xref: /linux-6.15/include/linux/blkdev.h (revision bbaf1ff0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Portions Copyright (C) 1992 Drew Eckhardt
4  */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7 
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 
28 struct module;
29 struct request_queue;
30 struct elevator_queue;
31 struct blk_trace;
32 struct request;
33 struct sg_io_hdr;
34 struct blkcg_gq;
35 struct blk_flush_queue;
36 struct kiocb;
37 struct pr_ops;
38 struct rq_qos;
39 struct blk_queue_stats;
40 struct blk_stat_callback;
41 struct blk_crypto_profile;
42 
43 extern const struct device_type disk_type;
44 extern const struct device_type part_type;
45 extern struct class block_class;
46 
47 /*
48  * Maximum number of blkcg policies allowed to be registered concurrently.
49  * Defined here to simplify include dependency.
50  */
51 #define BLKCG_MAX_POLS		6
52 
53 #define DISK_MAX_PARTS			256
54 #define DISK_NAME_LEN			32
55 
56 #define PARTITION_META_INFO_VOLNAMELTH	64
57 /*
58  * Enough for the string representation of any kind of UUID plus NULL.
59  * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
60  */
61 #define PARTITION_META_INFO_UUIDLTH	(UUID_STRING_LEN + 1)
62 
63 struct partition_meta_info {
64 	char uuid[PARTITION_META_INFO_UUIDLTH];
65 	u8 volname[PARTITION_META_INFO_VOLNAMELTH];
66 };
67 
68 /**
69  * DOC: genhd capability flags
70  *
71  * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
72  * removable media.  When set, the device remains present even when media is not
73  * inserted.  Shall not be set for devices which are removed entirely when the
74  * media is removed.
75  *
76  * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
77  * doesn't appear in sysfs, and can't be opened from userspace or using
78  * blkdev_get*. Used for the underlying components of multipath devices.
79  *
80  * ``GENHD_FL_NO_PART``: partition support is disabled.  The kernel will not
81  * scan for partitions from add_disk, and users can't add partitions manually.
82  *
83  */
84 enum {
85 	GENHD_FL_REMOVABLE			= 1 << 0,
86 	GENHD_FL_HIDDEN				= 1 << 1,
87 	GENHD_FL_NO_PART			= 1 << 2,
88 };
89 
90 enum {
91 	DISK_EVENT_MEDIA_CHANGE			= 1 << 0, /* media changed */
92 	DISK_EVENT_EJECT_REQUEST		= 1 << 1, /* eject requested */
93 };
94 
95 enum {
96 	/* Poll even if events_poll_msecs is unset */
97 	DISK_EVENT_FLAG_POLL			= 1 << 0,
98 	/* Forward events to udev */
99 	DISK_EVENT_FLAG_UEVENT			= 1 << 1,
100 	/* Block event polling when open for exclusive write */
101 	DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE	= 1 << 2,
102 };
103 
104 struct disk_events;
105 struct badblocks;
106 
107 struct blk_integrity {
108 	const struct blk_integrity_profile	*profile;
109 	unsigned char				flags;
110 	unsigned char				tuple_size;
111 	unsigned char				interval_exp;
112 	unsigned char				tag_size;
113 };
114 
115 typedef unsigned int __bitwise blk_mode_t;
116 
117 /* open for reading */
118 #define BLK_OPEN_READ		((__force blk_mode_t)(1 << 0))
119 /* open for writing */
120 #define BLK_OPEN_WRITE		((__force blk_mode_t)(1 << 1))
121 /* open exclusively (vs other exclusive openers */
122 #define BLK_OPEN_EXCL		((__force blk_mode_t)(1 << 2))
123 /* opened with O_NDELAY */
124 #define BLK_OPEN_NDELAY		((__force blk_mode_t)(1 << 3))
125 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
126 #define BLK_OPEN_WRITE_IOCTL	((__force blk_mode_t)(1 << 4))
127 
128 struct gendisk {
129 	/*
130 	 * major/first_minor/minors should not be set by any new driver, the
131 	 * block core will take care of allocating them automatically.
132 	 */
133 	int major;
134 	int first_minor;
135 	int minors;
136 
137 	char disk_name[DISK_NAME_LEN];	/* name of major driver */
138 
139 	unsigned short events;		/* supported events */
140 	unsigned short event_flags;	/* flags related to event processing */
141 
142 	struct xarray part_tbl;
143 	struct block_device *part0;
144 
145 	const struct block_device_operations *fops;
146 	struct request_queue *queue;
147 	void *private_data;
148 
149 	struct bio_set bio_split;
150 
151 	int flags;
152 	unsigned long state;
153 #define GD_NEED_PART_SCAN		0
154 #define GD_READ_ONLY			1
155 #define GD_DEAD				2
156 #define GD_NATIVE_CAPACITY		3
157 #define GD_ADDED			4
158 #define GD_SUPPRESS_PART_SCAN		5
159 #define GD_OWNS_QUEUE			6
160 
161 	struct mutex open_mutex;	/* open/close mutex */
162 	unsigned open_partitions;	/* number of open partitions */
163 
164 	struct backing_dev_info	*bdi;
165 	struct kobject queue_kobj;	/* the queue/ directory */
166 	struct kobject *slave_dir;
167 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
168 	struct list_head slave_bdevs;
169 #endif
170 	struct timer_rand_state *random;
171 	atomic_t sync_io;		/* RAID */
172 	struct disk_events *ev;
173 
174 #ifdef CONFIG_BLK_DEV_ZONED
175 	/*
176 	 * Zoned block device information for request dispatch control.
177 	 * nr_zones is the total number of zones of the device. This is always
178 	 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones
179 	 * bits which indicates if a zone is conventional (bit set) or
180 	 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones
181 	 * bits which indicates if a zone is write locked, that is, if a write
182 	 * request targeting the zone was dispatched.
183 	 *
184 	 * Reads of this information must be protected with blk_queue_enter() /
185 	 * blk_queue_exit(). Modifying this information is only allowed while
186 	 * no requests are being processed. See also blk_mq_freeze_queue() and
187 	 * blk_mq_unfreeze_queue().
188 	 */
189 	unsigned int		nr_zones;
190 	unsigned int		max_open_zones;
191 	unsigned int		max_active_zones;
192 	unsigned long		*conv_zones_bitmap;
193 	unsigned long		*seq_zones_wlock;
194 #endif /* CONFIG_BLK_DEV_ZONED */
195 
196 #if IS_ENABLED(CONFIG_CDROM)
197 	struct cdrom_device_info *cdi;
198 #endif
199 	int node_id;
200 	struct badblocks *bb;
201 	struct lockdep_map lockdep_map;
202 	u64 diskseq;
203 	blk_mode_t open_mode;
204 
205 	/*
206 	 * Independent sector access ranges. This is always NULL for
207 	 * devices that do not have multiple independent access ranges.
208 	 */
209 	struct blk_independent_access_ranges *ia_ranges;
210 };
211 
212 static inline bool disk_live(struct gendisk *disk)
213 {
214 	return !inode_unhashed(disk->part0->bd_inode);
215 }
216 
217 /**
218  * disk_openers - returns how many openers are there for a disk
219  * @disk: disk to check
220  *
221  * This returns the number of openers for a disk.  Note that this value is only
222  * stable if disk->open_mutex is held.
223  *
224  * Note: Due to a quirk in the block layer open code, each open partition is
225  * only counted once even if there are multiple openers.
226  */
227 static inline unsigned int disk_openers(struct gendisk *disk)
228 {
229 	return atomic_read(&disk->part0->bd_openers);
230 }
231 
232 /*
233  * The gendisk is refcounted by the part0 block_device, and the bd_device
234  * therein is also used for device model presentation in sysfs.
235  */
236 #define dev_to_disk(device) \
237 	(dev_to_bdev(device)->bd_disk)
238 #define disk_to_dev(disk) \
239 	(&((disk)->part0->bd_device))
240 
241 #if IS_REACHABLE(CONFIG_CDROM)
242 #define disk_to_cdi(disk)	((disk)->cdi)
243 #else
244 #define disk_to_cdi(disk)	NULL
245 #endif
246 
247 static inline dev_t disk_devt(struct gendisk *disk)
248 {
249 	return MKDEV(disk->major, disk->first_minor);
250 }
251 
252 static inline int blk_validate_block_size(unsigned long bsize)
253 {
254 	if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
255 		return -EINVAL;
256 
257 	return 0;
258 }
259 
260 static inline bool blk_op_is_passthrough(blk_opf_t op)
261 {
262 	op &= REQ_OP_MASK;
263 	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
264 }
265 
266 /*
267  * Zoned block device models (zoned limit).
268  *
269  * Note: This needs to be ordered from the least to the most severe
270  * restrictions for the inheritance in blk_stack_limits() to work.
271  */
272 enum blk_zoned_model {
273 	BLK_ZONED_NONE = 0,	/* Regular block device */
274 	BLK_ZONED_HA,		/* Host-aware zoned block device */
275 	BLK_ZONED_HM,		/* Host-managed zoned block device */
276 };
277 
278 /*
279  * BLK_BOUNCE_NONE:	never bounce (default)
280  * BLK_BOUNCE_HIGH:	bounce all highmem pages
281  */
282 enum blk_bounce {
283 	BLK_BOUNCE_NONE,
284 	BLK_BOUNCE_HIGH,
285 };
286 
287 struct queue_limits {
288 	enum blk_bounce		bounce;
289 	unsigned long		seg_boundary_mask;
290 	unsigned long		virt_boundary_mask;
291 
292 	unsigned int		max_hw_sectors;
293 	unsigned int		max_dev_sectors;
294 	unsigned int		chunk_sectors;
295 	unsigned int		max_sectors;
296 	unsigned int		max_user_sectors;
297 	unsigned int		max_segment_size;
298 	unsigned int		physical_block_size;
299 	unsigned int		logical_block_size;
300 	unsigned int		alignment_offset;
301 	unsigned int		io_min;
302 	unsigned int		io_opt;
303 	unsigned int		max_discard_sectors;
304 	unsigned int		max_hw_discard_sectors;
305 	unsigned int		max_secure_erase_sectors;
306 	unsigned int		max_write_zeroes_sectors;
307 	unsigned int		max_zone_append_sectors;
308 	unsigned int		discard_granularity;
309 	unsigned int		discard_alignment;
310 	unsigned int		zone_write_granularity;
311 
312 	unsigned short		max_segments;
313 	unsigned short		max_integrity_segments;
314 	unsigned short		max_discard_segments;
315 
316 	unsigned char		misaligned;
317 	unsigned char		discard_misaligned;
318 	unsigned char		raid_partial_stripes_expensive;
319 	enum blk_zoned_model	zoned;
320 
321 	/*
322 	 * Drivers that set dma_alignment to less than 511 must be prepared to
323 	 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
324 	 * due to possible offsets.
325 	 */
326 	unsigned int		dma_alignment;
327 };
328 
329 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
330 			       void *data);
331 
332 void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model);
333 
334 #ifdef CONFIG_BLK_DEV_ZONED
335 #define BLK_ALL_ZONES  ((unsigned int)-1)
336 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
337 			unsigned int nr_zones, report_zones_cb cb, void *data);
338 unsigned int bdev_nr_zones(struct block_device *bdev);
339 extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
340 			    sector_t sectors, sector_t nr_sectors,
341 			    gfp_t gfp_mask);
342 int blk_revalidate_disk_zones(struct gendisk *disk,
343 			      void (*update_driver_data)(struct gendisk *disk));
344 #else /* CONFIG_BLK_DEV_ZONED */
345 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
346 {
347 	return 0;
348 }
349 #endif /* CONFIG_BLK_DEV_ZONED */
350 
351 /*
352  * Independent access ranges: struct blk_independent_access_range describes
353  * a range of contiguous sectors that can be accessed using device command
354  * execution resources that are independent from the resources used for
355  * other access ranges. This is typically found with single-LUN multi-actuator
356  * HDDs where each access range is served by a different set of heads.
357  * The set of independent ranges supported by the device is defined using
358  * struct blk_independent_access_ranges. The independent ranges must not overlap
359  * and must include all sectors within the disk capacity (no sector holes
360  * allowed).
361  * For a device with multiple ranges, requests targeting sectors in different
362  * ranges can be executed in parallel. A request can straddle an access range
363  * boundary.
364  */
365 struct blk_independent_access_range {
366 	struct kobject		kobj;
367 	sector_t		sector;
368 	sector_t		nr_sectors;
369 };
370 
371 struct blk_independent_access_ranges {
372 	struct kobject				kobj;
373 	bool					sysfs_registered;
374 	unsigned int				nr_ia_ranges;
375 	struct blk_independent_access_range	ia_range[];
376 };
377 
378 struct request_queue {
379 	struct request		*last_merge;
380 	struct elevator_queue	*elevator;
381 
382 	struct percpu_ref	q_usage_counter;
383 
384 	struct blk_queue_stats	*stats;
385 	struct rq_qos		*rq_qos;
386 	struct mutex		rq_qos_mutex;
387 
388 	const struct blk_mq_ops	*mq_ops;
389 
390 	/* sw queues */
391 	struct blk_mq_ctx __percpu	*queue_ctx;
392 
393 	unsigned int		queue_depth;
394 
395 	/* hw dispatch queues */
396 	struct xarray		hctx_table;
397 	unsigned int		nr_hw_queues;
398 
399 	/*
400 	 * The queue owner gets to use this for whatever they like.
401 	 * ll_rw_blk doesn't touch it.
402 	 */
403 	void			*queuedata;
404 
405 	/*
406 	 * various queue flags, see QUEUE_* below
407 	 */
408 	unsigned long		queue_flags;
409 	/*
410 	 * Number of contexts that have called blk_set_pm_only(). If this
411 	 * counter is above zero then only RQF_PM requests are processed.
412 	 */
413 	atomic_t		pm_only;
414 
415 	/*
416 	 * ida allocated id for this queue.  Used to index queues from
417 	 * ioctx.
418 	 */
419 	int			id;
420 
421 	spinlock_t		queue_lock;
422 
423 	struct gendisk		*disk;
424 
425 	refcount_t		refs;
426 
427 	/*
428 	 * mq queue kobject
429 	 */
430 	struct kobject *mq_kobj;
431 
432 #ifdef  CONFIG_BLK_DEV_INTEGRITY
433 	struct blk_integrity integrity;
434 #endif	/* CONFIG_BLK_DEV_INTEGRITY */
435 
436 #ifdef CONFIG_PM
437 	struct device		*dev;
438 	enum rpm_status		rpm_status;
439 #endif
440 
441 	/*
442 	 * queue settings
443 	 */
444 	unsigned long		nr_requests;	/* Max # of requests */
445 
446 	unsigned int		dma_pad_mask;
447 
448 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
449 	struct blk_crypto_profile *crypto_profile;
450 	struct kobject *crypto_kobject;
451 #endif
452 
453 	unsigned int		rq_timeout;
454 
455 	struct timer_list	timeout;
456 	struct work_struct	timeout_work;
457 
458 	atomic_t		nr_active_requests_shared_tags;
459 
460 	struct blk_mq_tags	*sched_shared_tags;
461 
462 	struct list_head	icq_list;
463 #ifdef CONFIG_BLK_CGROUP
464 	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
465 	struct blkcg_gq		*root_blkg;
466 	struct list_head	blkg_list;
467 	struct mutex		blkcg_mutex;
468 #endif
469 
470 	struct queue_limits	limits;
471 
472 	unsigned int		required_elevator_features;
473 
474 	int			node;
475 #ifdef CONFIG_BLK_DEV_IO_TRACE
476 	struct blk_trace __rcu	*blk_trace;
477 #endif
478 	/*
479 	 * for flush operations
480 	 */
481 	struct blk_flush_queue	*fq;
482 	struct list_head	flush_list;
483 
484 	struct list_head	requeue_list;
485 	spinlock_t		requeue_lock;
486 	struct delayed_work	requeue_work;
487 
488 	struct mutex		sysfs_lock;
489 	struct mutex		sysfs_dir_lock;
490 
491 	/*
492 	 * for reusing dead hctx instance in case of updating
493 	 * nr_hw_queues
494 	 */
495 	struct list_head	unused_hctx_list;
496 	spinlock_t		unused_hctx_lock;
497 
498 	int			mq_freeze_depth;
499 
500 #ifdef CONFIG_BLK_DEV_THROTTLING
501 	/* Throttle data */
502 	struct throtl_data *td;
503 #endif
504 	struct rcu_head		rcu_head;
505 	wait_queue_head_t	mq_freeze_wq;
506 	/*
507 	 * Protect concurrent access to q_usage_counter by
508 	 * percpu_ref_kill() and percpu_ref_reinit().
509 	 */
510 	struct mutex		mq_freeze_lock;
511 
512 	int			quiesce_depth;
513 
514 	struct blk_mq_tag_set	*tag_set;
515 	struct list_head	tag_set_list;
516 
517 	struct dentry		*debugfs_dir;
518 	struct dentry		*sched_debugfs_dir;
519 	struct dentry		*rqos_debugfs_dir;
520 	/*
521 	 * Serializes all debugfs metadata operations using the above dentries.
522 	 */
523 	struct mutex		debugfs_mutex;
524 
525 	bool			mq_sysfs_init_done;
526 };
527 
528 /* Keep blk_queue_flag_name[] in sync with the definitions below */
529 #define QUEUE_FLAG_STOPPED	0	/* queue is stopped */
530 #define QUEUE_FLAG_DYING	1	/* queue being torn down */
531 #define QUEUE_FLAG_NOMERGES     3	/* disable merge attempts */
532 #define QUEUE_FLAG_SAME_COMP	4	/* complete on same CPU-group */
533 #define QUEUE_FLAG_FAIL_IO	5	/* fake timeout */
534 #define QUEUE_FLAG_NONROT	6	/* non-rotational device (SSD) */
535 #define QUEUE_FLAG_VIRT		QUEUE_FLAG_NONROT /* paravirt device */
536 #define QUEUE_FLAG_IO_STAT	7	/* do disk/partitions IO accounting */
537 #define QUEUE_FLAG_NOXMERGES	9	/* No extended merges */
538 #define QUEUE_FLAG_ADD_RANDOM	10	/* Contributes to random pool */
539 #define QUEUE_FLAG_SYNCHRONOUS	11	/* always completes in submit context */
540 #define QUEUE_FLAG_SAME_FORCE	12	/* force complete on same CPU */
541 #define QUEUE_FLAG_INIT_DONE	14	/* queue is initialized */
542 #define QUEUE_FLAG_STABLE_WRITES 15	/* don't modify blks until WB is done */
543 #define QUEUE_FLAG_POLL		16	/* IO polling enabled if set */
544 #define QUEUE_FLAG_WC		17	/* Write back caching */
545 #define QUEUE_FLAG_FUA		18	/* device supports FUA writes */
546 #define QUEUE_FLAG_DAX		19	/* device supports DAX */
547 #define QUEUE_FLAG_STATS	20	/* track IO start and completion times */
548 #define QUEUE_FLAG_REGISTERED	22	/* queue has been registered to a disk */
549 #define QUEUE_FLAG_QUIESCED	24	/* queue has been quiesced */
550 #define QUEUE_FLAG_PCI_P2PDMA	25	/* device supports PCI p2p requests */
551 #define QUEUE_FLAG_ZONE_RESETALL 26	/* supports Zone Reset All */
552 #define QUEUE_FLAG_RQ_ALLOC_TIME 27	/* record rq->alloc_time_ns */
553 #define QUEUE_FLAG_HCTX_ACTIVE	28	/* at least one blk-mq hctx is active */
554 #define QUEUE_FLAG_NOWAIT       29	/* device supports NOWAIT */
555 #define QUEUE_FLAG_SQ_SCHED     30	/* single queue style io dispatch */
556 #define QUEUE_FLAG_SKIP_TAGSET_QUIESCE	31 /* quiesce_tagset skip the queue*/
557 
558 #define QUEUE_FLAG_MQ_DEFAULT	((1UL << QUEUE_FLAG_IO_STAT) |		\
559 				 (1UL << QUEUE_FLAG_SAME_COMP) |	\
560 				 (1UL << QUEUE_FLAG_NOWAIT))
561 
562 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
563 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
564 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
565 
566 #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
567 #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
568 #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
569 #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
570 #define blk_queue_noxmerges(q)	\
571 	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
572 #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
573 #define blk_queue_stable_writes(q) \
574 	test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags)
575 #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
576 #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
577 #define blk_queue_zone_resetall(q)	\
578 	test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags)
579 #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
580 #define blk_queue_pci_p2pdma(q)	\
581 	test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
582 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
583 #define blk_queue_rq_alloc_time(q)	\
584 	test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
585 #else
586 #define blk_queue_rq_alloc_time(q)	false
587 #endif
588 
589 #define blk_noretry_request(rq) \
590 	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
591 			     REQ_FAILFAST_DRIVER))
592 #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
593 #define blk_queue_pm_only(q)	atomic_read(&(q)->pm_only)
594 #define blk_queue_registered(q)	test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
595 #define blk_queue_sq_sched(q)	test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
596 #define blk_queue_skip_tagset_quiesce(q) \
597 	test_bit(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, &(q)->queue_flags)
598 
599 extern void blk_set_pm_only(struct request_queue *q);
600 extern void blk_clear_pm_only(struct request_queue *q);
601 
602 #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
603 
604 #define dma_map_bvec(dev, bv, dir, attrs) \
605 	dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
606 	(dir), (attrs))
607 
608 static inline bool queue_is_mq(struct request_queue *q)
609 {
610 	return q->mq_ops;
611 }
612 
613 #ifdef CONFIG_PM
614 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
615 {
616 	return q->rpm_status;
617 }
618 #else
619 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
620 {
621 	return RPM_ACTIVE;
622 }
623 #endif
624 
625 static inline enum blk_zoned_model
626 blk_queue_zoned_model(struct request_queue *q)
627 {
628 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
629 		return q->limits.zoned;
630 	return BLK_ZONED_NONE;
631 }
632 
633 static inline bool blk_queue_is_zoned(struct request_queue *q)
634 {
635 	switch (blk_queue_zoned_model(q)) {
636 	case BLK_ZONED_HA:
637 	case BLK_ZONED_HM:
638 		return true;
639 	default:
640 		return false;
641 	}
642 }
643 
644 #ifdef CONFIG_BLK_DEV_ZONED
645 static inline unsigned int disk_nr_zones(struct gendisk *disk)
646 {
647 	return blk_queue_is_zoned(disk->queue) ? disk->nr_zones : 0;
648 }
649 
650 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
651 {
652 	if (!blk_queue_is_zoned(disk->queue))
653 		return 0;
654 	return sector >> ilog2(disk->queue->limits.chunk_sectors);
655 }
656 
657 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
658 {
659 	if (!blk_queue_is_zoned(disk->queue))
660 		return false;
661 	if (!disk->conv_zones_bitmap)
662 		return true;
663 	return !test_bit(disk_zone_no(disk, sector), disk->conv_zones_bitmap);
664 }
665 
666 static inline void disk_set_max_open_zones(struct gendisk *disk,
667 		unsigned int max_open_zones)
668 {
669 	disk->max_open_zones = max_open_zones;
670 }
671 
672 static inline void disk_set_max_active_zones(struct gendisk *disk,
673 		unsigned int max_active_zones)
674 {
675 	disk->max_active_zones = max_active_zones;
676 }
677 
678 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
679 {
680 	return bdev->bd_disk->max_open_zones;
681 }
682 
683 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
684 {
685 	return bdev->bd_disk->max_active_zones;
686 }
687 
688 #else /* CONFIG_BLK_DEV_ZONED */
689 static inline unsigned int disk_nr_zones(struct gendisk *disk)
690 {
691 	return 0;
692 }
693 static inline bool disk_zone_is_seq(struct gendisk *disk, sector_t sector)
694 {
695 	return false;
696 }
697 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
698 {
699 	return 0;
700 }
701 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
702 {
703 	return 0;
704 }
705 
706 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
707 {
708 	return 0;
709 }
710 #endif /* CONFIG_BLK_DEV_ZONED */
711 
712 static inline unsigned int blk_queue_depth(struct request_queue *q)
713 {
714 	if (q->queue_depth)
715 		return q->queue_depth;
716 
717 	return q->nr_requests;
718 }
719 
720 /*
721  * default timeout for SG_IO if none specified
722  */
723 #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
724 #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
725 
726 /* This should not be used directly - use rq_for_each_segment */
727 #define for_each_bio(_bio)		\
728 	for (; _bio; _bio = _bio->bi_next)
729 
730 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
731 				 const struct attribute_group **groups);
732 static inline int __must_check add_disk(struct gendisk *disk)
733 {
734 	return device_add_disk(NULL, disk, NULL);
735 }
736 void del_gendisk(struct gendisk *gp);
737 void invalidate_disk(struct gendisk *disk);
738 void set_disk_ro(struct gendisk *disk, bool read_only);
739 void disk_uevent(struct gendisk *disk, enum kobject_action action);
740 
741 static inline int get_disk_ro(struct gendisk *disk)
742 {
743 	return disk->part0->bd_read_only ||
744 		test_bit(GD_READ_ONLY, &disk->state);
745 }
746 
747 static inline int bdev_read_only(struct block_device *bdev)
748 {
749 	return bdev->bd_read_only || get_disk_ro(bdev->bd_disk);
750 }
751 
752 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
753 bool disk_force_media_change(struct gendisk *disk, unsigned int events);
754 
755 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
756 void rand_initialize_disk(struct gendisk *disk);
757 
758 static inline sector_t get_start_sect(struct block_device *bdev)
759 {
760 	return bdev->bd_start_sect;
761 }
762 
763 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
764 {
765 	return bdev->bd_nr_sectors;
766 }
767 
768 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
769 {
770 	return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
771 }
772 
773 static inline sector_t get_capacity(struct gendisk *disk)
774 {
775 	return bdev_nr_sectors(disk->part0);
776 }
777 
778 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
779 {
780 	return bdev_nr_sectors(sb->s_bdev) >>
781 		(sb->s_blocksize_bits - SECTOR_SHIFT);
782 }
783 
784 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
785 
786 void put_disk(struct gendisk *disk);
787 struct gendisk *__blk_alloc_disk(int node, struct lock_class_key *lkclass);
788 
789 /**
790  * blk_alloc_disk - allocate a gendisk structure
791  * @node_id: numa node to allocate on
792  *
793  * Allocate and pre-initialize a gendisk structure for use with BIO based
794  * drivers.
795  *
796  * Context: can sleep
797  */
798 #define blk_alloc_disk(node_id)						\
799 ({									\
800 	static struct lock_class_key __key;				\
801 									\
802 	__blk_alloc_disk(node_id, &__key);				\
803 })
804 
805 int __register_blkdev(unsigned int major, const char *name,
806 		void (*probe)(dev_t devt));
807 #define register_blkdev(major, name) \
808 	__register_blkdev(major, name, NULL)
809 void unregister_blkdev(unsigned int major, const char *name);
810 
811 bool disk_check_media_change(struct gendisk *disk);
812 int __invalidate_device(struct block_device *bdev, bool kill_dirty);
813 void set_capacity(struct gendisk *disk, sector_t size);
814 
815 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
816 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
817 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
818 #else
819 static inline int bd_link_disk_holder(struct block_device *bdev,
820 				      struct gendisk *disk)
821 {
822 	return 0;
823 }
824 static inline void bd_unlink_disk_holder(struct block_device *bdev,
825 					 struct gendisk *disk)
826 {
827 }
828 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
829 
830 dev_t part_devt(struct gendisk *disk, u8 partno);
831 void inc_diskseq(struct gendisk *disk);
832 void blk_request_module(dev_t devt);
833 
834 extern int blk_register_queue(struct gendisk *disk);
835 extern void blk_unregister_queue(struct gendisk *disk);
836 void submit_bio_noacct(struct bio *bio);
837 struct bio *bio_split_to_limits(struct bio *bio);
838 
839 extern int blk_lld_busy(struct request_queue *q);
840 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
841 extern void blk_queue_exit(struct request_queue *q);
842 extern void blk_sync_queue(struct request_queue *q);
843 
844 /* Helper to convert REQ_OP_XXX to its string format XXX */
845 extern const char *blk_op_str(enum req_op op);
846 
847 int blk_status_to_errno(blk_status_t status);
848 blk_status_t errno_to_blk_status(int errno);
849 
850 /* only poll the hardware once, don't continue until a completion was found */
851 #define BLK_POLL_ONESHOT		(1 << 0)
852 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
853 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
854 			unsigned int flags);
855 
856 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
857 {
858 	return bdev->bd_queue;	/* this is never NULL */
859 }
860 
861 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
862 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
863 
864 static inline unsigned int bio_zone_no(struct bio *bio)
865 {
866 	return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
867 }
868 
869 static inline unsigned int bio_zone_is_seq(struct bio *bio)
870 {
871 	return disk_zone_is_seq(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
872 }
873 
874 /*
875  * Return how much of the chunk is left to be used for I/O at a given offset.
876  */
877 static inline unsigned int blk_chunk_sectors_left(sector_t offset,
878 		unsigned int chunk_sectors)
879 {
880 	if (unlikely(!is_power_of_2(chunk_sectors)))
881 		return chunk_sectors - sector_div(offset, chunk_sectors);
882 	return chunk_sectors - (offset & (chunk_sectors - 1));
883 }
884 
885 /*
886  * Access functions for manipulating queue properties
887  */
888 void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit);
889 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
890 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
891 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
892 extern void blk_queue_max_discard_segments(struct request_queue *,
893 		unsigned short);
894 void blk_queue_max_secure_erase_sectors(struct request_queue *q,
895 		unsigned int max_sectors);
896 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
897 extern void blk_queue_max_discard_sectors(struct request_queue *q,
898 		unsigned int max_discard_sectors);
899 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
900 		unsigned int max_write_same_sectors);
901 extern void blk_queue_logical_block_size(struct request_queue *, unsigned int);
902 extern void blk_queue_max_zone_append_sectors(struct request_queue *q,
903 		unsigned int max_zone_append_sectors);
904 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
905 void blk_queue_zone_write_granularity(struct request_queue *q,
906 				      unsigned int size);
907 extern void blk_queue_alignment_offset(struct request_queue *q,
908 				       unsigned int alignment);
909 void disk_update_readahead(struct gendisk *disk);
910 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
911 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
912 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
913 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
914 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
915 extern void blk_set_stacking_limits(struct queue_limits *lim);
916 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
917 			    sector_t offset);
918 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
919 			      sector_t offset);
920 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
921 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
922 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
923 extern void blk_queue_dma_alignment(struct request_queue *, int);
924 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
925 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
926 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
927 
928 struct blk_independent_access_ranges *
929 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
930 void disk_set_independent_access_ranges(struct gendisk *disk,
931 				struct blk_independent_access_ranges *iars);
932 
933 /*
934  * Elevator features for blk_queue_required_elevator_features:
935  */
936 /* Supports zoned block devices sequential write constraint */
937 #define ELEVATOR_F_ZBD_SEQ_WRITE	(1U << 0)
938 
939 extern void blk_queue_required_elevator_features(struct request_queue *q,
940 						 unsigned int features);
941 extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
942 					      struct device *dev);
943 
944 bool __must_check blk_get_queue(struct request_queue *);
945 extern void blk_put_queue(struct request_queue *);
946 
947 void blk_mark_disk_dead(struct gendisk *disk);
948 
949 #ifdef CONFIG_BLOCK
950 /*
951  * blk_plug permits building a queue of related requests by holding the I/O
952  * fragments for a short period. This allows merging of sequential requests
953  * into single larger request. As the requests are moved from a per-task list to
954  * the device's request_queue in a batch, this results in improved scalability
955  * as the lock contention for request_queue lock is reduced.
956  *
957  * It is ok not to disable preemption when adding the request to the plug list
958  * or when attempting a merge. For details, please see schedule() where
959  * blk_flush_plug() is called.
960  */
961 struct blk_plug {
962 	struct request *mq_list; /* blk-mq requests */
963 
964 	/* if ios_left is > 1, we can batch tag/rq allocations */
965 	struct request *cached_rq;
966 	unsigned short nr_ios;
967 
968 	unsigned short rq_count;
969 
970 	bool multiple_queues;
971 	bool has_elevator;
972 	bool nowait;
973 
974 	struct list_head cb_list; /* md requires an unplug callback */
975 };
976 
977 struct blk_plug_cb;
978 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
979 struct blk_plug_cb {
980 	struct list_head list;
981 	blk_plug_cb_fn callback;
982 	void *data;
983 };
984 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
985 					     void *data, int size);
986 extern void blk_start_plug(struct blk_plug *);
987 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
988 extern void blk_finish_plug(struct blk_plug *);
989 
990 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
991 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
992 {
993 	if (plug)
994 		__blk_flush_plug(plug, async);
995 }
996 
997 int blkdev_issue_flush(struct block_device *bdev);
998 long nr_blockdev_pages(void);
999 #else /* CONFIG_BLOCK */
1000 struct blk_plug {
1001 };
1002 
1003 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1004 					 unsigned short nr_ios)
1005 {
1006 }
1007 
1008 static inline void blk_start_plug(struct blk_plug *plug)
1009 {
1010 }
1011 
1012 static inline void blk_finish_plug(struct blk_plug *plug)
1013 {
1014 }
1015 
1016 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1017 {
1018 }
1019 
1020 static inline int blkdev_issue_flush(struct block_device *bdev)
1021 {
1022 	return 0;
1023 }
1024 
1025 static inline long nr_blockdev_pages(void)
1026 {
1027 	return 0;
1028 }
1029 #endif /* CONFIG_BLOCK */
1030 
1031 extern void blk_io_schedule(void);
1032 
1033 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1034 		sector_t nr_sects, gfp_t gfp_mask);
1035 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1036 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1037 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1038 		sector_t nr_sects, gfp_t gfp);
1039 
1040 #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
1041 #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
1042 
1043 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1044 		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1045 		unsigned flags);
1046 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1047 		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1048 
1049 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1050 		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1051 {
1052 	return blkdev_issue_discard(sb->s_bdev,
1053 				    block << (sb->s_blocksize_bits -
1054 					      SECTOR_SHIFT),
1055 				    nr_blocks << (sb->s_blocksize_bits -
1056 						  SECTOR_SHIFT),
1057 				    gfp_mask);
1058 }
1059 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1060 		sector_t nr_blocks, gfp_t gfp_mask)
1061 {
1062 	return blkdev_issue_zeroout(sb->s_bdev,
1063 				    block << (sb->s_blocksize_bits -
1064 					      SECTOR_SHIFT),
1065 				    nr_blocks << (sb->s_blocksize_bits -
1066 						  SECTOR_SHIFT),
1067 				    gfp_mask, 0);
1068 }
1069 
1070 static inline bool bdev_is_partition(struct block_device *bdev)
1071 {
1072 	return bdev->bd_partno;
1073 }
1074 
1075 enum blk_default_limits {
1076 	BLK_MAX_SEGMENTS	= 128,
1077 	BLK_SAFE_MAX_SECTORS	= 255,
1078 	BLK_MAX_SEGMENT_SIZE	= 65536,
1079 	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
1080 };
1081 
1082 #define BLK_DEF_MAX_SECTORS 2560u
1083 
1084 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1085 {
1086 	return q->limits.seg_boundary_mask;
1087 }
1088 
1089 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1090 {
1091 	return q->limits.virt_boundary_mask;
1092 }
1093 
1094 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1095 {
1096 	return q->limits.max_sectors;
1097 }
1098 
1099 static inline unsigned int queue_max_bytes(struct request_queue *q)
1100 {
1101 	return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1102 }
1103 
1104 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1105 {
1106 	return q->limits.max_hw_sectors;
1107 }
1108 
1109 static inline unsigned short queue_max_segments(const struct request_queue *q)
1110 {
1111 	return q->limits.max_segments;
1112 }
1113 
1114 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1115 {
1116 	return q->limits.max_discard_segments;
1117 }
1118 
1119 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1120 {
1121 	return q->limits.max_segment_size;
1122 }
1123 
1124 static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q)
1125 {
1126 
1127 	const struct queue_limits *l = &q->limits;
1128 
1129 	return min(l->max_zone_append_sectors, l->max_sectors);
1130 }
1131 
1132 static inline unsigned int
1133 bdev_max_zone_append_sectors(struct block_device *bdev)
1134 {
1135 	return queue_max_zone_append_sectors(bdev_get_queue(bdev));
1136 }
1137 
1138 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1139 {
1140 	return queue_max_segments(bdev_get_queue(bdev));
1141 }
1142 
1143 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1144 {
1145 	int retval = 512;
1146 
1147 	if (q && q->limits.logical_block_size)
1148 		retval = q->limits.logical_block_size;
1149 
1150 	return retval;
1151 }
1152 
1153 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1154 {
1155 	return queue_logical_block_size(bdev_get_queue(bdev));
1156 }
1157 
1158 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1159 {
1160 	return q->limits.physical_block_size;
1161 }
1162 
1163 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1164 {
1165 	return queue_physical_block_size(bdev_get_queue(bdev));
1166 }
1167 
1168 static inline unsigned int queue_io_min(const struct request_queue *q)
1169 {
1170 	return q->limits.io_min;
1171 }
1172 
1173 static inline int bdev_io_min(struct block_device *bdev)
1174 {
1175 	return queue_io_min(bdev_get_queue(bdev));
1176 }
1177 
1178 static inline unsigned int queue_io_opt(const struct request_queue *q)
1179 {
1180 	return q->limits.io_opt;
1181 }
1182 
1183 static inline int bdev_io_opt(struct block_device *bdev)
1184 {
1185 	return queue_io_opt(bdev_get_queue(bdev));
1186 }
1187 
1188 static inline unsigned int
1189 queue_zone_write_granularity(const struct request_queue *q)
1190 {
1191 	return q->limits.zone_write_granularity;
1192 }
1193 
1194 static inline unsigned int
1195 bdev_zone_write_granularity(struct block_device *bdev)
1196 {
1197 	return queue_zone_write_granularity(bdev_get_queue(bdev));
1198 }
1199 
1200 int bdev_alignment_offset(struct block_device *bdev);
1201 unsigned int bdev_discard_alignment(struct block_device *bdev);
1202 
1203 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1204 {
1205 	return bdev_get_queue(bdev)->limits.max_discard_sectors;
1206 }
1207 
1208 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1209 {
1210 	return bdev_get_queue(bdev)->limits.discard_granularity;
1211 }
1212 
1213 static inline unsigned int
1214 bdev_max_secure_erase_sectors(struct block_device *bdev)
1215 {
1216 	return bdev_get_queue(bdev)->limits.max_secure_erase_sectors;
1217 }
1218 
1219 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1220 {
1221 	struct request_queue *q = bdev_get_queue(bdev);
1222 
1223 	if (q)
1224 		return q->limits.max_write_zeroes_sectors;
1225 
1226 	return 0;
1227 }
1228 
1229 static inline bool bdev_nonrot(struct block_device *bdev)
1230 {
1231 	return blk_queue_nonrot(bdev_get_queue(bdev));
1232 }
1233 
1234 static inline bool bdev_synchronous(struct block_device *bdev)
1235 {
1236 	return test_bit(QUEUE_FLAG_SYNCHRONOUS,
1237 			&bdev_get_queue(bdev)->queue_flags);
1238 }
1239 
1240 static inline bool bdev_stable_writes(struct block_device *bdev)
1241 {
1242 	return test_bit(QUEUE_FLAG_STABLE_WRITES,
1243 			&bdev_get_queue(bdev)->queue_flags);
1244 }
1245 
1246 static inline bool bdev_write_cache(struct block_device *bdev)
1247 {
1248 	return test_bit(QUEUE_FLAG_WC, &bdev_get_queue(bdev)->queue_flags);
1249 }
1250 
1251 static inline bool bdev_fua(struct block_device *bdev)
1252 {
1253 	return test_bit(QUEUE_FLAG_FUA, &bdev_get_queue(bdev)->queue_flags);
1254 }
1255 
1256 static inline bool bdev_nowait(struct block_device *bdev)
1257 {
1258 	return test_bit(QUEUE_FLAG_NOWAIT, &bdev_get_queue(bdev)->queue_flags);
1259 }
1260 
1261 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1262 {
1263 	return blk_queue_zoned_model(bdev_get_queue(bdev));
1264 }
1265 
1266 static inline bool bdev_is_zoned(struct block_device *bdev)
1267 {
1268 	return blk_queue_is_zoned(bdev_get_queue(bdev));
1269 }
1270 
1271 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1272 {
1273 	return disk_zone_no(bdev->bd_disk, sec);
1274 }
1275 
1276 /* Whether write serialization is required for @op on zoned devices. */
1277 static inline bool op_needs_zoned_write_locking(enum req_op op)
1278 {
1279 	return op == REQ_OP_WRITE || op == REQ_OP_WRITE_ZEROES;
1280 }
1281 
1282 static inline bool bdev_op_is_zoned_write(struct block_device *bdev,
1283 					  enum req_op op)
1284 {
1285 	return bdev_is_zoned(bdev) && op_needs_zoned_write_locking(op);
1286 }
1287 
1288 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1289 {
1290 	struct request_queue *q = bdev_get_queue(bdev);
1291 
1292 	if (!blk_queue_is_zoned(q))
1293 		return 0;
1294 	return q->limits.chunk_sectors;
1295 }
1296 
1297 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1298 						   sector_t sector)
1299 {
1300 	return sector & (bdev_zone_sectors(bdev) - 1);
1301 }
1302 
1303 static inline bool bdev_is_zone_start(struct block_device *bdev,
1304 				      sector_t sector)
1305 {
1306 	return bdev_offset_from_zone_start(bdev, sector) == 0;
1307 }
1308 
1309 static inline int queue_dma_alignment(const struct request_queue *q)
1310 {
1311 	return q ? q->limits.dma_alignment : 511;
1312 }
1313 
1314 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1315 {
1316 	return queue_dma_alignment(bdev_get_queue(bdev));
1317 }
1318 
1319 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1320 					struct iov_iter *iter)
1321 {
1322 	return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1323 				   bdev_logical_block_size(bdev) - 1);
1324 }
1325 
1326 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1327 				 unsigned int len)
1328 {
1329 	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1330 	return !(addr & alignment) && !(len & alignment);
1331 }
1332 
1333 /* assumes size > 256 */
1334 static inline unsigned int blksize_bits(unsigned int size)
1335 {
1336 	return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1337 }
1338 
1339 static inline unsigned int block_size(struct block_device *bdev)
1340 {
1341 	return 1 << bdev->bd_inode->i_blkbits;
1342 }
1343 
1344 int kblockd_schedule_work(struct work_struct *work);
1345 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1346 
1347 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1348 	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1349 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1350 	MODULE_ALIAS("block-major-" __stringify(major) "-*")
1351 
1352 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1353 
1354 bool blk_crypto_register(struct blk_crypto_profile *profile,
1355 			 struct request_queue *q);
1356 
1357 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1358 
1359 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1360 				       struct request_queue *q)
1361 {
1362 	return true;
1363 }
1364 
1365 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1366 
1367 enum blk_unique_id {
1368 	/* these match the Designator Types specified in SPC */
1369 	BLK_UID_T10	= 1,
1370 	BLK_UID_EUI64	= 2,
1371 	BLK_UID_NAA	= 3,
1372 };
1373 
1374 struct block_device_operations {
1375 	void (*submit_bio)(struct bio *bio);
1376 	int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1377 			unsigned int flags);
1378 	int (*open)(struct gendisk *disk, blk_mode_t mode);
1379 	void (*release)(struct gendisk *disk);
1380 	int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1381 			unsigned cmd, unsigned long arg);
1382 	int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1383 			unsigned cmd, unsigned long arg);
1384 	unsigned int (*check_events) (struct gendisk *disk,
1385 				      unsigned int clearing);
1386 	void (*unlock_native_capacity) (struct gendisk *);
1387 	int (*getgeo)(struct block_device *, struct hd_geometry *);
1388 	int (*set_read_only)(struct block_device *bdev, bool ro);
1389 	void (*free_disk)(struct gendisk *disk);
1390 	/* this callback is with swap_lock and sometimes page table lock held */
1391 	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1392 	int (*report_zones)(struct gendisk *, sector_t sector,
1393 			unsigned int nr_zones, report_zones_cb cb, void *data);
1394 	char *(*devnode)(struct gendisk *disk, umode_t *mode);
1395 	/* returns the length of the identifier or a negative errno: */
1396 	int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1397 			enum blk_unique_id id_type);
1398 	struct module *owner;
1399 	const struct pr_ops *pr_ops;
1400 
1401 	/*
1402 	 * Special callback for probing GPT entry at a given sector.
1403 	 * Needed by Android devices, used by GPT scanner and MMC blk
1404 	 * driver.
1405 	 */
1406 	int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1407 };
1408 
1409 #ifdef CONFIG_COMPAT
1410 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1411 				      unsigned int, unsigned long);
1412 #else
1413 #define blkdev_compat_ptr_ioctl NULL
1414 #endif
1415 
1416 static inline void blk_wake_io_task(struct task_struct *waiter)
1417 {
1418 	/*
1419 	 * If we're polling, the task itself is doing the completions. For
1420 	 * that case, we don't need to signal a wakeup, it's enough to just
1421 	 * mark us as RUNNING.
1422 	 */
1423 	if (waiter == current)
1424 		__set_current_state(TASK_RUNNING);
1425 	else
1426 		wake_up_process(waiter);
1427 }
1428 
1429 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1430 				 unsigned long start_time);
1431 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1432 		      unsigned int sectors, unsigned long start_time);
1433 
1434 unsigned long bio_start_io_acct(struct bio *bio);
1435 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1436 		struct block_device *orig_bdev);
1437 
1438 /**
1439  * bio_end_io_acct - end I/O accounting for bio based drivers
1440  * @bio:	bio to end account for
1441  * @start_time:	start time returned by bio_start_io_acct()
1442  */
1443 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1444 {
1445 	return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1446 }
1447 
1448 int bdev_read_only(struct block_device *bdev);
1449 int set_blocksize(struct block_device *bdev, int size);
1450 
1451 int lookup_bdev(const char *pathname, dev_t *dev);
1452 
1453 void blkdev_show(struct seq_file *seqf, off_t offset);
1454 
1455 #define BDEVNAME_SIZE	32	/* Largest string for a blockdev identifier */
1456 #define BDEVT_SIZE	10	/* Largest string for MAJ:MIN for blkdev */
1457 #ifdef CONFIG_BLOCK
1458 #define BLKDEV_MAJOR_MAX	512
1459 #else
1460 #define BLKDEV_MAJOR_MAX	0
1461 #endif
1462 
1463 struct blk_holder_ops {
1464 	void (*mark_dead)(struct block_device *bdev);
1465 };
1466 
1467 /*
1468  * Return the correct open flags for blkdev_get_by_* for super block flags
1469  * as stored in sb->s_flags.
1470  */
1471 #define sb_open_mode(flags) \
1472 	(BLK_OPEN_READ | (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1473 
1474 struct block_device *blkdev_get_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1475 		const struct blk_holder_ops *hops);
1476 struct block_device *blkdev_get_by_path(const char *path, blk_mode_t mode,
1477 		void *holder, const struct blk_holder_ops *hops);
1478 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1479 		const struct blk_holder_ops *hops);
1480 void bd_abort_claiming(struct block_device *bdev, void *holder);
1481 void blkdev_put(struct block_device *bdev, void *holder);
1482 
1483 /* just for blk-cgroup, don't use elsewhere */
1484 struct block_device *blkdev_get_no_open(dev_t dev);
1485 void blkdev_put_no_open(struct block_device *bdev);
1486 
1487 struct block_device *I_BDEV(struct inode *inode);
1488 
1489 #ifdef CONFIG_BLOCK
1490 void invalidate_bdev(struct block_device *bdev);
1491 int sync_blockdev(struct block_device *bdev);
1492 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1493 int sync_blockdev_nowait(struct block_device *bdev);
1494 void sync_bdevs(bool wait);
1495 void bdev_statx_dioalign(struct inode *inode, struct kstat *stat);
1496 void printk_all_partitions(void);
1497 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1498 #else
1499 static inline void invalidate_bdev(struct block_device *bdev)
1500 {
1501 }
1502 static inline int sync_blockdev(struct block_device *bdev)
1503 {
1504 	return 0;
1505 }
1506 static inline int sync_blockdev_nowait(struct block_device *bdev)
1507 {
1508 	return 0;
1509 }
1510 static inline void sync_bdevs(bool wait)
1511 {
1512 }
1513 static inline void bdev_statx_dioalign(struct inode *inode, struct kstat *stat)
1514 {
1515 }
1516 static inline void printk_all_partitions(void)
1517 {
1518 }
1519 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1520 {
1521 	return -EINVAL;
1522 }
1523 #endif /* CONFIG_BLOCK */
1524 
1525 int fsync_bdev(struct block_device *bdev);
1526 
1527 int freeze_bdev(struct block_device *bdev);
1528 int thaw_bdev(struct block_device *bdev);
1529 
1530 struct io_comp_batch {
1531 	struct request *req_list;
1532 	bool need_ts;
1533 	void (*complete)(struct io_comp_batch *);
1534 };
1535 
1536 #define DEFINE_IO_COMP_BATCH(name)	struct io_comp_batch name = { }
1537 
1538 #endif /* _LINUX_BLKDEV_H */
1539