 		return NULL;
1336 	return bqt->tag_index[tag];
1337 }
1338 
1339 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1340 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1341 		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1342 
1343 #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
1344 
1345 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1346 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1347 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1348 		sector_t nr_sects, gfp_t gfp_mask, int flags,
1349 		struct bio **biop);
1350 
1351 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1352 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1353 
1354 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1355 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1356 		unsigned flags);
1357 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1358 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1359 
1360 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1361 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1362 {
1363 	return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1364 				    nr_blocks << (sb->s_blocksize_bits - 9),
1365 				    gfp_mask, flags);
1366 }
1367 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1368 		sector_t nr_blocks, gfp_t gfp_mask)
1369 {
1370 	return blkdev_issue_zeroout(sb->s_bdev,
1371 				    block << (sb->s_blocksize_bits - 9),
1372 				    nr_blocks << (sb->s_blocksize_bits - 9),
1373 				    gfp_mask, 0);
1374 }
1375 
1376 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1377 
1378 enum blk_default_limits {
1379 	BLK_MAX_SEGMENTS	= 128,
1380 	BLK_SAFE_MAX_SECTORS	= 255,
1381 	BLK_DEF_MAX_SECTORS	= 2560,
1382 	BLK_MAX_SEGMENT_SIZE	= 65536,
1383 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1384 };
1385 
1386 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1387 
1388 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1389 {
1390 	return q->limits.seg_boundary_mask;
1391 }
1392 
1393 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1394 {
1395 	return q->limits.virt_boundary_mask;
1396 }
1397 
1398 static inline unsigned int queue_max_sectors(struct request_queue *q)
1399 {
1400 	return q->limits.max_sectors;
1401 }
1402 
1403 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1404 {
1405 	return q->limits.max_hw_sectors;
1406 }
1407 
1408 static inline unsigned short queue_max_segments(struct request_queue *q)
1409 {
1410 	return q->limits.max_segments;
1411 }
1412 
1413 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1414 {
1415 	return q->limits.max_discard_segments;
1416 }
1417 
1418 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1419 {
1420 	return q->limits.max_segment_size;
1421 }
1422 
1423 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1424 {
1425 	int retval = 512;
1426 
1427 	if (q && q->limits.logical_block_size)
1428 		retval = q->limits.logical_block_size;
1429 
1430 	return retval;
1431 }
1432 
1433 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1434 {
1435 	return queue_logical_block_size(bdev_get_queue(bdev));
1436 }
1437 
1438 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1439 {
1440 	return q->limits.physical_block_size;
1441 }
1442 
1443 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1444 {
1445 	return queue_physical_block_size(bdev_get_queue(bdev));
1446 }
1447 
1448 static inline unsigned int queue_io_min(struct request_queue *q)
1449 {
1450 	return q->limits.io_min;
1451 }
1452 
1453 static inline int bdev_io_min(struct block_device *bdev)
1454 {
1455 	return queue_io_min(bdev_get_queue(bdev));
1456 }
1457 
1458 static inline unsigned int queue_io_opt(struct request_queue *q)
1459 {
1460 	return q->limits.io_opt;
1461 }
1462 
1463 static inline int bdev_io_opt(struct block_device *bdev)
1464 {
1465 	return queue_io_opt(bdev_get_queue(bdev));
1466 }
1467 
1468 static inline int queue_alignment_offset(struct request_queue *q)
1469 {
1470 	if (q->limits.misaligned)
1471 		return -1;
1472 
1473 	return q->limits.alignment_offset;
1474 }
1475 
1476 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1477 {
1478 	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1479 	unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1480 
1481 	return (granularity + lim->alignment_offset - alignment) % granularity;
1482 }
1483 
1484 static inline int bdev_alignment_offset(struct block_device *bdev)
1485 {
1486 	struct request_queue *q = bdev_get_queue(bdev);
1487 
1488 	if (q->limits.misaligned)
1489 		return -1;
1490 
1491 	if (bdev != bdev->bd_contains)
1492 		return bdev->bd_part->alignment_offset;
1493 
1494 	return q->limits.alignment_offset;
1495 }
1496 
1497 static inline int queue_discard_alignment(struct request_queue *q)
1498 {
1499 	if (q->limits.discard_misaligned)
1500 		return -1;
1501 
1502 	return q->limits.discard_alignment;
1503 }
1504 
1505 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1506 {
1507 	unsigned int alignment, granularity, offset;
1508 
1509 	if (!lim->max_discard_sectors)
1510 		return 0;
1511 
1512 	/* Why are these in bytes, not sectors? */
1513 	alignment = lim->discard_alignment >> 9;
1514 	granularity = lim->discard_granularity >> 9;
1515 	if (!granularity)
1516 		return 0;
1517 
1518 	/* Offset of the partition start in 'granularity' sectors */
1519 	offset = sector_div(sector, granularity);
1520 
1521 	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
1522 	offset = (granularity + alignment - offset) % granularity;
1523 
1524 	/* Turn it back into bytes, gaah */
1525 	return offset << 9;
1526 }
1527 
1528 static inline int bdev_discard_alignment(struct block_device *bdev)
1529 {
1530 	struct request_queue *q = bdev_get_queue(bdev);
1531 
1532 	if (bdev != bdev->bd_contains)
1533 		return bdev->bd_part->discard_alignment;
1534 
1535 	return q->limits.discard_alignment;
1536 }
1537 
1538 static inline unsigned int bdev_write_same(struct block_device *bdev)
1539 {
1540 	struct request_queue *q = bdev_get_queue(bdev);
1541 
1542 	if (q)
1543 		return q->limits.max_write_same_sectors;
1544 
1545 	return 0;
1546 }
1547 
1548 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1549 {
1550 	struct request_queue *q = bdev_get_queue(bdev);
1551 
1552 	if (q)
1553 		return q->limits.max_write_zeroes_sectors;
1554 
1555 	return 0;
1556 }
1557 
1558 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1559 {
1560 	struct request_queue *q = bdev_get_queue(bdev);
1561 
1562 	if (q)
1563 		return blk_queue_zoned_model(q);
1564 
1565 	return BLK_ZONED_NONE;
1566 }
1567 
1568 static inline bool bdev_is_zoned(struct block_device *bdev)
1569 {
1570 	struct request_queue *q = bdev_get_queue(bdev);
1571 
1572 	if (q)
1573 		return blk_queue_is_zoned(q);
1574 
1575 	return false;
1576 }
1577 
1578 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1579 {
1580 	struct request_queue *q = bdev_get_queue(bdev);
1581 
1582 	if (q)
1583 		return blk_queue_zone_sectors(q);
1584 
1585 	return 0;
1586 }
1587 
1588 static inline int queue_dma_alignment(struct request_queue *q)
1589 {
1590 	return q ? q->dma_alignment : 511;
1591 }
1592 
1593 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1594 				 unsigned int len)
1595 {
1596 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1597 	return !(addr & alignment) && !(len & alignment);
1598 }
1599 
1600 /* assumes size > 256 */
1601 static inline unsigned int blksize_bits(unsigned int size)
1602 {
1603 	unsigned int bits = 8;
1604 	do {
1605 		bits++;
1606 		size >>= 1;
1607 	} while (size > 256);
1608 	return bits;
1609 }
1610 
1611 static inline unsigned int block_size(struct block_device *bdev)
1612 {
1613 	return bdev->bd_block_size;
1614 }
1615 
1616 static inline bool queue_flush_queueable(struct request_queue *q)
1617 {
1618 	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1619 }
1620 
1621 typedef struct {struct page *v;} Sector;
1622 
1623 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1624 
1625 static inline void put_dev_sector(Sector p)
1626 {
1627 	put_page(p.v);
1628 }
1629 
1630 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1631 				struct bio_vec *bprv, unsigned int offset)
1632 {
1633 	return offset ||
1634 		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1635 }
1636 
1637 /*
1638  * Check if adding a bio_vec after bprv with offset would create a gap in
1639  * the SG list. Most drivers don't care about this, but some do.
1640  */
1641 static inline bool bvec_gap_to_prev(struct request_queue *q,
1642 				struct bio_vec *bprv, unsigned int offset)
1643 {
1644 	if (!queue_virt_boundary(q))
1645 		return false;
1646 	return __bvec_gap_to_prev(q, bprv, offset);
1647 }
1648 
1649 /*
1650  * Check if the two bvecs from two bios can be merged to one segment.
1651  * If yes, no need to check gap between the two bios since the 1st bio
1652  * and the 1st bvec in the 2nd bio can be handled in one segment.
1653  */
1654 static inline bool bios_segs_mergeable(struct request_queue *q,
1655 		struct bio *prev, struct bio_vec *prev_last_bv,
1656 		struct bio_vec *next_first_bv)
1657 {
1658 	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1659 		return false;
1660 	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1661 		return false;
1662 	if (prev->bi_seg_back_size + next_first_bv->bv_len >
1663 			queue_max_segment_size(q))
1664 		return false;
1665 	return true;
1666 }
1667 
1668 static inline bool bio_will_gap(struct request_queue *q,
1669 				struct request *prev_rq,
1670 				struct bio *prev,
1671 				struct bio *next)
1672 {
1673 	if (bio_has_data(prev) && queue_virt_boundary(q)) {
1674 		struct bio_vec pb, nb;
1675 
1676 		/*
1677 		 * don't merge if the 1st bio starts with non-zero
1678 		 * offset, otherwise it is quite difficult to respect
1679 		 * sg gap limit. We work hard to merge a huge number of small
1680 		 * single bios in case of mkfs.
1681 		 */
1682 		if (prev_rq)
1683 			bio_get_first_bvec(prev_rq->bio, &pb);
1684 		else
1685 			bio_get_first_bvec(prev, &pb);
1686 		if (pb.bv_offset)
1687 			return true;
1688 
1689 		/*
1690 		 * We don't need to worry about the situation that the
1691 		 * merged segment ends in unaligned virt boundary:
1692 		 *
1693 		 * - if 'pb' ends aligned, the merged segment ends aligned
1694 		 * - if 'pb' ends unaligned, the next bio must include
1695 		 *   one single bvec of 'nb', otherwise the 'nb' can't
1696 		 *   merge with 'pb'
1697 		 */
1698 		bio_get_last_bvec(prev, &pb);
1699 		bio_get_first_bvec(next, &nb);
1700 
1701 		if (!bios_segs_mergeable(q, prev, &pb, &nb))
1702 			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1703 	}
1704 
1705 	return false;
1706 }
1707 
1708 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1709 {
1710 	return bio_will_gap(req->q, req, req->biotail, bio);
1711 }
1712 
1713 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1714 {
1715 	return bio_will_gap(req->q, NULL, bio, req->bio);
1716 }
1717 
1718 int kblockd_schedule_work(struct work_struct *work);
1719 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1720 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1721 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1722 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1723 
1724 #ifdef CONFIG_BLK_CGROUP
1725 /*
1726  * This should not be using sched_clock(). A real patch is in progress
1727  * to fix this up, until that is in place we need to disable preemption
1728  * around sched_clock() in this function and set_io_start_time_ns().
1729  */
1730 static inline void set_start_time_ns(struct request *req)
1731 {
1732 	preempt_disable();
1733 	req->start_time_ns = sched_clock();
1734 	preempt_enable();
1735 }
1736 
1737 static inline void set_io_start_time_ns(struct request *req)
1738 {
1739 	preempt_disable();
1740 	req->io_start_time_ns = sched_clock();
1741 	preempt_enable();
1742 }
1743 
1744 static inline uint64_t rq_start_time_ns(struct request *req)
1745 {
1746         return req->start_time_ns;
1747 }
1748 
1749 static inline uint64_t rq_io_start_time_ns(struct request *req)
1750 {
1751         return req->io_start_time_ns;
1752 }
1753 #else
1754 static inline void set_start_time_ns(struct request *req) {}
1755 static inline void set_io_start_time_ns(struct request *req) {}
1756 static inline uint64_t rq_start_time_ns(struct request *req)
1757 {
1758 	return 0;
1759 }
1760 static inline uint64_t rq_io_start_time_ns(struct request *req)
1761 {
1762 	return 0;
1763 }
1764 #endif
1765 
1766 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1767 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1768 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1769 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1770 
1771 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1772 
1773 enum blk_integrity_flags {
1774 	BLK_INTEGRITY_VERIFY		= 1 << 0,
1775 	BLK_INTEGRITY_GENERATE		= 1 << 1,
1776 	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
1777 	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
1778 };
1779 
1780 struct blk_integrity_iter {
1781 	void			*prot_buf;
1782 	void			*data_buf;
1783 	sector_t		seed;
1784 	unsigned int		data_size;
1785 	unsigned short		interval;
1786 	const char		*disk_name;
1787 };
1788 
1789 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1790 
1791 struct blk_integrity_profile {
1792 	integrity_processing_fn		*generate_fn;
1793 	integrity_processing_fn		*verify_fn;
1794 	const char			*name;
1795 };
1796 
1797 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1798 extern void blk_integrity_unregister(struct gendisk *);
1799 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1800 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1801 				   struct scatterlist *);
1802 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1803 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1804 				   struct request *);
1805 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1806 				    struct bio *);
1807 
1808 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1809 {
1810 	struct blk_integrity *bi = &disk->queue->integrity;
1811 
1812 	if (!bi->profile)
1813 		return NULL;
1814 
1815 	return bi;
1816 }
1817 
1818 static inline
1819 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1820 {
1821 	return blk_get_integrity(bdev->bd_disk);
1822 }
1823 
1824 static inline bool blk_integrity_rq(struct request *rq)
1825 {
1826 	return rq->cmd_flags & REQ_INTEGRITY;
1827 }
1828 
1829 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1830 						    unsigned int segs)
1831 {
1832 	q->limits.max_integrity_segments = segs;
1833 }
1834 
1835 static inline unsigned short
1836 queue_max_integrity_segments(struct request_queue *q)
1837 {
1838 	return q->limits.max_integrity_segments;
1839 }
1840 
1841 static inline bool integrity_req_gap_back_merge(struct request *req,
1842 						struct bio *next)
1843 {
1844 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
1845 	struct bio_integrity_payload *bip_next = bio_integrity(next);
1846 
1847 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1848 				bip_next->bip_vec[0].bv_offset);
1849 }
1850 
1851 static inline bool integrity_req_gap_front_merge(struct request *req,
1852 						 struct bio *bio)
1853 {
1854 	struct bio_integrity_payload *bip = bio_integrity(bio);
1855 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1856 
1857 	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1858 				bip_next->bip_vec[0].bv_offset);
1859 }
1860 
1861 #else /* CONFIG_BLK_DEV_INTEGRITY */
1862 
1863 struct bio;
1864 struct block_device;
1865 struct gendisk;
1866 struct blk_integrity;
1867 
1868 static inline int blk_integrity_rq(struct request *rq)
1869 {
1870 	return 0;
1871 }
1872 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1873 					    struct bio *b)
1874 {
1875 	return 0;
1876 }
1877 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1878 					  struct bio *b,
1879 					  struct scatterlist *s)
1880 {
1881 	return 0;
1882 }
1883 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1884 {
1885 	return NULL;
1886 }
1887 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1888 {
1889 	return NULL;
1890 }
1891 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1892 {
1893 	return 0;
1894 }
1895 static inline void blk_integrity_register(struct gendisk *d,
1896 					 struct blk_integrity *b)
1897 {
1898 }
1899 static inline void blk_integrity_unregister(struct gendisk *d)
1900 {
1901 }
1902 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1903 						    unsigned int segs)
1904 {
1905 }
1906 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1907 {
1908 	return 0;
1909 }
1910 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1911 					  struct request *r1,
1912 					  struct request *r2)
1913 {
1914 	return true;
1915 }
1916 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1917 					   struct request *r,
1918 					   struct bio *b)
1919 {
1920 	return true;
1921 }
1922 
1923 static inline bool integrity_req_gap_back_merge(struct request *req,
1924 						struct bio *next)
1925 {
1926 	return false;
1927 }
1928 static inline bool integrity_req_gap_front_merge(struct request *req,
1929 						 struct bio *bio)
1930 {
1931 	return false;
1932 }
1933 
1934 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1935 
1936 struct block_device_operations {
1937 	int (*open) (struct block_device *, fmode_t);
1938 	void (*release) (struct gendisk *, fmode_t);
1939 	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1940 	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1941 	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1942 	unsigned int (*check_events) (struct gendisk *disk,
1943 				      unsigned int clearing);
1944 	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
1945 	int (*media_changed) (struct gendisk *);
1946 	void (*unlock_native_capacity) (struct gendisk *);
1947 	int (*revalidate_disk) (struct gendisk *);
1948 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1949 	/* this callback is with swap_lock and sometimes page table lock held */
1950 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1951 	struct module *owner;
1952 	const struct pr_ops *pr_ops;
1953 };
1954 
1955 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1956 				 unsigned long);
1957 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1958 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1959 						struct writeback_control *);
1960 #else /* CONFIG_BLOCK */
1961 
1962 struct block_device;
1963 
1964 /*
1965  * stubs for when the block layer is configured out
1966  */
1967 #define buffer_heads_over_limit 0
1968 
1969 static inline long nr_blockdev_pages(void)
1970 {
1971 	return 0;
1972 }
1973 
1974 struct blk_plug {
1975 };
1976 
1977 static inline void blk_start_plug(struct blk_plug *plug)
1978 {
1979 }
1980 
1981 static inline void blk_finish_plug(struct blk_plug *plug)
1982 {
1983 }
1984 
1985 static inline void blk_flush_plug(struct task_struct *task)
1986 {
1987 }
1988 
1989 static inline void blk_schedule_flush_plug(struct task_struct *task)
1990 {
1991 }
1992 
1993 
1994 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1995 {
1996 	return false;
1997 }
1998 
1999 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
2000 				     sector_t *error_sector)
2001 {
2002 	return 0;
2003 }
2004 
2005 #endif /* CONFIG_BLOCK */
2006 
2007 #endif
2008